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Abstract

Aspect-based sentiment analysis (ABSA) is001
a fine-grained sentiment classification task.002
Many recent works have used dependency trees003
to extract the relationship between aspects and004
contexts and have achieved significant improve-005
ments. However, further improvement is lim-006
ited due to the mismatch between the depen-007
dency tree as a syntactic structure and the sen-008
timent classification as a semantic task. To009
alleviate this gap, we replace the syntactic de-010
pendency tree with the semantic structure, Ab-011
stract Meaning Representation (AMR) and pro-012
pose a model called AMR-based Path Aggre-013
gation Graph Network (APAGN). Particularly,014
we design a path aggregation module which015
collect local information into global informa-016
tion by path to make full use of AMR. APAGN017
also contains the outer product summary mod-018
ule which transfers the feature from sentence019
to graph and the relation-enhanced attention020
mechanism which transfers the feature in the021
opposite direction. Experimental results on022
three public datasets demonstrate the effective-023
ness of APAGN in aspect-based sentiment anal-024
ysis when compared with baselines.1025

1 Introduction026

Recent years have witnessed growing popularity027

of the sentiment analysis tasks in natural language028

processing (Li and Hovy, 2017; Birjali et al., 2021).029

Aspect-based sentiment analysis (ABSA) is a fine-030

grained sentiment analysis task to recognize the031

sentiment polarities of specific aspect terms in a032

given sentence (Jiang et al., 2011; Li et al., 2018;033

Seoh et al., 2021; Zhang et al., 2022a). For ex-034

ample, here is a restaurant review “All the money035

went into the interior decoration, none of it went036

to the chefs” and the sentiment polarity of the two037

aspects “interior decoration” and “chefs” are pos-038

itive and negative, respectively. Thus, ABSA can039

precisely recognize the corresponding sentiment040

1Our code and data will be open sourced upon acceptance.

amaze
-01

we

small

dish

so

ARG1

ARG0

domain

degree

We were amazed at how small the dish was
cop

nsubj
advmod det nsubj

dep
mark

advcl

Figure 1: The dependency tree and AMR of the input
sentence “we were amazed at how small the dish was”.

polarity for any aspect, different from allocating a 041

general sentiment polarity to a sentence in sentence- 042

level sentiment analysis. 043

The key challenge for ABSA is to capture the 044

relationship between an aspect and its context, es- 045

pecially the opinion terms. In addition, sentences 046

with multiple aspects and several opinion terms 047

make the problem more complex. To this end, 048

some previous studies (Wang et al., 2016; Chen 049

et al., 2017; Gu et al., 2018; Du et al., 2019) have 050

devoted the main efforts to attention mechanisms. 051

Despite their achievements in aspect-targeted rep- 052

resentations and appealing results, this method al- 053

ways suffers noise from the mismatching opinion 054

terms or irrelevant words in contexts. 055

On the other hand, more recent studies (Zhang 056

et al., 2019; Wang et al., 2020; Tang et al., 2020; 057

Li et al., 2021; Xiao et al., 2021) propose models 058

explicitly exploit dependency trees, the syntactic 059

structure of a sentence, and display significant ef- 060

fectiveness. These models usually employ graph 061

convolutional networks (GCNs) and graph atten- 062

tion networks (GATs) over the syntactic dependen- 063

cies to identify the interaction between the aspect 064

and the opinion expressions. However, ABSA mod- 065

els utilizing dependency syntax still has the follow- 066

ing limitations. First, there is a gap between the 067

syntactic dependency structure and the semantic 068

sentiment analysis task. Second, nature language 069

parsers including dependency parsers are not ab- 070

solutely reliable. Without further adjustment, raw 071
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Figure 2: The overall architecture of APAGN.

results of parsers can contain errors and be unsuit-072

able for ABSA task.073

To solve aforementioned challenges, we propose074

a novel architecture called AMR-based Path Ag-075

gregation Graph Network (APAGN). For the first076

challenge, we introduce abstract meaning represen-077

tations (AMRs), a powerful semantic structure. As078

shown in Figure 1, the connection on dependency079

tree between the aspect term “fish” and the opinion080

term “small” is a 2-hop path for the input sentence081

“we were amazed at how small the dish was”, while082

they are directly connected in the AMR. Besides,083

we can notice that the AMR is simpler and more084

information centralized. To make full use of AMR,085

we also explore an effective and generalizable pro-086

cess including AMR parsing, aligning and embed-087

ding. For the second challenge, we construct the088

path aggregator module and the relation-enhanced089

self-attention module. The path aggregator inte-090

grates the information from AMRs and sentences091

to obtain optimized relational features. This pro-092

cedure not only encourages consistency between093

semantic structures and basic sentences, but also094

achieves the global feature by broadcasting local095

information along the path in the graph. Relation-096

enhanced self-attention module then injects these097

relational feature back into attention weights of098

word features. Credited to these modules, APAGN099

acquires to utilize sentences and AMRs jointly and100

achieves higher adaptability and generalization.101

To summarize, our main contributions are high-102

lighted as follows:103

• We introduce semantic structure into the104

ABSA task in the form of Abstract Meaning105

Representations. As a semantic structure, the 106

AMR is more suitable for sentiment analysis 107

task than the syntactic structure such as the 108

dependency tree. 109

• We propose an ABSA model APAGN which 110

integrates information from both original sen- 111

tences and parsed structures such as AMRs to 112

relieve the unreliability of the parser. APAGN 113

jointly exploits sentences and AMRs by the 114

path aggregator and the relation-enhanced 115

self-attention mechanism. 116

• We conducted extensive experiments on three 117

public datasets. These experimental results 118

demonstrate the effectiveness of our APAGN 119

model. Further experiments also show that our 120

model outperforms baselines in cross-domain 121

and low-resource situation. 122

2 Proposed Model 123

The overall architecture of our proposed model 124

APAGN is illustrated in Figure 2. It consists of 125

3 parts: AMR preprocessing, path aggregator and 126

relation-enhanced self-attention mechanism. In the 127

ABSA task, a sentence s = {w1, w2, ..., wn} and a 128

specific aspect term a = {a1, a2, ..., am} are given 129

to determine the corresponding sentiment polarity 130

class ca, where a is a sub-sequence of s and ca ∈ 131

{Positive,Neutral,Negative}. 132

Many existing works use syntactic dependency 133

trees to establish explicit or implicit connections 134

between aspects and contexts. However, we believe 135

that the sentiment analysis task is essentially about 136

the meanings of sentences, so semantic structures 137

like AMRs are more favorable for this task. 138
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In addition, AMRs are more concise than de-139

pendency trees, making it easier to extract valu-140

able information in training but more difficult to141

preprocess before training. We have to conduct a142

series of complex steps including: AMR parsing,143

AMR aligning and AMR embedding. Preprocessed144

AMRs are not flawless, so we design the path ag-145

gregator and the relation-enhanced self-attention146

mechanism to perform joint representation learning147

and flexible feature fusion on AMRs together with148

original sentences. This procedure expands the149

basic information sources and cross-validates im-150

portant features, thereby improving the adaptability151

and generalization of the model.152

Next, we elaborate on the details of our proposed153

APAGN model, including AMR preprocessing and154

embedding, the path aggregator and the relation-155

enhanced self-attention mechanism.156

2.1 AMR Preprocessing and Embedding157

Parsing As we determine to employ the seman-158

tic structure AMR as an alternative of the syntac-159

tic structure dependency tree to better perform the160

semantic task ABSA, the first step is parsing the161

AMR from the input sentence. We choose the best162

off-the-shelf parser named SPRING (Bevilacqua163

et al., 2021) for high quality AMR outputs.164

Aligning As mentioned above, AMRs are sim-165

pler and more abstract than dependency trees. For166

example, the sentence “we were amazed at how167

small the dish was” in Figure 1 has 9 nodes and168

8 edges in its dependency tree and each node is169

exactly a word in the sentence, while its AMR170

has only 5 nodes and 4 edges and some refined171

nodes are not a word in the sentence. In other172

words, the AMR does not have a natural alignment173

with the words in the sentence like a dependency174

tree. Without alignment with the words in the sen-175

tence, it is nearly impossible for the AMR and the176

sentence to be utilized as a whole satisfactorily.177

So we have to specifically align the AMR by the178

aligner LEAMR (Blodgett and Schneider, 2021).179

In the process of aligning, every node in the AMR180

is mapped to some distinct words in the sentence.181

Based on the alignments, we manage to rebuild182

AMR relations between words in the sentence and183

get the transformed AMR with words as nodes.184

Embedding After aligning, we now have trans-185

formed AMRs, which can also be called sentences186

with AMR relations. Then we need to obtain their187

embeddings for later representation learning by the188

model. For the nodes in the AMR, also as words 189

in the sentence, we utilize BERT as an encoder to 190

get contextual embeddings H = {h1, h2, ..., hn} 191

like lots of previous works. However, there are 192

few existing studies to reference about the em- 193

bedding of AMR edges. Considering the conve- 194

nience of later calculation, we represent the edge 195

relations between nodes as an adjacency matrix 196

R = {rij | 1 ≤ i, j ≤ n}, where rij is the em- 197

bedding of the edge label between word wi and 198

word wj . If there is no edge between wi and wj 199

in the AMR, we assign a “none” embedding to rij . 200

When striving for high-quality edge embeddings, 201

we notice that these special tokens are present in 202

the word vocabulary of the AMR parser mentioned 203

above and have been well fine-tuned. Therefore, we 204

skillfully treat them as excellent edge embeddings 205

which are comparable to the word representations 206

from BERT in terms of information contained. 207

2.2 Path Aggregator 208

Path aggregator receives the mix of AMR embed- 209

dings R ∈ Rdr×n×n and sentence embeddings 210

H ∈ Rdw×n, where dr and dw denote the dimen- 211

sions of relation and word embeddings, respec- 212

tively. Path aggregator outputs the relational fea- 213

ture matrix RAGG={rAGG
ij ∈Rdr | 1 ≤ i, j ≤ n}. 214

This process integrates and condenses information 215

from two different sources, AMRs and sentences, 216

making semantic knowledge more apparent but 217

parsing errors less influential. 218

Outer Product Sum We first add the outer prod- 219

uct of two independent linear transformation of 220

sentence embeddings H to the original AMR em- 221

beddings R to obtain sequence-enhanced relation 222

embeddings RS ∈ Rdr×n×n. On the one hand, 223

as the outer product of H is the representation of 224

word relations from the sentence perspective, its 225

combination with the AMR embeddings R could 226

enlarge the information base of the model to im- 227

prove the generalization, also cross validate im- 228

portant features to improve the reliability. On the 229

other hand, AMR embeddings R is usually quite 230

sparse. The outer product sum operation ensures 231

the basic density of the feature matrix and facilitate 232

the subsequent representation learning by avoiding 233

the fuzziness and dilution of numerous background 234

“none” relations to the precious effective relations. 235

Path Aggregation Next, we perform the path 236

aggregation on RS = {rSij | 1 ≤ i, j ≤ n} to 237
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calculate RAGG = {rAGG
ij | 1 ≤ i, j ≤ n} as:238

r′
S
ij = LayerNorm(rSij), (1)239

240
ginij , g

out
ij = sigmoid(Linear(r′

S
ij)), (2)241

242
aij , bij = ginij ⊙ Linear(r′

S
ij), (3)243

244

routij = Linear(LayerNorm(
∑
k

aik ⊙ bkj)), (4)245

246
rAGG
ij = goutij ⊙ routij . (5)247

The path aggregation has distinctive effect on248

both local and global dissemination of features.249

From the local view, the path aggregation covers all250

the 2-hop paths, so that it is very sensitive to neigh-251

borhood features, including the features around252

the aspect term which are really important for the253

ABSA task. From the global view, information in254

any long path can be summarized into the repre-255

sentation between the start and the end by several256

two-in-one operations in enough times of path ag-257

gregations. In other words, path aggregations make258

the features in matrix more inclusive and finally at-259

tain global features. In practice, because the ABSA260

task focuses more on the neighboring information261

and the BERT encoder with attention mechanisms262

has made the feature comprehensive enough, a sin-263

gle path aggregation can achieve quite good results.264

Additionally, we also introduce a gating mech-265

anism in the path aggregation to alleviate the dis-266

turbance of noise from insignificant relations. Fi-267

nally, the output of path aggregation RAGG is trans-268

formed into the relational attention weight matrix269

AAGG = {aAGG
ij | 1 ≤ i, j ≤ n} by a linear270

transformation for subsequent calculation.271

2.3 Relation-Enhanced Self-Attention272

The classic self-attention (Vaswani et al., 2017)273

computes the attention weight by the following274

formula:275

A = softmax

(
QWQ × (KWK)T√

d

)
, (6)276

where Q and K are input vectors with d dimen-277

sions, while WQ and WK are learnable weights278

with the same size of Rd×d.279

In our relation-enhanced self-attention, we added280

AAGG, the relational attention weight matrix from281

AMR into the original attention weight, which can282

be formulated as:283

AR=softmax

(
HWQ×(HWK)

T

√
dw

+AAGG

)
, (7)284

where input vectors W and Q are both replaced 285

by the BERT embeddings H with dw dimensions. 286

With AAGG, attention outputs are further guided by 287

the semantic information from AMRs, which im- 288

proves the efficient attention to semantic keywords. 289

In addition, similar to path aggregator, we also 290

introduced the gating mechanism into the relation- 291

enhanced self-attention as follows: 292

G = sigmoid(HWG), (8) 293
294

HR = (HWV )A
R ⊙G, (9) 295

where WG and WV are trainable parameters and 296

G is the gating matrix. Considering the small pro- 297

portion of effective words in the whole sentence, 298

the gating mechanism is conducive to eliminating 299

background noise, making it easier for the model 300

to focus on the more critical words. 301

Finally, with all these above calculations in- 302

cluding relation-enhanced self-attention and gating 303

mechanism, we obtain the relation-enhanced as- 304

pect representation HR
a = {hRa1 , h

R
a2 , ..., h

R
am} for 305

subsequent classification. 306

2.4 Model Training 307

The final classification features are concatenated 308

by the original BERT aspect representation Ha = 309

{ha1 , ha2 , ..., ham} and the relation-enhanced as- 310

pect representation HR
a . 311

Hfinal
a = [Ha, H

R
a ]. (10) 312

It is passed through a fully connected softmax layer 313

and mapped to probabilities over all different senti- 314

ment polarities. 315

p(a) = softmax(WpH
final
a + bp). (11) 316

We use standard cross-entropy loss as our objective 317

function: 318

LCE = −
∑

(s,a)∈D

∑
c∈C

log p(a), (12) 319

where D contains all sentence-aspect pairs and C 320

contains all sentiment polarities. 321

3 Experiments 322

In this section, we first introduce the relevant set- 323

tings of the experiments, including the datasets 324

used, implementation details and baseline methods 325

for comparison. Then, we report the experimental 326

results under normal and special settings. Finally, 327

we select several representative examples for model 328

analysis and discussion. 329
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Models
Restaurant Laptop Twitter

Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

w/o
BERT

RAM (Chen et al., 2017) 80.23 70.80 74.49 71.35 69.36 67.30
MGAN (Fan et al., 2018) 81.25 71.94 75.39 72.47 72.54 70.81
TNet (Li et al., 2018) 80.69 71.27 76.54 71.75 74.90 73.60
ASGCN (Zhang et al., 2019) 80.77 72.02 75.55 71.05 72.15 70.40
BiGCN (Zhang and Qian, 2020) 81.97 73.48 74.59 71.84 74.16 75.35
KumaGCN (Chen et al., 2020) 81.34 73.64 76.12 72.42 72.45 70.77

w.
BERT

BERT (Devlin et al., 2019) 85.62 78.28 77.58 72.38 75.28 74.11
R-GAT (Wang et al., 2020) 86.60 81.35 78.21 74.07 76.15 74.88
DGEDT (Tang et al., 2020) 86.30 80.00 79.80 75.60 77.90 75.40
T-GCN (Tian et al., 2021) 86.16 79.95 80.88 77.03 76.45 75.25
DualGCN (Li et al., 2021) 87.13 81.16 81.80 78.10 77.40 76.02
dotGCN (Chen et al., 2022) 86.16 80.49 81.03 78.10 78.11 77.00
SSEGCN (Zhang et al., 2022b) 87.31 81.09 81.01 77.96 77.40 76.02

Ours APAGN 87.76 82.44 81.96 78.19 79.76 78.79

Table 1: Results comparison on three public datasets. Best performed baselines are underlined.

3.1 Datasets330

Our experiments are conducted on three commonly331

used public standard datasets. The Twitter dataset332

is a collection of tweets built by Dong et al. (2014),333

while the Restaurant and Laptop dataset come from334

the SemEval 2014 Task (Pontiki et al., 2014). The335

data statistics is shown in Appendix A.1.336

3.2 Implementation Details337

APAGN uses the BERT of bert-base-uncased ver-338

sion as a pre-trained encoder with max length as339

100. During training, we use Adam with the learn-340

ing rate of 2× 10−5 and hyper-parameters α of 0.9341

and β of 0.98. The BERT encoder and other parts342

of the model use dropout strategies with probability343

0.5 and 0.2, respectively. Following Li et al. (2021),344

each training lasts for 15 epochs and the evaluation345

is performed every 5 batches. The model with the346

highest accuracy among all evaluation results is se-347

lected as the final result of this training. Reported348

results are the average of three runs with different349

random seeds. See Appendix A.2 for more details.350

3.3 Baseline Methods351

We compare APAGN with a series of baselines and352

state-of-the-art alternatives, including:353

1) RAM (Chen et al., 2017) applies multiple atten-354

tion mechanisms to memory networks.355

2) MGAN (Fan et al., 2018) designs a multi-scale356

attention mechanism to mine aspect relations.357

3) TNet (Li et al., 2018) converts BiLSTM embed-358

dings to aspect-specific embeddings and uses CNN359

to further obtain final features for classification.360

4) ASGCN (Zhang et al., 2019) first proposes to 361

learn aspect-specific representations with GCN. 362

5) BiGCN (Zhang and Qian, 2020) uses a hierarchi- 363

cal graph structure to integrate token co-occurrence 364

information and dependency type information. 365

6) kumaGCN (Chen et al., 2020) utilizes an im- 366

plicit graph structure to provide syntactic features. 367

7) BERT (Devlin et al., 2019) is composed of a 368

general pre-trained BERT model and a classifica- 369

tion layer adapted to the ABSA task. 370

8) R-GAT (Wang et al., 2020) proposes a depen- 371

dency structure adjusted for aspects and uses a re- 372

lational GAT to encode this structure. 373

9) T-GCN (Tian et al., 2021) proposes an approach 374

to explicitly utilize dependency types for ABSA 375

with type-aware GCNs. 376

10) DGEDT (Tang et al., 2020) proposes a dual 377

transformer structure based on dependency graph 378

augmentation, which can simultaneously fuse rep- 379

resentations of sequences and graphs. 380

11) DualGCN (Li et al., 2021) proposes a dual 381

GCN structure and regularization methods to merge 382

features from sentences and dependency trees. 383

12) dotGCN (Chen et al., 2022) proposes an aspect- 384

specific and language-agnostic discrete latent tree 385

as an alternative structure to dependency trees. 386

13) SSEGCN (Zhang et al., 2022b) proposes an 387

aspect-aware attention mechanism to enhance the 388

node representations with GCN. 389

3.4 Main Results 390

Table 1 shows the experimental results of our model 391

and the baseline models on three datasets under 392
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Figure 3: Accuracy on Twitter dataset with partial data.

the same conventional settings as Li et al. (2021),393

where the best results are in bold and the second394

best results are underlined. Our APAGN model ex-395

hibits excellent results and achieves the best results396

on all 6 indicators of 3 datasets, which fully proves397

the effectiveness of this model.398

Comparing the results of different datasets, we399

can find that the improvement of APAGN on the400

Twitter dataset is particularly obvious. Compared401

to the best results, the accuracy rate has increased402

by 1.65% and the Macro-F1 has increased by403

1.79%. The main reason is the similarity of the404

Twitter dataset to the AMR 3.0 dataset, the training405

dataset for the AMR parser we used. More than406

half of the corpus of the AMR 3.0 dataset comes407

from internet forums and blogs, which are similar408

to the Twitter dataset as they are both social media.409

As a result, the AMR parser has better output on the410

Twitter dataset, which in turn enables the model to411

extract more valuable features from it and leads to a412

considerable improvement. This difference among413

datasets also reflects the effectiveness of semantic414

information from AMR for the ABSA task.415

3.5 Special Situation Study416

Low-resource Situation The low-resource sce-417

nario is a special scenario that ABSA tasks may418

actually face. Exploring the performance of the419

model in this scenario is of great significance to420

understand the adaptability and application value421

of the model. We test three models in these ex-422

periments, including: the naive pre-training model423

BERT, the DualGCN model with available code424

and the best comprehensive performance in exist-425

ing research, and our APAGN model. These exper-426

iments are conducted on the Twitter dataset with427

the largest total data volume. In these experiments,428

Models R→ L R→ T L→ R L→ T T→ R T→ L

Acc
BERT 79.94 59.88 81.82 59.11 74.75 72.88

DualGCN 79.62 59.32 81.84 59.26 73.62 73.45
APAGN 80.00 59.68 81.99 60.80 75.17 73.77

F1
BERT 76.58 57.04 73.48 58.66 64.73 68.09

DualGCN 76.36 58.26 72.82 58.33 65.07 68.63
APAGN 76.79 58.37 73.82 59.09 67.33 68.81

Table 2: Results on six kinds of cross-domain datasets.
R, L, T represent Restaurant, Laptop, Twitter datasets.

the input training data is part of all the training data 429

in the dataset and the results are shown in Figure 3. 430

We can notice that the APAGN model has good 431

adaptability to low-resource scenarios. In multiple 432

experiments with different amounts of input data, 433

APAGN consistently outperforms BERT by 1.6% 434

on average, while the DualGCN model is inferior 435

to BERT in some cases. Considering that AMRs 436

are more compact than dependency trees, it is rea- 437

sonable that APAGN can efficiently utilize AMRs 438

and perform well with only a small training set. 439

Cross-domain Situation The cross-domain sce- 440

nario is another possible special scenario for the 441

ABSA task, which requires the model to have 442

good generalization ability. In cross-domain ex- 443

periments, the training set of one dataset is used for 444

training and the test set of another dataset is used 445

for testing. Therefore, six cross-domain datasets 446

are formed from three original datasets of Restau- 447

rant, Laptop and Twitter. Three models of BERT, 448

DualGCN and APAGN are tested and the perfor- 449

mance of each model is shown in Table 2. 450

We can see that in the cross-domain scenario, 451

the performance of each model is significantly af- 452

fected by the dataset. BERT and DualGCN com- 453

pete with each other on different cross-domain 454

datasets, while the APAGN model has the best over- 455

all performance because its generalization ability 456

is improved by the joint use of sentences and AMR. 457

APAGN improves less when using the restaurant 458

dataset as a training set because of the specificity of 459

this dataset, which makes the semantic structure in- 460

formation learned from it more difficult to transfer 461

to other datasets. 462

3.6 Model Analysis 463

Ablation Study In order to analyze the role of 464

each module, we separately remove four key com- 465

ponents of the APAGN model in the ablation stud- 466

ies, and the results are shown in Table 3. 467

According to the results, each of the four compo- 468
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Models
Restaurant Laptop Twitter

Acc F1 Acc F1 Acc F1

APAGN 87.76 82.44 81.96 78.19 79.76 78.79
−Outer Product Sum 86.15 80.13 79.43 75.22 76.22 74.75
−Path Aggregation 87.04 81.61 79.11 74.76 76.66 74.9

−Relation in Self-Atteion 87.49 81.82 80.22 76.58 76.81 75.49
−Gate in Self-Attenion 85.61 78.49 79.75 76.14 77.55 76.06

Table 3: Ablation experimental results of our APAGN.

nents contributes significantly to the performance469

of the APAGN model. Removing Outer Product470

Sum results in a significant drop in performance,471

illustrating the importance of promoting consis-472

tency of information from sentences and AMRs.473

Removing Relation in Self-Attention is worse than474

removing Path Aggregation, indicating that unpro-475

cessed AMR information can only interfere with476

the model instead of being exploited by the model.477

Comparing the results in different datasets, we478

can find that the model depends on information479

from sentences and AMRs differently on different480

datasets. On the Restaurant dataset, removing the481

Relation in Self-Attention component has less im-482

pact, while on the Twitter dataset, removing this483

component has a greater impact. This means the484

model utilizes sentence information more on the485

Restaurant dataset and AMR information more on486

the Twitter dataset. This is also consistent with the487

analysis of the main results: the AMR of Twitter488

dataset has higher quality due to the domain relat-489

edness with the training dataset of the AMR parser,490

which in turn makes the model pay more attention491

to the information from the AMR on this dataset.492

Sentence Length Study Figure 4 compares the493

accuracy of the APAGN model with and without494

path aggregator for sentences of different lengths495

in the Restaurant dataset. According to the figure,496

we can see that the model achieve higher accu-497

racy on short sentences, while the long sentences498

is more challenging. In addition, the model with499

the path aggregator has a larger relative improve-500

ment on long sentences, indicating that the path501

aggregator can effectively help the model to cap-502

ture long-distance relations with AMR.503

Edge Embedding Analysis These experiments504

investigate the effect of AMRs’ edge label embed-505

dings to the result. Three different types of edge506

label embeddings are tested in the experiments and507

the results are shown in Table 4.508

According to the results, using pretrained edge509

label embeddings outperforms using randomly ini-510
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Figure 4: Accuracy of sentences with different length
from Restaurant dataset. The red line represents the
percentage of accuracy improvement.

Embeddings
Restaurant Laptop Twitter

Acc F1 Acc F1 Acc F1

Fixed 85.79 79.01 80.22 76.49 76.95 75.49
Random 86.42 80.68 80.70 77.48 77.70 76.12

Pre-trained 87.76 82.44 81.96 78.19 79.76 78.79

Table 4: Results of three different kinds of edge embed-
dings on all datasets.

tialized edge label embeddings on all datasets, 511

which demonstrates the effectiveness of pretrained 512

edge label embeddings. Also, the use of fixed edge 513

labels is worse than the use of randomly initialized 514

true edge labels, which shows that the edge labels 515

of AMR contain important information and play 516

important roles in the ABSA task. 517

3.7 Case Study 518

As shown in Figure 5, we selected three typical 519

cases to visualize the aspect terms’ attention to the 520

context before and after adding information from 521

the AMR, respectively. 522

From the first two examples, we can notice that 523

the model focuses on the copula verb next to the 524

opinion term without the AMR. While with the 525

information from the AMR, the model can capture 526

opinion terms through the attention mechanism 527

more accurately. In the third example, without the 528

AMR, the model pays more attention to words that 529

are closer to the aspect term. With the semantic 530

information from AMR, the model can discover 531

opinion terms farther away from aspect terms. 532

These cases illustrate that the semantic struc- 533

ture information of AMR plays an important role 534

in making the model focus on the correct opin- 535

ion words. It also shows that the structure of our 536
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the atmosphere was crowded but it was a great bistro-type vibe
BERT

+AMR

so if you want a nice ， enjoyable meal at montparnasse ， go early for the pre-theater prix-fixe
BERT

+AMR

i ordered the smoked salmon and roe appetizer and it was off flavor
BERT

+AMR

Figure 5: Visualization of aspect terms’ attention to the context in three cases. Aspect terms are highlighted in blue.

APAGN model can effectively utilize the seman-537

tic structure information in AMR to improve the538

performance in the ABSA task.539

4 Related Work540

Aspect-based Sentiment Analysis Traditional541

sentiment analysis tasks are usually sentence-level542

or document-level, while the ABSA task is an543

entity-level and fine-grained sentiment analysis544

task. Early methods (Jiang et al., 2011; Kiritchenko545

et al., 2014) are mostly based on artificially con-546

structed features, which are difficult to effectively547

model the relations between aspect terms and its548

context. With the development of deep neural net-549

works, many recent works (Wang et al., 2016; Tang550

et al., 2016; Chen et al., 2017; Fan et al., 2018; Gu551

et al., 2018; Du et al., 2019) have explored apply-552

ing attention mechanisms to implicitly model the553

semantic relations of aspect terms and identify the554

key opinion terms in the context.555

Another trend in ABSA studies is the explicit use556

of dependency trees. Some works (He et al., 2018;557

Zhang et al., 2019; Sun et al., 2019; Huang and558

Carley, 2019; Zhang and Qian, 2020; Chen et al.,559

2020; Liang et al., 2020; Wang et al., 2020; Tang560

et al., 2020; Phan and Ogunbona, 2020; Li et al.,561

2021; Xiao et al., 2021) extend GCN, GAT, and562

Transformer backbones to process syntactic depen-563

dency trees and develop several outstanding models.564

These models shorten the distance between aspect565

terms and opinion terms by dependency trees and566

alleviate the long-term dependency problem.567

Recent studies have also noticed the limitations568

of dependency trees in the ABSA task. Chen569

et al. (2020) propose to combine dependency trees570

with induced aspect-specific latent maps. Chen571

et al. (2022) further proposed an aspect-specific and572

language-independent discrete latent tree model as573

an alternative structure for dependency trees. Our574

work is similar in that we also aim at the mismatch575

between dependency trees and the ABSA task, but 576

different in that we introduce a semantic structure 577

named Abstract Meaning Representation instead 578

of induced trees. 579

Abstract Meaning Representation AMR is a 580

structured semantic representation that represents 581

the semantics of sentences as a rooted, directed, 582

acyclic graph with labels on nodes and edges. 583

AMR is proposed by Banarescu et al. (2013) to 584

provide a specification for sentence-level compre- 585

hensive semantic annotation and analysis tasks. Re- 586

search on AMR can be divided into two categories, 587

AMR parsing (Cai and Lam, 2020; Zhou et al., 588

2021; Hoang et al., 2021) and AMR-to-Text (Zhao 589

et al., 2020; Bai et al., 2020; Ribeiro et al., 2021). 590

AMR has also been applied in many NLP tasks. 591

Kapanipathi et al. (2020) use AMR in question an- 592

swering system. Lim et al. (2020) employ AMR 593

to improve common sense reasoning. Wang et al. 594

(2021) utilize AMR to add pseudo labels to unla- 595

beled data in low-resource event extraction task. 596

Our model also improves the performance of the 597

ABSA task with AMR. 598

5 Conclusion 599

In this paper, we propose APAGN, an AMR-based 600

Path Aggregation Graph Network for the ABSA 601

task. Different from the traditional ABSA model 602

utilizing the syntactic structure like dependency 603

tree, our model employs the semantic structure 604

called Abstract Meaning Representation which is 605

more harmony with the sentiment analysis task. 606

We propose the path aggregator and the relation- 607

enhanced self-attention mechanism to efficiently 608

exploit AMRs and integrate information from 609

AMRs and input sentences. These designs enable 610

our model to achieve better results than existing 611

models, as well as greater adaptability and general- 612

ization. Experiments on three public datasets show 613

that APAGN outperforms competing baselines. 614
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Limitations615

The high computational complexity is one of the616

biggest disadvantages of the path aggregation. The617

time consumption and GPU memory used for multi-618

ple operations are expensive. So it is very desirable619

to use only one time of path aggregation due to620

attributes of the ABSA task in our APAGN model.621

Another limitation of this work is that the perfor-622

mance of the model is still somewhat affected by623

the quality of the AMR parsing results. The good624

news is that the research on AMR parsing is con-625

tinuing to make progress. In the future, APAGN626

with higher quality AMRs is expected to further627

improve the level of the ABSA task.628
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A Appendix 949
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aspect terms and corresponding polarities. Fol-954

lowing Li et al. (2021), we remove instances with955

the “conflict” label. So all datasets have three sen-956

timent polarities: positive, negative and neutral.957

Throughout the research, we follow the Creative958

Commons Attribution 4.0 International Licence of959

the datasets.960

Dataset
Positive Neutral Negative

Train Test Train Test Train Test

Restaurant 2164 728 807 196 637 196
Laptop 994 341 870 128 464 169
Twitter 1561 173 3127 346 1560 173

Table 5: Statistics of the three ABSA datasets

A.2 Implementation Details961

In data preprocessing, we use SPRING (Bevilac-962

qua et al., 2021) as the parser to obtain the AMRs963

of input sentences and use LEAMR (Blodgett and964

Schneider, 2021) as the AMR aligner to establish965

the correspondence between the AMRs and sen-966

tences. The maximum length of the input sentence967

is set to 100, the shortage is made up with the spe-968

cial word “PAD” and the excess is truncated.969

Some edge labels are treated specially when970

mapping the edges of AMR to the relations be-971

tween words. Edge labels suffixed with “-of” are972

used to avoid loops in AMR, so we swap their start973

and end points and remove the “-of” suffix, eg:974

the “:ARG0-of” relation from tokeni to tokenj975

is changed to the “:ARG0” relation from tokenj976

to tokeni. Edge labels prefixed with “:prep-” are977

used because there is no suitable preposition label978

in the AMR specification. We changed them to979

original prepositions, for example, “:prep-against”980

is changed to “against”.981

APAGN uses the BERT of bert-base-uncased982

version as a pre-trained encoder. The dimension of983

its output is 768, which is also used as the dimen-984

sion of token representation in the path aggregator.985

The dimension of the AMR edge label embedding986

derived from the SPRING model is 1024. Due to987

computational efficiency and memory usage, this988

dimension is reduced to 376 through a linear layer989

as the dimension of the relational matrix features990

in the path aggregator. For the relation-enhanced991

self-attention mechanism, its gated multi-head at-992

tention mechanism uses 8 attention heads with the993

latent dimension size of 64. The total parameter994

size of APAGN is about 130M and it takes about 8995

minutes to train each epoch on a single RTX 3090 996

GPU. 997
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