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Abstract

We address multiview stereo (MVS), an important 3D vi-
sion task that reconstructs a 3D model such as a dense point
cloud from multiple calibrated images. We propose CER-
MVS (Cascaded Epipolar RAFT Multiview Stereo), a new
approach based on the RAFT (Recurrent All-Pairs Field
Transforms) architecture developed for optical flow. CER-
MVS introduces five new changes to RAFT: epipolar cost
volumes, cost volume cascading, multiview fusion of cost
volumes, dynamic supervision, and multiresolution fusion
of depth maps. CER-MVS is significantly different from
prior work in multiview stereo. Unlike prior work, which
operates by updating a 3D cost volume, CER-MVS oper-
ates by updating a disparity field. Furthermore, we propose
an adaptive thresholding method to balance the complete-
ness and accuracy of the reconstructed point clouds. Exper-
iments show that our approach achieves competitive perfor-
mance on DTU (the second best among published results)
and state-of-the-art performance on the Tanks-and-Temples
benchmark (both the intermediate and advanced set). Code
is available at https://github.com/princeton-vl/CER-MVS

1. Introduction
Multiview stereo (MVS) is an important task in 3D com-

puter vision. It seeks to reconstruct a full 3D model, typi-
cally in the form of a dense 3D point cloud, from multiple
RGB images with known camera intrinsics and poses. It is
a difficult task that remains unsolved; the main challenge
is producing a 3D model that is not only accurate but also
complete, that is, no parts should be missing and all fine
details should be recovered.

Many of the latest results of multiview stereo are
achieved by deep networks. In particular, many recent lead-
ing methods [32, 42] are variants of MVSNet [34], a deep
architecture that consists of two main steps: (1) construct-
ing a 3D cost volume in the frustum of a reference view, by
warping features from other views, and (2) using 3D convo-
lutional layers to transform, or “regularize”, the cost volume
before using it to predict a depth map. The resulting depth

maps, one from each reference view, are then combined to
form a single 3D point cloud through a heuristic procedure.

However, a drawback of MVSNet is that regularizing the
3D plane-sweeping cost volume using 3D convolutions can
be costly in terms of computation and memory, potentially
limiting the quality of reconstruction under finite resources.
Subsequent variants [35] of MVSNet have attempted to ad-
dress this issue by replacing 3D convolutions with recur-
rent sequential processing of 2D slices. Despite significant
empirical improvements, however, such sequential process-
ing can be suboptimal because the 3D cost volume does not
have a natural sequential structure.

In this work, we propose CER-MVS, a new deep-
learning multiview stereo approach that is significantly dif-
ferent from existing methods. Like prior deep-learning
work on multiview stereo, CER-MVS predicts individual
depth maps and then fuses them, but differs significantly in
how it predicts each depth map. Given a reference view and
multiple neighbor views, CER-MVS constructs a 3D cost
volume for each neighbor view by computing the similarity
between each pixel in the reference view and pixels along
the epipolar line, indexed by increments of inverse depth
(i.e. disparity) in the reference view. Then, the cost vol-
umes from all neighbor views are aggregated into a single
cost volume. CER-MVS uses a GRU to iteratively update
a disparity field—the field that represents pixel correspon-
dence. Each update is generated by the GRU by sampling
from the aggregated cost volume using the current disparity
field.

The key difference of CER-MVS from MVSNet and its
variants lies in how depth is predicted from the 3D cost vol-
ume. MVSNet updates (i.e. regularizes) the 3D cost volume
and predicts depth through a soft argmax on the updated
cost volume. In contrast, CER-MVS does not update the
cost volume at all; instead it iteratively updates a disparity
field, which is used to retrieve values from the cost volume.
The final depth prediction is simply the inverted disparity
field. Updating a disparity field, which is less expensive
than updating the cost volume, can allow more effective use
of finite computing resources.

CER-MVS builds upon RAFT [25], an architecture that
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estimates optical flow between two video frames. Com-
pared to RAFT, which cannot be directly applied to mul-
tiview stereo, CER-MVS introduces four novel changes:

• Epipolar cost volume: RAFT constructs a 4D cost vol-
ume that compares all pairs of pixels from two views,
whereas we construct a 3D cost volume comparing
each pixel in the reference view with pixels which are
on the epipolar line in a neighbor view and spaced by
uniform increments of disparity.

• Cost volume cascading: Unlike RAFT, the size of our
epipolar cost volumes depends not only on the image
resolution but also the number of disparity increments.
To reconstruct fine details, a large number of disparity
increments is necessary, but can blow up GPU mem-
ory. To address this issue, we introduce cascaded
epipolar cost volumes, a novel design in the context of
RAFT. In particular, after a fixed number of RAFT it-
erations, we construct additional finer-grained epipolar
cost volumes centered around current disparity predic-
tions with finer increments of disparity, allowing re-
construction of fine details with less memory.

• Multiview fusion of cost volumes: RAFT constructs
a single cost volume from two views, whereas CER-
MVS constructs multiple cost volumes, one for each
neighbor of a reference view. The cost volumes are
then aggregated into a single volume through a simple
averaging operator.

• Dynamic supervision: RAFT uses exponentially de-
caying weights to add up flow errors in each iteration.
We also use such weights, but supervise a dynamic
combination of depth errors and disparity errors.

• Multiresolution fusion of depth maps: RAFT operates
on a single resolution of the input images, whereas
CER-MVS applies the same network to predict depth
maps on multiple resolutions, and aggregate the depth
maps into a single high-resolution depth map through
a simple but novel heuristic.

When stitching the depth maps into point clouds, a fil-
tering algorithm is often used, e.g., Dynamic Consistency
Checking proposed in D2HC-RMVSNet [32]. However, a
good balance of accuracy and completeness is required for
high scores on the evaluation metric, which is ignored by
these algorithms. Therefore, we propose an adaptive thresh-
olding method built on top of [32].

We evaluate CER-MVS on two challenging benchmarks,
DTU [2] and Tanks-and-Temples [15]. On DTU, CER-
MVS achieves performance competitive to the current state
of the art (the second best among published results). On
Tanks-and-Temples, CER-MVS significantly advances the

state of the art of the intermediate set from a mean F1 score
of 61.68 to 64.82, and the advanced set from 37.44 to 40.19.

2. Related Work
Classical MVS Classical methods [4, 8, 9, 12, 22, 26] es-
sentially formulate multiview stereo as an optimization
problem, which seeks to find a 3D model that is most com-
patible with the observed images. The compatibility is
typically based on some hand-designed notion of photo-
consistency, assuming that pixels that are projections of
the same 3D point should have similar appearance. Of-
ten photo-consistency alone does not sufficiently constrain
the solution space, and the optimization objective can also
include shape priors, which make additional assumptions
about what shapes are likely. To solve the optimization
problem, a concrete classical algorithm usually consists of
a particular 3D representation (e.g. polygon meshes, vox-
els, or depth maps) and a optimization procedure to com-
pute the best model under that representation. The different
combinations of photo-consistency measures, shape priors,
3D representations, and optimization procedures give rise
to a large variety of algorithms. For more details, we refer
the reader to excellent surveys of these algorithms by Seitz
et al. [23] and by Furukawa and Hernández [7].

One family of classical MVS methods [9, 21, 22, 28,
30, 43] is based on the PatchMatch [3] algorithm, which
enables efficient dense matching of pixels across views.
PatchMatch methods have proved very effective and have
demonstrated highly competitive performance. In partic-
ular, Xu and Tao [30] introduced the ACMP algorithm,
which, among other enhancements, incorporates planar pri-
ors and has achieved competitive results on Tanks-and-
Temples.

Learning-based MVS Unlike classical algorithms, our
approach is learning-based. Existing learning-based MVS
methods either use learning to improve parts of a classical
pipeline such as PatchMatch [11,39–41], or develop end-to-
end architectures [5,6,10,13,14,18,29,31–35,37,38,42]. A
common step in existing end-to-end architectures is the con-
struction of a 3D cost volume (or feature grid) through some
differentiable geometric operations. Then, this 3D cost vol-
ume undergoes further updates, often through 3D convo-
lutions, before being transformed into the final 3D model
in some particular representation such as voxels [13, 14],
depth maps [6, 10, 18, 20, 27, 29, 31–35, 37, 38, 42], or point
clouds [5].

The main difference between our approach and existing
works is that although we also construct a 3D cost volume,
we do not update it. Instead, we update an inverse-depth
field that is used to iteratively index from the 3D cost vol-
ume to produce 2D feature maps. Our approach thus avoids
the costly operations of updating a 3D volume and focuses
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Figure 1. Overview of CER-MVS, which includes an architecture that constructs cascaded epipolar cost volumes and performs recurrent
iterative updates of disparity (inverse depth) maps, with fusion of cost volumes from multiple views as well as fusion of disparity maps of
multiple resolutions.

limited computing resources on refining the depth maps di-
rectly.

3. Approach
This section describes the detailed architecture and

pipeline of CER-MVS, as shown in Fig. 1. Given a ref-
erence view and a set of neighbor views, we first extract
features using a set of convolutional networks. Features
are then used to build a collection of cost volumes. We
then predict a depth map through recurrent iterative updates,
followed by the fusion of multiresolution depths. Finally,
depth maps from all references views are fused and stitched
to produce a final point cloud.

3.1. Cost Volume Construction

Image Features We need to extract image features from
both reference views and neighbor views before using them
to construct the cost volumes. In addition, the iterative
update unit, to be introduced later, needs context features
from reference views. We extract these image features us-
ing convolutional encoders following RAFT: RH×W×3 →
RH/2k×W/2k×Df , where k andDf are hyperparameters that
control the feature resolution and dimension (See Sec. 4.1
and Appendix A for more details).

Epipolar Cost Volume After extracting feature maps
{fi, i = 0, ..., N + 1}, where f0 is the reference view
and others are neighbor views, each with resolution

(Df , Hf ,Wf) = (Df , H/2
k,W/2k), we construct a 3D cost

volume by computing the correlation of each pixel in the
reference view with pixels along its epipolar line in a neigh-
bor view. Specifically, for a pixel in the reference view,
we backproject it to D 3D points with disparity (inverse
depth) uniformly spaced in the range from 0 to dmax (af-
ter proper scaling as described in Sec. 4.1), reproject the
3D points to the epipolar line in the neighbor view, and
use differentiable bilinear sampling to retrieve the features
from the neighbor view. This procedure outputs a volume
C ∈ RN×Hf×Wf×D.

Like RAFT, we compute a stack of CP of
multiscale cost volumes by repeated average-
pooling, i.e., CP = {C0,C1, ...,CL−1} where
Cl ∈ RN×Hf×Wf×D/2l , for l = 0, ..., L− 1.

Cost Volume Cascading Unlike RAFT, the size of an
epipolar cost volume depends on not only the image res-
olution but also the number of disparity values sampled. A
dense sampling of a large number of disparity values ef-
fectively increases the resolution of the cost volume along
the depth dimension and can help reconstruct fine details.
However, using a large number of disparity values can take
too much GPU memory. To address this issue, we introduce
a cascade design. The basic idea is to construct additional
cost volumes that are finer-grained along the disparity di-
mension and centered around the current disparity predic-
tions.

Concretely, after T1 iterative updates, we create a new
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stack of cost volumes Cf
P = {Cf

0,C
f
1, ...,C

f
L−1}, Cf

l ∈
RN×Hf×Wf×Df/2l , l = 0, ..., L − 1, where Df is the num-
ber of disparity values uniformly sampled centered around
the current prediction of disparities with smaller increments
than those used in the initial stack of cost volumes. Specifi-
cally, the value of Df is determined by 2L−1 ∗ R, where R
is a hyperparameter that controls the size of the neighbor-
hood described in Sec. 3.2. The factor 2L−1 is needed to
allow repeated pooling. In this work we use up to 2 stages
in our experiments, but the design can be trivially extended
to more stages.

It is worth noting that cost volume cascading has been
used in prior MVS work [10, 33], but it is a novel design
in the context of a RAFT-like architecture, which differs
significantly from prior MVS work in that the cost volumes
are not updated and are only used as static lookup tables.

3.2. Iterative Updates

The iterative updates follow RAFT in overall structure.
We iteratively update a disparity field d ∈ RHf×Wf initial-
ized to zero. In each iteration, the input to the update oper-
ator includes a hidden state h ∈ RHf×Wf×Dh , the current
disparity field, the context features i ∈ RHf×Wf×Dh from
the reference view, as well as per-pixel features retrieved
from the cost volumes using the current disparity field. The
output of the update operator includes a new hidden state
and an increment to the disparity field.

Multiview Fusion of Cost Volumes Different from
RAFT, in multiview stereo we need to consider multiple
neighbor views. For each pixel in the reference view, we
generate one correlation feature vector against each neigh-
bor view. Given such feature vectors from multiple neigh-
bor views, we take the element-wise mean as the final vec-
tor. The intuition behind this operator is that mean value is
more robust as the number of neighbor views can vary in
test time.

To generate the correlation feature vector for each pixel
against a single neighbor view, we perform the same
lookup procedure as RAFT. Given the current disparity es-
timate for the pixel and the stack of cost volumes CP =
{C0,C1, ...,CL−1} against the neighbor views, we re-
trieve, from each cost volume, correlation values corre-
sponding to a local 1D integer grid of length R centered
around the current disparity. This is repeated for each level
of the stack, and the values from all levels are concatenated
to form a single feature vector.

Update Operator We use a GRU-based update operator
to propose a sequence of incremental updates to the dispar-
ity field.

First, we extract features from the current disparity es-
timate dt. The feature vector is formed by subtracting the

disparity of each pixel by its 7x7 neighborhood, then re-
shaping the result into a 49-dimensional vector. This oper-
ation has the effect of making the feature vector invariant to
the disparity field up to a shift factor, since the retrieved vec-
tor only depends on relative disparity between neighboring
pixels.

Second, because we have a cascade of cost volumes and
our update operator accesses different cost volumes at dif-
ferent stages of the cascade, the operator, while still recur-
rent, should be given the flexibility to behave somewhat dif-
ferently for different stages of the cascade. Thus, we modify
the weight tying scheme of RAFT such that some weights
are tied across all iterations while others are tied only within
a single stage of the cascade. Specially, we tie all weights
across iterations except the decoder layer that decodes a dis-
parity update from the hidden state of the GRU. The weights
of the decoder layer are tied only within each stage of the
cascade.

Third, RAFT uses upsampling layers for final predic-
tions of flow field, whereas we do not use any upsampling
layer.

The update equations are as follows, with a 2-stage cas-
cade with T1 iterations for stage 1.

xt = [Encoderd(dt),Encoderc(c), i] (1)
zt = σ (Conv3×3 ([ht−1,xt] ,Wz)) (2)
rt = σ (Conv3×3 ([ht−1,xt] ,Wr)) (3)

h̃t = tanh (Conv3×3 ([rt � ht−1,xt] ,Wh)) (4)

ht = (1− zt)� ht−1 + zt � h̃t (5)

∆dt =

{
Decoder1(ht), t ≤ T1
Decoder2(ht), t > T1

(6)

Here i is the context features, and Encoderc is an encoder
the transforms the correlation features using two convolu-
tion layers (see Appendix A for details).

3.3. Multiresolution Depth Fusion

To construct fine details, it generally helps to operate at
high resolution, but the available GPU memory limits the
highest resolution the network can access, especially dur-
ing training with large mini-batches. One approach to get
around this limit is to apply the network to a higher res-
olution during inference, which is the common approach
adopted in prior works.

However, we find that while using a higher resolution
during inference can help, an even better approach is to ap-
ply the same network on two input resolutions, the “low”
resolution W ×H used to train the network and the higher
resolution 2W × 2H , and combine the two disparity maps
LR and HR to form a fused disparity map MR with a con-
trol parameter t:
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Table 1. Implementation hyperparameters

Training dataset DTU BlendedMVS
Native resolution (H,W ) (1200, 1600) (1536, 2048)
# neighbor views 10 8
# training epochs 15 16
Feature map downsize ratio 4
Feature map dimension 64
Cost volume stack size L 3
Retrieved neighborhood size R 11
Cascaded stages 2
Max disparity dmax 0.0025
Disparity increment in stage 1 dmax / 64
Disparity increment in stage 2 dmax / 320
# GRU iterations in each stage 8
Batch size 2
Loss parameter λ = 2.8× 10−6, κ = 100, γ = 0.9

Test dataset DTU Tanks-and-Temples

Native resolution (H,W ) (1200, 1600)
(1080, 1920)

or (1080, 2048)
# Neighbor views
for native resolution input 10 15

# Neighbor views
for 2 × native resolution input 10 25

Multires fusion
threshold t 0.02 0.02

Resolution
for point cloud stitching native resolution 1/2 native resolution

Adaptive thresholding
parameter p 0.25 0.25

dMR =

{
dHR, if|d−1

LR − d−1
HR| < t ∗ d−1

LR

dLR, otherwise
(7)

That is, if the low resolution prediction and high resolution
prediction are similar at a pixel, we use the high resolution
prediction; otherwise we use the low resolution prediction.
This is motivated by the observation that low resolution pre-
dictions are more reliable in term of texture-less large struc-
tures such as planes, whereas high resolution predictions
are more reliable in terms of fine details, which do not tend
to deviate drastically from low resolution predictions. Note
that as the control parameter t varies from 0 to infinity, dMR

varies from dLR to dHR.

3.4. Adaptive Point Cloud Stitching

As a last step, the depth maps from the reference views
are stitched together to form a single point cloud. We use an
adaptive thresholding approach based on Dynamic Consis-
tency Checking (DCC) proposed in D2HC-RMVSNet [32].
DCC hard-codes two thresholds t1 and t2 for reprojection
errors, however, we use the thresholds kt1 and kt2 where
k is different for each scene to ensure a fixed percentage,
p% of all pixels pass through consistency test. And p is
optimized through the validation set.

Table 2. Results on DTU test set

DTU mean distance (mm)
Acc. Comp. Overall

COLMAP [22] 0.400 0.664 0.532
MVSNet [34] 0.396 0.527 0.462
D2HC-MVSNet [32] 0.395 0.378 0.386
Point-MVSNet [5] 0.342 0.411 0.376
Vis-MVSNet [42] 0.369 0.361 0.365
AA-RMVSNet [27] 0.376 0.339 0.357
CasMVSNet [10] 0.325 0.385 0.355
EPP-MVSNet [20] 0.413 0.296 0.355
CVP-MVSNet [33] 0.296 0.406 0.351
UCSNet [6] 0.338 0.349 0.344
IB-MVS [24] 0.334 0.309 0.321
Ours 0.359 0.305 0.332

3.5. Supervision

We supervise our network with a loss consisting of two
parts. The first part measures the L1 error of the predicted
disparity against the ground truth at each iteration, with ex-
ponentially increasing weights for later iterations. This part
enables faster training of all disparity ranges regardless of
outliers at the beginning. The second part of the loss is sim-
ilar to the first part except that (1) it measures the error of
depth (i.e. inverted disparity) so as to be more aligned with
point cloud evaluation, and that (2) the error is capped at
a constant κ so as to prevent outliers from dominating the
loss.

Given the predicted disparity in each iteration be dt, t =
1, ..., T1 + T2 and ground truth disparity dgt, the combined
loss is defined as follows:

L1 =

T1+T2∑
t=1

γT1+T2−t ‖dgt − dt‖1 (8)

L2 =

T1+T2∑
t=1

γT1+T2−t min(
∥∥d−1

gt − d−1
t

∥∥
1
, κ) (9)

L = (1− w) · L1 + w · L2 · λ (10)

where γ controls the weights across iterations and λ makes
the two parts have roughly the same range. The parameter
w balances the two parts and changes from 0 to 1 linearly as
training progresses to focus more on the depth error, e.g. for
a total number of 16 training epochs, w would be 0.5 when
8 epochs are finished.

4. Experiments
4.1. Implementation Details

We evaluate our models on two datasets, DTU and
Tanks-and-Temples. On DTU, we train on its training split
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Table 3. Results on Tanks-and-Temples

intermediate advanced
Method mean Fam. Franc. Horse Light. M60 Pan. Play. Train mean Audi. Ballr. Courtr. Museum Palace Temple
COLMAP [22] 42.14 50.41 22.25 25.63 56.43 44.83 46.97 48.53 42.04 27.24 16.02 25.23 34.7 41.51 18.05 27.94
MVSNet [34] 43.48 55.99 28.55 25.07 50.79 53.96 50.86 47.90 34.69 - - - - - - -
Point-MVSNet [5] 48.27 61.79 41.15 34.20 50.79 51.97 50.85 52.38 43.06 - - - - - - -
CVP-MVSNet [33] 54.03 76.50 47.74 36.34 55.12 57.28 54.28 57.43 47.54 - - - - - - -
UCSNet [6] 54.83 76.09 53.16 43.03 54.00 55.60 51.49 57.38 47.89 - - - - - - -
Altizure-SFM, PCF-MVS [16] 55.88 70.99 49.60 40.34 63.44 57.79 58.91 56.59 49.40 35.69 28.33 38.64 35.95 48.36 26.17 36.69
IB-MVS [24] 56.02 75.76 57.65 41.61 55.90 58.09 51.89 59.48 47.73 31.96 22.41 37.00 31.60 41.01 28.20 31.54
CasMVSNet [10] 56.84 76.37 58.45 46.26 55.81 56.11 54.06 58.18 49.51 31.12 19.81 38.46 29.10 43.87 27.36 28.11
ACMM [28] 57.27 69.24 51.45 46.97 63.20 55.07 57.64 60.08 54.48 34.02 23.41 32.91 41.17 48.13 23.87 34.60
ACMP [30] 58.41 70.30 54.06 54.11 61.65 54.16 57.60 58.12 57.25 37.44 30.12 34.68 44.58 50.64 27.20 37.43
Altizure-HKUST-2019 [1] 59.03 77.19 61.52 42.09 63.50 59.36 58.20 57.05 53.3 37.34 24.04 44.52 36.64 49.51 30.23 39.09
DeepC-MVS [17] 59.79 71.91 54.08 42.29 66.54 55.77 67.47 60.47 59.83 34.54 26.30 34.66 43.50 45.66 23.09 34.00
Vis-MVSNet [42] 60.03 77.40 60.23 47.07 63.44 62.21 57.28 60.54 52.07 33.78 20.79 38.77 32.45 44.20 28.73 37.70
AttMVS [19] 60.05 73.90 62.58 44.08 64.88 56.08 59.39 63.42 56.06 31.93 15.96 27.71 37.99 52.01 29.07 28.84
D2HC-MVSNet [32] 60.13 77.36 57.74 45.74 63.39 63.30 57.82 60.71 54.99 - - - - - - -
AA-RMVSNet [27] 61.51 77.77 59.53 51.53 64.02 64.05 59.47 60.85 54.90 - - - - - - -
EPP-MVSNet [20] 61.68 77.86 60.54 52.96 62.33 61.69 60.34 62.44 55.30 35.72 21.28 39.74 35.34 49.21 30.00 38.75
Ours 64.82 81.16 64.21 50.43 70.73 63.85 63.99 65.90 58.25 40.19 25.95 45.75 39.65 51.75 35.08 42.97

(a) scan1 (b) scan4 (c) scan9

(d) scan10 (e) scan11 (f) scan12

Figure 2. Visualization of results on DTU (test set).

of DTU and evaluate on its test split, which was suggested
by Yao et al. [34] and followed by most authors. On Tanks-
and-Temples, we train on the BlendedMVS dataset [36],
following the practice of prior work [20, 32, 34]. For all
datasets, during training we use the native image resolutions
after some random cropping and scaling as input to the net-
work and other details on the hyperparameters are given in
Table 1.

To pair neighbor views with reference views, we use the
same method as MVSNet [34]. In BlendedMVS, which is
used for training only, the scenes have large variations in the
range of depth values, we scale each reference view, along
with its neighbor views, so that its ground-truth depth has
a median value 600 mm. When we evaluate on Tanks-and-
Temples, due to lack of ground-truth and noisy background,
we scale each reference view, along with its neighbor views,
so that its minimum depth of a set of reliable feature points

(computed by COLMAP [22] as in MVSNet [34]) is 400
mm. To stitch the predicted depth maps from multiple ref-
erence views, we simply scale back each depth map to its
original scale.

4.2. Main Results

DTU The results on the DTU benchmark are presented
in Table 2. Our method achieves the second best overall
score, which is an average completeness and accuracy [2].
Visualizations of sample reconstructions on DTU are shown
in Fig. 2.

Tanks-and-Temples On the Tanks-and-Temples dataset,
we achieve state of the art performance, as shown in Table
3. Notably, the model is trained on the BlendedMVS dataset
without finetuning on Tanks-and-Temples except for some
test-time hyperparameter selection using the validation set,
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(a) Family (Intermediate) (b) Francis (Intermediate) (c) Horse (Intermediate)

(d) Lighthouse (Intermediate) (e) M60 (Intermediate) (f) Auditorium (Advanced)

(g) Ballroom (Advanced) (h) Courtroom (Advanced) (i) Museum (Advanced)

Figure 3. Visualization of results on Tanks-and-Temples.

as described in Table 1. This indicates a good generaliza-
tion ability of our approach. A visualization of some results
is shown in Fig. 3, from which we can see that many re-
constructed scenes look reasonably accurate, detailed, and
complete, but there is still substantial room for improve-
ment, especially on low-texture planar regions.

4.3. Ablations

We show our ablation experiments on Tanks-and-
Temples official training set (used as validation set) in a
restricted setting where we only train the model on Blend-
edMVS for 2 epochs but keep everything else the same as
in Table 1.

Cost Volume Cascading We study the effect of cost vol-
ume cascading on memory consumption. In Fig. 4, we
plot the GPU memory usage versus F1-score on Tanks-and-
Temples validation set for (1) a series of cascaded model
(with different disparity increments in the first stage), (2)
its non-cascaded counterpart, which matches the first-stage
disparity resolution used in the cascaded model and has
equal total GRU iterations. We train all models as described
in Sec. 4.1 and finally chose the cascaded model (64, 320)
for long-time training and benchmarking. It uses 44 dis-
parity values with an increment of dmax/320 in the second
stage, and uses 64 values with a coarser increment dmax/64
in the first stage to cover the entire disparity range from
0 to dmax. For the non-cascaded model, because it needs

Table 4. Ablation on supervision

Method F1-score
(1) Truncated L1 depth loss N/A
(2) L1 disparity loss 66.79
(3) Average of (1) and (2) 67.32
(4) Proposed dynamic loss 67.36

Table 5. Ablation of neighbor view number

Mean F1-score (%)
# Neighbor views

in 2× native resolution
5 15 25

# Neighbor views
in

native resolution

5 62.62 66.42 67.27
15 62.73 66.48 67.36
25 62.66 66.37 67.27

to fill the entire disparity range from 0 to dmax, it needs
significantly more memory as the disparity resolution in-
creases. We see from Fig. 4 that cascading produces signif-
icant savings of memory. Note the reported memory is the
peak memory reported by the command ”nvidia-smi”.

Dynamic Supervision In Table 4, we show our model
trained with different loss supervision. Among them, the
truncated L1 depth loss does not help the model to start up;
and L1 disparity loss has inferior performance; while the
proposed dynamic loss is marginally better than the direct
average of L1 depth loss and L1 disparity loss.
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Figure 4. Memory usage of cascaded v.s. non-cascaded model. The label for cascaded models means coarse and fine disparity increments
(larger number means smaller increments), and the label for non-cascaded models means the single disparity increment.

Number of Neighbor Views During inference, our net-
work can use a different number of neighbor views than in
training. In table 5, we study the effect of changing the
number of neighbor views during inference. In particular,
we study how this number can be chosen differently for the
two resolutions we use to predict depth maps. As the results
on the validation set show, the best combination is 15 views
for native resolution prediction and 25 views for 2 × native
resolution prediction. And these are the numbers we use on
the test set.

Table 6. Ablation of aggregation options

Aggergation option Mean F1-score (%)
max 57.77
max + mean 65.37
std 59.90
std + mean 66.85
mean 67.36

Table 7. Ablation of adaptive thresholding
Controlled percentage p% 15% 20% 25% 30% 35%
Mean F1-score (%) 66.83 67.31 67.36 67.11 66.60

Fixed threshold k 1 1.5 2 2.5 3
Mean F1-score (%) 65.33 66.10 66.33 66.32 66.13

Aggregation of Cost Volumes Here in Table 6 we study
the effect of aggregation options different from our sim-
ple averaging including both one-channel and two-channel
ones. It shows that taking the mean is the best.

Adaptive Thresholding To strike a balance between ac-
curacy and completeness scores, we use adaptive threshold-
ing method and search for the best parameter p. The re-
sults are in Table 7 in comparison with results from fixed
thresholds. We see that our adaptive thresholding approach
is significantly better than fixed thresholding.

Multiresolution Fusion of Depth Maps An important
part of CER-MVS is the multiresolution fusion of depth
maps. Different from previous components, its effect is
most obvious on our final model trained for 16 epochs. We
report the following results on the validation sets of Tanks-
and-Temples: (1) Different control parameter t, and (2) sim-
ple weighted average of native input results and 2 × na-
tive input results with weight w . We see from Table 8 that
our novel fusion approach is significantly better than all the
other approaches.

4.4. Memory and Runtime

The computational cost of CER-MVS is compared with
other methods in Table 9. When using similar resolution
and numbers of views, the time and memory cost of our
method is comparable to others.

5. Conclusion

We have proposed CER-MVS, a new approach based on
the RAFT architecture developed for optical flow. CER-
MVS introduces five new changes to RAFT: epipolar cost
volumes, cost volume cascading, multiview fusion of cost

8



Table 8. Ablation of multiresolution fusion

Multi-resolution
with control threshold t

0
=native input 0.01 0.02 0.04

∞
=2×native input

Mean F1-score (%) 64.38 68.47 68.49 68.39 68.08

Weighted average with w
0

=native input 0.25 0.5 0.75
1

=2×native input
Mean F1-score (%) 64.38 65.30 66.55 67.51 68.08

Table 9. Comparison of running time and memory cost

Method
# Neighbor
views

Input
Resolution

Output
Resolution

Times per
view (ms)

Mem.
(GB)

CasMVSNet

4
(1056,
1920)

(1056, 1920) 792.2 9.5
Vis-MVSNet (528, 960) 864.2 4.5
PatchmatchNet (1056, 1920) 317.7 3.2
EPP-MVSNet (528, 960) 522.2 8.2
Ours (264, 480) 664.4 3.0
Ours (2112,

3840) (528, 960) 1754.5 7.0
Ours 25 7611.3 22.6

volumes, dynamic supervision, and multiresolution fusion
of depth maps, as well as adaptive thresholding to construct
point clouds. Experiments show that our approach achieves
competitive performance on DTU and state-of-the-art per-
formance on Tanks-and-Temples.
Acknowledgments: This work is partially supported by
the National Science Foundation under Award IIS-1942981.
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Appendix A. Network Architecture

Figure 5. Network architecture details. The context and feature encoders have the same architecture, the only difference is that the feature
encoder uses instance normalization while the context encoder uses batch normalization.
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