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ABSTRACT

Creating hypotheses for new observations is a key step in the scientific process
of understanding a problem in any domain. A good hypothesis that is inter-
pretable, reliable (good at predicting unseen observations), and data-efficient; is
useful for scientists aiming to make novel discoveries. This paper introduces an
automatic way of learning such interpretable and reliable hypotheses in a data-
efficient manner. We propose DiSciPLE (Discovering Scientific Programs using
LLMs and Evolution) an evolutionary algorithm that leverages common sense and
prior knowledge of large language models (LLMs) to create hypotheses as Python
programs for scientific problems. Additionally, we propose two improvements: a
program critic and a program simplifier to further improve our method to produce
good hypotheses. We evaluate our method on four different real-world tasks in
two scientific domains and show significantly better results. For example, we can
learn programs with 35% lower error than the closest non-interpretable baseline
for population density estimation.

1 INTRODUCTION

The scientific process involves the collection of data, the creation of hypotheses to explain the data,
and experimental testing and validation of the hypothesis to produce scientific laws. This process is
manual, laborious and time consuming. With advances in LLMs, there is an opportunity to automate
the scientific pipeline to greatly accelerate scientific discovery and progress. While prior work in
automating science has looked at efficient data collection (Van Horn et al.,|2015; |Sener & Savarese,
2018)), the possibility of automatic hypothesis generation from observational data has been less
explored. This is especially important because in many domains like earth science, there are vast
troves of data waiting to be analyzed. A method that could automatically scour through this data to
identify hypotheses for scientists to explore can significantly speed up the scientists’ workflow. Our
goal is to address this gap and produce an automatic hypothesis generation framework (fig.[I).

What are good desiderata for an automatic hypotheses generation framework? First, clearly the
generated hypothesis should fit the observations well. This requires that the framework should be
able to search through a large and expressive search space. Second, the generated hypotheses should
be reliable, in that it should correctly predict data even outside of the observations used to generate
the hypotheses. Third, a good hypothesis is one that is interpretable by scientists, since only then
can scientists understand what is being discovered, and frame experiments to test the hypothesis.
Finally, the hypothesis generation framework should be sample efficient. In other words, scientists
coming up with a hypothesis should not need to collect a lot of observations to come up with a good
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hypothesis. In this paper, we ask: How can we automatically discover expressive, interpretable and
reliable hypotheses in a sample-efficient way?

Existing approaches that discover hypotheses or formulae are not up to the task. Interpretable ML
techniques such as concept-bottlenecks (Koh et al., [2020) can produce simple bag-of-words pro-
grams for visual classification but are not expressive enough to produce more sophisticated hypothe-
ses. At the other end of the spectrum, black-box neural networks are expressive but offer no insight
to the scientists for exploration. Symbolic regression (Cranmer, 2023) techniques are interpretable
and can produce sophisticated formulae, but are very slow to converge because of the large search
space. This issue is particularly severe in scientific domains where the hypothesis may reference
any concept or variable in the scientific vocabulary, making the search space effectively unbounded.
Neurosymbolic program learning (Johnson et al.,|2017) address this search space with reinforcement
learning, but this requires exceptional amount of training data and is not sample-efficient.

To be able to search through a large and expressive search space, recent works have looked at lever-
aging the common sense abilities of large language models (LLMs) (Suris et al.l [2023). However,
while zero-shot generation from LLMs can work well for well-known problems, they are insufficient
for scientific domains with novel problems and data. Recent work has looked at leveraging LLMs
as the mutation operator in evolutionary algorithms (Romera-Paredes et al., [2024; (Chiquier et al.,
2024). We leverage the common sense and prior knowledge of LLMs in tandem with an evolution-
ary algorithm-based symbolic regression method to generate programs as hypotheses, resulting in
a significantly smaller search space. The interpretable programs are learned on a set of lower-level
primitives, including neural modules such as open-world segmentation. Our framework produces
neuro-symbolic programs as good hypotheses.

While performing crossover and mutation with LLMs can produce meaningful programs, several
improvements can be made on the framework to further improve the search. First, unlike symbolic
regression, the hypotheses evaluation in the evolution loop does not have to be limited to a single re-
gression score. The LLM can leverage more information about the current hypothesis to better guide
the search. Therefore, we propose to add a critic to our framework that can provide fine-grained in-
formation about the hypothesis to better guide the search. Our critic divides the training observation
set into fine-grained categories and can provide feedback on categories that the hypothesis does well
on or does badly on. This results in programs that can have an all-round better performance. Second,
while the LLM is good at exploring the search space, many programs produced by the framework
contain frivolous variables, that may not aid the hypotheses. Having such redundant features/parts
in programs can result in more complex final hypotheses as well as a larger search space during evo-
Iution. Therefore, we also add an analytical (non-llm-based) program simplification method, that
can remove such frivolous parts of the program.

We run experiments in two different expert domains (demography and climate science) on four real-
world problems and show that we can produce good hypotheses by leveraging LLMs. In all of these
cases, the programs generated are reliable and result in better generalization than deep neural nets.
Moreover, in a few cases, we also observe better performance on even unseen in-distribution data.

Our contributions are:

* We introduce a novel framework DiSciPLE (Discovering Scientific Programs using LLMs
and Evolution), that can produce interpretable, reliable, and sample-efficient hypotheses
for diverse scientific applications.

* We present two key components: a critic and a program simplification method to DiSci-
PLE that can further improve the evolutionary search resulting in better hypotheses.

* We show application of DiSciPLE on real-world problems by applying it on two scientific
domains and four different problems and show that our learned hypotheses are indeed more
interpretable, reliable, and data-efficient compared to baselines.

2 RELATED WORKS

Concept bottlenecks. Concept bottleneck (Koh et al. 2020) is an approach used to create
interpretable-yet-powerful classifiers. The key idea is to train a deep model to predict a set of
low-level concepts or bottlenecks and then learn a linear classifier. Such concept bottlenecks have
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the basis of methods in several areas such as fine-grained recognition (Ferrari & Zisserman, 2007}
Huang et al.||2016;|Zhou et al., 2018} Tang et al., 2020) and zero-shot learning (Lampert et al.,2013;
Akata et al., |2015; |[Kodirov et al., [2017). However in order to train these models, expensive data is
needed to be collected for the bottleneck concepts themselves. One way to reduce this annotation
cost is to sequentially ask question in an information theoretically optimized way (Chattopadhyay
et al.| 2024ajb). Researchers have also automated this pipeline by using large-language models as a
knowledge base to propose concept bottleneck models (Menon & Vondrick, 2023} [Pratt et al.|, |2023}
Han et al., [2023)). (Chiquier et al.[(2024) proposed an evolutionary algorithm with LLMs as the muta-
tion operation to discover interpretable concept bottleneck models without prior information. While
these models are interpretable, they are very simple in terms of expressive power. In this work, we
instead evolve programs, which are more expressive than bag of words, while being interpretable.

Symbolic regression. Symbolic regression (Cranmer, |2023)) is a powerful technique for learning
such programs on evolution through evolutionary search. Several methods have been proposed to
improve the search (Makke & Chawla, 2024), however most symbolic regression techniques cannot
solve problems beyond simple mathematical formula. This is partly because the search space of
possible hypotheses is too large due to combinatorial explosion. Like ours, recent work in symbolic
regression (Grayeli et al.,[2024)) have also looked at using LLMs to better guide the search. However,
they also only test this method on mathematical formula, with limited set of primitives. In real-world
problems, the primitives functions are more complex than mathematical operations and can even be
open-world for example a text-to-image segmentor.

Neuro-Symbolic Program Learning. (Mao et al.,2019;|Dong et al.) is another avenue for learn-
ing programs as hypotheses for observation datasets or answering questions. These methods typi-
cally try to learn both discrete program structures together with neural networks. However, since
this optimization is non-differentiable these methods require reinforcement learning (Johnson et al.,
2017) or complex non-differentiable optimization techniques (Ellis et al., [2021). The hard opti-
mization issue makes the problem of learning programs sample inefficient in real-world settings.
We alternatively use LLMs ability to program to better guide the search for such programs.

Program synthesis with LLMs. Several works have utilized LLM coding ability in different ap-
plications such as VQA (Suris et al.,[2023};|Gupta & Kembhavi,|2022) and robot manipulation (Liang
et al.,2023). While the zero-shot inferred code work very well on domains well-known to the inter-
net, they tend to perform poorly on problems in scientific domains, as shown by our results.

Scientific applications. Researchers in numerous scientific domains have looked machine learn-
ing tools to build predictive models/hypotheses for their quantities of interest. In this work, we
experiment in two such scientific domain of: demography and climate Science. In demography, we
focus on the problems of socioeconomic indicator prediction (Yong & Zhoul, |2024), namely popula-
tion density and poverty estimation (Metzger et al., [2024; Xie| [2017). Similarly in climate science
we focus on two problems of aboveground biomass prediction (AGB) (Nathaniel et al.| [2023) and
Contiguous Solar Induced Chlorophyll Fluorescence(CSIF) forecasting (Zhang et al.,|2018)).

3 METHODOLOGY

Our key contribution is a hypothesis generation framework that leverages LLMs and performs evo-
lutionary search. In section [3.1| we formalize the problem of hypothesis generation. In section [3.2]
we present our method of incorporating LLMs in the evolutionary search framework. Finally, In
section[3.3] [3.4]and [3.5] we discuss the improvements to this framework to speed-up the search.

3.1 PROBLEM FORMULATION

Data/Observation: To come up with hypotheses, scientists first collect data/observations for a
problem they are trying to understand. We represent a collection of n such observations using
D ={(x1,y1), (x2,¥2),-- ., (Tn,yn)}. Here, z; € X is the input data/covariates to the hypothesis,
and y; € Y is the true observed output for a quantity of interest. For the problem of “population
density estimation from satellite images”, X could be the set of satellite images for different regions
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Figure 2: Overview of our evolutionary algorithm with critic and simplification. We start with an
initialized bank of program trying to solve a task. From this bank we sample pairs of programs
based on their fitness score and perform crossover/mutations over them to produce new programs.
The generated program is further improved by passing it through a critic and then an analytical sim-
plification step. This program is then evaluated and put in the next generation of program bank. The
evaluation score of the program is used to determine the fitness for the next iteration of evolution.

and Y would be population density maps for the corresponding satellite images collected through
census. Our goal is to discover an interpretable hypothesis h that can explain observations D. Since
we want our hypothesis to be data-efficient, n is typically small: in the order of a few thousand.

Objective: The scientist or expert also provides a natural language name or description descr of
the quantity of interest Y. For example, this may be the phrase “population density”. As we will see
below, this information will be useful in guiding the LLM to search the space well.

Metric: The scientists or domain experts also provide a hypothesis evaluation metric M. A good
hypothesis can lead to the best evaluation score

s(15D) = 3" M(h(ai), ) m

For example, in the case of population density a good metric used by domain experts is L2 error
over log i.e. M(y',y) = ||log(y') — log(y)||2 (Metzger et al., 2022;2024).

Primitives: Finally, the experts also provide our framework with a set of primitive variables and
functions F = {f1, f2 ... fx}, that can be used to construct a hypothesis h. This set of primitive
variables can even be unbounded or open-vocabulary. For example, for scientists analyzing remote-
sensing image data, these primitives can include an open-vocabulary segmentation model (Mall
et al.,2023). The primitives also include mathematical, logical, and image operations that can be
composed to create powerful hypotheses. Examples of such primitives could be logarithm operation,
elementwise maximum, or a distance transform respectively. Finally, the primitives can also be used
to query specific attributes of the data, such as the average temperature or average precipitation at
a location. The API of primitive functions can also change depending on the application domain.
Please refer to section[d.2] for primitive API specifications for individual problems.

3.2 EVOLUTIONARY SEARCH

In evolutionary program search, we typically start with a large population of random programs.
These programs are then sampled based on their fitness as parents. The parent programs create
new programs through crossover and mutation, resulting in a new population. Newer generations
improve over the previous as the population is getting optimized for the fitness function. The metric
M can be used as the fitness function in our work.
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Algorithm 1: DiSciPLE’s learning loop

Input: Observation set D = {(z1,y1), (z2,Y2),- .., (Tn, yn)}, metric M, an objective prompt
Do, a set of primitive function F = {f1, fo ... fx}
Hyperparameters: Mutation probability p,,, total number of generations 7", population size
M, crossover prompt p., and mutation prompts p,,.

Output: A hypothesis ~2* in the form of a program that explains the observations best.
HO « {}// Initialize a population of programs
fori=1,...,M do

L hY < LLM (p,)

H° « H° u {h)}

h* « h?
// Learn a D that discriminates the training set {(z,y)}

fort=0,...,T do
Ht+1 — {}
fori=1,...,M do
hfﬁ,h}f€2 <+ sample_parents(H;) // Sample parents for crossover
hﬁ“ — EEM(th,hzz,s(hil;D), s(hzz;D),po,pc) // crossover operation
ifu~U(0,1) < p,, then
L hﬁ’H — L‘l:./\/l(h?_l,S(hZJ’_l;D),po,pm) // mutation operation
// critique and simplification
RIFY «critic(hit) AIT! «simplifier(hiT)
if s(hi*; D) > s(h*; D) then
| h* e ht!
Ht+1 (_HtJrl U {h§+1}
return h*;

In our method, we keep the overall algorithm the same but replace key steps in using LLMs. First,
at the start of the process, we provide the LLM with a prompt for the objective to generate the
initial programs. To leverage the prior knowledge of LLMs, we use a prompt p,, that mentions the
expert specified description of the quantity of interest: “Given a satellite image, write a function
to estimate (descr)”. While an LLM cannot answer such a difficult scientific question without
leveraging the observations D, the prompt prevents the evolutionary algorithm from searching in
completely random directions. As a result, our initial population is not entirely random.

Second, rather than using the symbolic methods of crossover and mutation, we use LLM to perform
these operations. LLMs have common sense about programming and result in much better program
modifications when performing crossover and mutations. More specifically, let hzl and hzz be

two programs sampled from the ' generation selected as parents based on the fitness function. To
perform a crossover operation we pass, the objective prompt p,, the two programs hfﬂ and h! ,» their
corresponding scores (using eq. (I))), along with a crossover prompt p, to obtain a new program:

htt = LLM(hy, , h,, s(hy, D), s(ht,; D), po, e) )

The crossover prompt instructs the LLM to make use of the two-parent program and come up with
a new program. The LLM is able to combine elements from the parents to produce something new
as can be seen in fig. 2} Please refer to the appendix [C.I]for more examples.

Similar to crossover, we also mutate a program with some probability using a mutation prompt p,,.

R = LLM(BEFY, s(REY D), poy pin) 3)

We present the exact input fed to the LLM for crossover and mutation in the appendix [A] Note that
both crossover and mutation operations also include the objective prompt preventing the LLM from
generating programs far away from the objective.
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3.3 FEATURE SET PREDICTION

Hypotheses for many problems require combination of multiple feature. Optimizing for the correct
combination of these features is challenging for an LLM, as we are not doing gradient-based opti-
mization. Therefore instead of prompting the LLM to directly generate a predictor for y, we prompt
is to create a list of predictive features. We can learn a linear regressor on top of this list and use the
regressor with the list of features as hypotheses. Both the program and regressor are interpretable,
therefore our hypothesis is also interpretable.

3.4 PROGRAM CRITIC

The only form of supervision our method gets is through the metric score s(h; D) created by evaluat-
ing the program h on the observations. However, since we perform crossover and mutation through
a language model, we can provide finer-grained information to LLM in order to aid the search.

More specifically, we propose a critic that performs a finer-grained evaluation of the program that
we get after crossover/mutation. Our critic performs a stratified evaluation by partitioning the ob-
servation data into multiple categories and evaluating the program on individual strata.

D=d,UdyU---Ud,, wherediﬂdjz(l)fori;«éj @)

In all the applications where we use satellite images, we partition the observation dataset into land-
use categories, using an open-world segmentation model. The critic obtains per-partition score
s(h;d;) and prompts the LLM to improve the program on categories the model is bad. The addition
of a critic improves the programs on data overlooked by programs, resulting in reliable programs.

3.5 PROGRAM SIMPLIFICATION

Successive steps of crossovers and mutations of programs result in large programs with many redun-
dancies, hurting interpretability. We propose an analytical approach to simplify the programs and
remove the redundant parts of it. Our hypothesis are programs without loop, they can be represented
as a directed acyclic graphs (DAG) (we use the abstract syntax tree (AST); see fig. [5). In these
DAG:s, all the constants and the arguments of the function are root nodes. Only the return statement
and the unused variables are the leaf nodes. Any leaf node that is not a return statement, is a piece
of code that is not needed and can be removed. We then recursively remove all the leaf nodes that
are not return statements.

While removing such nodes (unreachable by the return statement) is useful, there could still be fea-
tures that are returned by the program but are not contributing. Recall that we use linear regression
on the list of features returned by the program. The weights assigned to individual features by the
regression model are useful indicators of which features are redundant. We remove the features that
have a significantly smaller weight compared to the largest weight in the regression (a threshold of
5% works well). Removing these features from the return statement results in numerous newly cre-
ated leaf nodes. We, therefore, redo the recursive leaf node removal to further simplify the program.
Each program generated by mutations and crossover is first improved through the critic and then
simplified before adding back to the population. Algorithm[I|shows the complete algorithm.

4 RESULTS

4.1 IMPLEMENTATION DETAILS

We used the open-source LLM [llama-3-8b-instruct (Dubey et all 2024) served using the vLLM
library (Kwon et al.l [2023). A majority of our evaluation tasks use satellite images, so to allow in-
ferring semantic information from it, we use a black-box open-world foundational model for satellite
images, GRAFT (Mall et al.l 2023). Some experiments use ground-truth annotations from Open-
StreetMaps (Vargas-Munoz et al.,|2020) as an alternative to disentangle the effect of segmentation.

We run our evolutionary method for 7" = 15 generations with a population size of M = 100. For
all the problems, the input observation data comes from different geographical locations around
the world. We split this data into three parts. Two-thirds of the easternmost observations are used



Under review as a conference paper at ICLR 2025

def estim: ) def estimatorfocation): yd e
ime tion) images = {location) . s
S e i g e
) 3 \ .

) |

L]

.

ret (avg_poverty, avg_roads, avg_buildings, avg_forests, .

dlev:
nightights, precipitation, avg_poverty * temperature, avg_roads *
elevation, avg_buiings * nightights, avg_forests * precipiation)

def estimatorfocations):
n= ionflocations, 12),

locations, 12), axis=1)
comelation = n, avg_temperature)
retumn get la cations, 12)) +
(get_present_radiation(locations) - avg_radiation) * correlation

Figure 3: The best performing hypotheses for each of the 4 problems as Python programs (left
in each card) and the corresponding DAG representation on the right. The DAG representation
allows better visualization of the importance of different components. The thickness of the red
edges determine how important that component is. A black edge represents computation; when
removed it is either the same as one of its subsequent edges or removing it could result in a bug.

to create a training-testing split. The remaining one-third of the data is use to evaluate reliability
(out-of-distribution generalization). We will release all four datasets for future research in this area.

4.2 SCIENTIFIC DOMAINS AND PROBLEMS

We apply DiSciPLE to two different problems in Demography: population density and poverty
prediction. and to two problems in Climate Science: for AGB estimation and CSIF forecasting. In
the following subsections, we present the observation datasets, metrics, and overview of primitives.

4.2.1 POPULATION DENSITY

Observation Dataset: The problem seeks to predict the population density by observing the satellite
images of a region (Metzger et al., 2022} 2024). We obtain the population density values (y;) for
various locations in the USA by using ACS Community Surveys 5-year estimates (United States
Census Bureau, 2024). Input observations (z;) are sentinel-2 satellite images at a resolution of
10m (Drusch et al.l|2012). For this experiment, we also use OpenStreetMaps masks (Vargas-Munoz
et al.,[2020) for 42 different land-use concepts (see appendix as part of the input.

Metric and Primitives: Population density values are aggregated at the county block group level.
The predicted population densities are therefore also aggregated at the county block group level.
The metric is the per-block group level average L2 error after applying a log transformation. Along
with the arithmetic, and logical primitives (appendix [B]), we use open-vocabulary segmentation as a
primitive. The segmentation function returns a binary mask for an input concept.

4.2.2 POVERTY INDICATOR

Observation Dataset: For poverty estimation, we use data from SustainBench (Yeh et al. [2021).
The dataset contains coordinate location as input and wealth asset index as output.

Metric and Primitives: We use L2 error for each location as the evaluation metric. To obtain
semantic land use information about a location, we first define a ger_satellite_image function, that
returns a sentinel-2 satellite image for any location. This can be used in conjunction with the open-
world satellite image recognition model to obtain semantic information about the world. Other than
this we also include as primitives functions that return average annual temperature, precipitation,
nightlight intensity, and elevation at the input location.
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Table 1: Performance of our hypotheses on unseen in-distribution observations across various prob-
lems. In most cases, DiSciPLE produces better hypotheses (red is best and blue is second best).

Spatial Temporal
Population Density Poverty AGB CSIF
L2-Log Ll-Log L1 RMSE L1 RMSE L1 RMSE
Mean 0.6696  0.6540 1.613 1.836 42.15 50.65 0.2521 0.3050

Concept Bottleneck ~ 0.8298 0.7279  1.229 1.476 2633 3349 0.1474 0.1835
Deep Model - Small ~ 0.4431 0.5006  1.238 1.637 30.72 37.03  0.0503 0.0727
Deep Model - Large  0.3974  0.4843 1.170 1478 21.15 27.86 0.1487 0.1895
Zero-shot 04702  0.5371 1.525 1.754 38.80 46.41 0.2134 0.2610
Ours 0.2607 0.3778  1.077 1.314 24.79 3299  0.0902 0.1260

4.2.3 ABOVEGROUND BIOMASS

Observation Dataset: Similar to poverty estimation, the observation variables are an input loca-
tion and the output AGB estimate. We use NASA’s GEDI (Dubayah et all 2020) to obtain the
observation value for three states in USA. We use data from the state of Massachusetts and Maine
(North-East) as the train/test set and Washington (NorthWest) as the out-of-distibution set.

Metric and Primitives: We use L2 error as the metric and the same primitives as poverty estimation.

4.2.4 CONTIGUOUS SOLAR INDUCED CHLOROPHYLL FLUORESCENCE (CSIF)

Observation Dataset: The goal is to forecast CSIF values, by observing past CSIF and environmen-
tal values. Unlike other problems, which could make use of spatial information and thus required
satellite images, CSIF forecasting is done without using satellite images. On the other hand, since
this is a forecasting problem, is uses past CSIF values as well as past and current values of environ-
mental variable. The observation variables are an input location and output CSIF values. The data
comes from ERAS climate data store (Hersbach et al., [2020).

Metric and Primitives: We use L2 error for each location as the evaluation metric. Along with the
mathematical and logical operations. The primitive allows obtaining present environmental variables
as well as a time series of past environmental variables such as minimum and maximum temperature
of past months, or soil moisture index (see appendix [B).

4.3 EXPERIMENTAL SETUP
For the same set of training data we compare our best generated hypotheses with a set of baselines.

1. Mean: A naive baseline that use the mean of the training observation as the prediction.

2. Concept Bottleneck (Linear): Similar to Koh et al.|(2020)), we first extract a list of relevant
features and train a linear classifier on it. This method is interpretable due to the bottleneck,
however it is not very expressive (see appendix [E.I)).

3. Deep models: We use deep models such as Resnets and LSTM as baseline (see ap-
pendix for details). We use a small and large variant for each.

4. Zero-shot: This baseline tests how good would LLMs be on their own in generating hy-
potheses solely relying on prior knowledge without any observation. Since the generated
programs can vary drastically, we report an average of 5 different zero-shot programs.

4.4 RESULTS AND DISCUSSION

We first test our hypothesis on unseen but in-domain observations/regions close to the regions used
for training (table [T). We observe that DiSciPLE outperforms all interpretable baselines. It can
even outperform a deep model in many cases, specifically on population density estimation, while
being significantly more interpretable. DiSciPLE also outperforms zero-shot program inference
from LLMs suggesting that LLMs only have incomplete information about scientific domains and
our evolutionary process is necessary to identify a better hypothesis.
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Table 2: Performance of our hypotheses on out-of-distribution observations across various problems.
This shows the reliability of programs produced by DiSciPLE (red is best and blue is second best).

Spatial Temporal
Population Density Poverty AGB CSIF
L2-Log Ll-Log L1 RMSE L1 RMSE L1 RMSE
Mean 0.6734  0.6561 1.591 1.844 74.15 83.02 0.2393 0.3018

Concept Bottleneck ~ 0.7951 0.7112 1257 1504 4419 63.52 0.1565 0.2029
Deep Model - Small  0.6623 0.5967  1.284 1.654  35.27 53.06 0.1061 0.1614
Deep Model - Large  0.4460  0.5115 1344 17741 3541 7030 0.1815 0.2435
Zero-shot 0.7020  0.6412 1510 1.773 55.11 6432 02190 0.2814
Ours 0.3807 04426 1.134 1420 31.10 4293 0.0882 0.1256

Are our hypotheses reliable? If a hypothesis is reliable it should be able to generalize to other
regions. table [2] shows DiSciPLE to these baselines on such a out-of-distribution set. Here our
approach outperforms all baselines including deep networks, suggesting that due to its interpretable-
by-design representation our method learns model that can generalize better and overfit less.

Are our hypotheses data-efficient? Our methods are only trained on a maximum of 4000 ob-
servations. section further shows that even when the amount of training data is reduced, our
approach shows minimal degradation in performance compared to deep networks. This suggests
that while deep models can learn to generalize with a lot more data, our model does not need as
much data to begin with, making it data-efficient.

1.0
508 g — DiSciPLE (Oracle)
5 & 0.8 DiSciPLE
~ 0.6 N —— Deep Model
- A 0.6
2 0.4 8 T
= Cod4
12.5% 25% 50% 100% 12.5% 25% 50% 100%
Fraction of training observations Fraction of training observations

Figure 4: Performance of DiSciPLE compared to deep baselines as we reduce the amount of training
observation (in terms of L2 error). The Oracle (blue) uses program learned from all observations,
but uses only partial observation for parameter training. DiSciPLE (orange) uses partial observation
during evolution as well. While the errors get worse as we reduce the observation data, the drop is
significantly less severe for DiSciPLE compared to deep models, that tend to overfit.

Are our hypotheses interpretable? Our hypotheses are interpretable-by-design as we can visu-
alize the factors contributing to performance. Fig. [3|shows such programs (left in each card) for all
four of our problems. An expert who is working with our method to figure out such hypotheses can
add/edit parts of the formula and figure out which/how much do each of these components matter.

We perform this step of understanding the influence of individual operation by removing each op-
eration in our program, and measure its affects on the final score. The DAGs on the right of each
program show the program structure and the red edges show the influence of each component pro-
portional to the width. This visualization can allow experts to understand which which operations
are important for the model. For example, in the program graph for population density fig.[3| we can
see that for semantic concepts such as “highway” and “residential building” are very important.

Can our method perform better than expert humans? Our method would only be useful in
real-world scenarios, if it can come up with stronger or comparable hypotheses to human experts.
We test this on the task of AGB, by providing an expert (a PhD student actively working on AGB)
with a user interface with the same information as our method. The experts took about 1.5 hours
to use their domain knowledge and iterate over their program for AGB estimation. However, the
best program they could come up with had an L1 error of 37.65 on the in-distribution set and 53.20
on the OOD set (compared to 24.79 and 31.10 for DiSciPLE). We figure this is primarily because
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Table 3: Performance of our method as we successively remove the components. Both critic and
simplification lead to performance improvement for our method.

Test 00D
Feature-set pred.  Critic ~ Simplification L2log Lllog L2log L1 log

0.3159 0.4296 0.4835 0.5178
0.2906  0.4049 0.4258 0.4826
0.2873 0.3984 0.4184 0.4684
0.2607 03778 0.3807 0.4426

AN N N
NN X %
N X% X %

experts need to spend more time on the problem. In general, experts would spend numerous days to
come up with a good hypothesis, while our method can come up with a better hypothesis faster.

4.5 ABLATIONS

How important is the role of feature-set prediction, critic, and simplification? Table 3| mea-
sures the performance of our model on the task of population density as we successively add these
components to the evolutionary algorithm. The addition of feature set prediction instead of a single
feature helps, as it allows our method to learn expressive linear regression parameters instead of let-
ting the LLM come up with them. Further adding critic results further improvement as the programs
start covering nicher concepts resulting in better unseen and OOD generalization. Finally adding
in simplification also improves hypothesis. We posit that simplification removes irrelevant features
preventing the LLM to focus on them when performing crossovers.

How important are common sense and prior knowledge of LLMs? The two major differences
or our method from symbolic regression are: 1) better crossover and mutation as LLMs can under-
stand the meaning of the primitive functions. 2) use of prior knowledge for better guided search.
Therefore we remove these two sources of information and test how well can our method perform.
To remove the understanding of functions we rename them with meaningless terms and remove the
descriptions. To remove the context of the problem we remove objective prompt. Without common
sense, the search cannot even progress away from the initial random programs, resulting in worse-
than-mean results (L1 error of 0.84 vs 0.26 for DiSciPLE on density estimation). This suggests that
symbolic regression models, that have no understanding of open-world primitives, would struggle
to search. If we just remove the context of the problem the model does slightly better and can obtain
results better than the mean and zero-shot hypotheses (L1 error of 0.45). This suggests that while the
search is moving in the objective’s direction, it is slow. (see appendix for the complete table).
We also present more ablations of our method in appendix [D}

5 DISCUSSION AND CONCLUSION

Limitations: A limitation of DiSciPLE is that we can only differentiably optimize learnable pa-
rameters in the last computational layer. This could miss out on hypotheses with useful parameters
in some intermediate computation layers. We attempted to make the whole pipeline differentiable,
however the model performance did not improve much. Many of the operations in our pipeline even
though differentiable have zero-gradient in large part of input space, making gradient optimization
challenging. Moreover, a completely differentiable hypothesis is even slower to optimize result-
ing in much slower evolution. In future work, we plan to use initialization tricks for non-linear
optimization and second-order optimization to obtain even more expressive models.

Conclusion: We present DiSciPLE — an evolutionary algorithm that leverages the prior-knowledge
and common sense abilities of LLMs to create interpretable, reliable and data-efficient hypotheses
for real-world scientific problem. This allows us to create hypotheses that are more powerful than
existing interpretable counterparts and more insightful than deeper uninterpretable models while
being on-par in terms of performance. We shows its prowess on 2 different expert scientific domain
on 4 different problems. We believe that using DiSciPLE in tandem with a human expert can rapidly
speed up the scientific process and result in numerous novel discoveries.

10
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A CROSSOVER AND MUTATION PROMPTS

For crossover we take two programs and their corresponding scores. We use the following prompt

for crossover:

{{h}}
This program has a score of {{s(h1)}}.
{{h2}}
This program has a score of {{s(ha)}}.

Can you write a function that gives higher score? Feel free to
combine elements that worked from both programs. Only give me
code.

And similarly we use the following prompt for random mutation.

{n}}

This program has a score of {{s(h)}}.

Can you edit this code to write a better function for the problem?

Only give me code.

B PROBLEM SPECIFIC PRIMITIVE DESCRIPTION

B.1 PRIMITIVES AND THEIR DESCRIPTIONS FOR POPULATION DENSITY

def elementwise_max (matrixl, matrix2):

mwn

Compute the element-wise maximum of two matrices.

Parameters:
matrixl (numpy.ndarray): First input matrix.
matrix2 (numpy.ndarray): Second input matrix.

Returns:

numpy.ndarray: Element-wise maximum of the input matrices.
mmn

def elementwise_min (matrixl, matrix2):

mwn

Compute the element-wise minimum of two matrices.

Parameters:
matrixl (numpy.ndarray): First input matrix.
matrix2 (numpy.ndarray): Second input matrix.

Returns:
numpy.ndarray: Element-wise minimum of the input matrices.

mwn

def elementwise_sum(matrixl, matrix2):
mmwn

Compute the element-wise sum of two matrices.
Parameters:
matrixl (numpy.ndarray): First input matrix.

matrix2 (numpy.ndarray): Second input matrix.

Returns:

14
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numpy.ndarray: Element-wise sum of the input matrices.
mimn

def elementwise_product (matrixl, matrix2):

mmwn

Compute the element-wise product of two matrices.

Parameters:
matrixl (numpy.ndarray): First input matrix.
matrix2 (numpy.ndarray): Second input matrix.

Returns:

numpy.ndarray: Element-wise product of the input matrices.
mmn

def elementwise_division(matrixl, matrix?2) :
mmrn

Compute the element-wise division of two matrices.

Parameters:
matrixl (numpy.ndarray): First input matrix.
matrix2 (numpy.ndarray): Second input matrix.

Returns:

numpy.ndarray: Element-wise division of the input matrices.
mmn

def matrix_scalar_multiplication(matrix, scalar):
mmrn

Perform matrix scalar multiplication.

Parameters:
matrix (numpy.ndarray): Input matrix.
scalar (int or float): Scalar value.

Returns:

numpy.ndarray: Result of matrix scalar multiplication.
mmn

def elementwise_log(matrix) :
mmrn

Compute the element-wise logarithm of a matrix.

Parameters:
matrix (numpy.ndarray): Input matrix.

Returns:

numpy.ndarray: Element-wise logarithm of the input matrix.
mmrn

def elementwise_exponentiate (matrix, base):

mmn

Compute the exponentiation of each element of a matrix with a given
— base.

Parameters:
matrix (numpy.ndarray): Input matrix.

base (int or float): Base value.

Returns:

numpy.ndarray: Exponentiated matrix.
mimn

def min_pixel_distance_to_mask (mask) :

15
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mn

Compute the minimum pixel distance from each pixel to a mask.

Parameters:
mask (numpy.ndarray): Binary mask array where 1 represents the
— mask and 0 represents the background.

Returns:

numpy.ndarray: Minimum pixel distance to the mask.
mmn

def segment (im, text_prompt="trees"):
mmnmn
Segments a satellite image based on a text prompt. The text prompt
— can only take one concept at a time.

Parameters:
im (numpy.ndarray): An rgb satellite image.
text_prompt (str): a text prompt

Returns:
mask (numpy.ndarray): Binary mask array where 1 represents the
— mask and 0 represents the background.

Example:

text_prompt can be but not limited to these:

["tennis", "skate park", "football field", "swimming pool",

"cemetery", "multi-storey garage", "golf", "roundabout",

"parking lot", "supermarket", "school", "marina", "baseball

building", "residential building", "warehouse", "office

"nature reserve", "park", "sand", "soccer field", "equestrian
club", "shooting range", "ice-rink", "commercial area",
"garden", "dam", "railroad", "highway", "river", "wetland",
"non-residential buildings", "coastline"]

rrrerrngyd

B.2 PRIMITIVES AND THEIR DESCRIPTIONS FOR AGB AND POVERTY PREDICTION

The evolutionary search uses all the above defined functions, plus the following:

def get_satellite_image (location) :
mmn
Get the satellite image for a given location.
Parameters:

location (tuple): Tuple containing the latitude and longitude of

— the location.
Returns:
numpy.ndarray: Satellite image for the location.

Can be used for segmentation ONLY.
mmrn

def get_temperature (location) :
mmn

Get the average annual temperature for a given location.
Parameters:

location (tuple): Tuple containing the latitude and longitude of

— the location.
Returns:
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def

def

def

def

B.3

float: Temperature for the location normalized between 0 and
— 255.

mmwn

get_precipitation (location) :
mmn
Get the average annual precipitation for a given location.
Parameters:
location (tuple): Tuple containing the latitude and longitude of
— the location.
Returns:
float: Precipitation for the location between 0 and 255.

mmn

get_elevation (location) :

mmn

Get the elevation for a given location.

Parameters:
location (tuple): Tuple containing the latitude and longitude of
— the location.

Returns:
float: Digital Elevation for the location (scaled 0-8000) to
— 0-255.

mmwn

get_nightlight_intensity(location) :
mmrn
Get the average annual nightlight intensity for a given location.
Parameters:
location (tuple): Tuple containing the latitude and longitude of
— the location.
Returns:
float: Nightlight intensity for the location (between 0 and 1).

mown

get_average (segmented_image) :
mmww

Get the average pixel value of a segmented image.

Parameters:
segmented_image (numpy.ndarray): Segmented image.

Returns:
float: Average pixel value of the segmented image.

PRIMITIVES AND THEIR DESCRIPTIONS FOR CSIF FORECASTING

For CSIF forecast, the API borrows mathematical and logical functions from above. Additionally it
has the following to obtain more environmental variables.

def

get_historical_csif (locations, num_months=36) :

Get historical CSIF (contiguous solar induced chlorophyll

— fluorescence) time-series data for the last given number of
< months.

Parameters:
locations: a list of locations in a specific format.
num_months (int): Last number of months to get time-series data
— for.
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def

def

def

def

Returns:
numpy.ndarray: Historical time series data for the given
— locations. size = (len(locations), num months)

mn

get_historical min_temperature (locations, num_months=36) :

mmn

Get historical minimum temperature time-series data for the last
— given number of months.

Parameters:
locations: a list of locations in a specific format.
num_months (int): Last number of months to get time-series data

— for.

Returns:
numpy.ndarray: Historical time series data for the given
— locations. size = (len(locations), num months)

mmwn

get_historical_max_temperature (locations, num_months=36) :

mmn

Get historical maximum temperature time-series data for the last
— given number of months.

Parameters:
locations: a list of locations in a specific format.
num_months (int): Last number of months to get time-series data

— for.

Returns:
numpy.ndarray: Historical time series data for the given
< locations. size = (len(locations), num _months)

mn

get_historical_radiation(locations, num_months=36) :

mmrn

Get historical solar radiation time-series data for the last given
— number of months.

Parameters:
locations: a list of locations in a specific format.
num_months (int): Last number of months to get time-series data

— for.

Returns:
numpy.ndarray: Historical time series data for the given
< locations. size = (len(locations), num months)

mmwn

get_historical_precipitation(locations, num_months=36) :

mmn

Get historical precipitation time-series data for the last given
— number of months.

Parameters:
locations: a list of locations in a specific format.
num_months (int): Last number of months to get time-series data

— for.

Returns:
numpy.ndarray: Historical time series data for the given
«— locations. size = (len(locations), num months)

mmn

18
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61 def get_historical_photoperiod(locations, num_months=36) :

62 mmrn

63 Get historical photoperiod time-series data for the last given
— number of months.

64

65 Parameters:

66 locations: a list of locations in a specific format.

67 num_months (int): Last number of months to get time-series data
— for.

68 Returns:

69 numpy.ndarray: Historical time series data for the given
< locations. size = (len(locations), num _months)

70 mmnmn

71

72

73 def get_historical_swvll (locations, num _months=36) :

74 mmrmn

75 Get historical soil water content in the first layer time-series
— data for the last given number of months.

76

77 Parameters:

78 locations: a list of locations in a specific format.

79 num_months (int): Last number of months to get time-series data
— for.

80 Returns:

81 numpy.ndarray: Historical time series data for the given
« locations. size = (len(locations), num months)

32 mwn

83

84

85 def get_present_min_temperature (locations) :
86 mmn

87 Get present minimum temperature data for the given locations.

88

89 Parameters:

90 locations: a list of locations in a specific format.

91 Returns:

92 numpy.ndarray: Present minimum temperature data for the given
« locations. size = (len(locations),)

93 mmn

94

95 def get_present_max_temperature (locations) :
96 mmrn

97 Get present maximum temperature data for the given locations.

98

99 Parameters:

100 locations: a list of locations in a specific format.

101 Returns:

102 numpy.ndarray: Present maximum temperature data for the given
— locations. size = (len(locations),)

103 mmn

104

105 def get_present_radiation(locations):
]06 mrmumn

107 Get present solar radiation data for the given locations.

108

109 Parameters:

110 locations: a list of locations in a specific format.

111 Returns:

P12 numpy.ndarray: Present solar radiation data for the given
— locations. size = (len(locations),)

113 mmrn
114
115 def get_present_precipitation(locations) :
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116 e

117 Get present precipitation data for the given locations.

118

119 Parameters:

120 locations: a list of locations in a specific format.

121 Returns:

122 numpy.ndarray: Present precipitation data for the given

— locations. size = (len(locations),)
123 e
124
125 def get_present_photoperiod(locations) :
126 mmn

127 Get present photoperiod data for the given locations.

128

129 Parameters:

130 locations: a list of locations in a specific format.

131 Returns:

132 numpy.ndarray: Present photoperiod data for the given locations.
— size = (len(locations),)

133 mmn

134

135 def get_present_swvll (locations) :

136 mrmnmn

137 Get present soil water content in the first layer data for the given
— locations.

138

139 Parameters:

140 locations: a list of locations in a specific format.

141 Returns:

142 numpy.ndarray: Present soil water content in the first layer
— data for the given locations. size = (len(locations),)

143 mmn
144
145

C MORE EXAMPLES

C.1 MORE EXAMPLES OF CROSSOVER
Parent 1

1 def estimator (location) :

2 images = get_satellite_image (location)

3 temperature = get_temperature (location)

4 precipitation = get_precipitation(location)

5 nightlight = get_nightlight_intensity (location)

6 return temperature, precipitation, elevation, nightlight

Parent 2

def estimator (location):
images = get_satellite_image (location)
roads = segment (images, 'roads')
avg_roads = get_average (roads)
avg_nightlight = get_nightlight_intensity (location)

woR W D =

Program after crossover
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def estimator (location):
images = get_satellite_image (location)
roads = segment (images, 'roads')
avg_roads = get_average (roads)
avg_nightlight = get_nightlight_intensity (location)
avg_precipitation = get_precipitation(location)
avg_temperature = get_temperature (location)
return (avg_roads * avg_precipitation x avg_nightlight =«
— avg_temperature)

Parent 1

def estimator (location):
images = get_satellite_image (location)
forests = segment (images, 'forests')
avg_forests = get_average (forests)
roads = segment (images, 'roads')
avg_roads = get_average (roads)
elevation = get_elevation (location)
nightlight_intensity = get_nightlight_intensity (location)
return avg_forests, avg_roads, 1 / (1 + elevation), 1 / (1 +
— nightlight_intensity)

Parent 2

def estimator (location):
images = get_satellite_image (location)
poverty_mask = segment (images, 'poverty')
return get_average (poverty_mask)

Program after crossover

def estimator (location) :
images = get_satellite_image (location)
poverty_mask = segment (images, 'poverty')
education_mask = segment (images, 'education')
health_mask = segment (images, 'health')
avg_poverty = get_average (poverty_mask)
avg_education = get_average (education_mask)
avg_health = get_average (health_mask)
elevation = get_elevation(location)
nightlight_intensity = get_nightlight_intensity (location)
return avg_poverty, avg_education, avg_health, 1 / (1 + elevation),
— 1 / (1 + nightlight_intensity)

C.2 ILLUSTRATION OF SIMPLIFCATION
For the following program, we show the steps of simplification. Program after crossover

def estimator (im) :
building mask = segment (im, "residential building")
nr_mask = segment (im, "non-residential buildings")
vegetation_mask = segment (im, "forest")
water_mask = segment (im, "lake")
road_mask = segment (im, "highway")
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Table 4: different LLMs

Test OO0D
LLM L2log Lllog L2log Lllog
Owen2.5-7b-instruct 0.2950 0.4039 0.4263 0.4716
llama-3-8b-instruct 0.2626  0.3842 0.3946 0.4514
llama-3.1-8b-instruct ~ 0.2771  0.3872  0.3950 0.4518
llama-3.1-70b-instruct  0.2896  0.3958 0.4223 0.4663

Deep Model - Large 0.3974 0.4843 0.4460 0.5115

building_distance = min_pixel_distance_to_mask (building_mask)
nr_distance = min_pixel_distance_to_mask (nr_mask)
vegetation_distance = min_pixel distance_to_mask (vegetation_mask)
water_distance = min_pixel_distance_to_mask (water_mask)
road_distance = min_pixel_distance_to_mask (road_mask)

return building_distance, nr_distance, vegetation_distance,
— road_distance

In the first step, as can be seen in fig. [3] (top-left graph), at the bottom right there is a leaf node that
is not a return node. We remove that node and other leaf nodes recursively resulting in a graph like
top-right.

Using regression weights our method figures out that the left most branch or
building_distance is not a useful value to be returned. So in the third step we remove
that and recursively all the leaf nodes.

assign road_mask assign buiding_mask assign nr_mask assign vegetation_mask assign water_mask e CEEILEE L L CEEBELLE
! * assign building_distar d_distance
assign roaddistance assign building_distance yv, istance sian veg

assign ni_mask assign vegetation_mask assign road_mask assign building_mask assign ni_m assign vegetation_mask assign road_mask

e i r iask
assign m,"s\wwm/““ﬂmmm assign buiding_distance assign m_w:ﬂuymmm
pl pl

Figure 5: Process of simplification illustrated over a function.

D ADDITIONAL ABLATIONS

D.1 USING DIFFERENT LLMS
A key contribution of our work is to leverage the common-sense knowledge in LLMs to improve

evolutionary search. So, it is natural to question whether (a) LLMs (with similar capacity) trained
with a different large corpus of text would generate hypotheses with different levels of reliability and
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Table 5: Perfomance of our method when removing the context of the problem (objective prompt
from the evolution, and when renaming and not describing the primitive functions to the LLM. We
see significant drops in performance in both cases, suggesting that both the common-sense and prior
knowledge of LLM is important to perform efficient evolutionary search. )

Method Lllog L2log

No common-sense  0.8401 0.7186
No problem context  0.4498  0.5140
DiSciPLE full 0.2607 0.3778

(b) LLMs with larger capacity would produce more reliable hypotheses. We answer these questions
by testing recent LLMs: Qwen-2.5/7b (Team), 2024), llama-3/8b, llama-3.1/8b, llama-3.1/70b. For
ease of experimentation, we reduce the number of generations to 10 and the population size to 60.
We report the results in table [d] DiSciPLE works robustly with various LLMs and could generate
more reliable models/hypotheses than the Deep Model. While the performance of the hypotheses
varies, we do not observe any discernible difference among the various hypotheses.

D.2 ALBATION ON NOISY/UNRELIABLE PRIMITIVES
To investigate how accurate/robust should the underlying black-box model be?, we corroded the
OSM maps with a 3x3 convolution and ran DiSciPLE to generate a new hypothesis. With the

corroded OSM maps, we observe an L2 log error of 0.3713 on the test set — a large degradation in
performance compared to clean OSM maps (L2 log error: 0.2626).

D.3 ABLATIONS OF LLM COMMON-SENSE AND PRIOR KNOWLEDGE

table[5]shows more extensive evaluation performing evaluation without primitive understanding and
problem understanding.

E EXPERIMENTAL SETUP

E.1 MORE DETAILS ON CONCEPT BOTTLENECK BASELINES

For the CSIF task, the concept bottleneck features are average of past CSIF and environmental
variable and the current environmental variable. For all the other tasks, the bottleneck features are
42 categories of segments obtained from either OSM or GRAFT and the environmental variable.

E.2 MORE DETAILS ON DEEP MODELS BASELINE

For spatial tasks, we use a ResNet-18 (He et al., 2016)) based U-Net (Ronneberger et al., 2015) (Deep
Model-Large). Since our model also needs to be data-efficient, to prevent overfitting, we also try
a smaller backbone of 4-layer fully convolutional network(Deep Model-Small). For CSIF, we use
LSTMs Hochreiter & Schmidhuber (1997) of different depth as our big (12-layers) and small (4)
models

F MORE DETAILS

F.1 LIST OF 42 LAND-USE CONCEPTS

Table[6] show the list of 42 concepts extracted from OpenStreetMaps and also used in GRAFT to get
partitions for critic.
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tennis courts skate park american football field

golf course roundabout parking lot

baseball waterfall multi-storey parking garage
religious building  residential building  university building

forest lake nature reserve

equestrian center  shooting range non residential buildings
railroad highway river or stream

swimming pool
supermarket
airport

office

park
commercial area
wetland

cemetery
school
beach
farmland
sandy area
garden
ice-rink

pond
marina
bridge
warehouse
soccer field
dam
coastline

Table 6: List of concepts extracted from OSM and also used via GRAFT for critic data stratification.

24



	Introduction
	Related Works
	Methodology
	Problem Formulation
	Evolutionary Search
	Feature set prediction
	Program Critic
	Program Simplification

	Results
	Implementation details
	Scientific Domains and Problems
	Population Density
	Poverty Indicator
	Aboveground Biomass
	Contiguous Solar Induced Chlorophyll Fluorescence (CSIF)

	Experimental Setup
	Results and Discussion
	Ablations

	Discussion and Conclusion
	Crossover and Mutation prompts
	Problem Specific Primitive Description
	Primitives and their descriptions for Population Density
	Primitives and their descriptions for AGB and Poverty prediction
	Primitives and their descriptions for CSIF Forecasting

	More Examples
	More Examples of Crossover
	Illustration of Simplifcation

	Additional Ablations
	Using different LLMs
	Albation on noisy/unreliable primitives
	Ablations of LLM common-sense and prior knowledge

	Experimental Setup
	More details on concept bottleneck baselines
	More details on deep models baseline

	More details
	List of 42 land-use concepts


