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Abstract

Aspect-based sentiment analysis (ABSA) is
a fine-grained sentiment classification task.
Many recent works have used dependency trees
to extract the relationship between aspects and
contexts and have achieved significant improve-
ments. However, further improvement is lim-
ited due to the mismatch between the depen-
dency tree as a syntactic structure and the sen-
timent classification as a semantic task. To
alleviate this gap, we replace the syntactic de-
pendency tree with the semantic structure, Ab-
stract Meaning Representation (AMR) and pro-
pose a model called AMR-based Path Aggre-
gation Graph Network (APAGN). Particularly,
we design a path aggregation module which
collect local information into global informa-
tion by path to make full use of AMR. APAGN
also contains the outer product summary mod-
ule which transfers the feature from sentence
to graph and the relation-enhanced attention
mechanism which transfers the feature in the
opposite direction. Experimental results on
three public datasets demonstrate the effective-
ness of APAGN in aspect-based sentiment anal-
ysis when compared with baselines.'

1 Introduction

Recent years have witnessed growing popularity
of the sentiment analysis tasks in natural language
processing (Li and Hovy, 2017; Birjali et al., 2021).
Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis task to recognize the
sentiment polarities of specific aspect terms in a
given sentence (Jiang et al., 2011; Li et al., 2018;
Seoh et al., 2021; Zhang et al., 2022a). For ex-
ample, here is a restaurant review “All the money
went into the interior decoration, none of it went
to the chefs” and the sentiment polarity of the two
aspects “interior decoration” and “chefs” are pos-
itive and negative, respectively. Thus, ABSA can
precisely recognize the corresponding sentiment

'Our code and data will be open sourced upon acceptance.
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Figure 1: The dependency tree and AMR of the input
sentence “we were amazed at how small the dish was”.

polarity for any aspect, different from allocating a
general sentiment polarity to a sentence in sentence-
level sentiment analysis.

The key challenge for ABSA is to capture the
relationship between an aspect and its context, es-
pecially the opinion terms. In addition, sentences
with multiple aspects and several opinion terms
make the problem more complex. To this end,
some previous studies (Wang et al., 2016; Chen
etal., 2017; Gu et al., 2018; Du et al., 2019) have
devoted the main efforts to attention mechanisms.
Despite their achievements in aspect-targeted rep-
resentations and appealing results, this method al-
ways suffers noise from the mismatching opinion
terms or irrelevant words in contexts.

On the other hand, more recent studies (Zhang
et al., 2019; Wang et al., 2020; Tang et al., 2020;
Li et al., 2021; Xiao et al., 2021) propose models
explicitly exploit dependency trees, the syntactic
structure of a sentence, and display significant ef-
fectiveness. These models usually employ graph
convolutional networks (GCNs) and graph atten-
tion networks (GATs) over the syntactic dependen-
cies to identify the interaction between the aspect
and the opinion expressions. However, ABSA mod-
els utilizing dependency syntax still has the follow-
ing limitations. First, there is a gap between the
syntactic dependency structure and the semantic
sentiment analysis task. Second, nature language
parsers including dependency parsers are not ab-
solutely reliable. Without further adjustment, raw



( \Path Aggregator

__________________________________ P S S—
’ \
(7 AMR ARG2-of domain N ! But [*36

Aligner N !

degree .

But the staff was so «—— horrible [

— w2
AN 5 J

AMR
Parser

ARG2

domain

"< -
AN
ARG2 \ ~ ./1
- degree gy

degree

Japoou]
1439

ARG2-of

Neutral

Positive

Relation-EnhancedW
Self-Attention ) J

, @: Element-wise Sum

AMR
Preprocess

__________________________________

®: Outer Product

Figure 2: The overall architecture of APAGN.

results of parsers can contain errors and be unsuit-
able for ABSA task.

To solve aforementioned challenges, we propose
a novel architecture called AMR-based Path Ag-
gregation Graph Network (APAGN). For the first
challenge, we introduce abstract meaning represen-
tations (AMRs), a powerful semantic structure. As
shown in Figure 1, the connection on dependency
tree between the aspect term “fish” and the opinion
term “small” is a 2-hop path for the input sentence
“we were amazed at how small the dish was”, while
they are directly connected in the AMR. Besides,
we can notice that the AMR is simpler and more
information centralized. To make full use of AMR,
we also explore an effective and generalizable pro-
cess including AMR parsing, aligning and embed-
ding. For the second challenge, we construct the
path aggregator module and the relation-enhanced
self-attention module. The path aggregator inte-
grates the information from AMRs and sentences
to obtain optimized relational features. This pro-
cedure not only encourages consistency between
semantic structures and basic sentences, but also
achieves the global feature by broadcasting local
information along the path in the graph. Relation-
enhanced self-attention module then injects these
relational feature back into attention weights of
word features. Credited to these modules, APAGN
acquires to utilize sentences and AMRs jointly and
achieves higher adaptability and generalization.

To summarize, our main contributions are high-
lighted as follows:

e We introduce semantic structure into the
ABSA task in the form of Abstract Meaning

Representations. As a semantic structure, the
AMR is more suitable for sentiment analysis
task than the syntactic structure such as the
dependency tree.

e We propose an ABSA model APAGN which
integrates information from both original sen-
tences and parsed structures such as AMRs to
relieve the unreliability of the parser. APAGN
jointly exploits sentences and AMRs by the
path aggregator and the relation-enhanced
self-attention mechanism.

e We conducted extensive experiments on three
public datasets. These experimental results
demonstrate the effectiveness of our APAGN
model. Further experiments also show that our
model outperforms baselines in cross-domain
and low-resource situation.

2 Proposed Model

The overall architecture of our proposed model
APAGN is illustrated in Figure 2. It consists of
3 parts: AMR preprocessing, path aggregator and
relation-enhanced self-attention mechanism. In the
ABSA task, a sentence s = {wq, wo, ..., w, } and a
specific aspect term a = {ay, ag, ..., a,, } are given
to determine the corresponding sentiment polarity
class cq, where a is a sub-sequence of s and ¢, €
{Positive, Neutral, Negative}.

Many existing works use syntactic dependency
trees to establish explicit or implicit connections
between aspects and contexts. However, we believe
that the sentiment analysis task is essentially about
the meanings of sentences, so semantic structures
like AMRSs are more favorable for this task.



In addition, AMRs are more concise than de-
pendency trees, making it easier to extract valu-
able information in training but more difficult to
preprocess before training. We have to conduct a
series of complex steps including: AMR parsing,
AMR aligning and AMR embedding. Preprocessed
AMRs are not flawless, so we design the path ag-
gregator and the relation-enhanced self-attention
mechanism to perform joint representation learning
and flexible feature fusion on AMRs together with
original sentences. This procedure expands the
basic information sources and cross-validates im-
portant features, thereby improving the adaptability
and generalization of the model.

Next, we elaborate on the details of our proposed
APAGN model, including AMR preprocessing and
embedding, the path aggregator and the relation-
enhanced self-attention mechanism.

2.1 AMR Preprocessing and Embedding

Parsing As we determine to employ the seman-
tic structure AMR as an alternative of the syntac-
tic structure dependency tree to better perform the
semantic task ABSA, the first step is parsing the
AMR from the input sentence. We choose the best
off-the-shelf parser named SPRING (Bevilacqua
et al., 2021) for high quality AMR outputs.

Aligning As mentioned above, AMRs are sim-
pler and more abstract than dependency trees. For
example, the sentence “we were amazed at how
small the dish was” in Figure 1 has 9 nodes and
8 edges in its dependency tree and each node is
exactly a word in the sentence, while its AMR
has only 5 nodes and 4 edges and some refined
nodes are not a word in the sentence. In other
words, the AMR does not have a natural alignment
with the words in the sentence like a dependency
tree. Without alignment with the words in the sen-
tence, it is nearly impossible for the AMR and the
sentence to be utilized as a whole satisfactorily.
So we have to specifically align the AMR by the
aligner LEAMR (Blodgett and Schneider, 2021).
In the process of aligning, every node in the AMR
is mapped to some distinct words in the sentence.
Based on the alignments, we manage to rebuild
AMR relations between words in the sentence and
get the transformed AMR with words as nodes.

Embedding After aligning, we now have trans-
formed AMRs, which can also be called sentences
with AMR relations. Then we need to obtain their
embeddings for later representation learning by the

model. For the nodes in the AMR, also as words
in the sentence, we utilize BERT as an encoder to
get contextual embeddings H = {hq, ha, ..., hyp}
like lots of previous works. However, there are
few existing studies to reference about the em-
bedding of AMR edges. Considering the conve-
nience of later calculation, we represent the edge
relations between nodes as an adjacency matrix
R = {r; | 1 <i,j < n}, where r;; is the em-
bedding of the edge label between word w; and
word w;. If there is no edge between w; and w;
in the AMR, we assign a “none” embedding to ;.
When striving for high-quality edge embeddings,
we notice that these special tokens are present in
the word vocabulary of the AMR parser mentioned
above and have been well fine-tuned. Therefore, we
skillfully treat them as excellent edge embeddings
which are comparable to the word representations
from BERT in terms of information contained.

2.2 Path Aggregator

Path aggregator receives the mix of AMR embed-
dings R € R%*"*" and sentence embeddings
H € R**" where d, and d,, denote the dimen-
sions of relation and word embeddings, respec-
tively. Path aggregator outputs the relational fea-
ture matrix RACC = {r 60 eRM [ 1 <i,j <n}.
This process integrates and condenses information
from two different sources, AMRs and sentences,
making semantic knowledge more apparent but
parsing errors less influential.

Outer Product Sum We first add the outer prod-
uct of two independent linear transformation of
sentence embeddings H to the original AMR em-
beddings R to obtain sequence-enhanced relation
embeddings R° € R%*"X"  On the one hand,
as the outer product of H is the representation of
word relations from the sentence perspective, its
combination with the AMR embeddings R could
enlarge the information base of the model to im-
prove the generalization, also cross validate im-
portant features to improve the reliability. On the
other hand, AMR embeddings R is usually quite
sparse. The outer product sum operation ensures
the basic density of the feature matrix and facilitate
the subsequent representation learning by avoiding
the fuzziness and dilution of numerous background
“none” relations to the precious effective relations.

Path Aggregation Next, we perform the path

aggregation on RY = {rg | 1 <i,j < n}to
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The path aggregation has distinctive effect on
both local and global dissemination of features.
From the local view, the path aggregation covers all
the 2-hop paths, so that it is very sensitive to neigh-
borhood features, including the features around
the aspect term which are really important for the
ABSA task. From the global view, information in
any long path can be summarized into the repre-
sentation between the start and the end by several
two-in-one operations in enough times of path ag-
gregations. In other words, path aggregations make
the features in matrix more inclusive and finally at-
tain global features. In practice, because the ABSA
task focuses more on the neighboring information
and the BERT encoder with attention mechanisms
has made the feature comprehensive enough, a sin-
gle path aggregation can achieve quite good results.

Additionally, we also introduce a gating mech-
anism in the path aggregation to alleviate the dis-
turbance of noise from insignificant relations. Fi-
nally, the output of path aggregation R4 is trans-
formed into the relational attention weight matrix
AAGG — {af}GG | 1 < 4,5 < n} by a linear
transformation for subsequent calculation.

2.3 Relation-Enhanced Self-Attention

The classic self-attention (Vaswani et al., 2017)
computes the attention weight by the following
formula:

T
A = softmax (QWQ < (KWk) > ,  (6)

Vd

where () and K are input vectors with d dimen-
sions, while W and Wi are learnable weights
with the same size of R4,

In our relation-enhanced self-attention, we added
AAGG | the relational attention weight matrix from
AMR into the original attention weight, which can
be formulated as:

HWoxHWg)T
AR=sof tmaw( QX% LY +AAGG>, (7)

where input vectors W and () are both replaced
by the BERT embeddings H with d,, dimensions.
With AAGC  attention outputs are further guided by
the semantic information from AMRs, which im-
proves the efficient attention to semantic keywords.

In addition, similar to path aggregator, we also
introduced the gating mechanism into the relation-
enhanced self-attention as follows:

G = sigmoid(HW¢), )
H® = (HWy) AR o G, )

where W and Wy, are trainable parameters and
G is the gating matrix. Considering the small pro-
portion of effective words in the whole sentence,
the gating mechanism is conducive to eliminating
background noise, making it easier for the model
to focus on the more critical words.

Finally, with all these above calculations in-
cluding relation-enhanced self-attention and gating
mechanism, we obtain the relation-enhanced as-
pect representation H = {nf 'hE .. R } for
subsequent classification.

2.4 Model Training

The final classification features are concatenated
by the original BERT aspect representation H, =
{hayshays -y ha,, } and the relation-enhanced as-

pect representation H .
gt = (H,, HE). (10)

It is passed through a fully connected softmax layer
and mapped to probabilities over all different senti-

ment polarities.
pla) = softmax(W,H]I ™" 4 b,). (11)

We use standard cross-entropy loss as our objective

function:
Leg=— > > logp(a),

(s,a)eD ceC

(12)

where D contains all sentence-aspect pairs and C
contains all sentiment polarities.

3 Experiments

In this section, we first introduce the relevant set-
tings of the experiments, including the datasets
used, implementation details and baseline methods
for comparison. Then, we report the experimental
results under normal and special settings. Finally,
we select several representative examples for model
analysis and discussion.



Models Restaurant Laptop Twitter
Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

RAM (Chen et al., 2017) 80.23 70.80 74.49 71.35 69.36 67.30
MGAN (Fan et al., 2018) 81.25 71.94 75.39 72.47 72.54 70.81
w/o TNet (Li et al., 2018) 80.69 71.27 76.54 71.75 74.90 73.60
BERT ASGCN (Zhang et al., 2019) 80.77 72.02 75.55 71.05 72.15 70.40
BiGCN (Zhang and Qian, 2020)  81.97 73.48 74.59 71.84 74.16 75.35
KumaGCN (Chen et al., 2020) 81.34 73.64 76.12 72.42 72.45 70.77
BERT (Devlin et al., 2019) 85.62 78.28 77.58 72.38 75.28 74.11
R-GAT (Wang et al., 2020) 86.60 81.35 78.21 74.07 76.15 74.88
W DGEDT (Tang et al., 2020) 86.30 80.00 79.80 75.60 77.90 75.40
BEﬁT T-GCN (Tian et al., 2021) 86.16 79.95 80.88 77.03 76.45 75.25
DualGCN (Li et al., 2021) 87.13 81.16 81.80 78.10 77.40 76.02
dotGCN (Chen et al., 2022) 86.16 80.49 81.03 78.10 78.11 77.00
SSEGCN (Zhang et al., 2022b) ~ 87.31 81.09 81.01 77.96 77.40 76.02
Ours APAGN 87.76 82.44 81.96 78.19 79.76 78.79

Table 1: Results comparison on three public datasets. Best performed baselines are underlined.

3.1 Datasets

Our experiments are conducted on three commonly
used public standard datasets. The Twitter dataset
is a collection of tweets built by Dong et al. (2014),
while the Restaurant and Laptop dataset come from
the SemEval 2014 Task (Pontiki et al., 2014). The
data statistics is shown in Appendix A.1.

3.2 Implementation Details

APAGN uses the BERT of bert-base-uncased ver-
sion as a pre-trained encoder with max length as
100. During training, we use Adam with the learn-
ing rate of 2 x 10~5 and hyper-parameters o of 0.9
and 3 of 0.98. The BERT encoder and other parts
of the model use dropout strategies with probability
0.5 and 0.2, respectively. Following Li et al. (2021),
each training lasts for 15 epochs and the evaluation
is performed every 5 batches. The model with the
highest accuracy among all evaluation results is se-
lected as the final result of this training. Reported
results are the average of three runs with different
random seeds. See Appendix A.2 for more details.

3.3 Baseline Methods

We compare APAGN with a series of baselines and
state-of-the-art alternatives, including:

1) RAM (Chen et al., 2017) applies multiple atten-
tion mechanisms to memory networks.

2) MGAN (Fan et al., 2018) designs a multi-scale
attention mechanism to mine aspect relations.

3) TNet (Li et al., 2018) converts BiLSTM embed-
dings to aspect-specific embeddings and uses CNN
to further obtain final features for classification.

4) ASGCN (Zhang et al., 2019) first proposes to
learn aspect-specific representations with GCN.

5) BiGCN (Zhang and Qian, 2020) uses a hierarchi-
cal graph structure to integrate token co-occurrence
information and dependency type information.

6) kumaGCN (Chen et al., 2020) utilizes an im-
plicit graph structure to provide syntactic features.
7) BERT (Devlin et al., 2019) is composed of a
general pre-trained BERT model and a classifica-
tion layer adapted to the ABSA task.

8) R-GAT (Wang et al., 2020) proposes a depen-
dency structure adjusted for aspects and uses a re-
lational GAT to encode this structure.

9) T-GCN (Tian et al., 2021) proposes an approach
to explicitly utilize dependency types for ABSA
with type-aware GCNS.

10) DGEDT (Tang et al., 2020) proposes a dual
transformer structure based on dependency graph
augmentation, which can simultaneously fuse rep-
resentations of sequences and graphs.

11) DualGCN (Li et al., 2021) proposes a dual
GCN structure and regularization methods to merge
features from sentences and dependency trees.

12) dotGCN (Chen et al., 2022) proposes an aspect-
specific and language-agnostic discrete latent tree
as an alternative structure to dependency trees.

13) SSEGCN (Zhang et al., 2022b) proposes an
aspect-aware attention mechanism to enhance the
node representations with GCN.

34

Table 1 shows the experimental results of our model
and the baseline models on three datasets under

Main Results
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Figure 3: Accuracy on Twitter dataset with partial data.

the same conventional settings as Li et al. (2021),
where the best results are in bold and the second
best results are underlined. Our APAGN model ex-
hibits excellent results and achieves the best results
on all 6 indicators of 3 datasets, which fully proves
the effectiveness of this model.

Comparing the results of different datasets, we
can find that the improvement of APAGN on the
Twitter dataset is particularly obvious. Compared
to the best results, the accuracy rate has increased
by 1.65% and the Macro-F1 has increased by
1.79%. The main reason is the similarity of the
Twitter dataset to the AMR 3.0 dataset, the training
dataset for the AMR parser we used. More than
half of the corpus of the AMR 3.0 dataset comes
from internet forums and blogs, which are similar
to the Twitter dataset as they are both social media.
As aresult, the AMR parser has better output on the
Twitter dataset, which in turn enables the model to
extract more valuable features from it and leads to a
considerable improvement. This difference among
datasets also reflects the effectiveness of semantic
information from AMR for the ABSA task.

3.5 Special Situation Study

Low-resource Situation The low-resource sce-
nario is a special scenario that ABSA tasks may
actually face. Exploring the performance of the
model in this scenario is of great significance to
understand the adaptability and application value
of the model. We test three models in these ex-
periments, including: the naive pre-training model
BERT, the Dual GCN model with available code
and the best comprehensive performance in exist-
ing research, and our APAGN model. These exper-
iments are conducted on the Twitter dataset with
the largest total data volume. In these experiments,

Models R-L R-=TL—-R L—-T T—+R T—L

BERT 79.94 59.88 81.82 59.11 74.75 72.88
Acc DualGCN 79.62 59.32 81.84 59.26 73.62 73.45
APAGN 80.00 59.68 81.99 60.80 75.17 73.77

BERT 76.58 57.04 73.48 58.66 64.73 68.09
F1 DualGCN 76.36 58.26 72.82 5833 65.07 68.63
APAGN 76.79 58.37 73.82 59.09 67.33 68.81

Table 2: Results on six kinds of cross-domain datasets.
R, L, T represent Restaurant, Laptop, Twitter datasets.

the input training data is part of all the training data
in the dataset and the results are shown in Figure 3.
We can notice that the APAGN model has good
adaptability to low-resource scenarios. In multiple
experiments with different amounts of input data,
APAGN consistently outperforms BERT by 1.6%
on average, while the DualGCN model is inferior
to BERT in some cases. Considering that AMRs
are more compact than dependency trees, it is rea-
sonable that APAGN can efficiently utilize AMRs
and perform well with only a small training set.

Cross-domain Situation The cross-domain sce-
nario is another possible special scenario for the
ABSA task, which requires the model to have
good generalization ability. In cross-domain ex-
periments, the training set of one dataset is used for
training and the test set of another dataset is used
for testing. Therefore, six cross-domain datasets
are formed from three original datasets of Restau-
rant, Laptop and Twitter. Three models of BERT,
DualGCN and APAGN are tested and the perfor-
mance of each model is shown in Table 2.

We can see that in the cross-domain scenario,
the performance of each model is significantly af-
fected by the dataset. BERT and Dual GCN com-
pete with each other on different cross-domain
datasets, while the APAGN model has the best over-
all performance because its generalization ability
is improved by the joint use of sentences and AMR.
APAGN improves less when using the restaurant
dataset as a training set because of the specificity of
this dataset, which makes the semantic structure in-
formation learned from it more difficult to transfer
to other datasets.

3.6 Model Analysis

Ablation Study In order to analyze the role of
each module, we separately remove four key com-
ponents of the APAGN model in the ablation stud-
ies, and the results are shown in Table 3.
According to the results, each of the four compo-



Models Restaurant Laptop Twitter

Acc F1 Acc FlI Acc Fl
APAGN 87.76 82.44 81.96 78.19 79.76 78.79
—Outer Product Sum  86.15 80.13 79.43 75.22 76.22 74.75
—Path Aggregation 87.04 81.61 79.11 74.76 76.66 74.9

—Relation in Self-Atteion 87.49 81.82 80.22 76.58 76.81 75.49
—Gate in Self-Attenion 85.61 78.49 79.75 76.14 77.55 76.06

Table 3: Ablation experimental results of our APAGN.

nents contributes significantly to the performance
of the APAGN model. Removing Outer Product
Sum results in a significant drop in performance,
illustrating the importance of promoting consis-
tency of information from sentences and AMRs.
Removing Relation in Self-Attention is worse than
removing Path Aggregation, indicating that unpro-
cessed AMR information can only interfere with
the model instead of being exploited by the model.
Comparing the results in different datasets, we
can find that the model depends on information
from sentences and AMRs differently on different
datasets. On the Restaurant dataset, removing the
Relation in Self-Attention component has less im-
pact, while on the Twitter dataset, removing this
component has a greater impact. This means the
model utilizes sentence information more on the
Restaurant dataset and AMR information more on
the Twitter dataset. This is also consistent with the
analysis of the main results: the AMR of Twitter
dataset has higher quality due to the domain relat-
edness with the training dataset of the AMR parser,
which in turn makes the model pay more attention
to the information from the AMR on this dataset.

Sentence Length Study Figure 4 compares the
accuracy of the APAGN model with and without
path aggregator for sentences of different lengths
in the Restaurant dataset. According to the figure,
we can see that the model achieve higher accu-
racy on short sentences, while the long sentences
is more challenging. In addition, the model with
the path aggregator has a larger relative improve-
ment on long sentences, indicating that the path
aggregator can effectively help the model to cap-
ture long-distance relations with AMR.

Edge Embedding Analysis These experiments
investigate the effect of AMRs’ edge label embed-
dings to the result. Three different types of edge
label embeddings are tested in the experiments and
the results are shown in Table 4.

According to the results, using pretrained edge
label embeddings outperforms using randomly ini-
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Figure 4: Accuracy of sentences with different length
from Restaurant dataset. The red line represents the
percentage of accuracy improvement.

Embeddings Restaurant Laptop Twitter
Acc F1 Acc F1 Acc F1
Fixed 8579 79.01 8022 7649 7695 75.49
Random 86.42 80.68 80.70 77.48 77.70 76.12

Pre-trained 87.76 82.44 81.96 78.19 79.76 78.79

Table 4: Results of three different kinds of edge embed-
dings on all datasets.

tialized edge label embeddings on all datasets,
which demonstrates the effectiveness of pretrained
edge label embeddings. Also, the use of fixed edge
labels is worse than the use of randomly initialized
true edge labels, which shows that the edge labels
of AMR contain important information and play
important roles in the ABSA task.

3.7 Case Study

As shown in Figure 5, we selected three typical
cases to visualize the aspect terms’ attention to the
context before and after adding information from
the AMR, respectively.

From the first two examples, we can notice that
the model focuses on the copula verb next to the
opinion term without the AMR. While with the
information from the AMR, the model can capture
opinion terms through the attention mechanism
more accurately. In the third example, without the
AMR, the model pays more attention to words that
are closer to the aspect term. With the semantic
information from AMR, the model can discover
opinion terms farther away from aspect terms.

These cases illustrate that the semantic struc-
ture information of AMR plays an important role
in making the model focus on the correct opin-
ion words. It also shows that the structure of our
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Figure 5: Visualization of aspect terms’ attention to the context in three cases. Aspect terms are highlighted in blue.

APAGN model can effectively utilize the seman-
tic structure information in AMR to improve the
performance in the ABSA task.

4 Related Work

Aspect-based Sentiment Analysis Traditional
sentiment analysis tasks are usually sentence-level
or document-level, while the ABSA task is an
entity-level and fine-grained sentiment analysis
task. Early methods (Jiang et al., 2011; Kiritchenko
et al., 2014) are mostly based on artificially con-
structed features, which are difficult to effectively
model the relations between aspect terms and its
context. With the development of deep neural net-
works, many recent works (Wang et al., 2016; Tang
et al., 2016; Chen et al., 2017; Fan et al., 2018; Gu
etal., 2018; Du et al., 2019) have explored apply-
ing attention mechanisms to implicitly model the
semantic relations of aspect terms and identify the
key opinion terms in the context.

Another trend in ABSA studies is the explicit use
of dependency trees. Some works (He et al., 2018;
Zhang et al., 2019; Sun et al., 2019; Huang and
Carley, 2019; Zhang and Qian, 2020; Chen et al.,
2020; Liang et al., 2020; Wang et al., 2020; Tang
et al., 2020; Phan and Ogunbona, 2020; Li et al.,
2021; Xiao et al., 2021) extend GCN, GAT, and
Transformer backbones to process syntactic depen-
dency trees and develop several outstanding models.
These models shorten the distance between aspect
terms and opinion terms by dependency trees and
alleviate the long-term dependency problem.

Recent studies have also noticed the limitations
of dependency trees in the ABSA task. Chen
et al. (2020) propose to combine dependency trees
with induced aspect-specific latent maps. Chen
et al. (2022) further proposed an aspect-specific and
language-independent discrete latent tree model as
an alternative structure for dependency trees. Our
work is similar in that we also aim at the mismatch

between dependency trees and the ABSA task, but
different in that we introduce a semantic structure
named Abstract Meaning Representation instead
of induced trees.

Abstract Meaning Representation AMR is a
structured semantic representation that represents
the semantics of sentences as a rooted, directed,
acyclic graph with labels on nodes and edges.
AMR is proposed by Banarescu et al. (2013) to
provide a specification for sentence-level compre-
hensive semantic annotation and analysis tasks. Re-
search on AMR can be divided into two categories,
AMR parsing (Cai and Lam, 2020; Zhou et al.,
2021; Hoang et al., 2021) and AMR-to-Text (Zhao
et al., 2020; Bai et al., 2020; Ribeiro et al., 2021).

AMR has also been applied in many NLP tasks.
Kapanipathi et al. (2020) use AMR in question an-
swering system. Lim et al. (2020) employ AMR
to improve common sense reasoning. Wang et al.
(2021) utilize AMR to add pseudo labels to unla-
beled data in low-resource event extraction task.
Our model also improves the performance of the
ABSA task with AMR.

5 Conclusion

In this paper, we propose APAGN, an AMR-based
Path Aggregation Graph Network for the ABSA
task. Different from the traditional ABSA model
utilizing the syntactic structure like dependency
tree, our model employs the semantic structure
called Abstract Meaning Representation which is
more harmony with the sentiment analysis task.
We propose the path aggregator and the relation-
enhanced self-attention mechanism to efficiently
exploit AMRs and integrate information from
AMRs and input sentences. These designs enable
our model to achieve better results than existing
models, as well as greater adaptability and general-
ization. Experiments on three public datasets show
that APAGN outperforms competing baselines.



Limitations

The high computational complexity is one of the
biggest disadvantages of the path aggregation. The
time consumption and GPU memory used for multi-
ple operations are expensive. So it is very desirable
to use only one time of path aggregation due to
attributes of the ABSA task in our APAGN model.

Another limitation of this work is that the perfor-
mance of the model is still somewhat affected by
the quality of the AMR parsing results. The good
news is that the research on AMR parsing is con-
tinuing to make progress. In the future, APAGN
with higher quality AMRs is expected to further
improve the level of the ABSA task.
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A Appendix

A.1 Datasets

The statistics for the Restaurant dataset, Laptop
dataset and Twitter dataset are shown in Table 5.
Each sentence in these datasets is annotated with
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aspect terms and corresponding polarities. Fol-
lowing Li et al. (2021), we remove instances with
the “conflict” label. So all datasets have three sen-
timent polarities: positive, negative and neutral.
Throughout the research, we follow the Creative
Commons Attribution 4.0 International Licence of
the datasets.

Positive Neutral Negative
Dataset
Train Test Train Test Train Test
Restaurant 2164 728 807 196 637 196
Laptop 994 341 870 128 464 169
Twitter 1561 173 3127 346 1560 173

Table 5: Statistics of the three ABSA datasets

A.2 Implementation Details

In data preprocessing, we use SPRING (Bevilac-
qua et al., 2021) as the parser to obtain the AMRs
of input sentences and use LEAMR (Blodgett and
Schneider, 2021) as the AMR aligner to establish
the correspondence between the AMRs and sen-
tences. The maximum length of the input sentence
is set to 100, the shortage is made up with the spe-
cial word “PAD” and the excess is truncated.

Some edge labels are treated specially when
mapping the edges of AMR to the relations be-
tween words. Edge labels suffixed with “-of” are
used to avoid loops in AMR, so we swap their start
and end points and remove the “-of” suffix, eg:
the “:ARGO-of” relation from token; to token;
is changed to the “:ARGO” relation from token;
to token;. Edge labels prefixed with “:prep-" are
used because there is no suitable preposition label
in the AMR specification. We changed them to
original prepositions, for example, “:prep-against”
is changed to “against”.

APAGN uses the BERT of bert-base-uncased
version as a pre-trained encoder. The dimension of
its output is 768, which is also used as the dimen-
sion of token representation in the path aggregator.
The dimension of the AMR edge label embedding
derived from the SPRING model is 1024. Due to
computational efficiency and memory usage, this
dimension is reduced to 376 through a linear layer
as the dimension of the relational matrix features
in the path aggregator. For the relation-enhanced
self-attention mechanism, its gated multi-head at-
tention mechanism uses 8 attention heads with the
latent dimension size of 64. The total parameter
size of APAGN is about 130M and it takes about 8

12

minutes to train each epoch on a single RTX 3090
GPU.



