
Unified Gradient-Based Machine Unlearning with
Remain Geometry Enhancement

Zhehao Huang, Xinwen Cheng, JingHao Zheng, Haoran Wang, Zhengbao He, Tao Li, Xiaolin Huang
Shanghai Jiao Tong University

[kinght_H, xinwencheng, zjh20030406, haoran_whynot, lstefanie, li.tao, xiaolinhuang]@sjtu.edu.cn

Abstract

Machine unlearning (MU) has emerged to enhance the privacy and trustworthiness
of deep neural networks. Approximate MU is a practical method for large-scale
models. Our investigation into approximate MU starts with identifying the steepest
descent direction, minimizing the output Kullback-Leibler divergence to exact MU
inside a parameters’ neighborhood. This probed direction decomposes into three
components: weighted forgetting gradient ascent, fine-tuning retaining gradient
descent, and a weight saliency matrix. Such decomposition derived from Euclidean
metric encompasses most existing gradient-based MU methods. Nevertheless,
adhering to Euclidean space may result in sub-optimal iterative trajectories due
to the overlooked geometric structure of the output probability space. We suggest
embedding the unlearning update into a manifold rendered by the remaining geom-
etry, incorporating second-order Hessian from the remaining data. It helps prevent
effective unlearning from interfering with the retained performance. However, com-
puting the second-order Hessian for large-scale models is intractable. To efficiently
leverage the benefits of Hessian modulation, we propose a fast-slow parameter up-
date strategy to implicitly approximate the up-to-date salient unlearning direction.
Free from specific modal constraints, our approach is adaptable across computer
vision unlearning tasks, including classification and generation. Extensive ex-
periments validate our efficacy and efficiency. Notably, our method successfully
performs class-forgetting on ImageNet using DiT and forgets a class on CIFAR-10
using DDPM in just 50 steps, compared to thousands of steps required by previous
methods. Code is available at Unified-Unlearning-w-Remain-Geometry.

1 Introduction

Machine Unlearning (MU) [1–3] aims to remove the influence of samples from a pre-trained model,
ensuring the model behaves as if it has never encountered those samples. The significance of
MU research has grown following data protection regulations [4, 5]. It has rapidly developed
in recent years, becoming an important means to help pre-trained large-scale models adapt to
various trustworthy challenges [6] in computer vision (CV). In general, MU aids in purging outdated
knowledge [7, 8], mitigating biases [9, 10], and preventing large text-to-image models from generating
not-safe-for-work (NSFW) images [11–14].

Existing MU methods are mainly divided into two categories: exact (or certified) MU [15] and
approximate MU [16]. For deep neural networks, achieving exact MU necessitates retraining on a
dataset excluding forgetting samples. However, retraining is computationally prohibitive for recent
large-scale deep networks. Thus, in MU for deep networks, this retrained model only serves as an
aspirational standard to be approached [17]. We primarily focus on more efficient approximate MU.

Approximate MU strives to align the output distribution of unlearned models with that of retrained
models. We initially explore the vanilla gradient descent of minimizing the output Kullback-Leibler

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/K1nght/Unified-Unlearning-w-Remain-Geometry

(KL) divergence between the current iteration and the retrained model. Our deduction reveals that this
direction consists of three parts: a weighted gradient ascent to eliminate the influence of forgetting
samples, a descent gradient for fine-tuning the remaining set, and a weight saliency matrix modulating
the unlearning direction. Such decomposition provides a novel perspective that unifies previous
MU approaches proposed in recent years [18–25], most of which only focus on one or two of these
components. For example, SalUn [26] insightfully proposes saliency-based unlearning, which only
optimizes the parameters important to forget, but lacks theoretical support. Our analysis fills this gap
and provides new directions for further improvement.

In fact, the vanilla gradient descent for approximate MU actually pursues the steepest descent under
Euclidean distance [27–30]. However, constraining parameter updates within an Euclidean region is
arbitrary, as it treats the importance of all parameters equally. Recent research indicates deep models’
parameters and training processes are embedded in a low-dimensional manifold [31, 32]. Thus, there
exist manifolds where changes in Euclidean between parameters are drastic, yet the output space
remains unchanged. In MU, it is evident that the importance of model parameters varies for forgetting
and remaining [33, 26], prompting the following question. Can model parameters be embedded in a
manifold that allows effective forgetting while efficiently maintaining remaining performance?

Figure 1: Overview of our proposal vs. previous unlearning meth-
ods on erasing concept ‘nudity’ in diffusion models [11, 12]. Con-
ventional methods seek the steepest descent within an Euclidean
ball, often compromising general capabilities. In contrast, we reach
the region around retraining along a remain-preserving manifold.
To address the large cost of Hessian, we implicitly approximate the
up-to-date salient unlearning direction.

To achieve this goal, we propose to
discover the descent direction under
the KL divergence on the remaining
output distribution. Using such a man-
ifold metric, the forgetting direction
can be amended by a second-order
Hessian on the remaining set to pre-
vent forgetting loss from harming re-
tained performance. Such iterative di-
rection is dominated by the unlearn-
ing function, allowing the optimization
process to focus on efficient forget-
ting. However, computing the second-
order Hessian for large-scale models
is computationally intensive, contra-
dicting the need for efficiency in un-
learning. Existing methods for esti-
mating the second-order Hessian rely
on initial parameters and keep them fixed thereafter [34, 35]. Therefore, we propose a fast-slow
weight [36, 37] method (Fig. 1) to implicitly and dynamically approximate the salient forgetting
direction with Hessian modulation, forming a unified MU approach for CV unlearning tasks including
image classification and image generation. Key contributions of this paper include:

• We provide a novel perspective to unify previous approaches by decomposing the vanilla gradient
descent direction of approximate MU into three components: weighted forgetting gradient ascent,
remaining gradient descent, and a weight saliency matrix.

• We derive the steepest descent direction for approximate MU on the remain-preserved manifold.

• We propose a fast-slow weight method to implicitly approximate online Hessian-modulated salient
forgetting updates.

• We conduct experiments on a wide range of CV unlearning tasks across multiple datasets and
models of different architectures, verifying the effectiveness and efficiency of our method.

2 Preliminary

Problem Setup. MU aims to help a well-trained model eliminate the influence of specific data points,
categories, or high-level concepts and patterns [1, 38]. Let D = {zi}Ni=1 represent a pretraining
dataset of N data points, including zi = (xi, yi) features and labels in supervised learning. The
forgetting dataset, Df = {zfi }N

f

i=1 ⊂ D, is a subset of the pretrained dataset. Its complement,
Dr = {zri }N

r

i=1 = D\Df , is the remaining dataset that we wish to retain. The learner is a model
parameterized by θ. pz(θ) = p(z; θ) represents the model output probability. The pre-trained model

2

is obtained by empirical risk minimization, i.e., θ0 = argminθ L(θ;D) = argminθ
∑

i∈D ℓ(θ; zi),
as Pretrain. This empirical risk can be divided into two parts based on the forgetting and retaining
datasets. L(θ;D) =

∑
i∈Df εiℓ(θ; z

f
i) +

∑
j∈Dr ℓ(θ; zri) = Lf (θ; ε) + Lr(θ), where ε = {εi}

Nf

i=1

weight the former part [39, 38]. For the pre-trained model, the coefficients ε0 = 1 are all ones. The
following are the instantiations in CV unlearning tasks. In classification (Cls) problems, models output
the class posterior probability p(zCls; θ) = p(y|x; θ) and the empirical risk for each sample is the
cross-entropy (CE) loss ℓCls(θ; z) = ℓCE(θ;x, y). In the image generation (Gen) task of conditional
diffusion models [40–42], the output is the conditional sampling probability p(zGen; θ) = p(x|y; θ),
and the average loss function for each sample is the mean squared error (MSE) loss: ℓGen(θ; z) =
ℓMSE(θ;x, y) = Et,ϵ∼N (0,1)[∥ϵ− ϵθ(xt|y)∥22], where t represents the diffusion step, ϵ is the random
noise sampled from a Gaussian distribution N (0, 1), ϵθ is the conditional denoising model, and xt

is the noisy version of the input image. For a more detailed introduction to image generation using
conditional diffusion models and latent diffusion models, please refer to Appendix B.3.

Exact and Approximate Machine Unlearning. Exact MU [15, 43, 1] ensures that the parameter
distribution of the unlearned model is identical to that of a model trained from scratch without seeing
the forgetting samples. For large-scale models, exact unlearning can only be achieved by retraining
(RT) on the remaining dataset θ∗ = argminθ Lr(θ). However, the computational cost of retraining
in response to every forgetting request is prohibitive. Therefore, we regard RT as a gold standard to
approximate rather than a competitor. A more practical approach is to guide the unlearned model
output distribution to approximate the output distribution of RT, known as approximate MU [16]. If
we use KL divergence to measure the difference in output distributions, the objective of approximate
unlearning can be expressed as: minθ DKL(pz(θ∗)||pz(θ)) = minθ

∫
pz(θ∗) log[pz(θ∗)/pz(θ)]dD,

starting from θ0. Therefore, a straight metric to approximate unlearning is the KL divergence from
the retrained model’s output distribution. In addition, we also investigate metrics related to forgetting
efficacy, retained performance, and privacy protection for evaluation in image classification and
generation tasks. For details of evaluation, please refer to Sec. 5 and Appendix D.

Steepest Descent. Approximate MU methods are usually based on gradient updates to obtain the
unlearned model [18, 21]. Let’s first reinterpret the gradient with steepest descent [29, 27, 30]. The
goal of steepest descent is to find the direction δθ = θt+1 − θt that drives the objective function F (θ)
descent fastest within a ξ-neighborhood of the current parameters θt. This can be formulated as the
following optimization problem. (See Appendix A.1 for proof.)

δθ := argmin
ρ(θt,θt+δθ)≤ξ

F (θt + δθ) ⇒ θt+1 := argmin
θt+1

F (θt+1) +
1

αt(ξ, θt)
ρ(θt, θt+1), (1)

where ρ(·, ·) represents the manifold metric that renders the geometry of the parameter’s neighborhood.
To simplify the derivation, we rewrite it to the form on the right, where αt(ξ, θt) represents the learning
rate required to move the distance ξ. In the following, we fix a small learning rate αt to approximate a
search within a local neighborhood. The characterization ρ of the underlying coordinate space of the
neighborhood will determine update directions, optimization paths, and the flatness of the minimum.
Vanilla gradient descent is obtained using the Euclidean metric, Newton’s direction is measured by
the second-order expansion of the objective function [44], and the KL divergence in the output space
induces a natural gradient [30, 45]. Next, we will probe approximate MU through vanilla gradient
descent and attempt to benefit from improved manifold metrics.

3 Approximate MU from Perspective of Steepest Descent

Revisit Approximate MU Methods via Vanilla Gradient Descent. We begin with the vanilla
gradient descent direction to address approximate MU. This involves finding the steepest descent
direction that minimizes the KL divergence with the retrained output within the vicinity of the current
model θt. The optimization problem can be formalized as follows:

θt+1 = argmin
θt+1

DKL (pz(θ∗)||pz(θt+1)) +
1

αt
ρ(θt, θt+1) (2)

= argmin
θt+1

DKL (pzf (θ∗)||pzf (θt+1))︸ ︷︷ ︸
(a)

pf +DKL (pzr (θ∗)||pzr (θt+1))︸ ︷︷ ︸
(b)

pr +
1

αt
ρ(θt, θt+1)︸ ︷︷ ︸

(c)

,

where pf = p(Df |D) and pr = p(Dr|D) = 1− pf denote the partition of forgetting and remaining
dataset, respectively. Analyzing (2), (a) seeks to eliminate the influence of the target forgetting

3

samples, (b) aims to maintain the performance on the remaining samples, and (c) employs the metric
ρ to constrain the magnitude of each update, thereby identifying the direction of steepest descent on
the manifold. To solve the optimization challenge outlined in (2), we posit that for the current model
θt, there exists a set of coefficients εt = {εt,i}

Nf

i=1 that weights the forgetting loss, positioning θt as
the minimizer of the weighted loss for the original training set. The unlearning process necessitates
adaptations in coefficients of forgetting loss. Then, we can determine the vanilla gradient descent for
approximate MU by using Euclidean distance ℓ2 as the manifold metric, as stated in Prop. 1.
Proposition 1. Under the Euclidean manifold metric, ρ(θt, θt+1) =

1
2∥θt − θt+1∥2. Assuming that

the current model θt = argminθ Lf (θ; εt) + Lr(θ). Let Hf
∗ = ∇2Lf (θ∗;1)and Hr

∗ = ∇2Lr(θ∗)
denote the Hessian of the retrained model on the forgetting set and the remaining set, respectively.
Then, the steepest descent direction that minimizes (2) is approximately:

θt+1 − θt :≈ −αt[H
f
∗ (H

r
∗)

−1︸ ︷︷ ︸
(S)

[−∇Lf (θt; εt)]︸ ︷︷ ︸
(F)

pf +∇Lr(θt)︸ ︷︷ ︸
(R)

pr]. (3)

Table 1: Comparison of approximate MU methods. We
decompose the steepest descent direction into three parts:
the weight saliency matrix (S), the forgetting part (F),
and the remaining part (R) as in (3) and (4). Only SA and
our method consider the remain-preserving manifold,
and we further approximate up-to-date Hessian.

Approximate Task MU components Manifold Online
MU Methods Cls Gen (S) (F) (R) Metric Hessian
FT [22, 19, 38] ✓ ✓ ✓ ℓ2
GA [20, 21] ✓ ✓ ✓ ℓ2
BT [23] ✓ ✓ ✓ ℓ2
SalUn [26] ✓ ✓ ✓ ✓ ✓ ℓ2
SA [35] ✓ ✓ ✓ Dr

KL

SFR-on ✓ ✓ ✓ ✓ ✓ Dr
KL ✓

The proof can be found in Appendix A.2. To
elucidate the effectiveness of gradient-based un-
learning methods, we decompose the vanilla
gradient descent direction in (3) into three com-
ponents: (F), (R), and (S). (F) represents the
gradient ascent direction of the weighted for-
getting loss, which directs the model to dis-
card the information of the forgetting samples.
Fine-tuning (FT) [22, 19, 38] fails to guarantee
MU due to the absence of (F). Current approx-
imate MU methods such as Random Labeling
(RL) [20] and BadTeacher knowledge distilla-
tion (BT) [23] are akin to weighted forgetting
loss gradient ascent, uniformly leading to an increase in the loss on forgetting samples. The unlearn-
ing process often causes catastrophic forgetting of the retained knowledge. Thus, it is common to
integrate (R) fine-tuning on the remaining set to sustain the model’s general capabilities. Unlearned
models via Gradient Ascent (GA) [20, 21] usually lose usability without (R). Furthermore, (S),
ignored in most of the previous literature, involves two Hessian modulation parts. Hf

∗ amplifies the
parameter updates crucial for forgetting, while (Hr

∗)
−1 dampens those important for maintaining. The

notion of (S) closely mirrors the Weight Saliency introduced in SalUn [26]. We provide theoretical
support for this notion. Importantly, our framework makes no assumption regarding input modalities,
allowing its flexible application across various CV unlearning tasks.

Approximate MU in Remain-preserving Manifold. In fact, employing Euclidean distance as the
manifold metric for parameter updates is arbitrary. It treats all coordinates as equally important
because the local second-order expansion is identical ∇2

θt
(12∥θt − θt+1∥2) = I . This uniform

treatment overlooks the varying parameter significance for forgetting and remaining. Moreover,
certain manifolds of parameter space can exhibit substantial variations in Euclidean metric, yet the
induced model output remains almost unchanged [46]. Since the retrained model performance on
forgetting is unpredictable, it is pragmatic to introduce manifolds related to the remaining. Therefore,
a practical objective is to constrain parameter updates during unlearning within a manifold that
minimally impacts the retained performance. An empirical characterization of such a manifold
could be the KL divergence on the output distribution of the remaining set, Dr

KL. Given that the
original well-trained and the retrained model output closely match the ground-truth remaining
distribution, ∇Lr(θ0) ≈ ∇Lr(θ∗) ≈ 0. By starting with θ0 and limiting updates to this manifold,
the maintained output distribution remains almost consistent throughout the unlearning iterations,
∇Lr(θt+1) ≈ ∇Lr(θt) ≈ ∇Lr(θ0) ≈ 0. This consistency permits a second-order Taylor expansion
at θt to terms (b) and (c) in (2), providing crucial curvature information for unlearning to prevent
deviations in the model output on the remaining set, leading to Prop. 2.
Proposition 2. Using the model output KL divergence on the remaining set as the manifold metric,
ρ(θt, θt+1) = DKL (pzr (θt)||pzr (θt+1))). Assuming that the current model θt = argminθ Lr(θ) +
Lf (θ; εt). Let α̃t = αtp

f/(αtp
r + 1), and Hr

t = ∇2Lr(θt) represent the Hessian w.r.t. θt on the
remaining set, then the steepest descent direction that minimizes (2) is approximately:

θt+1 − θt :≈ −α̃t (H
r
t)

−1︸ ︷︷ ︸
(R)

[Hf
∗ (H

r
∗)

−1︸ ︷︷ ︸
(S)

[−∇Lf (θt; εt)]︸ ︷︷ ︸
(F)

]. (4)

4

We defer the proof to Appendix A.3. The unlearning updates in (4) incorporated second-order Hessian
concerning remaining to guide the optimization direction. Specifically, the large curvature direction
of Hr

t corresponds with the weights that encapsulate remaining knowledge, while the small curvature
direction encourages model updates for effective unlearning. Furthermore, the update direction in (4)
primarily follows the weighted gradient ascent (F) modulated by weight saliency (S). Such unlearning
iterative updates in remain-preserving manifold focus on diminishing the distributional discrepancy
with exact MU concerning forgetting output.

Challenges in Hessian Approximation. To exploit the benefits of unlearning updates within the
remain-preserving manifold, the key point is (Hr

t)
−1. However, calculating the Hessian and its

reverse for large-scale models is computationally demanding [47]. Consequently, many methods have
been developed to estimate the Hessian, such as Fisher information [34], Fisher diagonals [48], and
Kronecker factored Laplace approximation [49]. Regarding unlearning, Selective Amnesia (SA) [35]
employs the initial model’s remaining Fisher diagonals as the second-order Hessian constraint on
parameter updates. However, the fixed Hessian in SA leads to progressively increasing estimation
biases, exacerbated by cumulative errors in Taylor expansion, which harms the retained performance
during unlearning. To address this issue, the subsequent Sec. 4 introduces an fast-slow weight update
method that implicitly approximates the direction adjusted by the up-to-date Hessian.

4 Proposed Method

Implicit Online Hessian Approximation (R-on). Given that computing the inverse of even well-
approximated Hessian demands substantial computational resources, it is more practical to estimate
the unlearning direction post-Hessian inversion modulation directly. Inspired by recent insights into
the connection between Meta-Continual Learning and Hessian approximation [50], we propose a
fast-slow weight [36, 37] method for implicitly approximating the desired updates. The optimization
problem for fast weight updates is formulated as follows:

min
θf
t

Lr(θft) s.t. θft = θt − βt∇Lu(θt), (5)

where Lu represents an arbitrary forgetting loss and βt is its learning rate. The iterative process is
depicted in Fig. 1. A step of forgetting is taken at the current model, resulting in θft . Several gradient
descent updates on the remaining set follow to obtain the minimum point θrt . This fine-tuning ensures
that the updated model adheres to the remain-preserving manifold. The slow weight updates leverage
the underlying connection between θt and θrt , as stated in Prop. 3.
Proposition 3. For implicit online Hessian approximation in (5), suppose βt, δt is small, βt <√
δt/|∇Lr(θt)− [∇Lr(θt)]2|, Lr is µ-smooth, i.e., ∥∇Lr(θ) − ∇Lr(θ′)∥2 ≤ µ∥θ − θ′∥2, and

there exist an ζt-neighborhood N (θrt , ζt) of the optimal model parameter θrt = argminθf
t
Lr(θft),

which includes θt and θft . Then, the iterative update term approximately is,

θt − θrt :≈ β2
t

[
∇2Lr(θt)

]−1 ∇Lu(θt) = β2
t (H

r
t)

−1∇Lu(θt). (6)

The proof is in Appendix A.4. Prop. 3 indicates that the model θrt , obtained after fine-tuning using
the process described in (5), is approximately equivalent to updating the current model θt by one step
in the Hessian-adjusted unlearning direction. We use this direction to update the outer loop.

Comparison with the joint loss (R). We investigate the differences in the updates between our
optimization in (5) (R-on) and the joint optimization of forgetting and remaining losses (R) [23, 25].
We take the checkpoint after the first step of fine-tuning the remaining set as an example and ignore
the step size.

LR(θt) = Lu(θt) + Lr(θt), ∆R = ∇Lu(θt) +∇Lr(θt), (7)

∆R-on ≈ ∇Lu(θt) +∇Lr(θt) +∇2Lr(θt)(θ
f
t − θt) = (I −Hr

t)∇Lu(θt) +∇Lr(θt), (8)

Comparison of the updates in (7) and (8) reveals that the remaining gradient is the same. Our forgetting
update in fast weight is adjusted by an additional term −Hr

t , which is absent in joint optimization.
This modification weakens the directions that significantly impact the remain, thereby mitigating the
damage of forgetting loss on the retained performance. Furthermore, certain methods [24] suggest
two-stage unlearning that first impairs the model and then repairs it, actually paralleling a single
fast-slow weight update of our method.

5

Sample-wise Adaptive Coefficient for Gradient Ascent (F). Despite a variety of forgetting losses
introduced in previous literature, we stick to our theoretical result in (4) and adopt the weighted
forgetting loss. Due to intractable challenges in solving the inverse problem associated with the
argmin condition for the gradient ascent coefficients, we explore the properties of these coefficients
and propose a heuristic estimation. εt,i satisfies: ① For the pretrained model, ε0,i = 1. ② For the
retrained model, εT∗,i = 1, where T ∗ is the optimal step to obtain RT. ③ Assuming homogeneity
of samples, if ℓ(θ; zfi) > ℓ(θ; zfj), then εt,i < εt,j [51]. Moreover, considering the continuity in
the model parameter space implies the continuity of εt,i in the function space. Thus, our heuristic
estimation consists of decreasing numerical values across steps and sample-wise adaptation based on
loss magnitude,

ε̃t,i = (1− t

T
)

1/[ℓ(θt; z
f
i)]

λ
detach∑

zf
j ∈Df 1/[ℓ(θt; z

f
j)]

λ
detach

×Nf , 1 ≤ i ≤ Nf , (9)

where T represents the outer loop iteration, λ is the temperature scalar to control the smoothness of
coefficients, and [·]detach denotes the operation to detach a tensor from the computational graph, which
means ℓ(θt; z

f
i) in (9) only serves for weighting coefficients and does not contribute to the gradient.

ε̃t,i is employed to modulate the gradient ascent loss for forgetting samples, thereby preventing model
explosion and reducing the contribution to updates from samples whose influence has already been
ablated, while prioritizing those whose losses remain minimal and are not yet adequately forgotten.
However, relying solely on empirical loss as an evaluation metric for sample contribution is limited
and potentially biased. We believe that enhanced designs for coefficient estimation in future research
could yield more accurate unlearning results.

Forget-Remain Balanced Weight Saliency (S). Recall in the theoretical framework of (4), the
steepest descent leverages Hf

∗ (H
r
∗)

−1 as weight saliency to modify the forgetting gradient. However,
computing both Hessians at RT is impractical, necessitating an estimation of weight saliency for
both forgetting and remaining. Previous work like SalUn [26] considers only parameters that
significantly affect the forgetting set, whereas these parameters might also critically impact the
retained performance. To address this and align with our theoretical insights, we adopt techniques
from SSD [33] to approximate Hf

∗ (H
r
∗)

−1 using the diagonal of the initial model’s Fisher information
matrix. Through a hard thresholding operation, we obtain the weight saliency map:

m = I
[
F f

diag(F
r
diag)

−1 ≥ γ
]
, where F f

diag = [∇Lf (θ0)]
2, F r

diag = [∇Lr(θ0)]
2. (10)

I[·] is an element-wise indicator function, and γ > 0 is a hard threshold used to control the Forget-
Remain balance in selecting parameters. Guided by (4), we apply the weight saliency map exclusively
to forgetting, in contrast to SalUn [26] which applies to both forgetting and remaining. The saliency
map can enhance the unlearning process by directing updates to focus on the parameters that are
crucial for erasing specific samples or concepts. More advanced weight saliency estimation is
expected to improve outcomes in future work.

Integrated Fast-slow Weight Update. By integrating the three designs into a single update scheme
towards the Saliency Forgetting in the Remain-preserving manifold online, we develop our SFR-on
method. Specifically, in the inner loop for fast weights, we use adaptive coefficients in (9) to weight
the forgetting gradient ascent with the weight saliency map from (10) to serve as the unlearning
update in (5). Slow weights in outer loops update by linearly interpolating the fine-tuned θrt and θt
in weight space, achieving an estimated steepest descent for approximate MU under the remaining
output constraint in (4). Then, we have the overall fast-slow weight update rule:

Inner Loop : min
θf
t

Lr(θrt) s.t. θft = θt − βt[m⊙ (−∇Lf (θt; ε̃t))], (11)

Outer Loop : θt+1 = θt − αt(θt − θrt) ≈ θt − αtβ
2
t (H

r
t)

−1[m⊙ (−∇Lf (θt; ε̃t))], (12)
where αt represents the slow weights learning rate. Worth mentioning that our SFR-on does not
require adaptation to specific application tasks, nor does it necessitate modifications to the task’s
inherent loss. Consequently, our approach can be seamlessly applied to various CV unlearning
scenarios by simply substituting the loss in the weighted gradient ascent with either CE loss for
image classification or MSE loss for image generation. Considering that calculating fine-tuning or
the Fisher diagonal on the complete remaining dataset for large-scale image generation tasks, we
randomly select an equivalent number of samples from the remaining as in the forgetting set for
computation [35, 26]. We find that our method remains effective under such an inadequate setup, as
detailed in Sec. 5. The complete algorithm is placed in Appendix C.

6

Table 2: Performance summary of MU methods for image classification (including RT, six baselines, our
proposed SFR-on, and ablations on our designed components), assessing unlearning 10% random subset of
CIFAR-10 using ResNet-18 and TinyImageNet using Swin-T. All results are presented as mean and standard
deviation across 10 independent trials. Performance discrepancies from RT are indicated with (•), highlighting
that more effective unlearning is reflected by performance closer to RT. The ‘Averaging Disparity’ (Avg.D)
metric is calculated by the average of the gaps measured in accuracy-related metrics, including FA, RA, TA, and
MIA. DKL denotes the KL divergence to RT. RTE is recorded in minutes.

Methods CIFAR-10 Random Subset Forgetting (10%) TinyImageNet Random Subset Forgetting (10%)
FA RA TA MIA Avg.D ↓ DKL ↓ RTE FA RA TA MIA Avg.D ↓ DKL ↓ RTE

RT 95.62±0.25 (0.00) 100.00±0.00 (0.00) 95.34±0.08 (0.00) 74.84±0.00 (0.00) 0.00 0.10 73.37 85.29±0.09 (0.00) 99.55±0.03 (0.00) 85.49±0.15 (0.00) 69.30±0.20 (0.00) 0.00 0.18 42.01

FT 99.90±0.05 (4.28) 99.99±0.00 (0.01) 94.94±0.15 (0.39) 88.25±0.01 (13.42) 4.52 0.26 3.83 96.45±0.13 (11.16) 98.29±0.08 (1.26) 82.46±0.16 (3.03) 90.00±0.22 (20.70) 9.04 0.60 4.38
GA 93.91±1.67 (1.71) 93.76±1.89 (6.24) 87.00±1.64 (8.34) 77.19±0.01 (2.35) 4.66 0.36 0.79 83.28±4.18 (2.01) 84.55±4.63 (15.00) 70.98±3.61 (14.51) 73.86±3.31 (4.56) 9.02 1.09 4.13
RL 95.99±0.24 (0.38) 99.98±0.01 (0.02) 93.85±0.11 (1.48) 31.44±0.01 (43.40) 11.32 0.34 4.56 93.35±0.31 (8.06) 98.15±0.14 (1.40) 82.98±0.22 (2.51) 45.29±1.04 (24.00) 9.00 0.47 4.79

SalUn 100.00±0.01 (4.38) 99.99±0.01 (0.01) 94.89±0.09 (0.45) 67.54±0.00 (7.29) 3.03 0.27 4.58 95.78±0.25 (10.49) 98.60±0.06 (0.95) 83.63±0.22 (1.87) 51.18±1.92 (18.12) 7.86 0.48 4.88
BT 98.88±0.00 (3.26) 99.99±0.00 (0.01) 94.63±0.06 (0.71) 61.77±0.00 (13.07) 4.26 0.24 5.56 93.22±0.30 (7.93) 97.82±0.14 (1.73) 83.04±0.22 (2.45) 47.53±0.71 (21.77) 8.47 0.47 6.79

SCRUB 99.44±0.31 (3.82) 99.88±0.08 (0.12) 94.13±0.35 (1.20) 87.43±0.00 (12.59) 4.43 0.25 2.56 97.23±0.05 (11.94) 98.10±0.34 (1.45) 82.74±0.21 (2.75) 81.32±0.47 (12.02) 7.04 0.62 5.49

S F R on
✓ 96.38±0.35 (0.76) 99.66±0.01 (0.34) 91.96±0.31 (3.38) 83.16±0.47 (8.32) 3.20 0.32 3.13 89.90±0.39 (4.61) 94.05±0.19 (5.50) 77.98±0.72 (7.51) 78.16±0.93 (8.86) 6.62 0.73 6.10
✓ ✓ 96.84±0.50 (1.22) 99.92±0.21 (0.08) 94.18±0.28 (1.16) 80.38±0.25 (5.54) 2.00 0.23 2.12 93.42±0.16 (8.13) 98.92±0.04 (0.63) 83.45±0.21 (2.04) 81.84±0.77 (12.54) 5.83 0.73 4.02

✓ ✓ ✓ 96.16±0.72 (0.54) 99.98±0.20 (0.02) 94.24±0.30 (1.10) 70.64±0.26 (4.20) 1.47 0.20 2.12 95.51±0.25 (10.22) 98.79±0.04 (0.76) 83.11±0.13 (2.38) 64.00±0.87 (5.30) 4.67 0.45 4.02
✓ ✓ ✓ ✓ 96.58±0.77 (0.96) 99.88±0.16 (0.12) 94.19±0.33 (1.15) 72.26±0.01 (2.58) 1.20 0.15 2.80 97.02±0.16 (11.73) 99.18±0.05 (0.37) 84.00±0.18 (1.49) 71.09±0.76 (1.79) 3.85 0.44 4.21

5 Experiments

Datasets, Models, and Settings. In image classification, we primarily focus on the random subset
unlearning task. Evaluations are conducted using ResNet-18 [52] on CIFAR10 [53] and Swin-
T [54] on TinyImageNet [55], with additional tests on random subset and class-wise forgetting
tasks involving CIFAR100 [53] and SVHN [56], detailed in Appendix F.2. In image generation,
our main interest lies in class-wise forgetting tasks. Following [35, 26], we unlearn conditional
DDPM [40] with the UNet architecture [57] on CIFAR10. Moreover, for the first time, we explore
the latent diffusion model [42] equipped with Diffusion Transformer (DiT) [58] on ImageNet [59],
which demonstrates superior scalability in learning large-scale data generation tasks. Finally, we
perform concept forgetting tasks using the open-source Stable Diffusion (SD) V1.4 [42] to inhibit
the generation of NSFW content, specifically by targeting the prevention of nude images. Further
details on unlearning setups and training are available in Appendix E.

Baselines and Evaluation. We regard RT as an oracle of approximate MU and compare our proposal
with eight MU methods, including six gradient-based MU approaches outlined in Sec. 3: FT [19],
GA [21], BT [23], RL [20], SalUn [26], and SA [35]. We also consider SCRUB [25], an enhanced
variant of BT, for image classification, and ESD [11] for removing concepts in SD. For the evaluation
of random subset unlearning tasks, we measure the output KL divergence DKL between the unlearned
and retrained models, which is the direct target of approximate MU. Besides, we assess the accuracy
on the forgetting set (FA) for unlearning efficacy, and the accuracy on the remaining (RA) and test
(TA) sets for preserved generalization ability. We also consider the success rate of membership
inference attack (MIA) [60, 38] on the forgetting set as a privacy metric. Note that the smaller the
disparity in these metrics against RT, the more effective the unlearning. Run-time efficiency (RTE) is
also reported. For class-wise forgetting tasks in image generation, we evaluate the accuracy of the
unlearned model’s generated images on forgetting classes (FA) by a pre-trained classifier. The Fréchet
Inception Distance (FID) [61] metric assesses the retained generative capability for remaining classes.
For ablating the ‘nudity’ concept in SD, we employ the NudeNet [62] detector to identify and count
nude body parts in generated NSFW images. For further introduction to the baselines and detailed
evaluation metrics, please refer to Appendix E.1 and D.

To assess the unlearning effectiveness and efficiency of SFR-on, we perform comprehensive experi-
ments and conduct ablation studies to address the following four key questions:

Q1: How does SFR-on perform on unlearning in image classification? We first evaluate the
performance of our method, SFR-on, against existing gradient-based MU methods on the image
classification random subset unlearning task. In this scenario, the forgetting set, remaining, and test
sets all originate from the same distribution. Consequently, even if the model undergoes unlearning
on the random subset, it may still generalize to these samples. To avoid potential biases from only
using FA as an unlearning metric, we incorporate MIA to assess the privacy retention of the forgetting
set, enhancing the robustness of assessments. As detailed in Tab. 2, for forgetting 10% random subset
on CIFAR-10 and TinyImageNet, SFR-on not only most closely aligns with RT in the averaging
metric disparity but also exhibits the smallest output KL divergences w.r.t. RT. This performance
underscores our effectiveness and efficiency in achieving the objective of approximate MU. The
results of the increased 50% random subset unlearning task are included in Appendix F.2.

7

Table 3: Class-wise forgetting performance on CIFAR10 with DDPM and ImageNet with DiT. The best
unlearning performance for each forgetting class is highlighted in bold for FA and FID.

Methods
CIFAR-10 Class-wise Forgetting ImageNet Class-wise Forgetting

Automobile Cat Dog Horse Truck Steps Cacatua galerita Golden retriever White wolf Arctic fox Otter StepsFA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓ FA ↓ FID ↓
SA 0.00 23.56 14.20 21.34 8.60 21.19 0.00 21.13 0.00 29.04 10000 0.00 348.75 0.00 298.97 0.00 45.89 0.00 393.91 29.8 321.21 10000

SalUn 0.20 21.23 1.40 20.29 0.00 20.18 0.60 20.70 0.80 20.45 1000 91.21 18.47 46.09 25.28 0.00 15.16 45.90 408.07 87.50 19.69 10000
SFR-on 0.00 20.70 7.40 18.44 0.20 18.89 0.00 19.93 0.00 20.61 50 0.00 13.59 0.00 17.76 0.00 23.28 0.00 16.12 0.00 16.43 500

Methods Forgetting class: ‘Cat’ Non-forgetting classes
I1 I2 I3 I4 I5 C1 C2 C3 C4 C5 C6 C7 C8 C9

Pretrain

RT

SA

SalUn

S F R on

✓

✓ ✓

✓ ✓ ✓ ✓

Figure 2: Image generations for class-wise forgetting tasks on CIFAR-10 using DDPM by baselines and our
proposed SFR-on along with ablation variants. The forgetting class is ‘cat’, ‘I’ refers to the generated image
sample from this class, and ‘C’ denotes the remaining class name. More results can be found in Appendix F.7.

Q2: How does SFR-on perform on class-forgetting in image generation? Another recent focus in
MU involves the targeted removal of specific knowledge from image generation models, which are
currently categorized into conditional and latent diffusion models. For the former, we investigated
class-wise forgetting on CIFAR-10 using DDPM. As illustrated in Fig. 2, RT continues to generate
high-quality images devoid of the semantic content of ‘cat.’ Contrarily, previous approaches like SA
resulted in random noise for the forgetting class, whereas SalUn created images belonging to alternate
classes, both differ from RT output. Our SFR-on (depicted in the last row of Fig. 2) effectively
removes the ‘cat’ class by yielding high-quality pictures without discernible semantics, and maintains
the high fidelity of images across non-forgetting classes, most matching RT. Furthermore, we extend
the image generation unlearning task to DiT, a recently proposed model promising for realistic image
generation. Due to computational resource constraints, RT for DiT is unfeasible. Instead, we simulate
RT by substituting the DiT output of the forgetting class with initial random latent embeddings.
These embeddings are then processed by the pre-trained autoencoder to reconstruct the corresponding
images, referred to as RT† in Fig. 3. Previous methods, such as SA and SalUn, fail to completely
reduce the forgetting class to noise and compromise the fidelity of non-forgetting class images. In
contrast, our SFR-on successfully achieves results comparable to RT†, effectively forgetting the target
class without degrading the general generative capability. Details on the accuracy of forgetting class
samples by various unlearned DiT and FID of remaining classes are presented in Tab. 3.

Q3: What is the impact of each component of SFR-on on forgetting performance? To investigate
the efficacy of each component we developed for the decomposition of approximate MU, we perform
ablation studies. We build on the joint training of GA and FT as our baseline (R) and incorporate our
proposed implicit online hessian approximation (R-on), adaptive coefficients (F), and forget-retain
balanced weight saliency (S). As demonstrated in the last four rows of Tab. 2, the addition of our
(R-on) allows models to effectively forget while sustaining performance on the remaining set. Both
(F) and (S), crafted to approach the steepest descent for approximate MU, enhance the unlearning
efficacy. In image generation, as depicted in the last three rows of Fig. 2, although the joint training
(R) is capable of completely forgetting targeted classes, it results in distorted images for remaining.
Replacing (R) with our (R-on) remarkably improves the image fidelity of the remaining classes, but
the forgetting class images still show low-quality textures. Further, our (F) and (S) effectively direct
the unlearning process towards the approximate MU, ensuring that the performance of the unlearned
models closely mirrors that of RT. More ablations on hyperparameters are provided in Appendix F.1.

8

Methods Forget: ‘Golden retriever’ Non-forgetting classes
I1 I2 C1 C2 C3 C4 C5

Pretrain

RT†

SA

SalUn

SFR-on

Figure 3: Class-wise forgetting of ‘golden retriever’ in image generations of ImageNet with DiT, comparing
baselines and our proposed SFR-on. RT† feeds autoencoder with random latent embeddings for the forgetting
class, due to the computational constraints, rather than full RT. ‘I’ denotes image samples from forgetting, and
‘C’ refers to other remaining class name, e.g. ‘Cacatua galerita’ (C1). More results can be found in Appendix F.7.

Table 4: Unlearning performance in erasing ‘Nudity’
concept from SD by the original SD V1.4, ESD, SalUn,
and our SFR-on, measuring the number of total 9406
NSFW images generated from I2P prompts across nudity
categories. The prefixes ‘F-’ and ‘M-’ denote ‘Female-’
and ‘Male-’ respectively.

Methods # of exposed body parts ↓
Buttocks F-Breast F-Genitalia M-Genitalia M-Breast Anus Feet Armpits Belly Total

SD V1.4 107 298 56 143 351 4 168 409 263 1799
ESD 35 73 9 51 79 1 121 81 42 492

SalUn 2 2 1 5 3 0 9 21 3 46
SFR-on 0 0 0 0 0 0 1 2 0 3

Q4: How effective is SFR-on in NSFW con-
tent removal for SD? We finally assess the effi-
cacy of our method in removing the ‘nudity’ con-
cept from the open-source SD to prevent the gen-
eration of NSFW content. Given that SD V1.4
is trained on the LAION dataset [63], purging
all images depicting nudity and retraining the
model would be prohibitively time-consuming
and resource-intensive. In this unlearning task,
we designate ‘nudity’ as the forgetting set and generate a set of clothed individuals as remaining
to preserve SD’s generalization capability across non-nudity themes. We utilize the inappropriate
image prompts (I2P) [12] to query potentially NSFW content from the unlearned SD and employ
NudeNet to detect exposed body parts in these images. The results in Tab. 4 demonstrate that our
method significantly prevents the generation of culturally sensitive body parts, such as breasts and
genitalia, highlighting our strength to enhance the trustworthiness of machine learning applications.

6 Conclusion

This paper revisits gradient-based approximate MU methods from the perspective of the steepest
descent. The descent direction under an Euclidean manifold metric can be divided into three
integral components: weighted forgetting gradient ascent, fine-tuning remaining gradient descent,
and weight saliency matrix. Our approach advances beyond the Euclidean constraints by embedding
the unlearning update within a remain-preserving manifold. This novel strategy incorporates the
second-order Hessian of the current model on remaining, safeguarding against detrimental impacts
on retained performance. To circumvent the prohibitive computational demands of the Hessian in
large-scale models, we introduce an efficient fast-slow weight update method to approximate the
Hessian-adjusted direction. Furthermore, our innovative adaptive coefficient for weight forgetting
loss and a forget-remain balanced weight saliency map facilitate near-retraining unlearning. Our
method can be applied to popular CV unlearning tasks with empirically verified unlearning efficacy.

9

Acknowledgments and Disclosure of Funding

The authors would like to thank the anonymous reviewers for their insightful comments.

The research leading to these results has received funding from National Key Research Development
Project (2023YFF1104202), National Natural Science Foundation of China (62376155, Shanghai
Municipal Science and Technology Research Program Major Project (2021SHZDZX0102).

References
[1] L. Bourtoule, V. Chandrasekaran, C. A. Choquette-Choo, H. Jia, A. Travers, B. Zhang, D. Lie, and

N. Papernot, “Machine unlearning,” 2021 IEEE Symposium on Security and Privacy (SP), pp. 141–159,
2019. 1, 2, 3, 19

[2] T. Shaik, X. Tao, H. Xie, L. Li, X. Zhu, and Q. Li, “Exploring the landscape of machine unlearning: A
survey and taxonomy,” arXiv preprint arXiv:2305.06360, 2023. 19

[3] J. Xu, Z. Wu, C. Wang, and X. Jia, “Machine unlearning: Solutions and challenges,” IEEE Transactions on
Emerging Topics in Computational Intelligence, 2024. 1, 19

[4] G. D. P. R. GDPR, “General data protection regulation,” URL: https://gdpr-info. eu/[accessed 2020-11-21],
2018. 1

[5] E. Illman and P. Temple, “California consumer privacy act,” The Business Lawyer, vol. 75, no. 1, pp.
1637–1646, 2019. 1

[6] J. Rando, D. Paleka, D. Lindner, L. Heim, and F. Tramèr, “Red-teaming the stable diffusion safety filter,”
arXiv preprint arXiv:2210.04610, 2022. 1, 19

[7] N. De Cao, W. Aziz, and I. Titov, “Editing factual knowledge in language models,” Empirical Methods in
Natural Language Processing (EMNLP), 2021. 1

[8] K. Meng, D. Bau, A. Andonian, and Y. Belinkov, “Locating and editing factual associations in gpt,”
Advances in Neural Information Processing Systems (NIPS), vol. 35, pp. 17 359–17 372, 2022. 1

[9] A. Oesterling, J. Ma, F. Calmon, and H. Lakkaraju, “Fair machine unlearning: Data removal while
mitigating disparities,” in International Conference on Artificial Intelligence and Statistics. PMLR, 2024,
pp. 3736–3744. 1

[10] R. Chen, J. Yang, H. Xiong, J. Bai, T. Hu, J. Hao, Y. Feng, J. T. Zhou, J. Wu, and Z. Liu, “Fast model
debias with machine unlearning,” Advances in Neural Information Processing Systems (NIPS), vol. 36,
2024. 1

[11] R. Gandikota, J. Materzynska, J. Fiotto-Kaufman, and D. Bau, “Erasing concepts from diffusion models,”
in IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp. 2426–2436. 1, 2, 7, 19, 22

[12] P. Schramowski, M. Brack, B. Deiseroth, and K. Kersting, “Safe latent diffusion: Mitigating inappropriate
degeneration in diffusion models,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2023, pp. 22 522–22 531. 2, 9, 19

[13] N. Kumari, B. Zhang, S.-Y. Wang, E. Shechtman, R. Zhang, and J.-Y. Zhu, “Ablating concepts in text-to-
image diffusion models,” in IEEE/CVF International Conference on Computer Vision (ICCV), 2023, pp.
22 691–22 702. 19

[14] E. Zhang, K. Wang, X. Xu, Z. Wang, and H. Shi, “Forget-me-not: Learning to forget in text-to-image
diffusion models,” arXiv preprint arXiv:2303.17591, 2023. 1, 19

[15] C. Guo, T. Goldstein, A. Y. Hannun, and L. van der Maaten, “Certified data removal from machine learning
models,” International Conference on Machine Learning (ICML), 2020. 1, 3, 19

[16] Z. Izzo, M. A. Smart, K. Chaudhuri, and J. Y. Zou, “Approximate data deletion from machine learning
models: Algorithms and evaluations,” ArXiv, vol. abs/2002.10077, 2020. 1, 3, 19

[17] A. Thudi, H. Jia, I. Shumailov, and N. Papernot, “On the necessity of auditable algorithmic definitions for
machine unlearning,” in USENIX Security Symposium, 2021. 1

[18] S. Neel, A. Roth, and S. Sharifi-Malvajerdi, “Descent-to-delete: Gradient-based methods for machine
unlearning,” Algorithmic Learning Theory, 2021. 2, 3, 19

10

[19] A. Warnecke, L. Pirch, C. Wressnegger, and K. Rieck, “Machine unlearning of features and labels,” Annual
Network and Distributed System Security Symposium, 2023. 4, 7, 19, 22

[20] L. Graves, V. Nagisetty, and V. Ganesh, “Amnesiac machine learning,” in AAAI Conference on Artificial
Intelligence (AAAI), 2021. 4, 7, 19, 22

[21] A. Thudi, G. Deza, V. Chandrasekaran, and N. Papernot, “Unrolling sgd: Understanding factors influencing
machine unlearning,” European Symposium on Security and Privacy (EuroS&P), pp. 303–319, 2022. 3, 4,
7, 19, 22

[22] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless net: Selective forgetting in deep
networks,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9301–9309,
2019. 4, 19, 22

[23] V. S. Chundawat, A. K. Tarun, M. Mandal, and M. S. Kankanhalli, “Can bad teaching induce forgetting?
unlearning in deep networks using an incompetent teacher,” AAAI Conference on Artificial Intelligence
(AAAI), 2023. 4, 5, 7, 19, 22

[24] A. K. Tarun, V. S. Chundawat, M. Mandal, and M. S. Kankanhalli, “Fast yet effective machine unlearning,”
IEEE transactions on neural networks and learning systems, vol. PP, 2021. 5, 19

[25] M. Kurmanji, P. Triantafillou, and E. Triantafillou, “Towards unbounded machine unlearning,” Towards
Unbounded Machine Unlearning (NIPS), 2023. 2, 5, 7, 19, 22

[26] C. Fan, J. Liu, Y. Zhang, D. Wei, E. Wong, and S. Liu, “Salun: Empowering machine unlearning via
gradient-based weight saliency in both image classification and generation,” International Conference on
Learning Representations (ICLR), 2023. 2, 4, 6, 7, 19, 22, 24

[27] M. Kim, D. Li, S. X. Hu, and T. M. Hospedales, “Fisher sam: Information geometry and sharpness aware
minimisation,” in International Conference on Machine Learning (ICML), 2022. 2, 3, 19

[28] T.-C. Kao, K. T. Jensen, G. M. van de Ven, A. Bernacchia, and G. Hennequin, “Natural continual learning:
success is a journey, not (just) a destination,” Advances in Neural Information Processing Systems (NIPS),
2021. 19

[29] T. E. Abrudan, J. Eriksson, and V. Koivunen, “Steepest descent algorithms for optimization under unitary
matrix constraint,” IEEE Transactions on Signal Processing, vol. 56, pp. 1134–1147, 2008. 3, 19

[30] J. Martens, “New insights and perspectives on the natural gradient method,” Journal of Machine Learning
Research, vol. 21, pp. 146:1–146:76, 2014. 2, 3, 19

[31] T. Li, L. Tan, Z. Huang, Q. Tao, Y. Liu, and X. Huang, “Low dimensional trajectory hypothesis is true:
Dnns can be trained in tiny subspaces,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 45, pp. 3411–3420, 2022. 2

[32] J. E. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, and W. Chen, “Lora: Low-rank adaptation of
large language models,” International Conference on Learning Representations (ICLR), 2022. 2

[33] J. Foster, S. Schoepf, and A. Brintrup, “Fast machine unlearning without retraining through selective
synaptic dampening,” AAAI Conference on Artificial Intelligence (AAAI), 2024. 2, 6, 20

[34] J. Kirkpatrick, R. Pascanu, N. C. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan,
T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National Academy of Sciences, vol. 114, pp.
3521 – 3526, 2016. 2, 5, 19

[35] A. Heng and H. Soh, “Selective amnesia: A continual learning approach to forgetting in deep generative
models,” Advances in Neural Information Processing Systems (NIPS), 2023. 2, 4, 5, 6, 7, 21, 22, 23

[36] M. R. Zhang, J. Lucas, G. E. Hinton, and J. Ba, “Lookahead optimizer: k steps forward, 1 step back,”
Advances in Neural Information Processing Systems (NIPS), 2019. 2, 5

[37] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-learning algorithms,” ArXiv, vol.
abs/1803.02999, 2018. 2, 5

[38] J. Jia, J. Liu, P. Ram, Y. Yao, G. Liu, Y. Liu, P. Sharma, and S. Liu, “Model sparsity can simplify machine
unlearning,” in Neural Information Processing Systems (NIPS), 2023. 2, 3, 4, 7, 19, 22

[39] P. W. Koh and P. Liang, “Understanding black-box predictions via influence functions,” in International
Conference on Machine Learning (ICML), 2017. 3, 19

11

[40] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information
Processing Systems (NIPS), 2020. 3, 7, 19, 20

[41] J. Ho, “Classifier-free diffusion guidance,” ArXiv, vol. abs/2207.12598, 2022. 19, 20

[42] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with
latent diffusion models,” IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
10 674–10 685, 2022. 3, 7, 19, 20

[43] A. Mahadevan and M. Mathioudakis, “Certifiable machine unlearning for linear models,” ArXiv, vol.
abs/2106.15093, 2021. 3

[44] D. Kovalev, K. Mishchenko, and P. Richtárik, “Stochastic newton and cubic newton methods with simple
local linear-quadratic rates,” ArXiv, vol. abs/1912.01597, 2019. 3

[45] O. Calin and C. Udrişte, “Geometric modeling in probability and statistics,” 2014. 3

[46] T. Hoang, S. Rana, S. Gupta, and S. Venkatesh, “Learn to unlearn for deep neural networks: Minimizing
unlearning interference with gradient projection,” IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), 2023. 4

[47] M. Elsayed and A. R. Mahmood, “Hesscale: Scalable computation of hessian diagonals,” 2022. 5

[48] F. Huszár, “Note on the quadratic penalties in elastic weight consolidation,” Proceedings
of the National Academy of Sciences, vol. 115, no. 11, Feb. 2018. [Online]. Available:
http://dx.doi.org/10.1073/pnas.1717042115 5

[49] H. Ritter, A. Botev, and D. Barber, “Online structured laplace approximations for overcoming catastrophic
forgetting,” Advances in Neural Information Processing Systems (NIPS), 2018. 5

[50] Y. Wu, L.-K. Huang, R. Wang, D. Meng, and Y. Wei, “Meta continual learning revisited: Implicitly
enhancing online hessian approximation via variance reduction,” in International Conference on Learning
Representations (ICLR), 2024. [Online]. Available: https://openreview.net/forum?id=TpD2aG1h0D 5, 19

[51] B. Rozemberczki, L. Watson, P. Bayer, H.-T. Yang, O. Kiss, S. Nilsson, and R. Sarkar, “The shapley value
in machine learning,” International Joint Conference on Artificial Intelligence (IJCAI), 2022. 6

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 770–778, 2015. 7

[53] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009. 7

[54] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer: Hierarchical vision
transformer using shifted windows,” IEEE/CVF International Conference on Computer Vision (ICCV), pp.
9992–10 002, 2021. 7

[55] Y. Le and X. S. Yang, “Tiny imagenet visual recognition challenge,” 2015. 7

[56] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading digits in natural images with
unsupervised feature learning,” 2011. 7

[57] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmenta-
tion,” Medical Image Computing and Computer-Assisted Intervention (MICCAI), 2015. 7

[58] W. S. Peebles and S. Xie, “Scalable diffusion models with transformers,” IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pp. 4172–4182, 2023. 7, 19, 20

[59] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255, 2009. 7

[60] L. Song and P. Mittal, “Systematic evaluation of privacy risks of machine learning models,” in USENIX
Security Symposium, 2020. 7

[61] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained by a two time-scale
update rule converge to a local nash equilibrium,” 2018. 7

[62] P. Bedapudi, “Nudenet: Neural nets for nudity classification, detection and selective censoring,” 2019. 7

12

http://dx.doi.org/10.1073/pnas.1717042115
https://openreview.net/forum?id=TpD2aG1h0D

[63] C. Schuhmann, R. Vencu, R. Beaumont, R. Kaczmarczyk, C. Mullis, A. Katta, T. Coombes, J. Jitsev, and
A. Komatsuzaki, “Laion-400m: Open dataset of clip-filtered 400 million image-text pairs,” ArXiv, vol.
abs/2111.02114, 2021. 9

[64] A. Sekhari, J. Acharya, G. Kamath, and A. T. Suresh, “Remember what you want to forget: Algorithms for
machine unlearning,” Advances in Neural Information Processing Systems (NIPS), 2021. 19

[65] A. A. Ginart, M. Y. Guan, G. Valiant, and J. Y. Zou, “Making ai forget you: Data deletion in machine
learning,” Advances in Neural Information Processing Systems (NIPS), 2019. 19

[66] E. Ullah, T. Mai, A. B. Rao, R. A. Rossi, and R. Arora, “Machine unlearning via algorithmic stability,” in
Annual Conference Computational Learning Theory, 2021. 19

[67] R. Giordano, W. T. Stephenson, R. Liu, M. I. Jordan, and T. Broderick, “A swiss army infinitesimal
jackknife,” in International Conference on Artificial Intelligence and Statistics, 2018. 19

[68] M. Chen, Z. Zhang, T. Wang, M. Backes, M. Humbert, and Y. Zhang, “When machine unlearning
jeopardizes privacy,” Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2020. 19

[69] Z. Li and Y. Zhang, “Membership leakage in label-only exposures,” Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, 2020.

[70] L. Song, R. Shokri, and P. Mittal, “Privacy risks of securing machine learning models against adversarial
examples,” Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
2019.

[71] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learning: Analyzing the
connection to overfitting,” 2018 IEEE 31st Computer Security Foundations Symposium (CSF), pp. 268–282,
2017.

[72] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis, and F. Tramer, “Membership inference attacks from first
principles,” 2022. 19

[73] X. Cheng, Z. Huang, and X. Huang, “Machine unlearning by suppressing sample contribution,” 2024. 19

[74] H. Hu, Z. A. Salcic, L. Sun, G. Dobbie, P. Yu, and X. Zhang, “Membership inference attacks on machine
learning: A survey,” ACM Computing Surveys (CSUR), vol. 54, pp. 1 – 37, 2021. 19

[75] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confidence information and
basic countermeasures,” Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-
tions Security, 2015. 19

[76] B. Balle, G. Cherubin, and J. Hayes, “Reconstructing training data with informed adversaries,” 2022 IEEE
Symposium on Security and Privacy (SP), pp. 1138–1156, 2022. 19

[77] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The sequential
learning problem,” Psychology of Learning and Motivation, vol. 24, pp. 109–165, 1989. 19

[78] R. Ratcliff, “Connectionist models of recognition memory: constraints imposed by learning and forgetting
functions.” Psychological review, vol. 97 2, pp. 285–308, 1990.

[79] L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive survey of continual learning: Theory, method
and application,” IEEE transactions on pattern analysis and machine intelligence, vol. PP, 2023. 19

[80] N. Carlini, J. Hayes, M. Nasr, M. Jagielski, V. Sehwag, F. Tramèr, B. Balle, D. Ippolito, and E. Wallace,
“Extracting training data from diffusion models,” USENIX Security Symposium, 2023. 19

[81] G. E. Hinton, “Deterministic boltzmann learning performs steepest descent in weight-space,” Neural
Computation, vol. 1, pp. 143–150, 1989. 19

[82] L. Wu, M. Ye, Q. Lei, J. D. Lee, and Q. Liu, “Steepest descent neural architecture optimization: Escaping
local optimum with signed neural splitting,” 2021. 19

[83] S. Amari, “Natural gradient works efficiently in learning,” Neural Computation, vol. 10, pp. 251–276,
1998. 19

[84] R. Shrestha, “Natural gradient methods: Perspectives, efficient-scalable approximations, and analysis,”
2023. 19

13

[85] T. Hartland, G. Stadler, M. Perego, K. Liegeois, and N. Petra, “Hierarchical off-diagonal low-rank
approximation of hessians in inverse problems, with application to ice sheet model initialization,” Inverse
Problems, vol. 39, 2023. 19

[86] J. Martens and R. B. Grosse, “Optimizing neural networks with kronecker-factored approximate curvature,”
in International Conference on Machine Learning (ICML), 2015. 19

[87] Y. Wang, W. Deng, and G. Lin, “An adaptive hessian approximated stochastic gradient mcmc method,”
Journal of Computational Physics, vol. 432, p. 110150, 2020. 19

[88] L. Liu, X. Liu, C.-J. Hsieh, and D. Tao, “Stochastic optimization for non-convex problem with inexact
hessian matrix, gradient, and function,” IEEE transactions on neural networks and learning systems,
vol. PP, 2023.

[89] X.-T. Yuan and P. Li, “On convergence of distributed approximate newton methods: Globalization, sharper
bounds and beyond,” Journal of Machine Learning Research, 2019. 19

[90] E. Berglund and M. Johansson, “Novel limited memory quasi-newton methods based on optimal matrix
approximation,” 2024. 19

[91] S. J. Wright, “Convergence of projected hessian approximations in quasi-newton methods for the nonlinear
programming problem,” Ima Journal of Numerical Analysis, vol. 6, pp. 463–474, 1986. 19

[92] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Transformers
for image recognition at scale,” 2021. 21

[93] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 2019. 23

[94] P. Maini, Z. Feng, A. Schwarzschild, Z. C. Lipton, and J. Z. Kolter, “Tofu: A task of fictitious unlearning
for llms,” arXiv preprint arXiv:2401.06121, 2024. 25

[95] Y. Li, S. Bubeck, R. Eldan, A. Del Giorno, S. Gunasekar, and Y. T. Lee, “Textbooks are all you need ii:
phi-1.5 technical report,” arXiv preprint arXiv:2309.05463, 2023. 25

[96] B. Liu, Q. Liu, and P. Stone, “Continual learning and private unlearning,” in Conference on Lifelong
Learning Agents. PMLR, 2022, pp. 243–254. 25

[97] R. Zhang, L. Lin, Y. Bai, and S. Mei, “Negative preference optimization: From catastrophic collapse to
effective unlearning,” arXiv preprint arXiv:2404.05868, 2024. 25

14

Appendix

A Detailed Proof

A.1 Proof of Equation (1)

Proof. We form the following optimization problem for the steepest descent of approximate MU,
which is to find the direction δθ = θt+1 − θt that drives the objective function F (θ) descent fastest
within a ξ-neighborhood of the current parameters θt, and the ξ-neighborhood is rendered by the
manifold metric ρ(·, ·):

δθ = argmin
δθ

F (θt + δθ) s.t. ρ(θt, θt + δθ) ≤ ξ. (A1)

We introduce a Lagrange multiplier η ≥ 0 to construct the Lagrangian L̃ for this optimization
problem:

L̃(δθ, η) = F (θt + δθ) + η(ρ(θt, θt + δθ)− ξ). (A2)

Using the Karush-Kuhn-Tucker (KKT) theorem, we can take the derivative of L̃ w.r.t. δθ and set it
to zero:

∇δθL̃(δθ, η) = ∇δθF (θt + δθ) + η∇δθρ(θt, θt + δθ) = 0, (A3)

where η depends on ξ and θt implicitly. We can rewrite (A3) by variable substitution θt+1 = θt + δθ
and η = 1/αt(ξ, θt).

∇θt+1L̃(θt+1, η) = ∇θt+1F (θt+1) +
1

αt(ξ, θt)
∇θt+1ρ(θt, θt+1) = 0. (A4)

Thus, the original problem is transformed into an unconstrained optimization problem w.r.t. θt+1,
where the neighborhood size is implicitly given by αt:

θt+1 = argmin
θt+1

F (θt+1) +
1

αt(ξ, θt)
ρ(θt, θt+1). (A5)

A.2 Proof of Proposition 1

The optimization problem of Prop. 1 is to find the steepest descent direction that minimizes the KL
divergence with the retrained output within the vicinity of the current model θt:

θt+1 = argmin
θt+1

DKL (pz(θ∗)||pz(θt+1)) +
1

αt
ρ(θt, θt+1) (A6)

= argmin
θt+1

DKL (pzf (θ∗)||pzf (θt+1)) p
f +DKL (pzr (θ∗)||pzr (θt+1)) p

r +
1

αt
ρ(θt, θt+1)

Proposition 1. Under the Euclidean manifold metric, ρ(θt, θt+1) = 1
2∥θt − θt+1∥2. Assuming

that the current model θt = argminθ Lr(θ) + Lf (θ; εt). Let Hf
∗ = ∇2Lf (θ∗;1)and Hr

∗ =
∇2Lr(θ∗) denote the Hessian matrix of the retrained model on the forgetting set and the remaining
set, respectively. Then, the direction of the steepest gradient descent that minimizes the KL divergence
between the output of the current model and the retrained model is approximately:

θt+1 − θt :≈ −αt[H
f
∗ (H

r
∗)

−1[−∇Lf (θt; εt)]p
f +∇Lr(θt)p

r] (A7)

15

Proof. We can decompose the original optimization problem into three parts: F (θt+1), R(θt+1), and
C(θt+1).

θt+1 =argmin
θt+1

DKL (pz(θ∗)||pz(θt+1))) +
1

2αt
∥θt − θt+1∥2

=argmin
θt+1

∫
p(z; θ∗) [log p(z; θ∗)− log p(z; θt+1)] dz +

1

2αt
∥θt − θt+1∥2

=argmin
θt+1

∫
p(zf ; θ∗)

[
log p(zf ; θ∗)− log p(zf ; θt+1)

]
dzfp(Df |D)

+

∫
p(zr; θ∗) [log p(z

r; θ∗)− log p(zr; θt+1)] dz
rp(Dr|D)

+
1

2αt
∥θt − θt+1∥2

=argmin
θt+1

Ep(zf ;θ∗)

[
log p(zf ; θ∗)− log p(zf ; θt+1)

]
p(Df |D)

+ Ep(zr;θ∗) [log p(z
r; θ∗)− log p(zr; θt+1)] p(Dr|D)

+
1

2αt
∥θt − θt+1∥2

=argmin
θt+1

DKL (pzf (θ∗)||pzf (θt+1)))︸ ︷︷ ︸
(F (θt+1))

pf +DKL (pzr (θ∗)||pzr (θt+1)))︸ ︷︷ ︸
(R(θt+1))

pr

+
1

2αt
∥θt − θt+1∥2︸ ︷︷ ︸

(C(θt+1))

(A8)

(Part I) First, we solve the forgetting part F (θt+1) by taking the first-order approximation at θt:

F (θt+1) = F (θt) +∇F (θt)
⊤(θt+1 − θt). (A9)

We denote ∇F (θt) = −Ep(zf ;θ∗)

[
∇ log p(zf ; θt)

]
= G(θt), and then expand G(θt) at θ∗:

G(θt) = G(θ∗) +∇G(θ∗)(θt − θ∗)

= −Ep(zf ;θ∗)

[
∇ log p(zf ; θ∗)

]
− Ep(zf ;θ∗)

[
∇2 log p(zf ; θ∗)

]
∆t

= 0 +Hf
∗∆t, (A10)

where Hf
∗ = −Ep(zf ;θ∗)

[
∇2 log p(zf ; θ∗)

]
is the Hessian w.r.t. the retrained model θ∗ at forgetting

set, and ∆t = θt − θ∗ is the difference between the current model θt and the retrained model θ∗. We
cannot directly obtain the parameter difference ∆t and need to estimate it. Recalling the assumption
that θt = argminθ Lr(θ) + Lf (θ; εt) and θ∗ = argminθ Lr(θ). We can utilize the optimality of θt
on the weighted function to take the derivative w.r.t. θt and set it to zero:

0 = ∇Lr(θt) +∇Lf (θt; εt)

=
[
∇Lr(θ∗) +∇2Lr(θ∗)∆t + o(∆t)

]
+∇Lf (θt; εt)

≈ 0 +∇2Lr(θ∗)∆t +∇Lf (θt; εt). (A11)

Since θ∗ minimizes Lr, ∇Lr(θ∗) = 0. By performing the Taylor expansion and dropping o(∆t)
terms, we have

⇒ ∆t ≈ −
[
∇2Lr(θ∗)

]−1 ∇Lf (θt; εt) = − (Hr
∗)

−1 ∇Lf (θt; εt). (A12)

By plugging (A12) into (A10), we can get

∇F (θt) = G(θt) ≈ −Hf
∗ (Hr

∗)
−1 ∇Lf (θt; εt). (A13)

Bringing (A13) into (A9), we can get

F (θt+1) ≈ F (θt)−
[
Hf

∗ (Hr
∗)

−1 ∇Lf (θt; εt)
]⊤

(θt+1 − θt). (A14)

16

(Part II) Next, we solve the remaining part R(θt+1) with similar pipeline in solving F (θt+1):

R(θt+1) = R(θt) +∇R(θt)
⊤(θt+1 − θt)

= R(θt)− Ep(zr;θ∗) [∇ log p(zr; θt)]
⊤
(θt+1 − θt)

= R(θt) + [∇Lr(θt)]
⊤
(θt+1 − θt). (A15)

(Part III) Finally, we derive the constraint C(θt+1) as follows,

C(θt+1) =C(θt) +∇C(θt)
⊤(θt+1 − θt)

=C(θt) + 2(θt+1 − θt)
⊤(θt+1 − θt). (A16)

Substituting (A14), (A15), and (A16) to each part in (A8), and take the derivative w.r.t. θt+1 of the
minimization problem to derive the optimal solution, we have

0 = ∇F (θt+1)p
f +∇R(θt+1)p

r +
1

2αt
∇C(θt+1)

≈ Hf
∗ (Hr

∗)
−1 [−∇Lf (θt; εt)

]
pf +∇Lr(θt)p

r +
1

αt
(θt+1 − θt). (A17)

We thus conclude that

⇒ θt+1 − θt ≈ −αt

[
Hf

∗ (H
r
∗)

−1[−∇Lf (θt; εt)]p
f +∇Lr(θt)p

r
]
. (A18)

A.3 Proof of Proposition 2

Proposition 2. Using the model output KL divergence on the remaining set as the manifold metric,
ρ(θt, θt+1) = DKL (pzr (θt)||pzr (θt+1))). Assuming that the current model θt = argminθ Lr(θ) +
Lf (θ; εt). Let α̃t = αtp

f/(αtp
r + 1), and Hr

t = ∇2Lr(θt) represents the Hessian matrix of the
current model on the remaining set, then the direction of the steepest gradient descent that minimizes
the KL divergence between the output of the current model and the retrained model is approximately:

θt+1 − θt :≈ −α̃t(H
r
t)

−1
[
Hf

∗ (H
r
∗)

−1[−∇Lf (θt; εt)]
]

(A19)

Proof. Now, the steepest descent optimization problem for approximate MU is as follows:

θt+1 =argmin
θt+1

DKL (pz(θ∗)||pz(θt+1))) +
1

αt
DKL (pzr (θt)||pzr (θt+1)))

= argmin
θt+1

DKL (pzf (θ∗)||pzf (θt+1)))︸ ︷︷ ︸
(F (θt+1))

pf +DKL (pzr (θ∗)||pzr (θt+1)))︸ ︷︷ ︸
(R(θt+1))

pr

+
1

αt
DKL (pzr (θt)||pzr (θt+1)))︸ ︷︷ ︸

(C(θt+1))

(A20)

The result of forgetting part F (θt+1) is the same as that in the Euclidean distance metric. And the
remaining part R(θt+1) and the constraint C(θt+1) vary due to the output KL divergence metric Dr

KL.
Note that ∇Lr(θt+1) ≈ ∇Lr(θt) ≈ ∇Lr(θ0) ≈ 0. This enables us to take the second-order Taylor
expansion at θt for the remaining part and the constraint.

R(θt+1) = R(θt) +∇R(θt)
⊤(θt+1 − θt) +

1

2
(θt+1 − θt)

⊤∇2R(θt)(θt+1 − θt) (A21)

∇R(θt) = −Ep(zr;θ∗) [∇ log p(zr; θt)] = ∇Lr(θt) ≈ 0 (A22)

∇2R(θt) = −Ep(zr;θ∗)

[
∇2 log p(zr; θt)

]
= ∇2Lr(θt) = Hr

t (A23)

Substituting (A22) and (A23) into (A21), we can derive the remaining part:

R(θt+1) ≈ R(θt) +
1

2
(θt+1 − θt)

⊤Hr
t (θt+1 − θt) (A24)

17

As for the constraint, we have

C(θt+1) = C(θt) +∇C(θt)
⊤(θt+1 − θt) +

1

2
(θt+1 − θt)

⊤∇2C(θt)(θt+1 − θt) (A25)

∇C(θt) = −Ep(zr;θt) [∇ log p(zr; θt)] = 0 (A26)
∇2C(θt) = −Ep(zr;θt)

[
∇2 log p(zr; θt)

]
= F r

t ≈ Hr
t = ∇2Lr(θt) (A27)

Substituting (A26)and (A27) into (A25), we get the constraint

C(θt+1) ≈ C(θt) +
1

2
(θt+1 − θt)

⊤Hr
t (θt+1 − θt). (A28)

Bringing (A14), (A24), and (A28) into (A20), and take the derivative w.r.t. θt+1 of the minimization
problem to derive the optimal solution, we have

0 = ∇F (θt+1)p
f +∇R(θt+1)p

r +
1

αt
∇C(θt+1) (A29)

≈ Hf
∗ (Hr

∗)
−1 [−∇Lf (θt; εt)

]
pf +Hr

t (θt+1 − θt)p
r +

1

αt
Hr

t (θt+1 − θt). (A30)

By rearranging the terms, we get
⇒ θt+1 − θt :≈ −α̃t(H

r
t)

−1
[
Hf

∗ (H
r
∗)

−1[−∇Lf (θt; εt)]
]
. (A31)

A.4 Proof of Proposition 3

Proposition 3. For implicit Hessian approximation in (5), suppose (A1) βt, δt is small, βt <√
δt/|∇Lr(θt)− [∇Lr(θt)]2|, (A2) Lr is µ-smooth, i.e., ∥∇Lr(θ) − ∇Lr(θ′)∥2 ≤ µ∥θ − θ′∥2,

and (A3) there exist an ζt-neighborhood N (θrt , ζt) of the optimal model parameter θrt =

argminθf
t
Lr(θft), which includes θt and θft . Then, the iterative update term approximately is,

θt − θrt :≈ β2
t

[
∇2Lr(θt)

]−1 ∇Lu(θt) = β2
t (H

r
t)

−1∇Lu(θt) (A32)

Proof. The objective function of implicit Hessian approximation can be formulated as:
min
θf
t

Lr(θrt) s.t. θft = θt − βt∇Lu(θt). (A33)

We need to get the optimal parameter θrt that minimizes (A33), which means 0 =
∂Lr(θr

t)
∂θr

t
. We can

take the Taylor expansion at θt,

0 =
∂Lr(θrt)

∂θrt
= ∇Lr(θrt) = ∇Lr(θt) +Hr

t (θ
r
t − θt) + (θrt − θt)

⊤ ⊗T⊗ (θrt − θt) + o(ζt)

(A34)
where Hr

t = ∇2Lr(θt) and T represent the Hessian matrix and the third-order symmetric tensor on
the remaining set, respectively, and ⊗ denotes the Kronecker product.

From (A2) and (A3), we can reduce the first-order term to o(µζt),
∥∇Lr(θrt)−∇Lr(θt)∥2 ≤ µ∥θrt − θt∥2 ≤ µζt. (A35)

To simplify the second-order term with (A1), we have
(θrt − θt)

⊤ ⊗T⊗ (θrt − θt)

=(θft − θt)
⊤ ⊗T⊗ (θft − θt) + o(ϵt)

=C⊙ (θft − θt)
2 + o(ϵt)

≈β2 (∇Lu(θt))
2
+ o(ϵt)

=β2∇Lu(θt) + o(δt) + o(ϵt) (A36)

Bringing (A35) and (A36) into (A34), we have
0 = ∇Lr(θrt) ≈ Hr

t (θ
r
t − θt) + β2∇Lu(θt) + o(δt) + o(ϵt) + o(µϵt) + o(ϵ2t) (A37)

Then, we can derive
θt − θrt ≈ β2

t (H
r
t)

−1∇Lu(θt). (A38)

18

B Related Works

B.1 Related Works on Machine Unlearning

Data Forgetting. MU is driven by the imperative to remove the influence of specific data from
pre-trained models [2, 3, 18, 64], intrinsically linked to differential privacy [18, 64, 65, 15, 66],
which aims to enhance the privacy protection of training data. Exact MU, which is approached
from a parameter probability perspective, has been thoroughly explored within convex optimization
problems and linear models [18, 15, 39, 67, 16]. These studies have established methods allowing
models to forget data exactly while adhering to a specified privacy budget, thus significantly reducing
the risk of privacy attacks [68–72]. However, in deep learning models, exact data forgetting typically
requires retraining from scratch [1], a process whose computational intensity makes it impractical
for routine application. This challenge underscores an urgent need for developing more efficient
unlearning techniques that do not compromise the model’s utility.

Gradient-based Approximate Machine Unlearning. To enhance data forgetting efficiency, research
has honed in on aligning the forgetting objective with the model’s output probability distribution,
termed approximate MU [3, 21]. Numerous studies [22, 19, 38, 20, 21, 23, 26, 73] have developed
specialized loss functions to prompt the model to expunge specific data, aiming to mitigate the risks of
privacy breaches such as membership inference [74, 68–72] and data reconstruction attacks [75, 76].
Echoing the phenomenon of catastrophic forgetting observed in continual learning [77–79], training
on forgetting data has precipitated significant declines in overall performance on remaining data.
Various strategies [26, 24, 25] have emerged to uphold the model’s original generalization capabilities,
predominantly through fine-tuning the remaining set. Our approach provides a comprehensive analysis
of iterative strategies employed in gradient-based approximate MU methods and introduces curvature
information from the remaining set to better preserve the model’s generalization capabilities.

Machine Unlearning for Generative Models. Recent advancements in text-conditional image
generation models have demonstrated remarkable capability in producing images that accurately
reflect textual descriptions [40, 42, 41, 58]. Despite these achievements, extensive research [6, 12, 80]
has underscored significant security and privacy concerns associated with these technologies. The
mechanisms underlying these issues are not yet fully understood. In response, there is a critical
demand for the development of MU methods to bolster the trustworthiness of these models, facilitating
their wider adoption. While pioneering studies [12, 14, 11, 13] have begun to address concept deletion
within diffusion models, the dual objectives of maintaining generalization and ensuring efficient data
forgetting continue to pose significant challenges.

B.2 Related Works on Steepest Descent in Optimization

Steepest Descent and Natural Gradient. Steepest Descent [81, 29, 27, 30, 82] is one of the founda-
tional algorithms in optimization, particularly in the context of machine learning and neural networks.
Despite its simplicity and widespread use, Steepest Descent can suffer from slow convergence,
especially in ill-conditioned problems where the objective function’s curvature varies significantly
across different dimensions [29]. Natural Gradient [83, 30, 84] is proposed as an enhancement of
the standard gradient descent that addresses some of its limitations by considering the underlying
geometry of the parameter space. Natural Gradient employs the Fisher Information Matrix to scale
the gradient adaptively, leading to more efficient optimization. Natural Gradient has been shown to
significantly accelerate convergence and improve optimization performance in various applications,
including deep learning [30, 27] and continual learning [28]. We get inspiration from these techniques
and try to improve MU update direction with preserved set curvature information.

Hessian Approximation. Computing the exact Hessian matrix is often impractical for large-scale
problems due to its computational and memory requirements. To address this, various Hessian
Approximation methods have been developed. Notable approaches include Diagonal and Low-rank
Approximations [34, 85, 86], Stochastic Approximation [87–89], and Quasi-Newton Methods [90, 91].
[50] reveals that the regularization-based method is an explicit approximation of the Hessian, while
the meta-learning method is an implicit estimation of it. By leveraging second-order information in a
computationally feasible manner, these techniques strike a balance between accuracy and efficiency,
facilitating the optimization of large-scale problems.

19

B.3 Preliminary on Diffusion Model

Conditional Diffusion Models and Classifier-free guidance. Diffusion models [40] have gained
prominence in the field of generative modeling, particularly for their effectiveness in generating
high-quality images. A sample xT is sampled from a Gaussian distribution and gradually denoised for
T time steps, finally recovering a clean sample x0. Conditional Diffusion Model [40] is a variant that
conditions the generation process on additional information c such as class labels, text descriptions,
or other modalities. In practice, the conditional diffusion model is trained to predict the noise
ϵθ(xt|c) to form the denoising process pθ(xt−1|xt, c), where xt is a noisy version of the input x. The
corresponding objective of the conditional diffusion model is typically formulated as:

ℓMSE(θ;x, c) = Et,ϵ∼N (0,1)

[
∥ϵ− ϵθ(xt|c)∥22

]
, (A39)

with t uniformly sampled from {1, . . . , T}. In this setting, classifier-free guidance [41] is proposed
to encourage the sampling procedure to find x with high log p(c|x). Then diffusion process is given
by ϵ̂θ(xt|c) = (1−w)ϵθ(xt|∅) +wϵθ(xt|c), where ϵ̂θ(xt|c) represents the noise estimation obtained
by the conditional diffusion model given c, w ∈ [0, 1] is the guidance weight, ∅ denotes the ‘null’
condition. The generation process initiates with Gaussian noise x̂T ∼ N (0, 1) and repeats denoising
the data by ϵ̂θ(x̂t|c) to obtain x̂t−1 until t = 0, producing the authentic data conditioned on c.

Latent Diffusion Models. Direct training of conditional diffusion models in high-resolution pixel
space is often computationally prohibitive. Latent diffusion models (LDMs) [42, 58] address this
challenge with an image compression approach. Specifically, an autoencoder is trained using
perceptual loss and a patch-based adversarial objective to master the process of perceptual image
compression. The input images can be embedded into smaller latent representations with the learned
encoder E. The trained autoencoder facilitates the transition to a low-dimensional latent space
where the diffusion model is more efficiently trained on the representations z = E(x) rather than
on high-resolution images x. Authentic images can then be generated by sampling a representation
z from the diffusion model and subsequently reconstructed into an image with the learned decoder
x = D(z).

C Algorithm

We present the algorithm of our proposed SFR-on in Alg. A1. In steps 3-4, we first calculate the
forget-remain balanced weight saliency mask. In steps 6-8, we compute the adaptive coefficients to
weight the forgetting gradient ascent, followed by one step of forgetting update within the inner loop.
In steps 9-13, we fine-tune the model on the remaining set. In step 14, we perform the slow weight
update for the model in the outer loop.

D Evaluation Metrics

D.1 Evaluation Metrics for Image Classification

• Forgetting accuracy (FA): FA is the accuracy of the unlearned model on the forgetting dataset Df .
A favorable approximate MU method should reduce the disparity of FA with the retrained model.

• Remaining accuracy (RA): RA is the accuracy of the unlearned model on the remaining dataset Dr.
A favorable approximate MU method should reduce the disparity of RA with the retrained model.

• Testing accuracy (TA): TA is the accuracy of the unlearned model on the testing dataset Dt. Dt in
random subset forgetting is sampled from the same distribution as the remaining dataset, while in
class-wise forgetting Dt excludes the samples from the forgetting class. A favorable approximate
MU method should reduce the disparity of TA with the retrained model.

• Membership inference attack success rate on Df (MIA): Following [33], we use a prediction
entropy-based membership inference attack to evaluate the privacy preservation of the unlearned
model. We first need to train an adversarial classifier to predict whether or not a particular example
was contained in the training dataset. The prediction of the remaining dataset and the testing dataset
by the unlearned model is collected to compute the label-agnostic prediction entropy for the attack
classifier training. Specifically, a Logistic Regression classifier is trained on the remaining prediction
entropy labeled as ‘1’ and the testing prediction entropy labeled as ‘0’. Then, this attack classifier is

20

Algorithm A1 The Algorithm of Proposed SFR-on

1: Input: Forgetting set Df , remaining set Dr, pre-trained model weights θ, outer loop learning rate
α, inner loop iteration number Tin, outer loop iteration number Tout, initial inner loop learning
rate for forgetting βf , initial inner loop learning rate for remaining βr, temperature scalar λ,
weight saliency mask threshold γ

2: Initialize: θ0 = θ.
3: Compute F r

diag, F
f
diag by (10).

4: Compute weight saliency mask by m = I[F f
diag(F

r
diag)

−1 ≥ γ].
5: for t = 1 to Tout do
6: Sample forgetting sample batch Bf

t from Df

7: Compute adaptive coefficients ε̃t−1 by (9).
8: θft−1 = θt−1 − βf∇Lf (θt−1; ε̃t−1)

9: θr0 = θft−1

10: for t′ = 1 to Tin do
11: Sample remaining sample batch Br

t from Dr

12: θrt′ = θrt′−1 − βr∇Lr(θrt′−1)
13: end for
14: θt = θt−1 − α(θt−1 − θrTin

)
15: end for

applied to the forgetting prediction entropy to predict the membership of these forgetting samples. The
success rate of membership inference attack on Df is quantified by the true positive rate predicted by
our classifier, MIA = TP/Nf , where TP represents the count of forgetting samples still identified as
training samples and Nf is the size of the forgetting dataset. Due to the limitations of the membership
inference attack, the attack based on a linear classifier is weak and fails to distinguish all forgetting
samples predicted by the retrained model as test samples. The more advanced shadow model-based
sample-wise attack is too time-consuming to evaluate the MU method. Therefore, we only regard
MIA as a readout function of the forgetting effect and advocate for the development of more precise
and efficient membership inference attack techniques to enhance MU method evaluation. Note that a
favorable approximate MU method also should reduce the disparity of MIA with the retrained model.

• Output KL divergence with the retrained model (DKL): Given that it is impractical to traverse all
sample spaces, we actually calculate the empirical output KL divergence with RT θ∗. We first collect
the predicted class probabilities from both the unlearned and retrained models across the remaining
and forgetting datasets. Then, we empirically compute the output KL divergence as follows:

DKL =
1

Nr +Nf

∑
i∈Dr

∑
c∈C

p(zri,c; θ∗) log
p(zri,c; θ∗)

p(zri,c; θu)
+

∑
j∈Df

∑
c∈C

p(zfj,c; θ∗) log
p(zfj,c; θ∗)

p(zfj,c; θu)

 ,

(A40)
where C denotes the set of the prediction classes, θu is the unlearned model parameter, and zri,c
and zfj,c represent the i-th remaining sample posterior of the class c and the j-th forgetting sample
posterior of the class c, respectively. Note that even the output KL divergence between retrained
models is not zero due to the randomness of the training algorithm. A favorable approximate MU
method is hoped to display as low output KL divergence with RT as possible.

• Run-time efficiency (RTE): This measures the computation efficiency of an MU method. We
record RTE in minutes. MU methods are more efficient the lower their RTE are. Clearly, RT is not an
efficient MU method.

D.2 Evaluation Metrics for Image Generation

• Forgetting accuracy (FA): We additionally train models to classify the images generated by the
unlearned generative model. For CIFAR-10, following [35], we use ResNet-34 from torchvision
pre-trained on ImageNet and fine-tune it on CIFAR-10 for 20 epochs. For ImageNet, we directly use
pre-trained ViT-L [92] from torchvision as the classifier. We compute the classification accuracy

21

of 500 images generated by the unlearned model on each forgetting category as FA. A favorable
approximate MU method is hoped to exhibit as low FA as possible.

• Fréchet Inception Distance (FID): We evaluate the remaining image fidelity of the unlearned model
by assessing the standard image generation metrics FID. The model performed class-wise forgetting
of CIFAR-10 generates 1000 images for each remaining class for FID. We sample 10000 images
from the unlearned DiT on ImageNet by randomly selecting the remaining classes to calculate FID. A
favorable approximate MU method is expected to achieve as high FID as possible.

E Implementation Details

E.1 Baselines

MU methods for image classification:

• FT [22, 19, 38]: It fine-tunes the pre-trained model only on the remaining dataset to
obtain the unlearned model. The code source is https://github.com/OPTML-Group/
Unlearn-Sparse.

• GA [20, 21]: It conducts gradient ascent for the pre-trained model only on the forget-
ting dataset to obtain the unlearned model. The code source is https://github.com/
OPTML-Group/Unlearn-Sparse.

• RL [20]: It replaces the forgotten set label with a random label that is not the same as
the original label. Then, the modified forgetting set and the retained set are combined
for fine-tuning the pre-trained model with the cross-entropy loss. The code source is
https://github.com/OPTML-Group/Unlearn-Saliency.

• SalUn [26]: It first obtained the top-k% large salient weight mask sorted by the absolute
value of parameter gradient to the forgetting set loss. The pre-trained model is then fine-
tuned using the same pipeline as for RL, and the gradient is modified using the weight
saliency mask so that only the top-k% significant parameters are optimized. The code source
is https://github.com/OPTML-Group/Unlearn-Saliency.

• BT [23]: It stores pre-trained and randomly initialized models as competent and incompetent
teachers, respectively. The unlearned model is acquired by minimizing the output KL
divergence of the pre-trained model with the incompetent teacher on the forgetting set and
with the competent teacher on the remaining set. The code source is https://github.
com/vikram2000b/bad-teaching-unlearning.

• SCRUB [25]: It only saves the pre-trained model as the teacher model. Then, it optimizes
the pre-trained model to minimize the KL divergence with the teacher on the remaining set
and maximize the KL divergence with the teacher on the forgetting set. The cross-entropy
loss of the remaining set is added to further maintain the performance. The code source is
https://github.com/meghdadk/SCRUB.

MU methods for image generation:

• SA [35]: It needs to generate replaying remaining samples using pre-trained models in
advance and calculate fisher diagonal on the replaying remaining samples for modulating
parameter regularization terms. Its unlearning loss is composed of three components: the
MSE loss to make the output generated by the pre-trained model for forgetting classes or
concepts close to random noise, the generative model MSE loss optimized on the replaying
remaining samples, and a parameter regularization term to maintain the pre-trained model
parameters with second-order curvature modulation of Fisher diagonal. The code source is
https://github.com/clear-nus/selective-amnesia.

• ESD [11]: It saves a frozen SD as a copy. The SD model is then optimized so as to push the
condition score for the erasing concept far away from the corresponding condition score
generated by the frozen SD, and align with the unconditioned score generated by the copy.
The code source is https://github.com/rohitgandikota/erasing.

22

https://github.com/OPTML-Group/Unlearn-Sparse
https://github.com/OPTML-Group/Unlearn-Sparse
https://github.com/OPTML-Group/Unlearn-Sparse
https://github.com/OPTML-Group/Unlearn-Sparse
https://github.com/OPTML-Group/Unlearn-Saliency
https://github.com/OPTML-Group/Unlearn-Saliency
https://github.com/vikram2000b/bad-teaching-unlearning
https://github.com/vikram2000b/bad-teaching-unlearning
https://github.com/meghdadk/SCRUB
https://github.com/clear-nus/selective-amnesia
https://github.com/rohitgandikota/erasing

Table A1: Summary of hyperparameters for each method on unlearning 10% random subset of CIFAR-10 in
Tab. 2. ‘lr’ is short for learning rate.

Methods Hyperparameters
Pretrain epoch = 200, cosine scheduler, lr = 0.1

RT epoch = 200, cosine scheduler, lr = 0.1

FT epoch = 10, cosine scheduler, lr = 10−2

GA epoch = 15, constant scheduler, lr = 3× 10−4

RL epoch = 10, cosine scheduler, lr = 2× 10−3

SalUn epoch = 10, cosine scheduler, lr = 3× 10−4, threshold = top-20%
BT epoch = 10, cosine scheduler, lr = 3× 10−3, temperature scalar = 1.0

SCRUB epoch = 10, constant scheduler, lr = 3× 10−4, temperature scalar = 4.0, α = 0.001

SFR-on Tout = 1500, cosine scheduler, α = 1.0, Tin = 5, βf = 0.25, βr = 0.01, λ = 0.5, γ = 1

Table A2: Summary of hyperparameters for each method on unlearning 10% random subset of TinyImageNet in
Tab. 2. ‘lr’ is short for learning rate.

Methods Hyperparameters

Pretrain epoch = 10, cosine scheduler, lr = 10−4

RT epoch = 10, cosine scheduler, lr = 10−4

FT epoch = 1, cosine scheduler, lr = 10−4

GA epoch = 9, constant scheduler, lr = 3× 10−6

RL epoch = 1, cosine scheduler, lr = 10−4

SalUn epoch = 1, cosine scheduler, lr = 10−4, threshold = top-50%
BT epoch = 1, cosine scheduler, lr = 10−4, temperature scalar = 1.0

SCRUB epoch = 1, constant scheduler, lr = 10−4, temperature scalar = 4.0, α = 0.001

SFR-on Tout = 500, cosine scheduler, α = 1.0, Tin = 1, βf = 0.01, βr = 2× 10−5, λ = 0.6, γ = 1

E.2 Training Details for Image Classification

For CIFAR-10, CIFAR-100, and SVHN using ResNet-18, all methods use the SGD optimizer with
momentum of 0.9, weight decay of 5×10−4, and batch size of 128. Our SFR-on train 1500 steps with
the constant outer loop learning rate of α = 1.0, inner loop iteration number Tin = 5. SFR-on search
inner loop learning rate for forgetting in range [0.1, 0.5] and for remaining in range [10−3, 10−2],
temperature scalar λ in range [0.0, 2.0], and threshold γ in list [0.3, 1.0, 3.0, 10.0]. Experiments are
run on 1 RTX 4090. A summary of the hyperparameters for each method is shown in Tab. A1.

For TinyImageNet, Swin-T is initialized from torchvision weight pre-trained on ImageNet. All
methods use the AdamW optimizer [93] with weight decay of 0.05 and batch size of 128. Our
SFR-on train 500 steps with the constant outer loop learning rate α = 1.0, inner loop iteration
number Tin = 1. SFR-on search inner loop learning rate for forgetting in range [0.001, 0.1] and
for remaining in range [10−5, 10−4], temperature scalar λ in range [0.0, 2.0], and threshold γ in list
[0.3, 1.0, 3.0, 10.0]. Experiments are run on 1 RTX 4090. A summary of the hyperparameters for
each method is shown in Tab. A2.

E.3 Training Details for Image Generation

For CIFAR-10, following [35], we use DDPM1 based on U-Net architecture with 1000 timesteps
for linear β schedule. All methods use Adam optimizer with a constant learning rate of 10−4 and
batch size of 128. Pretrain and RT train for 800K steps. SA generates 5000 images as the remaining
set for replaying and calculating the Fisher diagonal, and trains for 20K steps with λ = 10 for
the regularization term. SalUn obtains top-50% salient weight mask and trains for 1K steps with
α = 10−3 to balance the optimization of forgetting and remaining. Our SFR-on trains for 50 steps

1https://github.com/ermongroup/ddim

23

https://github.com/ermongroup/ddim

0.0 0.5

92

94

96

98

100

FA
SFR-on
RT

0.0 0.5

99.4

99.6

99.8

100.0

R
A

0.0 0.5

93

94

95

TA

0.0 0.5

75

80

85

M
IA

0.0 0.5
0.15

0.20

0.25

0.30

D
KL

Figure A1: Performance of SFR-on with different λ in adaptive coefficients vs RT on CIFAR-10 using ResNet-
18. The settings and metrics follow Tab. 2. The points closer to RT and with lower DKL are better.

0 1
85

90

95

100

FA

SFR-on
RT

0 1

99.6

99.8

100.0

R
A

0 1
93

94

95

TA

0 1

70

80

M
IA

0 1

0.2

0.3

0.4

D
KL

Figure A2: Performance of SFR-on with different γ in weight saliency mask vs RT on CIFAR-10 using ResNet-
18. The settings and metrics follow Tab. 2. The points closer to RT and with lower DKL are better.

with Tin = 1, α = 1.0, βf = 10−3, βr = 10−4, λ = 0.5, γ = 3. Experiments are run on 2 RTX
4090s.

For ImageNet, we use pre-trained DiT-XL/22 with 256× 256 resolution. All methods use AdamW
optimizer with a constant learning rate of 10−4 and batch size of 1. SA calculates the Fisher
diagonal on randomly sampled 2000 remaining data, and trains for 10K steps with λ = 10 for
the regularization term. SalUn obtains top-50% salient weight mask and trains for 10K steps with
α = 10−3 to balance the optimization of forgetting and remaining. Our SFR-on trains for 500 steps
with Tin = 1, α = 1.0, βf = 10−7, βr = 10−4, γ = 3. Since the batch size is 1, we ignore λ in
adaptive coefficients. Experiments are run on 1 RTX 4090.

E.4 Training Details for Concept Forgetting

For concept forgetting of ‘nudity’, following [26], we use SD V1.43 to generate 1K images with the
prompt ‘a photo of a nude person’ as the forgetting set and additional 1K images with the prompt ‘a
photo of a person wearing clothes’ as the remaining set. All methods use Adam optimizer with a
constant learning rate of 10−5 and batch size of 1. ESD trains for 1K steps with negative guidance of
1.0. SalUn trains for 1K steps with 50% sparsity weight saliency and α = 0.1. Our SFR-on trains for
200 steps with Tin = 1, α = 1.0, βf = 10−6, βr = 10−5, γ = 3. Since the batch size is 1, we ignore
λ in adaptive coefficients. Experiments are run on 1 RTX 4090.

F Additional Experimental Results

F.1 Ablation Study on Temperature Scalar λ and Threshold γ

In our SFR-on method, we investigate the impact of two key hyperparameters, temperature scalar λ for
adaptive coefficients and threshold γ for the weight saliency mask, on the unlearning performance in
image classification. We vary λ within the range [0, 1] and γ within [0, 2]. The results in Fig. A1 and
A2 indicate that increasing γ and λ enhances model retention capabilities, but it could adversely affect
both the forgetting performance and privacy protection. Therefore, we select the hyperparameters for
our method based on the goal of minimizing the output KL divergence from Retrain, aligning with
the objectives of approximate MU.

2https://github.com/facebookresearch/DiT
3https://huggingface.co/CompVis/stable-diffusion-v1-4

24

https://github.com/facebookresearch/DiT
https://huggingface.co/CompVis/stable-diffusion-v1-4

Table A3: MU performance for unlearning 50% random subset of CIFAR-10 using ResNet-18. The content
format follows Tab. 2.

Methods CIFAR-10 Random Subset Forgetting (50%)
FA RA TA MIA Avg.D ↓ DKL ↓ RTE

RT 93.36±0.10 (0.00) 100.00±0.00 (0.00) 93.11±0.29 (0.00) 69.02±0.01 (0.00) 0.00 0.10 138.95

FT 99.95±0.03 (6.59) 100.00±0.00 (0.00) 94.57±0.19 (1.46) 88.97±0.39 (19.95) 7.00 0.44 6.63
GA 97.25±0.23 (3.89) 97.25±0.23 (2.75) 90.48±0.30 (2.63) 82.89±0.00 (13.77) 5.76 0.42 2.43
RL 99.04±0.19 (5.67) 99.05±0.19 (0.95) 93.79±0.20 (0.68) 71.87±0.01 (2.85) 2.54 0.55 5.15

SalUn 99.42±0.14 (6.06) 99.38±0.16 (0.62) 94.25±0.15 (1.14) 70.35±0.01 (1.32) 2.29 0.55 7.24
BT 99.40±0.11 (6.04) 99.38±0.11 (0.62) 94.24±0.14 (1.13) 72.48±0.00 (3.46) 2.81 0.54 6.89

SCRUB 84.65±14.01 (8.73) 85.56±13.79 (14.44) 81.71±11.83 (11.41) 64.03±0.14 (5.31) 9.97 0.50 2.73

SFR-on 93.50±0.33 (0.13) 97.42±0.32 (2.58) 91.12±0.25 (1.99) 68.31±0.01 (0.71) 1.35 0.18 3.57

Table A4: MU performance for unlearning 10% random subset of CIFAR-100 using ResNet-18. The content
format follows Tab. 2.

Methods CIFAR-100 Random Subset Forgetting (10%)
FA RA TA MIA Avg.D ↓ DKL ↓ RTE

RT 77.96±0.52 (0.00) 99.98±0.00 (0.00) 77.23±0.30 (0.00) 41.79±0.01 (0.00) 0.00 0.35 84.21

FT 83.99±0.30 (6.04) 98.84±0.03 (1.15) 75.28±0.26 (1.95) 60.92±0.01 (19.14) 7.07 0.66 4.87
GA 70.57±6.01 (7.38) 71.53±5.88 (28.45) 51.48±3.83 (25.75) 42.39±0.02 (0.60) 15.55 1.43 0.73
RL 99.39±0.08 (21.44) 99.96±0.01 (0.02) 72.62±0.11 (4.61) 44.68±0.00 (2.89) 7.24 1.01 4.81

SalUn 99.42±0.06 (21.47) 99.96±0.01 (0.02) 73.05±0.20 (4.19) 45.28±0.01 (3.49) 7.29 0.99 4.90
BT 99.63±0.07 (21.68) 99.97±0.00 (0.01) 73.28±0.10 (3.95) 45.25±0.00 (3.46) 7.28 1.00 6.39

SCRUB 90.32±0.23 (12.36) 99.11±0.14 (0.87) 78.19±0.10 (0.95) 43.38±0.00 (1.60) 3.95 0.61 4.04

SFR-on 77.82±0.75 (0.14) 99.77±0.02 (0.22) 74.76±0.23 (2.47) 47.57±0.00 (5.78) 2.15 0.60 5.41

F.2 Additional Results for Image Classification

We conducted experiments to assess the performance of unlearning a 50% random subset of CIFAR-
10 and a 10% random subset on two additional datasets, CIFAR-100 and SVHN. The results in
Tab. A3, A4, and A5 demonstrate that our SFR-on method consistently achieves the closest average
metric disparity and the smallest KL divergence relative to Retrain across all three scenarios. These
findings emphasize the broad unlearning efficacy of our approach.

F.3 Results for Natural Language Processing

The input modality of the model does not constrain our analysis or methods. Therefore, our method
can seamlessly extend to other modalities beyond images, such as natural language processing using
large language models (LLMs), to achieve efficient forgetting. We conduct experiments using the
recently proposed benchmark of TOFU [94] fine-tuned Phi-1.5 [95] to evaluate the effectiveness of
our method in the LLM unlearning task, compared with four LLM unlearning baselines: gradient
descent(GA), gradient difference(GradDiff [96]), negative preference optimization(NPO [97]), and
its enhanced version. The TOFU dataset comprises fictional author biographies, along with questions
and answers related to the authors’ attributes, which helps assess methods of data forgetting on
fine-tuned LLMs.

As shown in Tab. A6, our method achieves superior forgetting quality, making the unlearned model
almost indistinguishable from the retrained model based on the Truth Ratio distribution of the forget
set. Additionally, our method efficiently preserves model utility.

F.4 Ablation Study on SFR-on without Repairing

We conduct ablation experiments to assess the performance of our ‘Sample-wise Adaptive Coefficient
for Gradient Ascent (F)’ and ‘Forget-Remain Balanced Weight Saliency (S)’ in the absence of
repairing with the remaining set. The results in Tab. A7 affirm that these components, when used
independently, can still enhance baseline performance.

F.5 Results for Removing Influence of A Single Data Point

Our method can be directly applied to the task of forgetting a single data point without additional
adaptation, as we impose no assumptions to constrain the size of the forgetting set. We conduct
experiments under two setups to validate the effectiveness of our method in unlearning either a single

25

Table A5: MU performance for unlearning 10% random subset of SVHN using ResNet-18. The content format
follows Tab. 2.

Methods SVHN Random Subset Forgetting (10%)
FA RA TA MIA Avg.D ↓ DKL ↓ RTE

RT 96.05±0.14 (0.00) 99.82±0.01 (0.00) 96.53±0.10 (0.00) 79.47±0.01 (0.00) 0.00 0.10 138.95

FT 98.74±0.06 (2.69) 99.61±0.02 (0.21) 96.40±0.11 (0.14) 81.88±0.01 (2.41) 1.36 0.13 6.37
GA 99.44±0.03 (3.39) 99.50±0.03 (0.32) 96.37±0.02 (0.16) 78.63±0.00 (0.84) 1.18 0.19 0.71
RL 99.45±0.02 (3.40) 99.40±0.02 (0.41) 96.13±0.03 (0.40) 77.31±0.00 (2.16) 1.59 1.01 4.81

SalUn 99.42±0.01 (3.38) 99.39±0.01 (0.42) 96.12±0.03 (0.41) 78.32±0.00 (1.15) 1.34 0.24 10.89
BT 99.47±0.02 (3.42) 99.43±0.02 (0.39) 96.18±0.06 (0.36) 78.47±0.00 (1.00) 1.29 0.24 9.09

SCRUB 99.15±0.08 (3.10) 99.45±0.02 (0.37) 96.11±0.11 (0.43) 79.24±0.01 (0.23) 1.03 0.15 5.91

SFR-on 96.84±1.07 (0.79) 97.64±1.02 (2.18) 95.77±0.39 (0.76) 79.43±0.00 (0.04) 0.94 0.11 3.55

Table A6: Unlearning performance of our method and three LLM unlearning baselines on forgetting 5% of
authors or one author under the TOFU fine-tuned Phi-1.5 benchmark. ‘Forget Quality’ measures the KS-Test
value of the Truth Ratio between the unlearned model and the retrained model after the target information is
removed. ‘Model Utility’ evaluates the general performance retained by the unlearned model. RTE is recorded
in minutes.

Methods Random Subset Forgetting (5%) Random One Author Forgetting
Forget Quality ↑ Model Utility ↑ RTE Forget Quality ↑ Model Utility ↑ RTE

RT - 0.4984 34.84 - 0.5000 35.60

GA 0.0297 0.2946 4.79 0.9499 0.4783 0.95
GradDiff 0.3281 0.3840 5.57 0.9999 0.4957 1.15

NPO 0.1779 0.3653 4.93 0.9724 0.4814 1.42
NPO+GradDiff 0.5452 0.4085 5.72 0.9999 0.4923 1.54

SFR-on 0.6284 0.4313 3.33 0.9999 0.4999 1.01

data point or a task with suitable granularity: (1) randomly forgetting one sample in the classification
task on CIFAR-10 and (2) forgetting the relevant information of one author in TOFU benchmark.

The results in Tab. A8 and A6 indicate that, under these two settings, our method and all baselines
achieve effective forgetting while fully retaining general performance.

F.6 Verification for Approximation in Practical implementations

Given that the approximation in the theoretical analysis may not hold in practical implementation,
verifying the approximation of the formula in the actual operation is necessary. In the proofs of
Prop. 1 and 2, considering the approximations of ∇Lr(θ0), ∇Lr(θ∗), and ∇R(θt), we demonstrate
in Fig. A3 their gradient norms under practical unlearning settings, which are consistent with our
theoretical assumptions. In our method, ∇Lr(θ0) ≈ ∇Lr(θ∗) ≈ ∇R(θt) ≈ 0, allowing us to
incorporate second-order information on the retain set.

F.7 Additional Results for Image Generation

The additional results of class-wise forgetting across all CIFAR-10 classes are presented in Fig. A4,
A5, and A6. Our method successfully removes the semantics of the target classes without reducing
the forgetting images to low-quality noise. Additionally, SFR-on maintains the generation fidelity of
the remaining categories.

Fig. A7 and A8 display the additional outcomes of class-wise forgetting on ImageNet using DiT
by our SFR-on method. The diagonal images within these figures depict the targeted forgetting
classes, demonstrating the unlearning efficacy of our method. Conversely, the images off the diagonal
represent various non-forgetting categories, showcasing the unlearned DiT’s generalization capability
preserved across extensive class conditions.

G Broader Impacts and Limitations

Broader Impacts. SFR-on can enhance trustworthy deep learning and is broadly applicable across
various scenarios, aligning machine learning applications with ethical human standards. SFR-on can
potentially increase the fairness of machine learning systems, mitigate biases against minority groups,
and promote equitable decision-making processes. Moreover, SFR-on bolsters privacy protections

26

Table A7: Performance of GA, our SFR-on, and ablations without using the remaining dataset, assessing
unlearning 10% random subset of CIFAR-10 using ResNet-18.

Methods CIFAR-10 Random Subset Forgetting (10%)
FA RA TA MIA Avg.D ↓ DKL ↓ RTE

GA 93.91±1.67 (1.71) 93.76±1.89 (6.24) 87.00±1.64 (8.34) 77.19±0.01 (2.35) 4.66 0.36 0.79

S F R on
✓ 96.52±0.61 (0.90) 95.48±0.69 (4.52) 89.62±0.74 (5.72) 76.21±0.50 (1.37) 3.13 0.29 0.80

✓ 97.03±0.35 (1.41) 96.95±0.30 (3.05) 89.99±0.31 (5.35) 82.18±0.36 (7.34) 4.29 0.31 1.03
✓ ✓ 96.67±0.50 (1.05) 96.78±0.64 (3.22) 90.80±0.69 (4.54) 74.16±0.13 (0.68) 2.37 0.26 1.03
✓ ✓ ✓ ✓ 96.58±0.77 (0.96) 99.88±0.16 (0.12) 94.19±0.33 (1.15) 72.26±0.01 (2.58) 1.20 0.15 2.80

Table A8: Performance of our method and four baselines in unlearning one sample on CIFAR-10 using
ResNet-18.

Methods CIFAR-10 Random One Sample Forgetting
FA RA TA MIA Avg.D ↓ DKL ↓ RTE

RT 100.00±0.00 (0.00) 100.00±0.00 (0.00) 95.53±0.03 (0.00) 0.00±0.00 (0.00) 0.0000 0.0001 76.92

FT 100.00±0.00 (0.00) 100.00±0.00 (0.00) 95.47±0.11 (0.06) 0.00±0.00 (0.00) 0.0142 0.0006 0.38
GA 100.00±0.00 (0.00) 100.00±0.00 (0.00) 95.31±0.02 (0.22) 0.00±0.00 (0.00) 0.0553 0.0003 0.05

SalUn 100.00±0.00 (0.00) 100.00±0.00 (0.00) 95.47±0.00 (0.06) 0.00±0.00 (0.00) 0.0154 0.0002 0.12
SCRUB 100.00±0.00 (0.00) 100.00±0.00 (0.00) 95.64±0.03 (0.11) 0.00±0.00 (0.00) 0.0276 0.0002 0.11

SFR-on 100.00±0.00 (0.00) 100.00±0.00 (0.00) 95.60±0.05 (0.07) 0.00±0.00 (0.00) 0.0175 0.0002 0.10

within deep models and fortifies the security of these systems against potential privacy attacks. When
deployed on public networks, our approach facilitates the continuous update of knowledge, enabling
models to catch new developments without losing performance. In the case of generative models,
implementing SFR-on reduces the likelihood of generating improper content and limits the possibility
of infringing on intellectual property rights. This helps to enhance public confidence in machine
learning technologies and encourages their broader acceptance and use.

Limitations. We acknowledge the limitations of our study and encourage further exploration. While
the theoretical framework of SFR-on accommodates various input modalities, this paper does not
extend evaluations to include language models or graph neural networks. Consequently, we cannot
ascertain the direct applicability of our method to these modalities without adaptation. Furthermore,
the absence of an asymptotic analysis for the steepest descent in machine unlearning hinders our
ability to determine the disparity between our approximation method and the optimal direction, which
is crucial for refining the approach. We advocate for research to address these gaps in the future.

Figure A3: Gradients norm of Pretrain (∇Lr(θ0)), Retrain (∇Lr(θ∗)), Joint (∇R(θt) in the proof of Prop. 1),
and SFR-on (∇R(θt) in the proof of Prop. 2), evaluating forgetting 10% random subset of CIFAR-10 using
ResNet18.

27

(a) Forgetting ‘Airplane’ (b) Forgetting ‘Car’

(c) Forgetting ‘Bird’ (d) Forgetting ‘Cat’

Figure A4: More class-wise unlearning results on classifier-free guidance DDPM on CIFAR-10. The forgetting
class is marked with a red color. (More results will be shown in Fig. A5 and Fig. A6)

28

(a) Forgetting ‘Deer’ (b) Forgetting ‘Dog’

(c) Forgetting ‘Frog’ (d) Forgetting ‘Horse’

Figure A5: More class-wise unlearning results on classifier-free guidance DDPM on CIFAR-10. The forgetting
class is marked with a red color (Extended results from Fig. A4).

29

(a) Forgetting ‘Ship’ (b) Forgetting ‘Truch’

Figure A6: More class-wise unlearning results on classifier-free guidance DDPM on CIFAR-10. The forgetting
class is marked with a red color (Extended results from Fig. A4).

Unlearned Prompt class

class Cacatua galerita Golden
retriever Siberian husky Loggerhead Space shuttle

Cacatua galerita

Golden retriever

Siberian husky

Loggerhead

Space shuttle

Figure A7: Additional results of generated images using SFR-on. From the rows below, diagonal images
represent the forgetting class, while non-diagonal images represent the remaining class. (More results will be
shown in Fig. A8)

30

Unlearned Prompt class
class Lion Red panda Giant panda Cliff Balloon

Lion

Red panda

Giant panda

Cliff

Balloon

Figure A8: Additional results of generated images using SFR-on. From the rows below, diagonal images
represent the forgetting class, while non-diagonal images represent the remaining class. (Extended results from
Fig. A7)

31

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We briefly describe the scope and contributions of this paper in the abstract,
detail the areas of focus in the introduction, and list the main contributions at the end of the
introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Appendix G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

32

Answer: [Yes]
Justification: All formulas appearing in this paper are reasonably numbered and cross-
referenced. We all clarify the theory assumptions in detail and provide complete proof in
Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the experimental setup, training details, and hyperparameters in
Appendix E to ensure reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

33

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The code is provided in supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental setup, training details, and hyperparameters
in Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: This paper provides the mean and variance for most of the experiments
on image classification. However, due to the limitation of computing resources, most
experiments on image generation have only been carried out once, which may not guarantee
the statistically significant results of these experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

34

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computational resources used in the experiments are indicated in Ap-
pendix E and the computational time overhead is given.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our submission preserves anonymity.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impacts in Appendix G.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

35

https://neurips.cc/public/EthicsGuidelines

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We have safeguarded the potentially unsafe images appearing in the paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All original papers and codebases are appropriately cited in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

36

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

37

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

38

	Introduction
	Preliminary
	Approximate MU from Perspective of Steepest Descent
	Proposed Method
	Experiments
	Conclusion
	Detailed Proof
	Proof of Equation (1)
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Related Works
	Related Works on Machine Unlearning
	Related Works on Steepest Descent in Optimization
	Preliminary on Diffusion Model

	Algorithm
	Evaluation Metrics
	Evaluation Metrics for Image Classification
	Evaluation Metrics for Image Generation

	Implementation Details
	Baselines
	Training Details for Image Classification
	Training Details for Image Generation
	Training Details for Concept Forgetting

	Additional Experimental Results
	Ablation Study on Temperature Scalar and Threshold
	Additional Results for Image Classification
	Results for Natural Language Processing
	Ablation Study on SFR-on without Repairing
	Results for Removing Influence of A Single Data Point
	Verification for Approximation in Practical implementations
	Additional Results for Image Generation

	Broader Impacts and Limitations

