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Abstract

Recent years have witnessed remarkable advances
in molecular representation learning using Graph
Neural Networks (GNNs). To fully exploit the
unlabeled molecular data, researchers first pre-
train GNNSs on large-scale molecular databases
and then fine-tune these pre-trained Graph Mod-
els (GMs) in downstream tasks. The knowledge
implicitly encoded in model parameters can bene-
fit various downstream tasks and help to alleviate
several fundamental challenges of molecular rep-
resentation learning. In this paper, we provide
a comprehensive survey of pre-trained GMs for
molecular representations. We first briefly present
the limitations of molecular graph representation
learning and thus introduce the motivation for
molecular graph pre-training. Next, we systemati-
cally categorize existing pre-trained GMs based
on a taxonomy from four different perspectives
including model architectures, pre-training strate-
gies, tuning strategies, and applications. Finally,
we outline several promising research directions
that can serve as a guideline for future studies.

1. Backgrounds

GNNs have gained popularity in various molecule-related
tasks for their ability of modeling structural information
such as molecular graphs. However, two fundamental chal-
lenges impede the wider usage of existing supervised graph
learning on molecular graphs: (1)Scarce Labeled Data:
Task-specific labeled molecules can be extremely scarce
because high-quality data labeling for molecular graphs of-
ten requires time-consuming and resource-costly wet-lab
experiments. (2) Out-of-distribution Generalization: Exist-
ing GNNss lack out-of-distribution generalization abilities so
that their performance substantially degrades when there ex-
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ist distribution shifts between training and testing molecular
graphs. This issue is common to see in real-world applica-
tions such as predicting the properties of a brand-new, just
synthesized molecule, which is different from all molecules
that have been synthesized so far (Hu* et al., 2020).

Indeed, nearly all the deep learning domains are confronted
with these challenges. To alleviate these issues, certain
progress has been made. For example, the pretrain-then-
finetune paradigm of pre-trained Language Models (LMs) is
thriving in Natural Language Processing (NLP) community.
Specifically, they first pre-train the models on a large-scale
corpus and then fine-tune these models in various down-
stream tasks. With the emergence of Transformer (Vaswani
et al., 2017), pre-trained LMs such as BERT (Devlin et al.,
2019) have become dominative roles for NLP, which have
established state-of-the-art results for various NLP tasks.

Inspired by the proliferation, tremendous efforts have been
devoted to pre-trained Graph Models (GMs) recently. It is
widely recognized that the well pre-trained GMs can provide
a better initial point across downstream tasks and leads to
wider optima with better generalization than training from
scratch (Hao et al., 2019) in a scarce data regime. In this
paper, we provide researchers with synthesis and pointer to
related research on molecular GMs. Existing surveys related
to this area have only partially focused on self-supervised
learning on graphs (Liu et al., 2021; Xie et al., 2021), but did
not go broader to the other important ingredients such as su-
pervised pre-training, tuning strategies, various extensions,
and their applications in molecular representations. Overall,
the contributions can be summarized as follows: (1) Com-
prehensive review. Our survey serves as a pioneering work
that presents a comprehensive review of pre-trained GMs for
molecular representations. (2)New taxonomy. We propose
a new taxonomy shown in Figure 1, which categorizes ex-
isting works from the following perspectives: Model archi-
tectures; Pre-training strategies; Tuning Strategies; Applica-
tions in molecular representations. (3) Abundant resources.
We collect abundant resources on this topic, including open-
sourced pre-trained GMs, pre-training datasets, paper lists
and etc. We will release these resources upon acceptance.
(4) Future directions. We discuss the limitations of existing
works and suggest possible future research directions.
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Figure 1. Taxonomy of pre-trained GMs with representative examples.

2. Overview of pre-trained GMs

With the development of computational power and the con-
stant enhancement of training skills, as demonstrated in
Figure 2, recent pre-trained GMs have embraced a transfer
learning (Pan & Yang, 2009) setting where the goal is to pre-
train a generic encoder that can deal with various molecule-
related tasks. Initially, Hu et al. (Hu* et al., 2020) initialize a
5-layer Graph Isomorphism Network (GIN) (Xu et al., 2019)
with the pre-trained GM obtained with diverse pre-training
tasks to capture both atom-level and molecule-level infor-
mation. Inspired by this precursor, the modern pre-trained
GMs are usually trained with larger-scale databases, more
powerful or deeper architectures (e.g., the hybrid of GNNs
and Transformer (Vaswani et al., 2017) we describe below),
and more advanced pre-training strategies. For example,
the pre-trained GMs like GROVER (Rong et al., 2020) and
MPG (Li et al., 2021b) with huge parameters have shown
their powerful ability in learning universal molecular graph
representations.

3. Model Architectures

The model architectures of pre-trained GMs broadly fall
into two categories: Graph Neural Networks (GNNs),
Transformer-style GNNs. We elaborate on them below.

3.1. Graph Neural Networks (GNNs)

GNNs have emerged as the dominant tools for modeling
graph data. The structure of graph data guides the aggrega-
tion of local neighborhood information and leads to a more
contextual representation for each node. Also, we can adopt
a graph pooling operation (Mesquita et al., 2020) to get the
representation for the whole graph. Molecules can naturally
be modeled as graph data with their atoms as nodes and
chemical bonds as edges. For pre-trained GMs in molec-
ular representation learning, GIN (Xu et al., 2019) is the
most popular encoder for its powerful expressiveness. The
other common GNNs such as Graph Convolutional Network
(GCN) (Kipf & Welling, 2017) and GraphSAGE (Hamilton
et al., 2017) can also serve as the encoder for pre-training,
whereas their performance is often inferior to GIN. Addi-
tionally, as revealed in a recent study (Hu* et al., 2020),
pre-training Graph Attention Network (GAT) (Velickovic
et al., 2018) will incur dramatical ‘negative transfer’, which
means that the pre-training-then-finetuning paradigm with
GAT falls behind training from scratch by large margins. It
is promising to explore why this phenomenon would occur.

3.2. Transformer-style GNNs

Although GNNs have achieved spectacular performance
in pre-training on molecular graphs, their limited parame-
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Figure 2. The pre-training and fine-tuning flow of GMs: First, a GNN is pre-trained with supervised or unsupervised tasks. Secondly, the
pre-trained model and its parameters are then used to initialize models for various downstream tasks on the input molecular graphs.

ters are not enough for large-scale datasets with millions of
molecules. On the other hand, Transformer has become the
de facto standard for doing large-scale pre-training in NLP.
Therefore, several recent works try to integrate GNN5s into
Transformer-style models, which we name Transformer-
style GNNs. For example, GROVER (Rong et al., 2020)
first utilizes GNNSs to capture local structural information
of the graph data, and then the outputs of the GNNs are
regarded as queries, keys, and values for the Transformer
encoder. They claim that this bi-level information extraction
strategy largely enhances the representational power. Analo-
gously, MPG (Li et al., 2021b) devises a neighbor attention
module to produce a message representation for each node
and feed it to a fully connected feed-forward network. With
the proper message representation obtained, they adopt a
Gated Recurrent Unit (GRU) network (Cho et al., 2014) to
update node representation. Additionally, there are some
recent works that try to incorporate the graph information
into the vanilla Transformer with improved positional em-
bedding (Hussain et al., 2021; Cai & Lam, 2020; Mialon
etal., 2021) or improved attention matrix from graphs (Ying
et al., 2021). Among them, Graphormer (Ying et al., 2021)
is the most popular one for molecular graphs pre-training.

4. Pre-training Strategies

In this section, we will elaborate on various strategies for
pre-training on molecular graphs. We summarize and for-
mulate the above pre-training strategies using a unified sym-
bolic system in Table 1.

4.1. Supervised Strategies

Although the supervised labels for molecules are often time-
consuming and expensive to collect, some cheaper annota-

tions that may be less related to downstream tasks can also
help pre-training on molecular graphs. For example, Hu et
al. (Hu* et al., 2020) propose to pre-train GNNs to predict
essentially all the properties of molecules that have been
experimentally measured so far. Also, they leave a future
work to take the structural similarities between two molec-
ular graphs as supervision. Inspired by this, MoCL (Sun
et al., 2021) first calculates the Tanimoto coefficient (Ba-
jusz et al., 2015) between two molecules as the measure of
structural similarity, which serves as the supervision for the
pre-training. Additionally, given that motifs in molecular
graphs usually correspond to functional groups that are in-
dicative of molecular properties, some recent works such
as GROVER (Rong et al., 2020) and MGSSL (Zhang et al.,
2021b) detect the motifs using the professional software
such as RDkit! or developed algorithms (Ertl, 2017) and
then predict the presence of the motifs or generate the motifs
respectively. Although the supervised pre-training brings re-
markable improvements, some supervised pre-training tasks
might be unrelated to the downstream tasks of interest and
can even hurt the downstream performance.

4.2. Unsupervised Strategies
4.2.1. GRAPH AUTOENCODERS (GAES)

Graph reconstruction serves as a natural self-supervision
for learning discriminative molecular graph representations.
The prediction targets in graph reconstruction are certain
parts of the given molecular graphs such as the attribute of a
subset of atoms or chemical bonds. Inspired by the success
of AutoEncoders in Computer Vision (CV), various GAEs
have been developed recently. Among many, GAE (Kipf &
Welling, 2016) is the simplest version of the graph autoen-
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Table 1. Loss functions of supervised and unsupervised pre-training strategies. G = (1, £): The molecular graph; V = {v1,v2,- -+ ,on }:
Atoms set; € C V x V: Bonds set; X € RV *F: The atom attributes matrix. F' denotes the feature dimensions.

Task Loss Function

Description

Supervised »CSupervised = - Ing (Y | g)

Supervised pre-training. Y is the given label.

GAEs Leaags = —logp (X, €| G) Graph reconstruction.

GAM Lo = — Zg‘l logp (X, & | X<iyE<i) X <;, E<; are the attributes and edges generated before node 7 respectively.
MCM Luew = =D Gem(g) logp (Q\ | Q\m(g)) m(G) are the masked components from G and G ,,(g) are the rest.

GCP Lecp = —logp(t | G1,G2) t = 1 if neighborhood graph G; and contexts G2 belong to the same node.
IND Lo = —s (g, Q+) + log Zg— en'S (g, Qf) N is a set of negatives; G is a positive sample.

DIM Lo =—5(G,C)+logd - cn5(9,C7) N isaset of negatives; C is a substructure of G.

RCD Lroo = —logp(t | G1,G2) t = 1if two half graphs G; and G» are homologous couples.

coders, which reconstructs the adjacency matrix of the orig-
inal graph using the binary cross-entropy loss. Also, there
exist multiple variants of GAEs that utilize graph recon-
struction to pre-train the GNNs. Representative examples
include VGAE (Kipf & Welling, 2016), MGAE (Wang et al.,
2017), ARVGA (Pan et al., 2018), SIG-VAE (Hasanzadeh
et al., 2019) and etc. Although GAEs can learn meaningful
representations for molecular graphs, they fail to capture
the inter-molecule relationships, which accounts for their
poorer performance.

4.2.2. GRAPH AUTOREGRESSIVE MODELING (GAM)

Following the idea of GPT (Brown et al., 2020) that
conducts generative language model pre-training, GPT-
GNN (Hu et al., 2020) proposes an autoregressive frame-
work to perform reconstruction on given graphs iteratively,
which is different from graph autoencoders that reconstruct
the graph all at once. In particular, given a graph with its
nodes and edges randomly masked, GPT-GNN generates
one masked node and its edges at a time and optimizes the
parameterized models via maximizing the likelihood of the
node and edges generated in the current iteration. Then, it
iteratively generates nodes and edges until all masked nodes
are generated. Analogously, MGSSL (Zhang et al., 2021b)
generates molecular graph motifs in an autoregressive way
based on existing motifs and connections. Compared with
other pre-training strategies, the pre-trained GMs obtained
with GAM are better at molecular graph generation. How-
ever, autoregressive generation incurs heavy computation-
ally overhead, which impedes wider usage in large-scale
pre-training on molecular graphs.

4.2.3. MASKED COMPONENTS MODELING (MCM)

Similar to masked language modeling (MLM) which masks
out some tokens from the input sentences and then trains
the model to predict the masked tokens by the rest of the
tokens (Devlin et al., 2019), MCM first masks out some

components (e.g., atoms, bonds, subgraphs and etc.) of the
molecular graphs and then trains the model to predict them.
For example, Hu et.al (Hu* et al., 2020) propose attribute
masking where the input atom/chemical bond attributes
are randomly masked, and the GNN is asked to predict
them. Also, GROVER (Rong et al., 2020) tries to predict
the masked subgraphs to capture the contextual information
in molecular graphs. These masking methods are especially
beneficial for richly-annotated molecular graphs. For ex-
ample, masking node attributes (atom type) enables GNNs
to learn simple chemistry rules such as valency, as well as
potentially more complex chemistry phenomena such as the
electronic or steric properties of functional groups. Addi-
tionally, compared with GAM we describe in section 4.2.2,
MCM predicts the masked components (atoms/bonds) based
on their surrounding environments while GAM predicts
them only dependent on the components appearing before
them in the handcrafted sequence. As a result, MCM al-
lows the pre-trained GMs to better capture chemical rules.
However, the input to pre-training GNNs in MCM contains
artificial symbols that never occur in downstream tasks,
which creates a pretrain-finetune discrepancy (Hu* et al.,
2020; Yang et al., 2019). This issue remains unsolved in
molecular graph pre-training.

4.2.4. GRAPH CONTEXT PREDICTION (GCP)

GCP is proposed to explore the distribution of graph struc-
ture in molecular graph data. For example, Hu et al. (Hu*
et al., 2020) use subgraphs in molecules to predict their
surrounding graph structures. They pre-train a GNN so that
it maps atoms appearing in similar structural contexts to
nearby embeddings. GROVER tries to predict the context-
aware properties of the target atom/bond within some local
subgraph. Here, the properties refer to some atom-bond
count terms around the target atom/bond. Although effec-
tive, GCP requires an auxiliary GNN to encode the context
into a fixed vector, which is redundant for large-scale pre-
training.
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4.2.5. GRAPH CONTRASTIVE LEARNING (GCL)

Graph contrastive pre-training has emerged as the most pop-
ular strategy for molecular representations, which broadly
fall into two categories based on their contrastive granular-
ities (e.g., atom vs. molecule or molecule vs. molecule):
Deep InfoMax and Instance Discrimination.

Deep InfoMax (DIM) Deep InfoMax is originally pro-
posed for images, which improves the quality of the repre-
sentation by maximizing the mutual information between an
image representation and local regions of the image (Hjelm
etal., 2019). For molecular graphs, initially, InfoGraph (Sun
et al., 2020) is proposed to obtain expressive representations
for molecules or atoms via maximizing the mutual informa-
tion between graph-level representations and substructure-
level representations of different granularity. Similarly, MV-
GRL (Hassani & Khasahmadi, 2020) performs node diffu-
sion to generate an augmented view and then maximizes
the mutual information between original and augmented
views by contrasting atom representations of one view with
molecule representations of the other view and vice versa.

Instance Discrimination (IND) IND is one of the most
popular pre-training strategies which embeds augmented
versions of the anchor molecular graph close to each other
(positive pairs) and pushes the embeddings of other molec-
ular graphs (negative pairs) apart. For molecular represen-
tations, GraphCL (You et al., 2020) and its variants (You
et al., 2021; Sun et al., 2021; Suresh et al., 2021; Fang
et al., 2022; Xu et al., 2021a) propose various advanced
augmentations strategies for graph-level pre-training. More
recently, some works such as BGRL (T. et al., 2021), CCA-
SSG (Zhang et al., 2021a), LP-Info (You et al., 2022) and
SimGRACE (Xia et al., 2022a) try to simplify graph con-
trastive pre-training via discarding the negatives, parameter-
ized mutual information estimator, or even molecular graph
data augmentations, respectively.

Although molecular graph contrastive pre-training has
achieved spectacular results, there are several critical is-
sues impeding its broader applications. For example, it
is difficult to preserve semantics during molecular graph
augmentations. Existing solutions picking augmentations
with manual trial-and-errors (You et al., 2020), cumbersome
optimization (You et al., 2021) or the guidance of expensive
domain knowledge (Sun et al., 2021; Xia et al., 2021) are
unsatisfactory. It remains to be explored whether there are
more suitable augmentations for molecular graphs. On the
other hand, we push away all the other molecular graphs
regardless of their true semantics in graph contrastive pre-
training, which will undesirably push away the molecules of
similar properties as advocated in a recent work (Xia et al.,
2022b).

4.2.6. REPLACED COMPONENT DETECTION (RCD)

To capture the global information of molecular graphs, RCD
is proposed as a graph-level pre-training task on a ran-
dom permutation of input molecular graphs. For example,
PHD (Li et al., 2021a) first decomposes each molecular
graph in the database into two half-graphs and replaces one
of them with a half-graph from other molecular graphs ran-
domly. The GNN encoder is pre-trained to detect whether
two half-graphs are homologous couples. Although RCD
can help GMs capture intrinsic patterns underlying the graph
structures, it remains a binary classification task in essence,
which is less challenging than MCM we elaborate on in
section 4.2.3.

4.3. Extensions
4.3.1. KNOWLEDGE-ENRICHED PRE-TRAINING

Pre-trained GMs usually learn universal molecular graph
representation from the general-purpose molecular database.
However, they often lack domain-specific knowledge. To
enhance their performance, several recent works try to in-
ject external knowledge during pre-training. For example,
GraphCL (You et al., 2020) first points out that bond per-
turbation is conceptually incompatible with domain knowl-
edge and empirically unhelpful for downstream performance
for chemical compounds. Therefore, they avoid adopting
bond perturbation for molecular graph augmentation. To
incorporate the domain knowledge into pre-training more
explicitly, MoCL (Sun et al., 2021) proposed a new molecu-
lar augmentation operator called substructure substitution,
in which a valid substructure of a molecule is replaced
by a bioisostere (Meanwell, 2011) which produces a new
molecule with similar physical or chemical properties as
the original one. They compile 230 substitution rules from
domain resources in total and empirically validate their
effectiveness. More recently, to capture the correlations be-
tween atoms that have common attributes but are not directly
connected by bonds, KCL (Fang et al., 2022) construct a
chemical element Knowledge Graph (KG) to summarize
microscopic associations between elements and propose a
novel Knowledge-enhanced Contrastive Learning (KCL)
framework for molecular representation learning. Consider-
ing that 3D geometric information of molecules also plays
a vital role in predicting molecular functionalities, 3DInfo-
Max (Stérk et al., 2021) proposes pre-training a model to
reason about the geometry of molecules given only their
2D molecular graphs while GraphMVP (Liu et al., 2022)
performs self-supervised pre-training via maximizing the
correspondence and consistency between 2D topological
structures and 3D geometric views. Additionally, ChemRL-
GEM (Fang et al., 2021) proposes to utilize the molecular
geometry information to enhance molecular representation
learning. They design a geometry-based graph neural net-
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Table 2. List of Representative and open-sourced pre-trained GMs. KG: Chemical Element Knowledge Graph.

pre-trained GMs Input Architecture Pre-Training Task Pre-training Database # Params.
Hu et al. (Hu* et al., 2020) Graph S-layer GIN GCP + MCM ZINC15(2M) + ChEMBL(456K) ~ 2M
GraphCL (You et al., 2020) Graph 5-layer GIN IND ZINC15(2M) + ChEMBL(456K) ~ 2M
JOAO (You et al., 2021) Graph S-layer GIN IND ZINC15(2M) + ChEMBL(456K) ~ 2M
AD-GCL (Suresh et al., 2021) Graph S-layer GIN IND ZINC15(2M) + ChEMBL(456K) ~ 2M
GraphLog (Xu et al., 2021b) Graph S-layer GIN IND ZINC15(2M) + ChEMBL(456K) ~ 2M
GROVER (Rong et al., 2020) Graph GTransformer (Rong et al., 2020) GCP + MCM ZINC + ChEMBL (10M) 48M~100M
MGSSL (Zhang et al., 2021b) Graph S-layer GIN MCM + GAM ZINC15 (250K) ~2M
PMG (Li et al., 2021b) Graph MolGNet (Li et al., 2021b) RCD + MCM ZINC + ChEMBL (11M) 53M
LP-Info (You et al., 2022) Graph S-layer GIN IND ZINC15(2M) + ChREMBL(456K) ~ 2M
SimGRACE (Xia et al., 2022a) Graph S-layer GIN IND ZINC15(2M) + ChEMBL(456K) ~ 2M
MOoICLR (Wang et al., 2021) Graph + SMILES GCN + GIN IND PubChem (10M) N/A
DMP (Zhu et al., 2021) Graph + SMILES DeeperGCN + Transformer MCM + IND PubChem (110M) 104.1 M
ChemRL-GEM (Fang et al., 2021) | Graph + Geometry =~ GeoGNN (Fang et al., 2021) MCM+GCP ZINC15 (20M) N/A
KCL (Fang et al., 2022) Graph + KG GCN + KMPNN (Fang et al., 2022) IND ZINC15 (250K) <IM
3D Infomax (Stark et al., 2021) 2D and 3D molecule PNA (Corso et al., 2020) IND QMI9(50K) + GEOM(140K) + N/A
QMugs(620K)
GraphM VP (Liu et al., 2022) 2D and 3D molecule 5-layer GIN + SchNet (Schiitt et al., 2017) IND + GAEs GEOM (50k) ~2M

work architecture as well as several geometry-level self-
supervised learning strategies (the bond lengths prediction,
the bond angles prediction, and the atomic distance matrices
prediction) to capture the molecular geometry knowledge
during pre-training. Analogously, GeomGCL (Li et al.,
2021c) regards 2D and 3D views of the same molecule as
positive pairs while the remaining pairs as negative pairs
for contrastive learning. In this way, they can avoid the
random augmentation process of molecular graphs in con-
trastive molecular graph pre-training. Although knowledge-
enhanced pre-training help GMs capture chemical domain
knowledge, however, it requires expensive domain knowl-
edge as guidance, which poses a hurdle to broader applica-
tions.

4.3.2. LEARN TO PRE-TRAIN

Due to the divergence of the optimization objectives be-
tween pre-training and fine-tuning steps, there exists a gap
between them which will significantly hurt the generaliza-
tion ability of pre-trained molecular graph models. To nar-
row this gap, L2P-GNN (Lu et al., 2021) simulates the
fine-tuning via creating new tasks during pre-training. This
setup enables pre-trained GMs to adapt to new tasks quickly
and leads to better generalization on downstream tasks.

5. Tuning Strategies

Although multiple pre-trained GMs are open-sourced for
public usage (as listed in Table 2), the process of vanilla
fine-tuning them is still brittle. For example, Xia et al. (Xia
et al., 2022c) observe that pre-trained GMs are prone to
over-fit insufficient labeled molecules for downstream tasks
due to their high complexity. In particular, unlike image or
text data, getting labels for biochemical graph data often re-
quires laborious wet-lab experiments. To enrich the labeled
data of downstream tasks, they propose to augment molecu-
lar graph data with chemical enantiomers and homologies,

which share the similar physical (permeability, solubility
and etc.) or chemical (toxicity, side effect, and etc.) prop-
erties with original molecules. To control the complexity
of pre-trained GMs, they introduce a new regularization
built on dropout which encourages the output of GMs not
to change much when injecting a small perturbation and
thus effectively controls GMs’ capacity. Additionally, catas-
trophic forgetting often happens when adapting pre-trained
GMs to downstream tasks. Namely, pre-trained GMs often
forget their learned general knowledge when fine-tuning.
To alleviate this issue, Han et al. (Han et al., 2021) utilize
meta learning (Hospedales et al., 2021) to adaptively select
and combine various pre-training tasks with the target task
in fine-tuning stage to achieve a better adaptation. This
preserves sufficient knowledge captured by self-supervised
pre-training tasks while improving the effectiveness of trans-
fer learning on GNNs. However, it assumes the pre-training
tasks of pre-training are available, which is impractical be-
cause the pre-training tasks are often unknown to users in the
downstream tasks. As an alternative, GTOT-Tuning (Zhang
et al., 2022) introduces GTOT Regularizer, which can uti-
lize graph structure to preserve the local feature invariances
between finetuned and pre-trained models and thus alleviate
the catastrophic forgetting issue.

6. Applications

Recently, the advancements in pre-training on molecular
graphs provide opportunities to expedite drug discovery
and development pipeline. In this section, we demonstrate
several promising application scenarios that can embrace
the power of pre-trained graph models.

6.1. Molecular Property Prediction (MPP)

In practice, the oral bioavailability of a brand-new drug is
related to many properties, such as solubility in the gas-
trointestinal tract, intestinal membrane permeability, and
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Table 3. Summary for the most widely-used chemical datasets for evaluating pre-trained GMs.

Dataset Task # Tasks # Molecules # Proteins # Molecule-Protein # Molecule-Molecule
BBBP MPP (Classification) 1 2,039 — — —
Tox21 MPP (Classification) 12 7,831 — — —
ToxCast MPP (Classification) 617 8,576 — — —
Sider MPP (Classification) 27 1,427 — — —
ClinTox MPP (Classification) 2 1,478 - — —
MUV MPP (Classification) 17 93,087 — — —
HIV MPP (Classification) 1 41,127 — — -
Bace MPP (Classification) 1 1,513 — — —
ESOL MPP (Regression) 1 1,128 — - -
FreeSolv MPP (Regression) 1 643 — — —
Lipophilicity MPP (Regression) 1 4,200 — — —
TWOSIDES DDI (Classification) 1 3,300 — - 63,000
DeepDDI DDI (Classification) 1 192,284 — — 19,187
Davis DTI (Regression) 1 68 379 30,056 —
KIBA DTI (Regression) 1 2,068 229 118,254 -
C. Elegans  DTI (Regression) 1 1,434 2,504 4,000 (positive interactions) —
Human DTI (Regression) 1 1,502 852 3,369 (positive interactions) —

intestinal/hepatic first-pass metabolism (Hou et al., 2007).
However, it is often laborious and even unsafe to conduct
such experiments on human bodies. As an alternative, pre-
trained GMs can capture abundant knowledge from the un-
labeled molecules and can be directly applied as a molecule
encoder to obtain expressive representations for the new
drug (Wang et al., 2021; Rong et al., 2020), which is con-
ducive to molecular property prediction.

MoleculeNet (Wu et al., 2018) is the most common bench-
mark for molecular property prediction, which includes 700,
000 molecules from PubChem (Kim et al., 2016), PubChem
BioAssasy (Wang et al., 2012) and ChEMBL (Gaulton et al.,
2012). The properties of molecules broadly fall into four cat-
egories: physiological, biophysical, physicochemical, and
quantum mechanics. Additionally, there are 17 datasets in
MoleculeNet in total, among which FreeSolv, ESOL, MUYV,
HIV, BACE, BBBP, Tox21, ToxCast, SIDER and Clintox
are the most commonly used ones to evaluate pre-trained
GMs. The molecular property prediction using Molecu-
leNet can be regarded as multi-label binary classification
or regression tasks in machine learning. We summarize the
most widely-used datasets for evaluating pre-trained GMs
in Table 3.

6.2. Drug-Drug Interaction (DDI)

Drug-drug interaction (DDI) prediction is also imperative in
drug discovery pipelines because DDIs may lead to adverse
drug reactions (ADRs) which will damage the health or even
cause death. Therefore, DDI potential is an important part
of drug development and regulatory investigation prior to
market approval. Considering that molecules with similar
structures may produce the same side effects, computer-
assisted techniques predict DDT via comparing molecular

structural similarity (Scheiber et al., 2009a;b). DDI pre-
diction tasks can be regarded as a task that classifies the
influence of combining drugs into three categories: syner-
gistic, additive, and antagonistic. Works on molecular graph
pre-training, such as MPG (Li et al., 2021b), and WordReg
& MolAug (Xia et al., 2022c), have adopted DDI prediction
as a downstream task to validate the effectiveness of the
pre-trained GMs.

DDI datasets generally come from clinical observational
cases. However, these datasets are often of low quality be-
cause the variables in real-world cases are often unmea-
sured or sparse. To remedy these drawbacks, Tatonetti
et al. (Tatonetti et al., 2012) constructed a high-quality
dataset TWOSIDES, which includes over 3,300 drugs and
63,000 combinations connected to millions of potential ad-
verse reactions. Additionally, a DDI dataset was proposed
in DeepDDI (Ryu et al., 2018) and extracted from Drug-
Bank (Wishart et al., 2008), which is a comprehensive drug
database crucial for computer-assisted drug discovery. The
DDI dataset in DeepDDI is a multi-classification task con-
taining 192,284 DDIs contributed by 191,878 drug pairs.

6.3. Drug-Target Interaction (DTI)

Drug-target interaction (DTI) prediction is a crucial task
in drug discovery. When a new indication occurs, the best
choice for coping is to recycle approved drugs because of
their availability and known safety profiles. DTI predic-
tion can reduce the need for further drug development and
lower the drug safety risk. The framework of DTI (Nguyen
et al., 2021) is consisted of two encoders. One is the pre-
trained GM for molecules and the other is the encoder for
the target (e.g., convolutional neural networks for amino
acid sequence). In DTI, we aim to predict the affinity scores
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between the molecular drugs and protein targets. In this case,
pre-trained GMs can be directly applied as a drug molecule
encoder and the well pre-trained model weights can be re-
garded as the initial weights of the drug encoder. The drug
encoder and target encoder are then trained with the DTI
prediction task. Related works including GraphMVP (Liu
et al., 2022), MPG (Li et al., 2021b) and WordReg & Mo-
1Aug (Xia et al., 2022c¢) have followed this setting to achieve
DTI prediction.

Human and Caenorhabditis elegans are two DTI datasets
specific for DTI prediction task (Liu et al., 2015). The
positive data of these datasets were selected from two
experiment-based databases: DrugBank (Wishart et al.,
2008) and Matador (Giinther et al., 2007). Instead of
randomly choosing compounds and proteins to construct
negative samples, the negative samples of human and
C. elegans were obtained through a systematic screening
framework to ensure their high credibility. In the human
dataset, 1,052 unique compounds and 852 unique pro-
teins constituted 3,369 positive interactions. In C. elegans
dataset, 4,000 positive interactions were found between
1,434 unique compounds and 2,504 unique proteins. Ad-
ditionally, Davis (Davis et al., 2011) measures the binding
affinities between kinase inhibitors and kinases with the
K4 value (kinase dissociation constant). KIBA (Tang et al.,
2014) contains binding affinities for kinase inhibitors from
different sources, including K;, K4 and IC5(. Both datasets
can also be utilized to evaluate the pre-trained GMs.

7. Conclusion and Future Outlooks

Despite the fruitful progress of pre-trained GMs, challenges
still exist due to the complexity of graph data. In this section,
we suggest several promising research directions for the
future.

7.1. Better Knowledge Transfer

Currently, tremendous efforts are focusing on pre-training
strategies. However, how to leverage these pre-trained GMs
is still under-explored compared to pre-trained language
models in NLP. Fine-tuning is a dominant technique to
adapt the knowledge to various downstream tasks, but there
are several nonnegligible deficiencies to be solved. The first
one is poor generalization of pre-trained GMs especially
for various molecular tasks where collecting labeled data
is laborious. The second issue is parameter inefficiency.
The fine-tuned parameters vary across both datasets and
tasks, which are often huge in scale and thus inconvenient
in special scenarios such as low-capacity devices. Further-
more, there are some promising alternatives to mine the
knowledge from pre-trained GMs. For example, distilling
the knowledge from pre-trained GMs as adopted in NLP is
expected (Yang et al., 2020).

7.2. Better Model Architectures, Tasks for Pre-training
on Molecular Graphs

As revealed in Section 3, the application of powerful graph
neural network architecture GAT in molecular graph pre-
training will incur negative transfer issue. It is promising
to explore why this phenomenon would occur and what
kind of GNN architectures are most suitable for molecular
graph pre-training. Additionally, for large-scale pre-training,
how to integrate expressive GNNs and Transformer into a
unified encoder deserves more attention. On other hand,
some representative pre-training strategies are fraught with
issues as we pointed out in section 4. How to mitigate these
critical issues is a fruitful direction for the future.

7.3. More Reliable Benchmarks for Fair Evaluation

MoleculeNet has become the most popular benchmark for
evaluating pre-trained GMs. However, this benchmark is
potentially brittle because most datasets are insufficiently la-
beled and over-parameterized pre-trained models are prone
to overfit them. Worse still, the performance of GMs on
these datasets is unsteady with diverse random seeds in such
a small-data regime. More Reliable benchmarks for the fair
evaluation of pre-trained GMs are expected.

7.4. Interpretability of Pre-trained GMs

Despite their proliferation, a major limitation of pre-trained
GM:s is that they are not amenable to interpretability. Worse
still, unlike CNNs for images, interpreting pre-trained
GMs is more difficult due to the complexities of both the
Transformer-style architecture and graph data. However, for
some specific scenarios like molecular toxicity prediction, it
is of vital importance for the pre-trained GMs to possess the
ability to explain the reason why a molecule is non-toxic.
Also, interpretability can accelerate some scientific findings
such as identifying biomarkers. Overall, as a key compo-
nent in graph-related applications, the interpretability of
pre-trained GMs remains to be explored further in many
respects, which helps us understand how pre-trained GMs
work and provides a guide for better usage.

7.5. Broader Scope of Applications

Pre-trained GMs have been applied in various tasks of
drug discovery. However, it remains underexplored how
pre-trained GMs can benefit more tasks such as chemical
reaction prediction (Schwaller et al., 2021), retrosynthe-
sis (Segler et al., 2018), and molecule generation (Du et al.,
2022). Additionally, recent works have demonstrated that
GNNSs can help learn expressive representations for pro-
teins (Xia & Ku, 2021). More endeavors are expected to
study whether pre-trained GMs are conducive to protein
representation learning.
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