AMR-based Path Aggregation Graph Network for Aspect-based Sentiment Analysis

Anonymous ACL submission

Abstract

Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment classification task. Many recent works have used dependency trees to extract the relationship between aspects and contexts and have achieved significant improvements. However, further improvement is limited due to the mismatch between the dependency tree as a syntactic structure and the sentiment classification as a semantic task. To alleviate this gap, we replace the syntactic dependency tree with the semantic structure, Abstract Meaning Representation (AMR) and propose a model called AMR-based Path Aggregation Graph Network (APAGN). Particularly, we design a path aggregation module which collects local information into global information by path to make full use of AMR. APAGN also contains the outer product summary module which transfers the feature from sentence to graph and the relation-enhanced attention mechanism which transfers the feature in the opposite direction. Experimental results on three public datasets demonstrate the effectiveness of APAGN in aspect-based sentiment analysis when compared with baselines.1

1 Introduction

Recent years have witnessed growing popularity of the sentiment analysis tasks in natural language processing (Li and Hovy, 2017; Birjali et al., 2021). Aspect-based sentiment analysis (ABSA) is a fine-grained sentiment analysis task to recognize the sentiment polarities of specific aspect terms in a given sentence (Jiang et al., 2011; Li et al., 2018; Seoh et al., 2021; Zhang et al., 2022a). For example, here is a restaurant review “All the money went into the interior decoration, none of it went to the chefs” and the sentiment polarity of the two aspects “interior decoration” and “chefs” are positive and negative, respectively. Thus, ABSA can precisely recognize the corresponding sentiment polarity for any aspect, different from allocating a general sentiment polarity to a sentence in sentence-level sentiment analysis.

The key challenge for ABSA is to capture the relationship between an aspect and its context, especially the opinion terms. In addition, sentences with multiple aspects and several opinion terms make the problem more complex. To this end, some previous studies (Wang et al., 2016; Chen et al., 2017; Gu et al., 2018; Du et al., 2019) have devoted the main efforts to attention mechanisms. Despite their achievements in aspect-targeted representations and appealing results, this method always suffers noise from the mismatching opinion terms or irrelevant words in contexts.

On the other hand, more recent studies (Zhang et al., 2019; Wang et al., 2020; Tang et al., 2020; Li et al., 2021; Xiao et al., 2021) propose models explicitly exploit dependency trees, the syntactic structure of a sentence, and display significant effectiveness. These models usually employ graph convolutional networks (GCNs) and graph attention networks (GATs) over the syntactic dependencies to identify the interaction between the aspect and the opinion expressions. However, ABSA models utilizing dependency syntax still has the following limitations. First, there is a gap between the syntactic dependency structure and the semantic sentiment analysis task. Second, nature language parsers including dependency parsers are not absolutely reliable. Without further adjustment, raw sentences often misinterpret the syntactic dependency structure.

Figure 1: The dependency tree and AMR of the input sentence “we were amazed at how small the dish was”.

1Our code and data will be open sourced upon acceptance.
results of parsers can contain errors and be unsuitable for ABSA task. To solve aforementioned challenges, we propose a novel architecture called AMR-based Path Aggregation Graph Network (APAGN). For the first challenge, we introduce abstract meaning representations (AMRs), a powerful semantic structure. As shown in Figure 1, the connection on dependency tree between the aspect term “fish” and the opinion term “small” is a 2-hop path for the input sentence “we were amazed at how small the dish was”, while they are directly connected in the AMR. Besides, we can notice that the AMR is simpler and more information centralized. To make full use of AMR, we also explore an effective and generalizable process including AMR parsing, aligning and embedding. For the second challenge, we construct the path aggregator module and the relation-enhanced self-attention module. The path aggregator integrates the information from AMRs and sentences to obtain optimized relational features. This procedure not only encourages consistency between semantic structures and basic sentences, but also achieves the global feature by broadcasting local information along the path in the graph. Relation-enhanced self-attention module then injects these relational feature back into attention weights of word features. Credited to these modules, APAGN acquires to utilize sentences and AMRs jointly and achieves higher adaptability and generalization.

To summarize, our main contributions are highlighted as follows:

- We introduce semantic structure into the ABSA task in the form of Abstract Meaning Representations. As a semantic structure, the AMR is more suitable for sentiment analysis task than the syntactic structure such as the dependency tree.
- We propose an ABSA model APAGN which integrates information from both original sentences and parsed structures such as AMRs to relieve the unreliability of the parser. APAGN jointly exploits sentences and AMRs by the path aggregator and the relation-enhanced self-attention mechanism.
- We conducted extensive experiments on three public datasets. These experimental results demonstrate the effectiveness of our APAGN model. Further experiments also show that our model outperforms baselines in cross-domain and low-resource situation.

2 Proposed Model

The overall architecture of our proposed model APAGN is illustrated in Figure 2. It consists of 3 parts: AMR preprocessing, path aggregator and relation-enhanced self-attention mechanism. In the ABSA task, a sentence $s = \{w_1, w_2, ..., w_n\}$ and a specific aspect term $a = \{a_1, a_2, ..., a_m\}$ are given to determine the corresponding sentiment polarity class c_a, where a is a sub-sequence of s and $c_a \in \{\text{Positive}, \text{Neutral}, \text{Negative}\}$.

Many existing works use syntactic dependency trees to establish explicit or implicit connections between aspects and contexts. However, we believe that the sentiment analysis task is essentially about the meanings of sentences, so semantic structures like AMRs are more favorable for this task.
In addition, AMRs are more concise than dependency trees, making it easier to extract valuable information in training but more difficult to preprocess before training. We have to conduct a series of complex steps including: AMR parsing, AMR aligning and AMR embedding. Preprocessed AMRs are not flawless, so we design the path aggregator and the relation-enhanced self-attention mechanism to perform joint representation learning and flexible feature fusion on AMRs together with original sentences. This procedure expands the basic information sources and cross-validates important features, thereby improving the adaptability and generalization of the model.

Next, we elaborate on the details of our proposed APAGN model, including AMR preprocessing and embedding, the path aggregator and the relation-enhanced self-attention mechanism.

2.1 AMR Preprocessing and Embedding

Parsing As we determine to employ the semantic structure AMR as an alternative of the syntactic structure dependency tree to better perform the semantic task ABSA, the first step is parsing the AMR from the input sentence. We choose the best off-the-shelf parser named SPRING (Bevilacqua et al., 2021) for high quality AMR outputs.

Aligning As mentioned above, AMRs are simpler and more abstract than dependency trees. For example, the sentence “we were amazed at how small the dish was” in Figure 1 has 9 nodes and 8 edges in its dependency tree and each node is exactly a word in the sentence, while its AMR has only 5 nodes and 4 edges and some refined nodes are not a word in the sentence. In other words, the AMR does not have a natural alignment with the words in the sentence like a dependency tree. Without alignment with the words in the sentence, it is nearly impossible for the AMR and the sentence to be utilized as a whole satisfactorily. So we have to specifically align the AMR by the aligner LEAMR (Blodgett and Schneider, 2021).

In the process of aligning, every node in the AMR is mapped to some distinct words in the sentence. Based on the alignments, we manage to rebuild AMR relations between words in the sentence and get the transformed AMR with words as nodes.

Embedding After aligning, we now have transformed AMRs, which can also be called sentences with AMR relations. Then we need to obtain their embeddings for later representation learning by the model. For the nodes in the AMR, also as words in the sentence, we utilize BERT as an encoder to get contextual embeddings \(H = \{ h_1, h_2, ..., h_n \} \) like lots of previous works. However, there are few existing studies to reference about the embedding of AMR edges. Considering the convenience of later calculation, we represent the edge relations between nodes as an adjacency matrix \(R = \{ r_{ij} \mid 1 \leq i, j \leq n \} \), where \(r_{ij} \) is the embedding of the edge label between word \(w_i \) and word \(w_j \). If there is no edge between \(w_i \) and \(w_j \) in the AMR, we assign a “none” embedding to \(r_{ij} \).

When striving for high-quality edge embeddings, we notice that these special tokens are present in the word vocabulary of the AMR parser mentioned above and have been well fine-tuned. Therefore, we skillfully treat them as excellent edge embeddings which are comparable to the word representations from BERT in terms of information contained.

2.2 Path Aggregator

Path aggregator receives the mix of AMR embeddings \(R \in H^{d_r \times n \times n} \) and sentence embeddings \(H \in R^{d_w \times n} \). AMR embeddings and sentence embeddings are not a word in the sentence, thereby improving the adaptability and generalization of the model.

To make semantic knowledge more apparent but parsing errors less influential.

Outer Product Sum We first add the outer product of two independent linear transformation of sentence embeddings \(R \) to obtain sequence-enhanced relation embeddings \(R^S = \{ r_{ij}^S \mid 1 \leq i, j \leq n \} \). On the one hand, as the outer product of \(H \) is the representation of word relations from the sentence perspective, its combination with the AMR embeddings \(R \) could enlarge the information base of the model to improve the generalization, also cross validate important features to improve the reliability. On the other hand, AMR embeddings \(R \) is usually quite sparse. The outer product sum operation ensures the basic density of the feature matrix and facilitate the subsequent representation learning by avoiding the fuzziness and dilution of numerous background “none” relations to the precious effective relations.

Path Aggregation Next, we perform the path aggregation on \(R^S = \{ r_{ij}^S \mid 1 \leq i, j \leq n \} \) to
calculate \(R^{AGG} = \{ r^{AGG}_{ij} \mid 1 \leq i, j \leq n \} \) as:

\[
r^{SG}_{ij} = \text{LayerNorm}(r^{S}_{ij}),
\]

\[
g^{in}_{ij}, g^{out}_{ij} = \text{sigmoid}(\text{Linear}(r^{SG}_{ij})),
\]

\[
a_{ij}, b_{ij} = g^{in}_{ij} \odot \text{Linear}(r^{S}_{ij}),
\]

\[
r^{out}_{ij} = \text{Linear}(\text{LayerNorm}(\sum_{k} a_{ik} \odot b_{kj})),
\]

\[
r^{AGG}_{ij} = g^{out}_{ij} \odot r^{out}_{ij}.
\]

The path aggregation has distinctive effect on both local and global dissemination of features. From the local view, the path aggregation covers all the 2-hop paths, so that it is very sensitive to neighborhood features, including the features around the aspect term which are really important for the ABSA task. From the global view, information in any long path can be summarized into the representation between the start and the end by several two-in-one operations in enough times of path aggregations. In other words, path aggregations make the features in matrix more inclusive and finally attain global features. In practice, because the ABSA task focuses more on the neighboring information and the BERT encoder with attention mechanisms has made the feature comprehensive enough, a single path aggregation can achieve quite good results.

Additionally, we also introduce a gating mechanism in the path aggregation to alleviate the disturbance of noise from insignificant relations. Finally, the output of path aggregation \(R^{AGG} \) is transformed into the relational attention weight matrix \(A^{AGG} = \{ a^{AGG}_{ij} \mid 1 \leq i, j \leq n \} \) by a linear transformation for subsequent calculation.

2.3 Relation-Enhanced Self-Attention

The classic self-attention (Vaswani et al., 2017) can be formulated as:

\[
A = \text{softmax} \left(\frac{QW_{Q} \times (KW_{K})^{T}}{\sqrt{d}} \right),
\]

where input vectors \(W \) and \(Q \) are both replaced by the BERT embeddings \(H \) with \(d_{w} \) dimensions. With \(A^{AGG} \), attention outputs are further guided by the semantic information from AMRs, which improves the efficient attention to semantic keywords.

In addition, similar to path aggregator, we also introduced the gating mechanism into the relation-enhanced self-attention as follows:

\[
G = \text{sigmoid}(HW_{G}),
\]

\[
H^{R} = (HW_{V})A^{R} \odot G,
\]

where \(W_{G} \) and \(W_{V} \) are trainable parameters and \(G \) is the gating matrix. Considering the small proportion of effective words in the whole sentence, the gating mechanism is conducive to eliminating background noise, making it easier for the model to focus on the more critical words.

Finally, with all these above calculations including relation-enhanced self-attention and gating mechanism, we obtain the relation-enhanced aspect representation \(H^{R}_{a} = \{ h^{R}_{1}, h^{R}_{2}, ..., h^{R}_{n} \} \) for subsequent classification.

2.4 Model Training

The final classification features are concatenated by the original BERT aspect representation \(H_{a} = \{ h_{a1}, h_{a2}, ..., h_{am} \} \) and the relation-enhanced aspect representation \(H^{R}_{a} \).

\[
H^{final}_{a} = [H_{a}, H^{R}_{a}].
\]

It is passed through a fully connected softmax layer and mapped to probabilities over all different sentiment polarities.

\[
p(a) = \text{softmax}(W_{p}H^{final}_{a} + b_{p}).
\]

We use standard cross-entropy loss as our objective function:

\[
L_{CE} = - \sum_{(s,a) \in D} \sum_{c \in C} \log p(a),
\]

where \(D \) contains all sentence-aspect pairs and \(C \) contains all sentiment polarities.
Table 1: Results comparison on three public datasets. Best performed baselines are underlined.

<table>
<thead>
<tr>
<th>Models</th>
<th>Accuracy</th>
<th>Macro-F1</th>
<th>Accuracy</th>
<th>Macro-F1</th>
<th>Accuracy</th>
<th>Macro-F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAM (Chen et al., 2017) w/o BERT</td>
<td>80.23</td>
<td>70.80</td>
<td>74.49</td>
<td>71.35</td>
<td>69.36</td>
<td>67.30</td>
</tr>
<tr>
<td>MGAN (Fan et al., 2018)</td>
<td>81.25</td>
<td>71.94</td>
<td>75.39</td>
<td>72.47</td>
<td>72.54</td>
<td>70.81</td>
</tr>
<tr>
<td>TNet (Li et al., 2018)</td>
<td>80.69</td>
<td>71.27</td>
<td>76.54</td>
<td>71.75</td>
<td>74.90</td>
<td>73.60</td>
</tr>
<tr>
<td>BiGCN (Zhang and Qian, 2020)</td>
<td>81.97</td>
<td>73.48</td>
<td>74.59</td>
<td>71.84</td>
<td>74.16</td>
<td>75.35</td>
</tr>
<tr>
<td>KumaGCN (Chen et al., 2020)</td>
<td>81.34</td>
<td>73.64</td>
<td>76.12</td>
<td>72.42</td>
<td>72.45</td>
<td>70.77</td>
</tr>
<tr>
<td>BERT (Devlin et al., 2019) w. BERT</td>
<td>85.62</td>
<td>78.28</td>
<td>77.58</td>
<td>72.38</td>
<td>75.28</td>
<td>74.11</td>
</tr>
<tr>
<td>R-GAT (Wang et al., 2020)</td>
<td>86.60</td>
<td>81.35</td>
<td>78.21</td>
<td>74.07</td>
<td>76.15</td>
<td>74.88</td>
</tr>
<tr>
<td>DGEDT (Tang et al., 2020)</td>
<td>86.30</td>
<td>80.00</td>
<td>79.80</td>
<td>75.60</td>
<td>77.90</td>
<td>75.40</td>
</tr>
<tr>
<td>T-GCN (Tian et al., 2021)</td>
<td>86.16</td>
<td>79.95</td>
<td>80.88</td>
<td>77.03</td>
<td>76.45</td>
<td>75.25</td>
</tr>
<tr>
<td>DualGCN (Li et al., 2021)</td>
<td>87.13</td>
<td>81.16</td>
<td>81.80</td>
<td>78.10</td>
<td>77.40</td>
<td>76.02</td>
</tr>
<tr>
<td>dotGCN (Chen et al., 2022)</td>
<td>87.31</td>
<td>80.49</td>
<td>81.03</td>
<td>78.10</td>
<td>77.40</td>
<td>76.02</td>
</tr>
<tr>
<td>SSEGCN (Zhang et al., 2022b)</td>
<td>87.76</td>
<td>82.44</td>
<td>81.96</td>
<td>78.19</td>
<td>79.76</td>
<td>78.79</td>
</tr>
</tbody>
</table>

3.1 Datasets

Our experiments are conducted on three commonly used public standard datasets. The Twitter dataset is a collection of tweets built by Dong et al. (2014), while the Restaurant and Laptop dataset come from the SemEval 2014 Task (Pontiki et al., 2014). The data statistics is shown in Appendix A.1.

3.2 Implementation Details

APAGN uses the BERT of bert-base-uncased version as a pre-trained encoder with max length as 100. During training, we use Adam with the learning rate of 2×10^{-5} and hyper-parameters α of 0.9 and β of 0.98. The BERT encoder and other parts of the model use dropout strategies with probability 0.5 and 0.2, respectively. Following Li et al. (2021), each training lasts for 15 epochs and the evaluation is performed every 5 batches. The model with the highest accuracy among all evaluation results is selected as the final result of this training. Reported results are the average of three runs with different random seeds. See Appendix A.2 for more details.

3.3 Baseline Methods

We compare APAGN with a series of baselines and state-of-the-art alternatives, including:
1) RAM (Chen et al., 2017) applies multiple attention mechanisms to memory networks.
2) MGAN (Fan et al., 2018) designs a multi-scale attention mechanism to mine aspect relations.
3) TNet (Li et al., 2018) converts BiLSTM embeddings to aspect-specific embeddings and uses CNN to further obtain final features for classification.
4) ASGCN (Zhang et al., 2019) first proposes to learn aspect-specific representations with GCN.
5) BiGCN (Zhang and Qian, 2020) uses a hierarchical graph structure to integrate token co-occurrence information and dependency type information.
6) KumaGCN (Chen et al., 2020) utilizes an implicit graph structure to provide syntactic features.
7) BERT (Devlin et al., 2020) utilizes an implicit graph structure to provide syntactic features.
8) R-GAT (Wang et al., 2020) proposes a dependency structure adjusted for aspects and uses a relational GAT to encode this structure.
9) T-GCN (Tian et al., 2021) proposes an approach to explicitly utilize dependency types for ABSA with type-aware GCNs.
10) DGEDT (Tang et al., 2020) proposes a dual transformer structure based on dependency graph augmentation, which can simultaneously fuse representations of sequences and graphs.
11) DualGCN (Li et al., 2021) proposes a dual GCN structure and regularization methods to merge features from sentences and dependency trees.
12) dotGCN (Chen et al., 2022) proposes an aspect-specific and language-agnostic discrete latent tree as an alternative structure to dependency trees.
13) SSEGCN (Zhang et al., 2022b) proposes an aspect-aware attention mechanism to enhance the node representations with GCN.

3.4 Main Results

Table 1 shows the experimental results of our model and the baseline models on three datasets under...
the same conventional settings as Li et al. (2021), where the best results are in bold and the second best results are underlined. Our APAGN model exhibits excellent results and achieves the best results on all 6 indicators of 3 datasets, which fully proves the effectiveness of this model.

Comparing the results of different datasets, we can find that the improvement of APAGN on the Twitter dataset is particularly obvious. Compared to the best results, the accuracy rate has increased by 1.65% and the Macro-F1 has increased by 1.79%. The main reason is the similarity of the Twitter dataset to the AMR 3.0 dataset, the training dataset for the AMR parser we used. More than half of the corpus of the AMR 3.0 dataset comes from internet forums and blogs, which are similar to the Twitter dataset as they are both social media. As a result, the AMR parser has better output on the Twitter dataset, which in turn enables the model to extract more valuable features from it and leads to a considerable improvement. This difference among datasets also reflects the effectiveness of semantic information from AMR for the ABSA task.

3.5 Special Situation Study

Low-resource Situation The low-resource scenario is a special scenario that ABSA tasks may actually face. Exploring the performance of the model in this scenario is of great significance to understand the adaptability and application value of the model. We test three models in these experiments, including: the naive pre-training model BERT, the DualGCN model with available code and the best comprehensive performance in existing research, and our APAGN model. These experiments are conducted on the Twitter dataset with the largest total data volume. In these experiments, the input training data is part of all the training data in the dataset and the results are shown in Figure 3.

We can notice that the APAGN model has good adaptability to low-resource scenarios. In multiple experiments with different amounts of input data, APAGN consistently outperforms BERT by 1.6% on average, while the DualGCN model is inferior to BERT in some cases. Considering that AMRs are more compact than dependency trees, it is reasonable that APAGN can efficiently utilize AMRs and perform well with only a small training set.

Cross-domain Situation The cross-domain scenario is another possible special scenario for the ABSA task, which requires the model to have good generalization ability. In cross-domain experiments, the training set of one dataset is used for training and the test set of another dataset is used for testing. Therefore, six cross-domain datasets are formed from three original datasets of Restaurant, Laptop and Twitter. Three models of BERT, DualGCN and APAGN are tested and the performance of each model is shown in Table 2.

We can see that in the cross-domain scenario, the performance of each model is significantly affected by the dataset. BERT and DualGCN compete with each other on different cross-domain datasets, while the APAGN model has the best overall performance because its generalization ability is improved by the joint use of sentences and AMR. APAGN improves less when using the restaurant dataset as a training set because of the specificity of this dataset, which makes the semantic structure information learned from it more difficult to transfer to other datasets.

3.6 Model Analysis

Ablation Study In order to analyze the role of each module, we separately remove four key components of the APAGN model in the ablation studies, and the results are shown in Table 3. According to the results, each of the four compo-
In Table 3: Ablation experimental results of our APAGN, removing components contributes significantly to the performance of the APAGN model. Removing Outer Product Sum results in a significant drop in performance, illustrating the importance of promoting consistency of information from sentences and AMRs. Removing Relation in Self-Attention is worse than removing Path Aggregation, indicating that unprocessed AMR information can only interfere with the model instead of being exploited by the model.

Comparing the results in different datasets, we can find that the model depends on information from sentences and AMRs differently on different datasets. On the Restaurant dataset, removing the Relation in Self-Attention component has less impact, while on the Twitter dataset, removing this component has a greater impact. This means the model utilizes sentence information more on the Restaurant dataset and AMR information more on the Twitter dataset. This is also consistent with the analysis of the main results: the AMR of Twitter dataset has higher quality due to the domain relatedness with the training dataset of the AMR parser, which in turn makes the model pay more attention to the information from the AMR on this dataset.

Sentence Length Study Figure 4 compares the accuracy of the APAGN model with and without path aggregator for sentences of different lengths in the Restaurant dataset. According to the figure, we can see that the model achieves higher accuracy on short sentences, while the long sentences are more challenging. In addition, the model with the path aggregator has a larger relative improvement on long sentences, indicating that the path aggregator can effectively help the model to capture long-distance relations with AMR.

Edge Embedding Analysis These experiments investigate the effect of AMRs’ edge label embeddings to the result. Three different types of edge label embeddings are tested in the experiments and the results are shown in Table 4.

According to the results, using pretrained edge label embeddings outperforms using randomly initialized edge label embeddings on all datasets, which demonstrates the effectiveness of pretrained edge label embeddings. Also, the use of fixed edge labels is worse than the use of randomly initialized true edge labels, which shows that the edge labels of AMR contain important information and play important roles in the ABSA task.

3.7 Case Study

As shown in Figure 5, we selected three typical cases to visualize the aspect terms’ attention to the context before and after adding information from the AMR, respectively.

From the first two examples, we can notice that the model focuses on the copula verb next to the opinion term without the AMR. While with the information from the AMR, the model can capture opinion terms through the attention mechanism more accurately. In the third example, without the AMR, the model pays more attention to words that are closer to the aspect term. With the semantic information from AMR, the model can discover opinion terms farther away from aspect terms.

These cases illustrate that the semantic structure information of AMR plays an important role in making the model focus on the correct opinion words. It also shows that the structure of our

Table 3: Ablation experimental results of our APAGN.

<table>
<thead>
<tr>
<th></th>
<th>Restaurant</th>
<th>Laptop</th>
<th>Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
<td>Acc</td>
</tr>
<tr>
<td>APAGN</td>
<td>87.76</td>
<td>82.44</td>
<td>81.96</td>
</tr>
<tr>
<td>Outer Product Sum</td>
<td>86.15</td>
<td>80.13</td>
<td>79.43</td>
</tr>
<tr>
<td>Path Aggregation</td>
<td>87.04</td>
<td>81.61</td>
<td>79.11</td>
</tr>
<tr>
<td>Relation in Self-Attention</td>
<td>87.49</td>
<td>81.82</td>
<td>80.22</td>
</tr>
<tr>
<td>Gate in Self-Attention</td>
<td>85.61</td>
<td>78.49</td>
<td>79.75</td>
</tr>
</tbody>
</table>

Table 4: Results of three different kinds of edge embeddings on all datasets.

<table>
<thead>
<tr>
<th></th>
<th>Restaurant</th>
<th>Laptop</th>
<th>Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
<td>Acc</td>
</tr>
<tr>
<td>Fixed</td>
<td>85.79</td>
<td>79.01</td>
<td>80.22</td>
</tr>
<tr>
<td>Random</td>
<td>86.42</td>
<td>80.68</td>
<td>80.70</td>
</tr>
<tr>
<td>Pre-trained</td>
<td>87.76</td>
<td>82.44</td>
<td>81.96</td>
</tr>
</tbody>
</table>

Figure 4: Accuracy of sentences with different length from Restaurant dataset. The red line represents the percentage of accuracy improvement.

Table 4: Results of three different kinds of edge embeddings on all datasets.

<table>
<thead>
<tr>
<th></th>
<th>Restaurant</th>
<th>Laptop</th>
<th>Twitter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acc</td>
<td>F1</td>
<td>Acc</td>
</tr>
<tr>
<td>Fixed</td>
<td>85.79</td>
<td>79.01</td>
<td>80.22</td>
</tr>
<tr>
<td>Random</td>
<td>86.42</td>
<td>80.68</td>
<td>80.70</td>
</tr>
<tr>
<td>Pre-trained</td>
<td>87.76</td>
<td>82.44</td>
<td>81.96</td>
</tr>
</tbody>
</table>
The atmosphere was crowded but it was a great bistro-type vibe.

BERT + AMR

So if you want a nice, enjoyable meal at Montparnasse, go early for the pre-theater prix-fixe.

I ordered the smoked salmon and roe appetizer and it was off flavor.

BERT + AMR

APAGN model can effectively utilize the semantic structure information in AMR to improve the performance in the ABSA task.

4 Related Work

Aspect-based Sentiment Analysis

Traditional sentiment analysis tasks are usually sentence-level or document-level, while the ABSA task is an entity-level and fine-grained sentiment analysis task. Early methods (Jiang et al., 2011; Kiritchenko et al., 2014) are mostly based on artificially constructed features, which are difficult to effectively model the relations between aspect terms and its context. With the development of deep neural networks, many recent works (Wang et al., 2016; Tang et al., 2016; Chen et al., 2017; Fan et al., 2018; Gu et al., 2018; Du et al., 2019) have explored applying attention mechanisms to implicitly model the semantic relations of aspect terms and identify the key opinion terms in the context.

Another trend in ABSA studies is the explicit use of dependency trees. Some works (He et al., 2018; Zhang et al., 2019; Sun et al., 2019; Huang and Carley, 2019; Zhang and Qian, 2020; Chen et al., 2020; Liang et al., 2020; Wang et al., 2020; Tang et al., 2020; Phan and Ogunbona, 2020; Li et al., 2021; Xiao et al., 2021) extend GCN, GAT, and Transformer backbones to process syntactic dependency trees and develop several outstanding models. These models shorten the distance between aspect terms and opinion terms by dependency trees and alleviate the long-term dependency problem.

Recent studies have also noticed the limitations of dependency trees in the ABSA task. Chen et al. (2020) propose to combine dependency trees with induced aspect-specific latent maps. Chen et al. (2022) further proposed an aspect-specific and language-independent discrete latent tree model as an alternative structure for dependency trees. Our work is similar in that we also aim at the mismatch between dependency trees and the ABSA task, but different in that we introduce a semantic structure named Abstract Meaning Representation instead of induced trees.

Abstract Meaning Representation

AMR is a structured semantic representation that represents the semantics of sentences as a rooted, directed, acyclic graph with labels on nodes and edges. AMR is proposed by Banarescu et al. (2013) to provide a specification for sentence-level comprehensive semantic annotation and analysis tasks. Research on AMR can be divided into two categories, AMR parsing (Cai and Lam, 2020; Zhou et al., 2021; Hoang et al., 2021) and AMR-to-Text (Zhao et al., 2020; Bai et al., 2020; Ribeiro et al., 2021).

AMR has also been applied in many NLP tasks. Kapanipathi et al. (2020) use AMR in question answering system. Lim et al. (2020) employ AMR to improve common sense reasoning. Wang et al. (2021) utilize AMR to add pseudo labels to unlabeled data in low-resource event extraction task. Our model also improves the performance of the ABSA task with AMR.

5 Conclusion

In this paper, we propose APAGN, an AMR-based Path Aggregation Graph Network for the ABSA task. Different from the traditional ABSA model utilizing the syntactic structure like dependency tree, our model employs the semantic structure called Abstract Meaning Representation which is more harmony with the sentiment analysis task. We propose the path aggregator and the relation-enhanced self-attention mechanism to efficiently exploit AMRs and integrate information from AMRs and input sentences. These designs enable our model to achieve better results than existing models, as well as greater adaptability and generalization. Experiments on three public datasets show that APAGN outperforms competing baselines.
Limitations

The high computational complexity is one of the biggest disadvantages of the path aggregation. The time consumption and GPU memory used for multiple operations are expensive. So it is very desirable to use only one time of path aggregation due to attributes of the ABSA task in our APAGN model.

Another limitation of this work is that the performance of the model is still somewhat affected by the quality of the AMR parsing results. The good news is that the research on AMR parsing is continuing to make progress. In the future, APAGN with higher quality AMRs is expected to further improve the level of the ABSA task.

References

A Appendix

A.1 Datasets

The statistics for the Restaurant dataset, Laptop dataset and Twitter dataset are shown in Table 5. Each sentence in these datasets is annotated with
aspect terms and corresponding polarities. Following Li et al. (2021), we remove instances with the “conflict” label. So all datasets have three sentiment polarities: positive, negative and neutral. Throughout the research, we follow the Creative Commons Attribution 4.0 International Licence of the datasets.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Positive</th>
<th>Neutral</th>
<th>Negative</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Train</td>
<td>Test</td>
<td>Train</td>
</tr>
<tr>
<td>Restaurant</td>
<td>2164</td>
<td>728</td>
<td>807</td>
</tr>
<tr>
<td>Laptop</td>
<td>994</td>
<td>341</td>
<td>870</td>
</tr>
<tr>
<td>Twitter</td>
<td>1561</td>
<td>173</td>
<td>3127</td>
</tr>
</tbody>
</table>

Table 5: Statistics of the three ABSA datasets

A.2 Implementation Details

In data preprocessing, we use SPRING (Bevilacqua et al., 2021) as the parser to obtain the AMRs of input sentences and use LEAMR (Blodgett and Schneider, 2021) as the AMR aligner to establish the correspondence between the AMRs and sentences. The maximum length of the input sentence is set to 100, the shortage is made up with the special word “PAD” and the excess is truncated.

Some edge labels are treated specially when mapping the edges of AMR to the relations between words. Edge labels suffixed with “-of” are used to avoid loops in AMR, so we swap their start and end points and remove the “-of” suffix, e.g. the “:ARG0-of” relation from token_i to token_j is changed to the “:ARG0” relation from token_j to token_i. Edge labels prefixed with “:prep-” are used because there is no suitable preposition label in the AMR specification. We changed them to original prepositions, for example, “:prep-against” is changed to “against”.

APAGN uses the BERT of bert-base-uncased version as a pre-trained encoder. The dimension of its output is 768, which is also used as the dimension of token representation in the path aggregator. The dimension of the AMR edge label embedding derived from the SPRING model is 1024. Due to computational efficiency and memory usage, this dimension is reduced to 376 through a linear layer as the dimension of the relational matrix features in the path aggregator. For the relation-enhanced self-attention mechanism, its gated multi-head attention mechanism uses 8 attention heads with the latent dimension size of 64. The total parameter size of APAGN is about 130M and it takes about 8 minutes to train each epoch on a single RTX 3090 GPU.