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Abstract
In the post-training of large language models
(LLMs), Reinforcement Learning from Human
Feedback (RLHF) is an effective approach to
achieve generation aligned with human prefer-
ences. Direct Preference Optimization (DPO)
allows for policy training with a simple binary
cross-entropy loss without a reward model. The
objective of DPO is regularized by reverse KL
divergence that encourages mode-seeking fitting
to the reference policy. Nonetheless, we indicate
that minimizing reverse KL divergence could fail
to capture a mode of the reference distribution,
which may hurt the policy’s performance. Based
on this observation, we propose a simple modifi-
cation to DPO, H-DPO, which allows for control
over the entropy of the resulting policy, enhancing
the distribution’s sharpness and thereby enabling
mode-seeking fitting more effectively. In our ex-
periments, we show that H-DPO outperformed
DPO across various tasks, demonstrating superior
results in pass@k evaluations for mathematical
tasks. Moreover, H-DPO is simple to implement,
requiring only minor modifications to the loss cal-
culation of DPO, which makes it highly practical
and promising for wide-ranging applications in
the training of LLMs.

1. Introduction
Large language models (LLMs) have exhibited remarkable
performance across various tasks (OpenAI et al., 2023;
Dubey et al., 2024). However, large datasets often include
data created for various purposes, and the models trained
on these datasets are not always suitable for users’ specific
needs. Additionally, some datasets include malicious text
and code related to cyberattacks, posing risks of misuse by
humans or the AI itself (Bender et al., 2021; Bai et al., 2022;
Ji et al., 2023; Shevlane et al., 2023).
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Reinforcement Learning from Human Feedback (RLHF)
(Christiano et al., 2017; Bai et al., 2022) is an effective
approach to make an LLM follow human instructions and
suppressing undesired outputs. In RLHF, a reward model is
trained based on data evaluated according to human prefer-
ences. The LLM then learns to maximize rewards, aligning
its outputs with human preferences. To prevent significant
deviation from the original model, regularization using re-
verse KL divergence is added to the reward maximization
process, and RL algorithms such as PPO (Schulman et al.,
2017) are employed.

However, RLHF has issues such as high computational
costs, the reliance on a learned reward model, and the inher-
ent instability and hyperparameter sensitivity of RL algo-
rithms. To address these problems, Direct Policy Optimiza-
tion (DPO) (Rafailov et al., 2023) has emerged and is now
widely used. DPO proposes a loss function that directly
optimizes the policy through a change of variables, elimi-
nating the need for the reward model and allowing training
with a simple binary cross-entropy loss. While more stable
and lightweight than RLHF, DPO can optimize the same
objective function as RLHF, which involves reward maxi-
mization and regularization with the reverse KL divergence.
Other types of divergences have also been proposed to pre-
vent deviation from the original model (Wang et al., 2024a),
but reverse KL divergence, which enables mode-seeking
estimation, is generally preferred for performance.

We point out that minimizing reverse KL divergence can
cause the mode of the fitted distribution to fail to capture
the mode of the target distribution. As shown in Figure 1,
consider fitting a unimodal distribution to a multimodal
distribution. We call the way of fitting a distribution mode-
seeking when one of the modes of target distribution is
captured by the fitted model as shown in the right side of
Figure 1, and mode-covering when all the modes are covered
as shown in the left side of Figure 1. In the case of mode-
seeking, the fitted distribution discards other modes of the
target distribution, resulting in smaller variance than the
target distribution. However, reverse KL minimization can
fail at mode-seeking fitting due to its nature of preserving
variance, as illustrated in the left side of Figure 1.

To enable variance reduction and encourage mode-seeking
estimation, we generalize the loss function of DPO, named
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H-DPO, which allows for controlling the distribution’s en-
tropy H(π) by modifying the regularization term. H-DPO
can adjust the entropy of generations of the LLM during
training using the hyperparameter α in Equation (9) intro-
duced later. By setting α less than 1, it encourages the
entropy to be reduced so that achieves mode-seeking fitting
more successfully. The right side of Figure 1 demonstrates
that our regularizer Dα, a modification to the reverse KL,
enables mode-seeking fitting even in cases where reverse
KL fails, as shown on the left.

Using our proposed loss with α < 1, the estimated policy
distribution is expected to be sharper or more deterministic,
which we consider a beneficial feature rather than a problem.
Traditional LLMs use a softmax function with a temperature
parameter to represent distributions over raw outputs, where
the temperature is set to 1 during training. When LLMs are
evaluated, a lower value such as 0.6 often performs better
(Xu et al., 2022; OpenAI et al., 2023; Zhu et al., 2024). This
post-training sharpening lacks guarantees of optimality for
the objective function. In contrast, our proposed method
trains the language model using an objective function aimed
at sharpening the distribution, ensuring that this sharper
distribution aligns with the objective function.

Our main contribution is the alignment method H-DPO,
which allows controlling entropy and encourages mode-
seeking fitting more than DPO. The implementation of H-
DPO is simple, requiring minimal modifications to DPO.
Experiments included alignment based on Mistral-7B (Jiang
et al., 2023) with the Zephyr framework (Tunstall et al.;
2023). Compared to DPO, our proposed method allows for
more diverse generations without losing performance, and
shows superior accuracy and coverage across various tasks.

2. Related Work
Alignment Language models trained through next-token
prediction have rapidly advanced and show strong perfor-
mance on many tasks in zero-shot or few-shot settings (Rad-
ford et al., 2019; Brown et al., 2020; Chowdhery et al.,
2023). Fine-tuning using human preferences and instruc-
tions, known as alignment, has proven effective in improv-
ing instruction following and reducing harmful outputs
(Christiano et al., 2017; Bai et al., 2022; Touvron et al., 2023;
Ouyang et al., 2022). A prominent method for alignment
is RLHF; however, it encounters issues such as high com-
putational costs, significant memory requirements, and the
instability of reinforcement learning (Schulman et al., 2017;
Engstrom et al., 2020; Ahmadian et al., 2024). To address
these issues, DPO (Rafailov et al., 2023) has been proposed.
DPO eliminates the need to model the reward function and
employ reinforcement learning algorithms, evolving in var-
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Figure 1: For a Gaussian mixture model πref, π̂ that mini-
mizes DKL (left) and π̂ that minimizes Dα = −αH(π) +
H(π, πref) with α = 0.6 (right). Using Dα results in suc-
cessful mode-seeking estimation.

ious directions (Liu et al., 2024; Gheshlaghi Azar et al.,
2024; Song et al., 2024). Wang et al. (2024a); Zeng et al.
(2024) enable adjusting the diversity of generated responses
by changing the regularization of reverse KL. Wang et al.
(2024a) extends this to f -divergence other than reverse KL
divergence, arguing that adjusting α in α-divergence allows
for a trade-off between diversity and performance. As α-
divergence interpolates between reverse KL and forward KL,
using larger α makes the mode-seeking property diminish,
which may increase diversity but deteriorate performance.
Our study proposes a different method to balance diversity
and performance while maintaining or strengthening the
mode-seeking property of reverse KL.

Diversity in Language Models The importance of diver-
sity in the responses generated by language models has been
emphasized in numerous studies. Achieving more diverse
text generation with high quality is crucial, despite the exist-
ing quality-diversity trade-off (Nenkova et al., 2007; Clarke
et al., 2008; Hashimoto et al., 2019; Zhang et al., 2021).
Diversity can be adjusted through various methods, such as
sampling-based techniques like changing the temperature
(Fan et al., 2018; Holtzman et al., 2020; Wang et al., 2024b),
manipulating prompts (Arora et al., 2023; Li et al., 2023),
or during DPO as mentioned in the previous section (Wang
et al., 2024a; Zeng et al., 2024). Studies such as Wang et al.
(2024a); Zeng et al. (2024) have examined changes in diver-
sity due to objective functions in post-training, but have not
considered the impact of temperature adjustments, which
are commonly manipulated when using language models.
Our study investigates the effects of both objective function
modifications in post-training and temperature adjustments
on diversity.

In recent LLMs, there has been a growing emphasis not only
on the accuracy of a single response but also on the cov-
erage — the fraction of problems solved by any generated
sample (Kulal et al., 2019; Chen et al., 2021; Roziere et al.,
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2023; Brown et al., 2024). In such evaluations, diversity
in the generated outputs contributes to improved coverage
(Wang et al., 2024b). The importance of coverage is partly
due to the presence of verifiers that can assess the correct-
ness of generated answers, particularly in mathematical and
coding tasks. These verifiers allow for selecting correct out-
puts from multiple candidates as the answer. Some studies
(Kulal et al., 2019; Chen et al., 2021; Roziere et al., 2023)
have demonstrated significant improvements in correctness
through repeated sampling in coding tasks, while Brown
et al. (2024) showed that even relatively lightweight models
could outperform frontier models in coverage by increasing
the number of generated samples in mathematical tasks. In
tasks such as chat, where precise verification is challenging,
the performance can still be enhanced through methods such
as majority voting (Wang et al., 2023) or by using reward
models and trained verifiers (Cobbe et al., 2021; Lightman
et al., 2024; Hosseini et al., 2024; Wang et al., 2024c; Kang
et al., 2024) to use repeated samples effectively.

Wang et al. (2024b) explored the relationship between di-
versity and coverage, demonstrating that greater diversity
in generated outputs leads to a more significant improve-
ment in coverage for larger values of k in pass@k, which
denotes the probability that the correct answer is included
in the k generated outputs. Our study shows that using the
proposed objective can increase diversity while maintaining
a certain level of accuracy, achieving favorable performance
in pass@k evaluations.

Mode-Seeking and Mode-Covering When minimizing
a certain divergence to bring two probability distributions
closer, attention is often given to whether the fitting or diver-
gence is mode-seeking or mode-covering (mass-covering)
(Huszár, 2015; Shannon et al., 2020; Ke et al., 2021; Li
& Farnia, 2023; Wang et al., 2024a). When fitting a dis-
tribution to a multimodal distribution, if the fitted distri-
bution captures one of the modes, this fitting is called
mode-seeking. If it covers all the modes, it is termed mode-
covering. Accordingly, divergences facilitating such fittings
when minimized are similarly referred to as mode-seeking
and mode-covering divergences, respectively. The reverse
KL divergence, which is used in RLHF and DPO train-
ing, is considered mode-seeking compared to forward KL
and other f -divergence (Shannon et al., 2020; Li & Far-
nia, 2023). Policy learning using mode-seeking divergence
often performs better than mode-covering divergence (Ke
et al., 2021; Wang et al., 2024a). In this study, we propose
a new regularizer to replace the minimization of reverse
KL divergence in the objective function of DPO, aiming to
achieve better performance through enhanced mode-seeking
property.

3. Preliminaries
3.1. Reinforcement Learning from Human Feedbacks

(RLHF)

In the context of LLM training, RLHF is a process of align-
ing an LLM to human preferences after pre-training, typi-
cally consisting of three steps: supervised fine-tuning (SFT),
reward modeling, and RL fine-tuning.

Supervised Fine-Tuning (SFT) SFT is the process of
adapting an already pre-trained LLM to specific tasks by op-
timizing the model parameters using a task-specific dataset.
Using high-quality data related to the task, the model is
optimized through supervised learning to obtain πSFT.

Reward Modeling Next, a reward model is trained to
reflect human preferences in RL. Let rϕ(x, y) be a reward
model parameterized by ϕ, where x is a prompt and y is
a completion. It is typically assumed that human prefer-
ence for a pair of completions follows the Bradley-Terry
(BT) model (Bradley & Terry, 1952), where the probability
of preferring y1 to y2 is represented using a difference of
rewards:

p(y1 ≻ y2 | x) = σ(r(x, y1)− r(x, y2)), (1)

where σ(x) = 1
1+exp(−x) is a sigmoid function. The larger

the value of r(x, y) is, the more preferable a completion y
is to a prompt x.

Using a labeled dataset D = {xi, yiw, y
i
l}Ni=0 with user pref-

erences, where yiw is preferred to yil for prompt xi, the loss
function for training the reward model is formulated by
minimizing the negative log-likelihood:

L(rϕ) = −E(x,yw,yl∼D)[log σ(rϕ(x, yw)

−rϕ(x, yl))].
(2)

RL Fine-Tuning Finally, the language model is fine-
tuned, using the trained reward model, to maximize the
following objective function:

J(πθ) = Ex∼D,y∼πθ
[rϕ(x, y)]

− βDKL(πθ(y | x)||πref(y | x)),
(3)

where β is a hyperparameter that controls the deviation
from πref. πθ is trained to maximize the reward while being
regularized by the reverse KL divergence to not deviate too
much from πref. Typically, πref is fixed to πSFT while πθ is
initialized with πSFT.

3.2. Directed Preference Optimization (DPO)

In RLHF, the need to train the reward model and apply an
online RL algorithm such as PPO imposes significant com-
putational and memory costs. DPO suggests a method for
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directly learning to reflect human preferences in a super-
vised manner without using the reward model by mapping
language model policies and reward functions. The objec-
tive function is equivalent to that of RLHF, and the optimal
policy that maximizes Equation (3) when the reward model
is optimal is derived as follows:

π∗(y | x) = 1

Z(x)
πref(y | x) exp

(
r∗(x, y)

β

)
, (4)

where Z(x) is the partition function. From this equation, the
optimal reward can be expressed using the optimal policy:

r∗(x, y) =β log
π∗(y | x)
πref(y | x)

+ β logZ(x). (5)

Using this optimal reward function to calculate the prob-
ability distribution of the BT model, the computationally
challenging partition function Z(x) cancels out as follows:

p∗(y1 ≻ y2 | x) = σ

(
β log

π∗(y1 | x)
πref(y1 | x)

− β log
π∗(y2 | x)
πref(y2 | x)

) (6)

The loss function for πθ is derived as the maximum likeli-
hood estimation of the BT model from a human preference
dataset D:

LDPO = −Ex, yw, yl∼D

[
log σ

(
β log

πθ(yw | x)
πθ(yl | x)

− β log
πref(yw | x)
πref(yl | x)

)] (7)

Thus, DPO can align language models with human prefer-
ences without learning a reward model.

4. Entropy Controllable Directed Preference
Optimization

In DPO, reverse KL divergence is used as a regularizer that
controls the deviation from πref. The reverse KL divergence
is defined as DKL(πθ||πref) =

∫
πθ(y | x) log πθ(y|x)

πref(y|x)dy.
Here, the integrand is zero for regions where πθ(y | x) = 0,
meaning that only the regions supported by πθ(y | x) affect
the divergence. Consequently, fitting by minimizing the
reverse KL divergence is known to be mode-seeking and
generally performs better than other divergences such as
forward KL (Ke et al., 2021; Wang et al., 2024a).

However, in this study, we discuss cases where even using
reverse KL divergence can fail to achieve mode-seeking
fitting with respect to the target distribution. We verify

such cases through preliminary experiments and show that
controlling the entropy of the distribution enables more ef-
fective mode-seeking fitting. To control the entropy of the
output probability by language models in DPO, we pro-
pose H-DPO, which incorporates such entropy-controllable
optimization into DPO.

4.1. Mode-seeking Property

As a preliminary experiment on the mode-seeking property
of reverse KL divergence, we fit a Gaussian distribution
to a mixture of two Gaussian components. Specifically,
given a Gaussian mixture model πref, we compute the loca-
tion and scale parameters of a Gaussian distribution π that
minimize the reverse KL divergence DKL(π||πref). If the
fitting is mode-seeking, the estimated Gaussian distribution
should capture one of the components of the mixture model.
However, as shown in Figure 1, despite the reverse KL
minimization, which is supposed to have the mode-seeking
property, the fitting may look mode-covering, not mode-
seeking. In this case, if π is a language model, it is likely
to generate from valleys where πref has a low probability,
possibly leading to degraded performance of π.

The cause of such mode-covering fitting could be the inher-
ent property of reverse KL divergence minimization, which
aims to preserve some variance. If π captures only one
component, its variance should be smaller compared to πref
as a whole because it must ignore the other component. As
shown on the left side of Figure 1, however, reverse KL
minimization does not take this into account, resulting in
mode-covering estimation.

We consider an objective that can reduce variance or entropy
as a remedy. To adjust the entropy of π, we note that the
reverse KL divergence can be decomposed into entropy and
cross-entropy components as follows:

DKL(π||πref) =

∫
(π(x) log π(x)− π(x) log πref(x))dx

= −H(π) +H(π, πref).

(8)

By attaching a coefficient α to the entropy H(π), we can
derive another objective that can control entropy: Dα =
−αH(π) +H(π, πref)

†. By making α less than 1, we can
reduce the entropy while fitting between distributions. The
right side of Figure 1 shows the distribution π that mini-
mizes Dα as α decreases from 1. By reducing α from 1
to a smaller value, it can achieve the mode-seeking fitting.
Details of the preliminary experiments related to Figure 1
are provided in Appendix A.1.

The effectiveness of the mode-seeking property has been

†Note that, for α ̸= 1, Dα(p||q) is not a divergence because it
is not zero even when p = q.
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Table 1: Average scores of DPO and H-DPO with different α values on various tasks.

GSM8K↑ HumanEval↑ MMLU-Pro↑ IFEval↑
DPO (α = 1) 26.40 ±1.76 28.77 ±0.45 31.83 ±0.17 59.63 ±0.72

H-DPO (α = 0.95) 27.77 ±1.39 30.70 ±0.39 32.37 ±0.03 60.17 ±0.34

H-DPO (α = 0.9) 28.83 ±2.32 29.63 ±0.45 32.30 ±0.17 60.93 ±0.50

H-DPO (α = 0.8) 28.66 ±1.23 27.77 ±0.67 31.93 ±0.19 59.90 ±0.59

Table 2: Comparison of DPO and H-DPO with various α values across different diversity metrics when temperature is 1.

Entropy↑ Self-Bleu↓ Distinct-1↑ Distinct-2↑
H-DPO (α = 1.2) 1.718 0.252 0.313 0.690
H-DPO (α = 1.1) 1.483 0.293 0.296 0.652
DPO (α = 1) 1.323 0.326 0.289 0.633
H-DPO (α = 0.95) 1.223 0.339 0.277 0.611
H-DPO (α = 0.9) 1.113 0.364 0.272 0.590
H-DPO (α = 0.8) 0.977 0.391 0.268 0.574

verified in Wang et al. (2024a), and strengthening the mode-
seeking property by reducing α is an attractive feature. How-
ever, even in cases where π and πref have the same number
of modes (e.g., when both are unimodal distributions), al-
lowing π to fit πref with Dα can result in π becoming a
sharper distribution than πref. Although this might seem
problematic, it could be beneficial in language model train-
ing. For better performance at inference time, the sampling
temperature is often set below 1 (Xu et al., 2022; OpenAI
et al., 2023; Zhu et al., 2024). This means the distribution
learned at a temperature of 1 is sharpened by reducing the
temperature. However, there is no guarantee that the sharp-
ened distribution is optimal for the DPO objective function.
The distribution learned by maximizing our objective func-
tion with a small α also becomes sharp, but unlike adjusting
sampling temperature at inference time, it becomes sharp
in a manner consistent with the objective function. The fol-
lowing section introduces how to incorporate such entropy
adjustment using α into DPO.

4.2. H-DPO

As discussed in the previous section, by decomposing the
reverse KL divergence into its entropy and cross-entropy
components, we can adjust the entropy with α. The objec-
tive function for DPO with entropy adjustment is shown
below:

JH-DPO = Ex∼D,y∼π [r(x, y)]− βDα(π||πref)

= Ex∼D,y∼π [r(x, y)] + αβH(π)− βH(π, πref).

(9)

Here, when α equals 1, it becomes the same objective func-
tion as that of standard DPO. By setting α to be smaller than
1, the learning process aims to reduce the entropy. Similar to
Wang et al. (2024a), we consider a constrained optimization.
By applying Lagrange multipliers under the constraints that

π is a probability distribution, i.e.,
∑

y π(y | x) = 1 and
∀y, π(y | x) ≥ 0, we obtain the following:

L(π, λ, C) =Ex∼D, y∼π

[
r(x, y)− αβ log π(y | x)
+ β log πref(y | x)

]
− λ

(∑
y

π(y | x)− 1

)
−
∑
y

C(y)π(y | x)

(10)

where λ and C are the dual variables. Solving this problem,
the optimal policy π∗ can be derived as

π∗(y | x) = 1

Z(x)
πref(y | x)1/α exp

(
r∗(x, y)

αβ

)
. (11)

From this equation, the reward function can be expressed
using the policy as follows:

r∗(x, y) =αβ log π∗(y | x)− β log πref(y | x)
+ αβ logZ(x)

(12)

When applying this reward function to the BT model and
performing the maximum likelihood estimation, the loss
function using α is

LH-DPO = −Ex,yw,yl∼D

[
log σ

(
αβ log

πθ(yw | x)
πθ(yl | x)

− β log
πref(yw | x)
πref(yl | x)

)]
(13)

Comparing this equation to the DPO loss function in Equa-
tion (7), we can see that entropy adjustment using α can
be implemented by simply replacing the coefficient for πθ

from β to αβ.
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Figure 2: Left: Accuracy on MMLU-Pro at various temperatures. Right: Accuracy on MMLU-Pro at various entropy
levels. The horizontal axis of the left figure is replaced with the entropy obtained from sampling at each corresponding
temperature.

5. Experiments
In this section, we evaluate the performance of H-DPO
in comparison to standard DPO using widely recognized
metrics.

5.1. Experimental Setup

We conducted DPO training based on Zephyr-7B-Beta (Tun-
stall et al., 2023; Tunstall et al.). We started from zephyr-
7b-sft-full, which is based on Mistral 7B (Jiang et al., 2023)
and fine-tuned with UltraChat (Ding et al., 2023). We per-
formed DPO training on it with UltraFeedback (Cui et al.,
2023). We evaluated the performance when H-DPO was
used instead of standard DPO. The hyperparameters during
training were the same as those of Zephyr-7B-beta, except
for the variable α. The α was varied in the range from 0.8 to
1.2. Another model, Llama-3.2-1B (Dubey et al., 2024), was
also used for the experiments, and the results are detailed in
Appendix A.3.

The evaluation tasks included diverse grade school math
word problems (GSM8K (Cobbe et al., 2021)), coding task
(HumanEval (Chen et al., 2021)), multiple-choice question
task (MMLU-Pro (Wang et al., 2024d)) and instruction-
following task (IFEval (Zhou et al., 2023)). The training was
conducted with three different seeds. Further experimental
details are provided in Appendices A.4 and A.5.

5.2. Performance and Diversity

Table 1 shows the scores for each task when α was de-
creased. By reducing α by 0.05 to 0.1, performance im-
proved on all tasks compared to the conventional DPO
(α = 1).

Table 2 presents diversity metrics when α was varied in
H-DPO. When the temperature was set to 1, smaller α
values resulted in lower diversity, while larger α values
increased diversity. This indicates that diversity can be
controlled through α. However, it should be noted that
diversity changes with temperature, and the optimal tem-
perature varies depending on the value of α. Hence, even
with a smaller α, diversity could be increased if a higher
temperature is used.

For MMLU-Pro, the scores and entropy with varying tem-
peratures are shown in Figure 2. The left figure illustrates
the relationship between temperature and score, highlighting
that smaller α values exhibit less performance degradation
and greater robustness to temperature selection. This is be-
cause entropy remains low even when a higher temperature
is used. The right figure shows the relationship between en-
tropy and score, where the entropy of the samples obtained
at each temperature replaces the temperature shown in the
left figure. At the same score point, the entropy is larger
when α is smaller. In other words, with a smaller α, it is
possible to achieve more diverse generations even with the
same performance.

5.3. Coverage Evaluation

As mentioned in the previous section, a smaller α enabled
more diverse outputs at the same performance level. Wang
et al. (2024b) demonstrated that high diversity positively
impacts coverage performance, where coverage is evaluated
using the pass@k metric. Coverage refers to the fraction
of problems that can be solved using any generated sample,
and pass@k is the coverage achieved by using k samples
(Kulal et al., 2019; Chen et al., 2021). Chen et al. (2021)
proposed an unbiased and stable calculation method for
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Figure 3: Coverage (pass@k) of H-DPO and DPO with various temperatures on GSM8K.
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Figure 4: Coverage (pass@k) of H-DPO and DPO with various temperatures on HumanEval.

pass@k metric, which is employed in our study. Coverage
is particularly significant in tasks where correctness eval-
uation is relatively straightforward, such as mathematical
and coding tasks; hence, evaluations were conducted on the
GSM8K (math task) and HumanEval (coding task).

Figure 3 presents the pass@k evaluation results for various
k values in GSM8K. Overall, reducing α leads to better
performance than standard DPO (α = 1). In standard DPO,
for most values of k, the best coverage when varying the
temperature is achieved at a temperature of 0.5, which is
smaller than the value of 1 used during training. However,
for smaller α values (e.g., α = 0.8), the best coverage is
achieved with the same training temperature of 1 when k is
large. This implies that decreasing α (α = 0.8) and using
a temperature close to that used during training provides
better results than simply lowering the temperature in stan-
dard DPO. This suggests that H-DPO, which allows using
a model closer to the one used during training even at test
time, is superior to standard DPO in this setting.

Figure 4 presents the evaluation results of pass@k for var-
ious values of k on the HumanEval benchmark. On Hu-
manEval, there is a negligible difference between models
with a small α and standard DPO when k is large. However,
interestingly, when k exceeds 100, the results improve for
larger α values (α = 1.1).

5.4. Discussion

In the evaluation of the HumanEval coding task and GSM8K
mathematical task, we observed that the optimal values of
α differed between these two task categories. This discrep-
ancy can be attributed to differences in task characteristics,

which necessitate distinct sampling temperatures for effec-
tive generation. In mathematical tasks, where there is a
single correct answer and precise reasoning is required,
more deterministic sampling with a lower temperature is
preferable. In these cases, values of α less than 1 are suited,
facilitating more precise generations. Conversely, in coding
tasks, multiple valid answers typically exist, and generating
diverse outputs increases the likelihood of producing correct
responses. As a result, a sampling temperature of 1 is more
suitable for pass@k evaluations in such scenarios. Note
that when the temperature exceeds the training value of 1,
a significant decline in performance is observed. In such
cases, values of α greater than 1 further enhance diversity,
as shown in Table 2, improving the probability of generating
correct responses in pass@k evaluations.

In summary, for tasks requiring accuracy and utilizing a
temperature lower than 1, an α value slightly less than 1,
such as 0.9 or 0.95, is appropriate. Conversely, for tasks
emphasizing diversity and employing a temperature of 1,
using an α value greater than 1, such as 1.1, yields better
results.

As suggested by Figures 3 and 4, a practical approach to
tuning the α parameter is to first train the model using the
standard DPO setting (α = 1) and then evaluate the perfor-
mance changes by varying the temperature. For HumanEval
with smaller k values and GSM8K, performance improves
when the temperature is slightly reduced from 1, indicating
that more accurate outputs are preferable, and this improve-
ment aligns with lowering α. Conversely, for HumanEval
with larger k values, performance degrades as the temper-
ature decreases from 1, suggesting that diversity is critical
in such cases, which explains the relatively better perfor-
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mance with α > 1. In this way, α tuning can be guided by
observing whether performance improves or declines when
the temperature deviates from 1.

6. Conclusion
In this study, we proposed H-DPO, a generalization of
DPO, and thoroughly examined its effectiveness. H-DPO
allows for the adjustment of entropy during training through
the hyperparameter α, enabling the control of distribution
sharpness and achieving more effective mode-seeking fit-
ting compared to standard DPO. This new method allows
trained models to generate more accurate and diverse out-
puts, better aligning with their intended purposes. In the
experiments, we aligned Mistral-7B-based models using the
proposed method and compared them with standard DPO.
H-DPO demonstrated superior performance compared to
DPO across various tasks. In mathematical tasks, it showed
excellent performance in pass@k evaluations. These results
confirmed that the diversity and quality of the generated out-
puts improved, establishing H-DPO as a powerful method
for improving the training process of LLMs. Moreover,
H-DPO is extremely simple to implement, requiring only
minor modifications to existing DPO, which adds to its prac-
ticality and potential for widespread application. The need
to adjust α is a limitation of this method, and automating
the search of appropriate α values for each task can be a
focus of future research.

Impact Statement
As this paper primarily focuses on the algorithmic contribu-
tions to fine-tuning language models using DPO, its direct
societal impact is limited. However, the application of our
methodology, particularly in the context of RLHF, requires
careful consideration of the feedback process. The individ-
uals providing feedback play a crucial role in shaping the
behavior of the language model. Ensuring that the feed-
back discourages harmful, malicious, or unethical outputs
is essential for aligning the model with societal norms and
ethical standards.
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A. Experimental Details
A.1. Preliminary Experiment with Gaussian Distribution

This section details the experiments shown in Figure 1. In this preliminary experiment, we use the proposed regularization
Dα(π||πref), where Dα is the same as the Kullback-Leibler divergence DKL when α = 1, to estimate the Gaussian
distribution π that is closest to the Gaussian Mixture Model (GMM) πref. The experiments were conducted with GMMs πref
consisting of 2, 3, and 4 Gaussian components, and the results are shown in Figures 5, 7 and 8, respectively. For any πref, the
weights of the components are equal, and the standard deviations are 1 and 0.8 for the case of two components, 1, 0.8, and
0.5 for the case of three components, and 1, 0.8, 0.5, and 0.3 for the case of four components. In those figures, the results of
varying the interval between the means of the Gaussian components are displayed in separate rows.

In the upper row of Figure 5, we observe that when α = 1, i.e. using the KL divergence, the fitting becomes mode-covering.
When α is reduced to 0.6, it successfully achieves mode-seeking fitting. In the middle row, where the interval between the
means of the components is larger, making mode-seeking fitting more feasible, mode-seeking fitting is observed at α = 0.8.
In the bottom row, where the interval is even larger, mode-seeking fitting occurs even when minimizing the KL divergence,
although the fitting targets the Gaussian with the larger variance on the left. As α decreases, the fitting shifts to the Gaussian
on the right, which has smaller variance and higher probability.

In Figure 6, the values of Dα(π||πref) are represented using color as the location and scale parameters of the Gaussian
distribution π̂ are varied. As α decreases, the Dα(π||πref) values for mode-seeking π̂ become smaller compared to those for
mode-covering π̂.

Similar results are observed in Figures 7 and 8 for cases with 3 and 4 Gaussian components. When minimizing the KL
divergence, the fitting tends to be mode-covering or targets the component with larger variance. However, reducing α results
in the fitting successfully targeting the region with the highest probability in all cases. As α decreases further, the variance
of π̂ also becomes smaller.
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Figure 5: πref is a GMM composed of two normal distributions, and π̂ represents the normal distribution that minimizes
Dα(π||πref). The upper, middle, and bottom rows correspond to cases where the mean intervals between components are 4,
5, and 6, respectively. The standard deviations of each component are 1 and 0.8 from left to right.

A.2. Comparison with β tuning

From Table 1, we observed that performance improves by decreasing the value of α. This raised the possibility that similar
improvements might be achievable by tuning the β parameter in standard DPO. Therefore, we compared the performance
of H-DPO, which showed promising results with parameters (α = 0.9, β = 0.01), against a DPO where β was similarly
reduced (α = 1, β = 0.009). The results are presented in Table 4, showing that tuning β in DPO does not achieve the same
level of improvement as H-DPO. The accuracy decreased in many tasks. The evaluation of coverage on the GSM8K dataset
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Figure 6: Values of Dα(π||πref) for the normal distribution π with various location and scale parameters in the experiment
shown in Figure 5. For visibility, min(3, lnDα(π||πref)− lnDα(π̂||πref)) is plotted. The red star indicates the parameters
of π̂ that minimize Dα(π||πref), and these values are used to plot Figure 5.
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Figure 7: πref is a GMM composed of two normal distributions, and π̂ represents the normal distribution that minimizes
Dα(π||πref). The upper, middle, and bottom rows correspond to cases where the mean intervals between components are 3,
5, and 7, respectively. The standard deviations of each component are 1, 0.8 and 0.5 from left to right.
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Figure 8: πref is a GMM composed of two normal distributions, and π̂ represents the normal distribution that minimizes
Dα(π||πref). The upper, middle, and bottom rows correspond to cases where the mean intervals between components are 3,
5, and 7, respectively. The standard deviations of each component are 1, 0.8, 0.5 and 0.3 from left to right.

is shown in Figure 9, which indicates that tuning β in DPO does not improve coverage either. These results suggest that the
performance enhancement obtained by tuning α to adjust the entropy cannot be replicated through β adjustment in DPO,
thus demonstrating the effectiveness of H-DPO.
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Figure 9: Coverage (pass@k) of H-DPO and DPO with various temperatures on GSM8K.

A.3. Experiments with Llama-3.2-1B

To further demonstrate the applicability of H-DPO across different models, we conducted experiments using Llama-3.2-1B
(Dubey et al., 2024). To differentiate these experiments from those performed with Zephyr, we utilized a different dataset,
the Anthropic HH dataset (Bai et al., 2022). The experimental setup was consistent with Rafailov et al. (2023), where
Llama-3.2-1B underwent SFT using only the preference completions from the dataset, followed by fine-tuning with H-DPO.
The value of β was set to 0.01, while all other hyperparameters matched those used in Rafailov et al. (2023).

The results of the experiments conducted on four tasks are presented in Table 3. Given the difficulty of the tasks and the
inherently low performance of the base model, consistent improvements were not observed in HumanEval. However, we did
observe performance improvements in other tasks.

Table 3: Average scores of DPO and H-DPO with different α values on various tasks when using the Llama-3.2-1B model.

GSM8K↑ HumanEval↑ MMLU-Pro↑ IFEval↑
DPO (α = 1) 4.97 ±0.31 2.73 ±1.43 14.20 ±0.14 22.60 ±0.08

H-DPO (α = 0.95) 5.50 ±0.80 0.73 ±0.52 14.27 ±0.19 22.93 ±0.27

H-DPO (α = 0.9) 4.40 ±0.19 0.57 ±0.28 14.13 ±0.12 23.67 ±0.10
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Table 4: Average scores of DPO and H-DPO on various tasks.

GSM8K↑ HumanEval↑ MMLU-Pro↑ IFEval↑
DPO (α = 1, β = 0.01) 26.40 ±1.76 28.77 ±0.45 31.83 ±0.17 59.63 ±0.72

DPO (α = 1, β = 0.009) 25.13 ±1.22 26.37 ±1.34 31.93 ±0.10 59.53 ±0.35

H-DPO (α = 0.9, β = 0.01) 28.83 ±2.32 29.63 ±0.45 32.30 ±0.17 60.93 ±0.50

A.4. Evaluation of Diversity

For the evaluation of diversity in Table 2, we used entropy, Self-BLEU (Zhu et al., 2018), and Distinct-1, -2 (Li et al., 2016).
Regarding the measurement of entropy, we used 200 prompts from the UltraFeedback (Cui et al., 2023) test dataset, which
was used in the training of DPO, and generated 25 responses for each prompt. The maximum length of the responses was
limited to 512, and the entropy was calculated using the log probability of each response, normalized by the response length.
Self-BLEU and Distinct-1, -2 were also calculated using the same responses based on Zhu et al. (2018) and Li et al. (2016).

A.5. Other Details
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Figure 10: Accuracy on IFEval with various tem-
peratures.

MMLU-Pro was evaluated using the official implementation from
Wang et al. (2024d). IFEval and GSM8K were implemented using
Gao et al. (2024), where IFEval was evaluated in a 0-shot setting, and
GSM8K was evaluated in an 8-shot setting. HumanEval was evaluated
using the official implementation from Chen et al. (2021). MMLU-Pro
and IFEval were evaluated using one sampling for all test data, and the
average accuracy and standard error at a temperature of 0 are shown
in Tables 1 and 3. For GSM8K, 200 test data were used, and for
HumanEval, all test data were used, generating 200 responses for each
prompt to calculate pass@k based on Chen et al. (2021), as shown
in Figures 3 and 4. The results for pass@1 at a temperature of 0.1
are shown in Tables 1 and 3. The results for varying temperatures in
MMLU-Pro, GSM8K, HumanEval, and IFEval are shown in Figures 2
to 4 and 10.
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