
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DISCIPLE: LEARNING INTERPRETABLE PROGRAMS
FOR SCIENTIFIC DISCOVERY

Anonymous authors
Paper under double-blind review

ABSTRACT

Creating hypotheses for new observations is a key step in the scientific process
of understanding a problem in any domain. A good hypothesis that is inter-
pretable, reliable (good at predicting unseen observations), and data-efficient; is
useful for scientists aiming to make novel discoveries. This paper introduces an
automatic way of learning such interpretable and reliable hypotheses in a data-
efficient manner. We propose DiSciPLE (Discovering Scientific Programs using
LLMs and Evolution) an evolutionary algorithm that leverages common sense and
prior knowledge of large language models (LLMs) to create hypotheses as Python
programs for scientific problems. Additionally, we propose two improvements: a
program critic and a program simplifier to further improve our method to produce
good hypotheses. We evaluate our method on four different real-world tasks in
two scientific domains and show significantly better results. For example, we can
learn programs with 35% lower error than the closest non-interpretable baseline
for population density estimation.

1 INTRODUCTION

The scientific process involves the collection of data, the creation of hypotheses to explain the data,
and experimental testing and validation of the hypothesis to produce scientific laws. This process is
manual, laborious and time consuming. With advances in LLMs, there is an opportunity to automate
the scientific pipeline to greatly accelerate scientific discovery and progress. While prior work in
automating science has looked at efficient data collection (Van Horn et al., 2015; Sener & Savarese,
2018), the possibility of automatic hypothesis generation from observational data has been less
explored. This is especially important because in many domains like earth science, there are vast
troves of data waiting to be analyzed. A method that could automatically scour through this data to
identify hypotheses for scientists to explore can significantly speed up the scientists’ workflow. Our
goal is to address this gap and produce an automatic hypothesis generation framework (fig. 1).

What are good desiderata for an automatic hypotheses generation framework? First, clearly the
generated hypothesis should fit the observations well. This requires that the framework should be
able to search through a large and expressive search space. Second, the generated hypotheses should
be reliable, in that it should correctly predict data even outside of the observations used to generate
the hypotheses. Third, a good hypothesis is one that is interpretable by scientists, since only then
can scientists understand what is being discovered, and frame experiments to test the hypothesis.
Finally, the hypothesis generation framework should be sample efficient. In other words, scientists
coming up with a hypothesis should not need to collect a lot of observations to come up with a good

Input Images

Interpretable Program
def estimator(location):
 images = get_satellite_image(location)
 forests = segment(images, 'forests')
 hotregion = get_temperature(location) > 127
 rainyregion = get_precipitation(location) > 127
 avg_biomass = (forests * 0.4 +
 np.logical_and(hotregion, rainyregion) * 0.1
 + hotregion * 0.05 + rainyregion * 0.05)
 temperature = get_temperature(location)
 precipitation = get_precipitation(location)
 result= avg_biomass * (1 + elevation / 1000) *
 (1 + temperature / 10) * (1 + precipitation / 50
 return result

DiSciPLE

Sa
te

llit
e

Po
pu

lat
io

n

Figure 1: Our method asks an expert
for a problem of interest and the ob-
servation data for that problem. Us-
ing this information it comes up with
interpretable programs as hypothesis
explaining the observation data.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

hypothesis. In this paper, we ask: How can we automatically discover expressive, interpretable and
reliable hypotheses in a sample-efficient way?

Existing approaches that discover hypotheses or formulae are not up to the task. Interpretable ML
techniques such as concept-bottlenecks (Koh et al., 2020) can produce simple bag-of-words pro-
grams for visual classification but are not expressive enough to produce more sophisticated hypothe-
ses. At the other end of the spectrum, black-box neural networks are expressive but offer no insight
to the scientists for exploration. Symbolic regression (Cranmer, 2023) techniques are interpretable
and can produce sophisticated formulae, but are very slow to converge because of the large search
space. This issue is particularly severe in scientific domains where the hypothesis may reference
any concept or variable in the scientific vocabulary, making the search space effectively unbounded.
Neurosymbolic program learning (Johnson et al., 2017) address this search space with reinforcement
learning, but this requires exceptional amount of training data and is not sample-efficient.

To be able to search through a large and expressive search space, recent works have looked at lever-
aging the common sense abilities of large language models (LLMs) (Surı́s et al., 2023). However,
while zero-shot generation from LLMs can work well for well-known problems, they are insufficient
for scientific domains with novel problems and data. Recent work has looked at leveraging LLMs
as the mutation operator in evolutionary algorithms (Romera-Paredes et al., 2024; Chiquier et al.,
2024). We leverage the common sense and prior knowledge of LLMs in tandem with an evolution-
ary algorithm-based symbolic regression method to generate programs as hypotheses, resulting in
a significantly smaller search space. The interpretable programs are learned on a set of lower-level
primitives, including neural modules such as open-world segmentation. Our framework produces
neuro-symbolic programs as good hypotheses.

While performing crossover and mutation with LLMs can produce meaningful programs, several
improvements can be made on the framework to further improve the search. First, unlike symbolic
regression, the hypotheses evaluation in the evolution loop does not have to be limited to a single re-
gression score. The LLM can leverage more information about the current hypothesis to better guide
the search. Therefore, we propose to add a critic to our framework that can provide fine-grained in-
formation about the hypothesis to better guide the search. Our critic divides the training observation
set into fine-grained categories and can provide feedback on categories that the hypothesis does well
on or does badly on. This results in programs that can have an all-round better performance. Second,
while the LLM is good at exploring the search space, many programs produced by the framework
contain frivolous variables, that may not aid the hypotheses. Having such redundant features/parts
in programs can result in more complex final hypotheses as well as a larger search space during evo-
lution. Therefore, we also add an analytical (non-llm-based) program simplification method, that
can remove such frivolous parts of the program.

We run experiments in two different expert domains (demography and climate science) on four real-
world problems and show that we can produce good hypotheses by leveraging LLMs. In all of these
cases, the programs generated are reliable and result in better generalization than deep neural nets.
Moreover, in a few cases, we also observe better performance on even unseen in-distribution data.

Our contributions are:

• We introduce a novel framework DiSciPLE (Discovering Scientific Programs using LLMs
and Evolution), that can produce interpretable, reliable, and sample-efficient hypotheses
for diverse scientific applications.

• We present two key components: a critic and a program simplification method to DiSci-
PLE that can further improve the evolutionary search resulting in better hypotheses.

• We show application of DiSciPLE on real-world problems by applying it on two scientific
domains and four different problems and show that our learned hypotheses are indeed more
interpretable, reliable, and data-efficient compared to baselines.

2 RELATED WORKS

Concept bottlenecks. Concept bottleneck (Koh et al., 2020) is an approach used to create
interpretable-yet-powerful classifiers. The key idea is to train a deep model to predict a set of
low-level concepts or bottlenecks and then learn a linear classifier. Such concept bottlenecks have

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

the basis of methods in several areas such as fine-grained recognition (Ferrari & Zisserman, 2007;
Huang et al., 2016; Zhou et al., 2018; Tang et al., 2020) and zero-shot learning (Lampert et al., 2013;
Akata et al., 2015; Kodirov et al., 2017). However in order to train these models, expensive data is
needed to be collected for the bottleneck concepts themselves. One way to reduce this annotation
cost is to sequentially ask question in an information theoretically optimized way (Chattopadhyay
et al., 2024a;b). Researchers have also automated this pipeline by using large-language models as a
knowledge base to propose concept bottleneck models (Menon & Vondrick, 2023; Pratt et al., 2023;
Han et al., 2023). Chiquier et al. (2024) proposed an evolutionary algorithm with LLMs as the muta-
tion operation to discover interpretable concept bottleneck models without prior information. While
these models are interpretable, they are very simple in terms of expressive power. In this work, we
instead evolve programs, which are more expressive than bag of words, while being interpretable.

Symbolic regression. Symbolic regression (Cranmer, 2023) is a powerful technique for learning
such programs on evolution through evolutionary search. Several methods have been proposed to
improve the search (Makke & Chawla, 2024), however most symbolic regression techniques cannot
solve problems beyond simple mathematical formula. This is partly because the search space of
possible hypotheses is too large due to combinatorial explosion. Like ours, recent work in symbolic
regression (Grayeli et al., 2024) have also looked at using LLMs to better guide the search. However,
they also only test this method on mathematical formula, with limited set of primitives. In real-world
problems, the primitives functions are more complex than mathematical operations and can even be
open-world for example a text-to-image segmentor.

Neuro-Symbolic Program Learning. (Mao et al., 2019; Dong et al.) is another avenue for learn-
ing programs as hypotheses for observation datasets or answering questions. These methods typi-
cally try to learn both discrete program structures together with neural networks. However, since
this optimization is non-differentiable these methods require reinforcement learning (Johnson et al.,
2017) or complex non-differentiable optimization techniques (Ellis et al., 2021). The hard opti-
mization issue makes the problem of learning programs sample inefficient in real-world settings.
We alternatively use LLMs ability to program to better guide the search for such programs.

Program synthesis with LLMs. Several works have utilized LLM coding ability in different ap-
plications such as VQA (Surı́s et al., 2023; Gupta & Kembhavi, 2022) and robot manipulation (Liang
et al., 2023). While the zero-shot inferred code work very well on domains well-known to the inter-
net, they tend to perform poorly on problems in scientific domains, as shown by our results.

Scientific applications. Researchers in numerous scientific domains have looked machine learn-
ing tools to build predictive models/hypotheses for their quantities of interest. In this work, we
experiment in two such scientific domain of: demography and climate Science. In demography, we
focus on the problems of socioeconomic indicator prediction (Yong & Zhou, 2024), namely popula-
tion density and poverty estimation (Metzger et al., 2024; Xie, 2017). Similarly in climate science
we focus on two problems of aboveground biomass prediction (AGB) (Nathaniel et al., 2023) and
Contiguous Solar Induced Chlorophyll Fluorescence(CSIF) forecasting (Zhang et al., 2018).

3 METHODOLOGY

Our key contribution is a hypothesis generation framework that leverages LLMs and performs evo-
lutionary search. In section 3.1 we formalize the problem of hypothesis generation. In section 3.2
we present our method of incorporating LLMs in the evolutionary search framework. Finally, In
section 3.3, 3.4 and 3.5, we discuss the improvements to this framework to speed-up the search.

3.1 PROBLEM FORMULATION

Data/Observation: To come up with hypotheses, scientists first collect data/observations for a
problem they are trying to understand. We represent a collection of n such observations using
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}. Here, xi ∈ X is the input data/covariates to the hypothesis,
and yi ∈ Y is the true observed output for a quantity of interest. For the problem of “population
density estimation from satellite images”, X could be the set of satellite images for different regions

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Sampled Programs

Python Interp
+ API

Labeled Training Set

Insert into Bank

LLM-Evolution
(Llama3)

API SpecificationProgram Bank

… Generated Program

def segment(img):…
def elementwise_max(img):…
def elementwise_sum(img):…
def elementwise_log(img):…
def elementwise_product(img):…
def elementwise_division(img):…
def min_pixel_distance_to_mask(img):…

def estimator(im):
 vegetation = elementwise_max(segment(im, "forest"), segment(im, "trees"))
 water_body = segment(im, "lake")
 distance_to_water = min_pixel_distance_to_mask(water_body)
 road = segment(im, "highway")
 building = elementwise_max(segment(im, "residential building"),
 segment(im, "commercial area"))
 distance_to_road = min_pixel_distance_to_mask(road)
 return distance_to_water, distance_to_road, vegetation, building

def estimator(im):
 feature1 = elementwise_max(segment(im, "residential building"), segment(im,
"commercial area"))
 feature2 = elementwise_sum(segment(im, "park"), segment(im, "forest"))
 feature3 = elementwise_product(segment(im, "school"), segment(im,
"university building"))
 feature4 = elementwise_division(segment(im, "highway"), segment(im, "road"))
 feature5 = elementwise_log(segment(im, "airport"))
 return feature1, feature2, feature3, feature4, feature5

def estimator(im):
 vegetation = elementwise_max(segment(im, "forest"), segment(im, "trees"))
 water_body = segment(im, "lake")
 distance_to_water = min_pixel_distance_to_mask(water_body)
 return distance_to_water, vegetation

LLM-Critic
(Llama3)

def estimator(im):
 vegetation = elementwise_max(segment(im, "forest"), segment(im, "trees"))
 road = segment(im, "highway")
 building = elementwise_max(segment(im, "residential building"),
segment(im, "commercial area"))
 distance_to_road = min_pixel_distance_to_mask(road)
 distance_to_airport = min_pixel_distance_to_mask(segment(“airport”))
 return distance_to_road, vegetation, building, distance_to_airport

def estimator(im):
 vegetation = elementwise_max(segment(im, "forest"), segment(im, "trees"))
 water_body = segment(im, "lake")
 distance_to_water = min_pixel_distance_to_mask(water_body)
 road = segment(im, "highway")
 building = elementwise_max(segment(im, "residential building"), segment(im, "commercial area"))
 distance_to_road = min_pixel_distance_to_mask(road)
 distance_to_airport = min_pixel_distance_to_mask(segment(“airport”))
 return distance_to_water, distance_to_road, vegetation, building, distance_to_airport

Simplify

Improved Program

Figure 2: Overview of our evolutionary algorithm with critic and simplification. We start with an
initialized bank of program trying to solve a task. From this bank we sample pairs of programs
based on their fitness score and perform crossover/mutations over them to produce new programs.
The generated program is further improved by passing it through a critic and then an analytical sim-
plification step. This program is then evaluated and put in the next generation of program bank. The
evaluation score of the program is used to determine the fitness for the next iteration of evolution.

and Y would be population density maps for the corresponding satellite images collected through
census. Our goal is to discover an interpretable hypothesis h that can explain observations D. Since
we want our hypothesis to be data-efficient, n is typically small: in the order of a few thousand.

Objective: The scientist or expert also provides a natural language name or description descr of
the quantity of interest Y . For example, this may be the phrase “population density”. As we will see
below, this information will be useful in guiding the LLM to search the space well.

Metric: The scientists or domain experts also provide a hypothesis evaluation metricM. A good
hypothesis can lead to the best evaluation score

s(h;D) = 1

n

n∑
i=1

M(h(xi), yi) (1)

For example, in the case of population density a good metric used by domain experts is L2 error
over log i.e.M(y′, y) = ||log(y′)− log(y)||2 (Metzger et al., 2022; 2024).

Primitives: Finally, the experts also provide our framework with a set of primitive variables and
functions F = {f1, f2 . . . fk}, that can be used to construct a hypothesis h. This set of primitive
variables can even be unbounded or open-vocabulary. For example, for scientists analyzing remote-
sensing image data, these primitives can include an open-vocabulary segmentation model (Mall
et al., 2023). The primitives also include mathematical, logical, and image operations that can be
composed to create powerful hypotheses. Examples of such primitives could be logarithm operation,
elementwise maximum, or a distance transform respectively. Finally, the primitives can also be used
to query specific attributes of the data, such as the average temperature or average precipitation at
a location. The API of primitive functions can also change depending on the application domain.
Please refer to section 4.2 for primitive API specifications for individual problems.

3.2 EVOLUTIONARY SEARCH

In evolutionary program search, we typically start with a large population of random programs.
These programs are then sampled based on their fitness as parents. The parent programs create
new programs through crossover and mutation, resulting in a new population. Newer generations
improve over the previous as the population is getting optimized for the fitness function. The metric
M can be used as the fitness function in our work.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: DiSciPLE’s learning loop
Input: Observation set D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, metricM, an objective prompt

po, a set of primitive function F = {f1, f2 . . . fk}
Hyperparameters: Mutation probability ρm, total number of generations T , population size

M , crossover prompt pc, and mutation prompts pm.
Output: A hypothesis h∗ in the form of a program that explains the observations best.

1 H0 ← {} // Initialize a population of programs
2 for i = 1, . . . ,M do
3 h0

i ← LLM(po)
4 H0 ← H0 ∪ {h0

i }
5 h∗ ← h0

i
// Learn a D that discriminates the training set {(x, y)}

6 for t = 0, . . . , T do
7 Ht+1 ← {}
8 for i = 1, . . . ,M do
9 ht

k1
, ht

k2
← sample parents(Ht) // Sample parents for crossover

10 ht+1
i ← LLM(ht

k1
, ht

k2
, s(ht

k1
;D), s(ht

k2
;D), po, pc) // crossover operation

11 if u ∼ U(0, 1) < ρm then
12 ht+1

i ← LLM(ht+1
k , s(ht+1

k ;D), po, pm) // mutation operation

// critique and simplification

13 ht+1
i ←critic(ht+1

i) ht+1
i ←simplifier(ht+1

i)

14 if s(ht+1
i ;D) > s(h∗;D) then

15 h∗ ← ht+1
i

16 Ht+1 ← Ht+1 ∪ {ht+1
i }

17 return h∗;

In our method, we keep the overall algorithm the same but replace key steps in using LLMs. First,
at the start of the process, we provide the LLM with a prompt for the objective to generate the
initial programs. To leverage the prior knowledge of LLMs, we use a prompt po that mentions the
expert specified description of the quantity of interest: “Given a satellite image, write a function
to estimate ⟨descr⟩”. While an LLM cannot answer such a difficult scientific question without
leveraging the observations D, the prompt prevents the evolutionary algorithm from searching in
completely random directions. As a result, our initial population is not entirely random.

Second, rather than using the symbolic methods of crossover and mutation, we use LLM to perform
these operations. LLMs have common sense about programming and result in much better program
modifications when performing crossover and mutations. More specifically, let ht

k1
and ht

k2
be

two programs sampled from the tth generation selected as parents based on the fitness function. To
perform a crossover operation we pass, the objective prompt po, the two programs ht

k1
and ht

k2
, their

corresponding scores (using eq. (1)), along with a crossover prompt pc to obtain a new program:

ht+1
k = LLM(ht

k1
, ht

k2
, s(ht

k1
;D), s(ht

k2
;D), po, pc) (2)

The crossover prompt instructs the LLM to make use of the two-parent program and come up with
a new program. The LLM is able to combine elements from the parents to produce something new
as can be seen in fig. 2. Please refer to the appendix C.1 for more examples.

Similar to crossover, we also mutate a program with some probability using a mutation prompt pm.

mht+1
k = LLM(ht+1

k , s(ht+1
k ;D), po, pm) (3)

We present the exact input fed to the LLM for crossover and mutation in the appendix A. Note that
both crossover and mutation operations also include the objective prompt preventing the LLM from
generating programs far away from the objective.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.3 FEATURE SET PREDICTION

Hypotheses for many problems require combination of multiple feature. Optimizing for the correct
combination of these features is challenging for an LLM, as we are not doing gradient-based opti-
mization. Therefore instead of prompting the LLM to directly generate a predictor for y, we prompt
is to create a list of predictive features. We can learn a linear regressor on top of this list and use the
regressor with the list of features as hypotheses. Both the program and regressor are interpretable,
therefore our hypothesis is also interpretable.

3.4 PROGRAM CRITIC

The only form of supervision our method gets is through the metric score s(h;D) created by evaluat-
ing the program h on the observations. However, since we perform crossover and mutation through
a language model, we can provide finer-grained information to LLM in order to aid the search.

More specifically, we propose a critic that performs a finer-grained evaluation of the program that
we get after crossover/mutation. Our critic performs a stratified evaluation by partitioning the ob-
servation data into multiple categories and evaluating the program on individual strata.

D = d1 ∪ d2 ∪ · · · ∪ dc, where di ∩ dj = ∅ for i ̸= j (4)

In all the applications where we use satellite images, we partition the observation dataset into land-
use categories, using an open-world segmentation model. The critic obtains per-partition score
s(h; di) and prompts the LLM to improve the program on categories the model is bad. The addition
of a critic improves the programs on data overlooked by programs, resulting in reliable programs.

3.5 PROGRAM SIMPLIFICATION

Successive steps of crossovers and mutations of programs result in large programs with many redun-
dancies, hurting interpretability. We propose an analytical approach to simplify the programs and
remove the redundant parts of it. Our hypothesis are programs without loop, they can be represented
as a directed acyclic graphs (DAG) (we use the abstract syntax tree (AST); see fig. 5). In these
DAGs, all the constants and the arguments of the function are root nodes. Only the return statement
and the unused variables are the leaf nodes. Any leaf node that is not a return statement, is a piece
of code that is not needed and can be removed. We then recursively remove all the leaf nodes that
are not return statements.

While removing such nodes (unreachable by the return statement) is useful, there could still be fea-
tures that are returned by the program but are not contributing. Recall that we use linear regression
on the list of features returned by the program. The weights assigned to individual features by the
regression model are useful indicators of which features are redundant. We remove the features that
have a significantly smaller weight compared to the largest weight in the regression (a threshold of
5% works well). Removing these features from the return statement results in numerous newly cre-
ated leaf nodes. We, therefore, redo the recursive leaf node removal to further simplify the program.
Each program generated by mutations and crossover is first improved through the critic and then
simplified before adding back to the population. Algorithm 1 shows the complete algorithm.

4 RESULTS

4.1 IMPLEMENTATION DETAILS

We used the open-source LLM llama-3-8b-instruct (Dubey et al., 2024) served using the vLLM
library (Kwon et al., 2023). A majority of our evaluation tasks use satellite images, so to allow in-
ferring semantic information from it, we use a black-box open-world foundational model for satellite
images, GRAFT (Mall et al., 2023). Some experiments use ground-truth annotations from Open-
StreetMaps (Vargas-Munoz et al., 2020) as an alternative to disentangle the effect of segmentation.

We run our evolutionary method for T = 15 generations with a population size of M = 100. For
all the problems, the input observation data comes from different geographical locations around
the world. We split this data into three parts. Two-thirds of the easternmost observations are used

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

def estimator(location):
 images = get_satellite_image(location)
 roads = segment(images, 'roads')
 buildings = segment(images, 'residential building')
 forests = segment(images, 'forests')
 avg_roads = get_average(roads)
 avg_buildings = get_average(buildings)
 avg_forests = get_average(forests)
 poverty_mask = segment(images, 'poverty')
 avg_poverty = get_average(poverty_mask)
 temperature = get_temperature(location)
 elevation = get_elevation(location)
 nightlights = get_nightlight_intensity(location)
 precipitation = get_precipitation(location)
 return (avg_poverty, avg_roads, avg_buildings, avg_forests,
elevation,
 nightlights, precipitation, avg_poverty * temperature, avg_roads *
 elevation, avg_buildings * nightlights, avg_forests * precipitation)

def estimator(locations):
 avg_radiation = np.mean(get_historical_radiation(locations, 12),
axis=1)
 avg_temperature =
np.mean(get_historical_max_temperature(locations, 12), axis=1)
 correlation = corrcoef(avg_radiation, avg_temperature)
 return get_last(get_historical_csif(locations, 12)) +
(get_present_radiation(locations) - avg_radiation) * correlation

Poverty

CSIF def estimator(im):
 feature1 = elementwise_max(segment(im, 'road'),
segment(im, 'park'))
 feature3 = min_pixel_distance_to_mask(segment(im,
'road'))
 feature4 = elementwise_max(segment(im, 'airport'),
segment(im, 'bridge'))
 feature5 =
elementwise_log(min_pixel_distance_to_mask(segment(im,
'highway')))
 feature6 = elementwise_sum(segment(im, 'residential
building'), segment(im, 'non-residential buildings'))
 feature7 = elementwise_log(segment(im, 'road'))
 return feature1, feature3, feature4, feature5, feature6,
feature7

def estimator(location):
 images = get_satellite_image(location)
 smalltrees = segment(images, 'trees')
 avg_biomass = np.logical_and(get_precipitation(location) > 127,
 get_temperature(location) > 127)
 avg_trees = get_average(smalltrees)
 elevation = get_elevation(location)
 temperature = get_temperature(location)
 precipitation = get_precipitation(location)
 feature1 = avg_biomass * (temperature)
 feature2 = avg_trees * (1 + 0.01 * elevation) * (temperature) *
 (precipitation)
 return feature1, feature2

Population Density

AGB

Figure 3: The best performing hypotheses for each of the 4 problems as Python programs (left
in each card) and the corresponding DAG representation on the right. The DAG representation
allows better visualization of the importance of different components. The thickness of the red
edges determine how important that component is. A black edge represents computation; when
removed it is either the same as one of its subsequent edges or removing it could result in a bug.

to create a training-testing split. The remaining one-third of the data is use to evaluate reliability
(out-of-distribution generalization). We will release all four datasets for future research in this area.

4.2 SCIENTIFIC DOMAINS AND PROBLEMS

We apply DiSciPLE to two different problems in Demography: population density and poverty
prediction. and to two problems in Climate Science: for AGB estimation and CSIF forecasting. In
the following subsections, we present the observation datasets, metrics, and overview of primitives.

4.2.1 POPULATION DENSITY

Observation Dataset: The problem seeks to predict the population density by observing the satellite
images of a region (Metzger et al., 2022; 2024). We obtain the population density values (yi) for
various locations in the USA by using ACS Community Surveys 5-year estimates (United States
Census Bureau, 2024). Input observations (xi) are sentinel-2 satellite images at a resolution of
10m (Drusch et al., 2012). For this experiment, we also use OpenStreetMaps masks (Vargas-Munoz
et al., 2020) for 42 different land-use concepts (see appendix F.1) as part of the input.

Metric and Primitives: Population density values are aggregated at the county block group level.
The predicted population densities are therefore also aggregated at the county block group level.
The metric is the per-block group level average L2 error after applying a log transformation. Along
with the arithmetic, and logical primitives (appendix B), we use open-vocabulary segmentation as a
primitive. The segmentation function returns a binary mask for an input concept.

4.2.2 POVERTY INDICATOR

Observation Dataset: For poverty estimation, we use data from SustainBench (Yeh et al., 2021).
The dataset contains coordinate location as input and wealth asset index as output.

Metric and Primitives: We use L2 error for each location as the evaluation metric. To obtain
semantic land use information about a location, we first define a get satellite image function, that
returns a sentinel-2 satellite image for any location. This can be used in conjunction with the open-
world satellite image recognition model to obtain semantic information about the world. Other than
this we also include as primitives functions that return average annual temperature, precipitation,
nightlight intensity, and elevation at the input location.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Performance of our hypotheses on unseen in-distribution observations across various prob-
lems. In most cases, DiSciPLE produces better hypotheses (red is best and blue is second best).

Spatial Temporal
Population Density Poverty AGB CSIF
L2-Log L1-Log L1 RMSE L1 RMSE L1 RMSE

Mean 0.6696 0.6540 1.613 1.836 42.15 50.65 0.2521 0.3050
Concept Bottleneck 0.8298 0.7279 1.229 1.476 26.33 33.49 0.1474 0.1835
Deep Model - Small 0.4431 0.5006 1.238 1.637 30.72 37.03 0.0503 0.0727
Deep Model - Large 0.3974 0.4843 1.170 1.478 21.15 27.86 0.1487 0.1895
Zero-shot 0.4702 0.5371 1.525 1.754 38.80 46.41 0.2134 0.2610
Ours 0.2607 0.3778 1.077 1.314 24.79 32.99 0.0902 0.1260

4.2.3 ABOVEGROUND BIOMASS

Observation Dataset: Similar to poverty estimation, the observation variables are an input loca-
tion and the output AGB estimate. We use NASA’s GEDI (Dubayah et al., 2020) to obtain the
observation value for three states in USA. We use data from the state of Massachusetts and Maine
(North-East) as the train/test set and Washington (NorthWest) as the out-of-distibution set.

Metric and Primitives: We use L2 error as the metric and the same primitives as poverty estimation.

4.2.4 CONTIGUOUS SOLAR INDUCED CHLOROPHYLL FLUORESCENCE (CSIF)

Observation Dataset: The goal is to forecast CSIF values, by observing past CSIF and environmen-
tal values. Unlike other problems, which could make use of spatial information and thus required
satellite images, CSIF forecasting is done without using satellite images. On the other hand, since
this is a forecasting problem, is uses past CSIF values as well as past and current values of environ-
mental variable. The observation variables are an input location and output CSIF values. The data
comes from ERA5 climate data store (Hersbach et al., 2020).

Metric and Primitives: We use L2 error for each location as the evaluation metric. Along with the
mathematical and logical operations. The primitive allows obtaining present environmental variables
as well as a time series of past environmental variables such as minimum and maximum temperature
of past months, or soil moisture index (see appendix B).

4.3 EXPERIMENTAL SETUP

For the same set of training data we compare our best generated hypotheses with a set of baselines.

1. Mean: A naive baseline that use the mean of the training observation as the prediction.

2. Concept Bottleneck (Linear): Similar to Koh et al. (2020), we first extract a list of relevant
features and train a linear classifier on it. This method is interpretable due to the bottleneck,
however it is not very expressive (see appendix E.1).

3. Deep models: We use deep models such as Resnets and LSTM as baseline (see ap-
pendix E.2 for details). We use a small and large variant for each.

4. Zero-shot: This baseline tests how good would LLMs be on their own in generating hy-
potheses solely relying on prior knowledge without any observation. Since the generated
programs can vary drastically, we report an average of 5 different zero-shot programs.

4.4 RESULTS AND DISCUSSION

We first test our hypothesis on unseen but in-domain observations/regions close to the regions used
for training (table 1). We observe that DiSciPLE outperforms all interpretable baselines. It can
even outperform a deep model in many cases, specifically on population density estimation, while
being significantly more interpretable. DiSciPLE also outperforms zero-shot program inference
from LLMs suggesting that LLMs only have incomplete information about scientific domains and
our evolutionary process is necessary to identify a better hypothesis.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Performance of our hypotheses on out-of-distribution observations across various problems.
This shows the reliability of programs produced by DiSciPLE (red is best and blue is second best).

Spatial Temporal
Population Density Poverty AGB CSIF
L2-Log L1-Log L1 RMSE L1 RMSE L1 RMSE

Mean 0.6734 0.6561 1.591 1.844 74.15 83.02 0.2393 0.3018
Concept Bottleneck 0.7951 0.7112 1.257 1.504 44.19 63.52 0.1565 0.2029
Deep Model - Small 0.6623 0.5967 1.284 1.654 35.27 53.06 0.1061 0.1614
Deep Model - Large 0.4460 0.5115 1.344 1.741 35.41 70.30 0.1815 0.2435
Zero-shot 0.7020 0.6412 1.510 1.773 55.11 64.32 0.2190 0.2814
Ours 0.3807 0.4426 1.134 1.420 31.10 42.93 0.0882 0.1256

Are our hypotheses reliable? If a hypothesis is reliable it should be able to generalize to other
regions. table 2 shows DiSciPLE to these baselines on such a out-of-distribution set. Here our
approach outperforms all baselines including deep networks, suggesting that due to its interpretable-
by-design representation our method learns model that can generalize better and overfit less.

Are our hypotheses data-efficient? Our methods are only trained on a maximum of 4000 ob-
servations. section 4.4 further shows that even when the amount of training data is reduced, our
approach shows minimal degradation in performance compared to deep networks. This suggests
that while deep models can learn to generalize with a lot more data, our model does not need as
much data to begin with, making it data-efficient.

Figure 4: Performance of DiSciPLE compared to deep baselines as we reduce the amount of training
observation (in terms of L2 error). The Oracle (blue) uses program learned from all observations,
but uses only partial observation for parameter training. DiSciPLE (orange) uses partial observation
during evolution as well. While the errors get worse as we reduce the observation data, the drop is
significantly less severe for DiSciPLE compared to deep models, that tend to overfit.

Are our hypotheses interpretable? Our hypotheses are interpretable-by-design as we can visu-
alize the factors contributing to performance. Fig. 3 shows such programs (left in each card) for all
four of our problems. An expert who is working with our method to figure out such hypotheses can
add/edit parts of the formula and figure out which/how much do each of these components matter.

We perform this step of understanding the influence of individual operation by removing each op-
eration in our program, and measure its affects on the final score. The DAGs on the right of each
program show the program structure and the red edges show the influence of each component pro-
portional to the width. This visualization can allow experts to understand which which operations
are important for the model. For example, in the program graph for population density fig. 3, we can
see that for semantic concepts such as “highway” and “residential building” are very important.

Can our method perform better than expert humans? Our method would only be useful in
real-world scenarios, if it can come up with stronger or comparable hypotheses to human experts.
We test this on the task of AGB, by providing an expert (a PhD student actively working on AGB)
with a user interface with the same information as our method. The experts took about 1.5 hours
to use their domain knowledge and iterate over their program for AGB estimation. However, the
best program they could come up with had an L1 error of 37.65 on the in-distribution set and 53.20
on the OOD set (compared to 24.79 and 31.10 for DiSciPLE). We figure this is primarily because

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Performance of our method as we successively remove the components. Both critic and
simplification lead to performance improvement for our method.

Test OOD
Feature-set pred. Critic Simplification L2 log L1 log L2 log L1 log

✗ ✗ ✗ 0.3159 0.4296 0.4835 0.5178
✓ ✗ ✗ 0.2906 0.4049 0.4258 0.4826
✓ ✓ ✗ 0.2873 0.3984 0.4184 0.4684
✓ ✓ ✓ 0.2607 0.3778 0.3807 0.4426

experts need to spend more time on the problem. In general, experts would spend numerous days to
come up with a good hypothesis, while our method can come up with a better hypothesis faster.

4.5 ABLATIONS

How important is the role of feature-set prediction, critic, and simplification? Table 3 mea-
sures the performance of our model on the task of population density as we successively add these
components to the evolutionary algorithm. The addition of feature set prediction instead of a single
feature helps, as it allows our method to learn expressive linear regression parameters instead of let-
ting the LLM come up with them. Further adding critic results further improvement as the programs
start covering nicher concepts resulting in better unseen and OOD generalization. Finally adding
in simplification also improves hypothesis. We posit that simplification removes irrelevant features
preventing the LLM to focus on them when performing crossovers.

How important are common sense and prior knowledge of LLMs? The two major differences
or our method from symbolic regression are: 1) better crossover and mutation as LLMs can under-
stand the meaning of the primitive functions. 2) use of prior knowledge for better guided search.
Therefore we remove these two sources of information and test how well can our method perform.
To remove the understanding of functions we rename them with meaningless terms and remove the
descriptions. To remove the context of the problem we remove objective prompt. Without common
sense, the search cannot even progress away from the initial random programs, resulting in worse-
than-mean results (L1 error of 0.84 vs 0.26 for DiSciPLE on density estimation). This suggests that
symbolic regression models, that have no understanding of open-world primitives, would struggle
to search. If we just remove the context of the problem the model does slightly better and can obtain
results better than the mean and zero-shot hypotheses (L1 error of 0.45). This suggests that while the
search is moving in the objective’s direction, it is slow. (see appendix D.3 for the complete table).
We also present more ablations of our method in appendix D.

5 DISCUSSION AND CONCLUSION

Limitations: A limitation of DiSciPLE is that we can only differentiably optimize learnable pa-
rameters in the last computational layer. This could miss out on hypotheses with useful parameters
in some intermediate computation layers. We attempted to make the whole pipeline differentiable,
however the model performance did not improve much. Many of the operations in our pipeline even
though differentiable have zero-gradient in large part of input space, making gradient optimization
challenging. Moreover, a completely differentiable hypothesis is even slower to optimize result-
ing in much slower evolution. In future work, we plan to use initialization tricks for non-linear
optimization and second-order optimization to obtain even more expressive models.

Conclusion: We present DiSciPLE – an evolutionary algorithm that leverages the prior-knowledge
and common sense abilities of LLMs to create interpretable, reliable and data-efficient hypotheses
for real-world scientific problem. This allows us to create hypotheses that are more powerful than
existing interpretable counterparts and more insightful than deeper uninterpretable models while
being on-par in terms of performance. We shows its prowess on 2 different expert scientific domain
on 4 different problems. We believe that using DiSciPLE in tandem with a human expert can rapidly
speed up the scientific process and result in numerous novel discoveries.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, and Bernt Schiele. Evaluation of output
embeddings for fine-grained image classification. In CVPR, 2015.

Aditya Chattopadhyay, Kwan Ho Ryan Chan, and Rene Vidal. Bootstrapping variational informa-
tion pursuit with large language and vision models for interpretable image classification. In The
Twelfth International Conference on Learning Representations, 2024a.

Aditya Chattopadhyay, Ryan Pilgrim, and Rene Vidal. Information maximization perspective of
orthogonal matching pursuit with applications to explainable ai. Advances in Neural Information
Processing Systems, 36, 2024b.

Mia Chiquier, Utkarsh Mall, and Carl Vondrick. Evolving interpretable visual classifiers with large
language models. 2024.

Miles Cranmer. Interpretable machine learning for science with pysr and symbolicregression. jl.
arXiv preprint arXiv:2305.01582, 2023.

Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li, and Denny Zhou. Neural logic
machines. In International Conference on Learning Representations.

Matthias Drusch, Umberto Del Bello, Sébastien Carlier, Olivier Colin, Veronica Fernandez, Ferran
Gascon, Bianca Hoersch, Claudia Isola, Paolo Laberinti, Philippe Martimort, et al. Sentinel-2:
Esa’s optical high-resolution mission for gmes operational services. Remote sensing of Environ-
ment, 120:25–36, 2012.

Ralph Dubayah, James Bryan Blair, Scott Goetz, Lola Fatoyinbo, Matthew Hansen, Sean Healey,
Michelle Hofton, George Hurtt, James Kellner, Scott Luthcke, et al. The global ecosystem dy-
namics investigation: High-resolution laser ranging of the earth’s forests and topography. Science
of remote sensing, 1:100002, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping in-
ductive program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm
sigplan international conference on programming language design and implementation, pp. 835–
850, 2021.

Vittorio Ferrari and Andrew Zisserman. Learning visual attributes. Advances in neural information
processing systems, 20, 2007.

Arya Grayeli, Atharva Sehgal, Omar Costilla-Reyes, Miles Cranmer, and Swarat Chaudhuri. Sym-
bolic regression with a learned concept library. arXiv preprint arXiv:2409.09359, 2024.

Tanmay Gupta and Aniruddha Kembhavi. Visual programming: Compositional visual reasoning
without training. 2023 ieee. In CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 14953–14962, 2022.

Songhao Han, Le Zhuo, Yue Liao, and Si Liu. Llms as visual explainers: Advancing image classifi-
cation with evolving visual descriptions. arXiv preprint arXiv:2311.11904, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Hans Hersbach, Bill Bell, Paul Berrisford, Shoji Hirahara, András Horányi, Joaquı́n Muñoz-Sabater,
Julien Nicolas, Carole Peubey, Raluca Radu, Dinand Schepers, et al. The era5 global reanalysis.
Quarterly Journal of the Royal Meteorological Society, 146(730):1999–2049, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Shaoli Huang, Zhe Xu, Dacheng Tao, and Ya Zhang. Part-stacked cnn for fine-grained visual cate-
gorization. In CVPR, 2016.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. Inferring and executing programs for visual reason-
ing. In Proceedings of the IEEE international conference on computer vision, pp. 2989–2998,
2017.

Elyor Kodirov, Tao Xiang, and Shaogang Gong. Semantic autoencoder for zero-shot learning. In
CVPR, 2017.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and
Percy Liang. Concept bottleneck models. 2020.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Attribute-based classification for
zero-shot visual object categorization. CoRR, 2013.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500. IEEE, 2023.

Nour Makke and Sanjay Chawla. Interpretable scientific discovery with symbolic regression: a
review. Artificial Intelligence Review, 57(1):2, 2024.

Utkarsh Mall, Cheng Perng Phoo, Meilin Kelsey Liu, Carl Vondrick, Bharath Hariharan, and Kavita
Bala. Remote sensing vision-language foundation models without annotations via ground remote
alignment. arXiv preprint arXiv:2312.06960, 2023.

Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: Interpreting scenes, words, and sentences from natural supervision.
arXiv preprint arXiv:1904.12584, 2019.

Sachit Menon and Carl Vondrick. Visual classification via description from large language models.
ICLR, 2023.

Nando Metzger, John E Vargas-Muñoz, Rodrigo C Daudt, Benjamin Kellenberger, Thao Ton-That
Whelan, Ferda Ofli, Muhammad Imran, Konrad Schindler, and Devis Tuia. Fine-grained pop-
ulation mapping from coarse census counts and open geodata. Scientific Reports, 12(1):20085,
2022.

Nando Metzger, Rodrigo Caye Daudt, Devis Tuia, and Konrad Schindler. High-resolution popula-
tion maps derived from sentinel-1 and sentinel-2. Remote Sensing of Environment, 314:114383,
2024.

Juan Nathaniel, Gabrielle Nyirjesy, Campbell D Watson, Conrad M Albrecht, and Levente J Klein.
Above ground carbon biomass estimate with physics-informed deep network. In IGARSS 2023-
2023 IEEE International Geoscience and Remote Sensing Symposium, pp. 1297–1300. IEEE,
2023.

Sarah Pratt, Ian Covert, Rosanne Liu, and Ali Farhadi. What does a platypus look like? gener-
ating customized prompts for zero-shot image classification. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15691–15701, 2023.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. In International Conference on Learning Representations (ICLR), 2018.

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution for
reasoning. ICCV, 2023.

Luming Tang, Davis Wertheimer, and Bharath Hariharan. Revisiting pose-normalization for fine-
grained few-shot recognition. In CVPR, 2020.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

United States Census Bureau. American community survey 5-year estimates. https://www.
census.gov/programs-surveys/acs, 2024. Accessed: 2024-10-01.

Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 595–604, Boston, MA, 2015.

John E Vargas-Munoz, Shivangi Srivastava, Devis Tuia, and Alexandre X Falcao. Openstreetmap:
Challenges and opportunities in machine learning and remote sensing. IEEE Geoscience and
Remote Sensing Magazine, 9(1):184–199, 2020.

Michael Xie. MAPPING POVERTY WITH SATELLITE IMAGERY. PhD thesis, STANFORD UNI-
VERSITY, 2017.

Christopher Yeh, Chenlin Meng, Sherrie Wang, Anne Driscoll, Erik Rozi, Patrick Liu, Jihyeon Lee,
Marshall Burke, David B Lobell, and Stefano Ermon. Sustainbench: Benchmarks for monitor-
ing the sustainable development goals with machine learning. arXiv preprint arXiv:2111.04724,
2021.

Xixian Yong and Xiao Zhou. MuseCL: Predicting urban socioeconomic indicators via multi-
semantic contrastive learning. CoRR, 2024.

Yao Zhang, Joanna Joiner, Seyed Hamed Alemohammad, Sha Zhou, and Pierre Gentine. A global
spatially contiguous solar-induced fluorescence (csif) dataset using neural networks. Biogeo-
sciences, 15(19):5779–5800, 2018.

Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Interpretable basis decomposition for
visual explanation. In ECCV, 2018.

13

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://www.census.gov/programs-surveys/acs
https://www.census.gov/programs-surveys/acs

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A CROSSOVER AND MUTATION PROMPTS

For crossover we take two programs and their corresponding scores. We use the following prompt
for crossover:

{{h1}}
This program has a score of {{s(h1)}}.
{{h2}}
This program has a score of {{s(h2)}}.
Can you write a function that gives higher score? Feel free to
combine elements that worked from both programs. Only give me
code.

And similarly we use the following prompt for random mutation.

{{h}}
This program has a score of {{s(h)}}.
Can you edit this code to write a better function for the problem?
Only give me code.

B PROBLEM SPECIFIC PRIMITIVE DESCRIPTION

B.1 PRIMITIVES AND THEIR DESCRIPTIONS FOR POPULATION DENSITY

1

2 def elementwise_max(matrix1, matrix2):
3 """
4 Compute the element-wise maximum of two matrices.
5

6 Parameters:
7 matrix1 (numpy.ndarray): First input matrix.
8 matrix2 (numpy.ndarray): Second input matrix.
9

10 Returns:
11 numpy.ndarray: Element-wise maximum of the input matrices.
12 """
13

14 def elementwise_min(matrix1, matrix2):
15 """
16 Compute the element-wise minimum of two matrices.
17

18 Parameters:
19 matrix1 (numpy.ndarray): First input matrix.
20 matrix2 (numpy.ndarray): Second input matrix.
21

22 Returns:
23 numpy.ndarray: Element-wise minimum of the input matrices.
24 """
25

26 def elementwise_sum(matrix1, matrix2):
27 """
28 Compute the element-wise sum of two matrices.
29

30 Parameters:
31 matrix1 (numpy.ndarray): First input matrix.
32 matrix2 (numpy.ndarray): Second input matrix.
33

34 Returns:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

35 numpy.ndarray: Element-wise sum of the input matrices.
36 """
37

38 def elementwise_product(matrix1, matrix2):
39 """
40 Compute the element-wise product of two matrices.
41

42 Parameters:
43 matrix1 (numpy.ndarray): First input matrix.
44 matrix2 (numpy.ndarray): Second input matrix.
45

46 Returns:
47 numpy.ndarray: Element-wise product of the input matrices.
48 """
49

50 def elementwise_division(matrix1, matrix2):
51 """
52 Compute the element-wise division of two matrices.
53

54 Parameters:
55 matrix1 (numpy.ndarray): First input matrix.
56 matrix2 (numpy.ndarray): Second input matrix.
57

58 Returns:
59 numpy.ndarray: Element-wise division of the input matrices.
60 """
61

62 def matrix_scalar_multiplication(matrix, scalar):
63 """
64 Perform matrix scalar multiplication.
65

66 Parameters:
67 matrix (numpy.ndarray): Input matrix.
68 scalar (int or float): Scalar value.
69

70 Returns:
71 numpy.ndarray: Result of matrix scalar multiplication.
72 """
73

74 def elementwise_log(matrix):
75 """
76 Compute the element-wise logarithm of a matrix.
77

78 Parameters:
79 matrix (numpy.ndarray): Input matrix.
80

81 Returns:
82 numpy.ndarray: Element-wise logarithm of the input matrix.
83 """
84

85 def elementwise_exponentiate(matrix, base):
86 """
87 Compute the exponentiation of each element of a matrix with a given

base.↪→
88

89 Parameters:
90 matrix (numpy.ndarray): Input matrix.
91 base (int or float): Base value.
92

93 Returns:
94 numpy.ndarray: Exponentiated matrix.
95 """
96

97 def min_pixel_distance_to_mask(mask):

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

98 """
99 Compute the minimum pixel distance from each pixel to a mask.

100

101 Parameters:
102 mask (numpy.ndarray): Binary mask array where 1 represents the

mask and 0 represents the background.↪→
103

104 Returns:
105 numpy.ndarray: Minimum pixel distance to the mask.
106 """
107

108 def segment(im, text_prompt="trees"):
109 """
110 Segments a satellite image based on a text prompt. The text prompt

can only take one concept at a time.↪→
111

112 Parameters:
113 im (numpy.ndarray): An rgb satellite image.
114 text_prompt (str): a text prompt
115

116 Returns:
117 mask (numpy.ndarray): Binary mask array where 1 represents the

mask and 0 represents the background.↪→
118 Example:
119 text_prompt can be but not limited to these:
120 ["tennis", "skate park", "football field", "swimming pool",

"cemetery", "multi-storey garage", "golf", "roundabout",
"parking lot", "supermarket", "school", "marina", "baseball
field", "fall", "pond", "airport", "beach", "bridge", "religious
building", "residential building", "warehouse", "office
building", "farmland", "university building", "forest", "lake",
"nature reserve", "park", "sand", "soccer field", "equestrian
club", "shooting range", "ice-rink", "commercial area",
"garden", "dam", "railroad", "highway", "river", "wetland",
"non-residential buildings", "coastline"]

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→

121 """

B.2 PRIMITIVES AND THEIR DESCRIPTIONS FOR AGB AND POVERTY PREDICTION

The evolutionary search uses all the above defined functions, plus the following:

1

2

3 def get_satellite_image(location):
4 """
5 Get the satellite image for a given location.
6 Parameters:
7 location (tuple): Tuple containing the latitude and longitude of

the location.↪→
8 Returns:
9 numpy.ndarray: Satellite image for the location.

10

11 Can be used for segmentation ONLY.
12 """
13

14 def get_temperature(location):
15 """
16 Get the average annual temperature for a given location.
17 Parameters:
18 location (tuple): Tuple containing the latitude and longitude of

the location.↪→
19 Returns:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

20 float: Temperature for the location normalized between 0 and
255.↪→

21 """
22

23 def get_precipitation(location):
24 """
25 Get the average annual precipitation for a given location.
26 Parameters:
27 location (tuple): Tuple containing the latitude and longitude of

the location.↪→
28 Returns:
29 float: Precipitation for the location between 0 and 255.
30 """
31

32 def get_elevation(location):
33 """
34 Get the elevation for a given location.
35 Parameters:
36 location (tuple): Tuple containing the latitude and longitude of

the location.↪→
37 Returns:
38 float: Digital Elevation for the location (scaled 0-8000) to

0-255.↪→
39 """
40

41 def get_nightlight_intensity(location):
42 """
43 Get the average annual nightlight intensity for a given location.
44 Parameters:
45 location (tuple): Tuple containing the latitude and longitude of

the location.↪→
46 Returns:
47 float: Nightlight intensity for the location (between 0 and 1).
48 """
49

50 def get_average(segmented_image):
51 """
52 Get the average pixel value of a segmented image.
53

54 Parameters:
55 segmented_image (numpy.ndarray): Segmented image.
56

57 Returns:
58 float: Average pixel value of the segmented image.
59

B.3 PRIMITIVES AND THEIR DESCRIPTIONS FOR CSIF FORECASTING

For CSIF forecast, the API borrows mathematical and logical functions from above. Additionally it
has the following to obtain more environmental variables.

1

2

3 def get_historical_csif(locations, num_months=36):
4 """
5 Get historical CSIF (contiguous solar induced chlorophyll

fluorescence) time-series data for the last given number of
months.

↪→
↪→

6

7 Parameters:
8 locations: a list of locations in a specific format.
9 num_months (int): Last number of months to get time-series data

for.↪→

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

10 Returns:
11 numpy.ndarray: Historical time series data for the given

locations. size = (len(locations), num_months)↪→
12 """
13

14 def get_historical_min_temperature(locations, num_months=36):
15 """
16 Get historical minimum temperature time-series data for the last

given number of months.↪→
17

18 Parameters:
19 locations: a list of locations in a specific format.
20 num_months (int): Last number of months to get time-series data

for.↪→
21 Returns:
22 numpy.ndarray: Historical time series data for the given

locations. size = (len(locations), num_months)↪→
23 """
24

25

26 def get_historical_max_temperature(locations, num_months=36):
27 """
28 Get historical maximum temperature time-series data for the last

given number of months.↪→
29

30 Parameters:
31 locations: a list of locations in a specific format.
32 num_months (int): Last number of months to get time-series data

for.↪→
33 Returns:
34 numpy.ndarray: Historical time series data for the given

locations. size = (len(locations), num_months)↪→
35 """
36

37

38 def get_historical_radiation(locations, num_months=36):
39 """
40 Get historical solar radiation time-series data for the last given

number of months.↪→
41

42 Parameters:
43 locations: a list of locations in a specific format.
44 num_months (int): Last number of months to get time-series data

for.↪→
45 Returns:
46 numpy.ndarray: Historical time series data for the given

locations. size = (len(locations), num_months)↪→
47 """
48

49 def get_historical_precipitation(locations, num_months=36):
50 """
51 Get historical precipitation time-series data for the last given

number of months.↪→
52

53 Parameters:
54 locations: a list of locations in a specific format.
55 num_months (int): Last number of months to get time-series data

for.↪→
56 Returns:
57 numpy.ndarray: Historical time series data for the given

locations. size = (len(locations), num_months)↪→
58 """
59

60

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

61 def get_historical_photoperiod(locations, num_months=36):
62 """
63 Get historical photoperiod time-series data for the last given

number of months.↪→
64

65 Parameters:
66 locations: a list of locations in a specific format.
67 num_months (int): Last number of months to get time-series data

for.↪→
68 Returns:
69 numpy.ndarray: Historical time series data for the given

locations. size = (len(locations), num_months)↪→
70 """
71

72

73 def get_historical_swvl1(locations, num_months=36):
74 """
75 Get historical soil water content in the first layer time-series

data for the last given number of months.↪→
76

77 Parameters:
78 locations: a list of locations in a specific format.
79 num_months (int): Last number of months to get time-series data

for.↪→
80 Returns:
81 numpy.ndarray: Historical time series data for the given

locations. size = (len(locations), num_months)↪→
82 """
83

84

85 def get_present_min_temperature(locations):
86 """
87 Get present minimum temperature data for the given locations.
88

89 Parameters:
90 locations: a list of locations in a specific format.
91 Returns:
92 numpy.ndarray: Present minimum temperature data for the given

locations. size = (len(locations),)↪→
93 """
94

95 def get_present_max_temperature(locations):
96 """
97 Get present maximum temperature data for the given locations.
98

99 Parameters:
100 locations: a list of locations in a specific format.
101 Returns:
102 numpy.ndarray: Present maximum temperature data for the given

locations. size = (len(locations),)↪→
103 """
104

105 def get_present_radiation(locations):
106 """
107 Get present solar radiation data for the given locations.
108

109 Parameters:
110 locations: a list of locations in a specific format.
111 Returns:
112 numpy.ndarray: Present solar radiation data for the given

locations. size = (len(locations),)↪→
113 """
114

115 def get_present_precipitation(locations):

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

116 """
117 Get present precipitation data for the given locations.
118

119 Parameters:
120 locations: a list of locations in a specific format.
121 Returns:
122 numpy.ndarray: Present precipitation data for the given

locations. size = (len(locations),)↪→
123 """
124

125 def get_present_photoperiod(locations):
126 """
127 Get present photoperiod data for the given locations.
128

129 Parameters:
130 locations: a list of locations in a specific format.
131 Returns:
132 numpy.ndarray: Present photoperiod data for the given locations.

size = (len(locations),)↪→
133 """
134

135 def get_present_swvl1(locations):
136 """
137 Get present soil water content in the first layer data for the given

locations.↪→
138

139 Parameters:
140 locations: a list of locations in a specific format.
141 Returns:
142 numpy.ndarray: Present soil water content in the first layer

data for the given locations. size = (len(locations),)↪→
143 """
144

145

C MORE EXAMPLES

C.1 MORE EXAMPLES OF CROSSOVER

Parent 1

1 def estimator(location):
2 images = get_satellite_image(location)
3 temperature = get_temperature(location)
4 precipitation = get_precipitation(location)
5 nightlight = get_nightlight_intensity(location)
6 return temperature, precipitation, elevation, nightlight

Parent 2

1 def estimator(location):
2 images = get_satellite_image(location)
3 roads = segment(images, 'roads')
4 avg_roads = get_average(roads)
5 avg_nightlight = get_nightlight_intensity(location)

Program after crossover

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1 def estimator(location):
2 images = get_satellite_image(location)
3 roads = segment(images, 'roads')
4 avg_roads = get_average(roads)
5 avg_nightlight = get_nightlight_intensity(location)
6 avg_precipitation = get_precipitation(location)
7 avg_temperature = get_temperature(location)
8 return (avg_roads * avg_precipitation * avg_nightlight *

avg_temperature)↪→

Parent 1

1 def estimator(location):
2 images = get_satellite_image(location)
3 forests = segment(images, 'forests')
4 avg_forests = get_average(forests)
5 roads = segment(images, 'roads')
6 avg_roads = get_average(roads)
7 elevation = get_elevation(location)
8 nightlight_intensity = get_nightlight_intensity(location)
9 return avg_forests, avg_roads, 1 / (1 + elevation), 1 / (1 +

nightlight_intensity)↪→

Parent 2

1 def estimator(location):
2 images = get_satellite_image(location)
3 poverty_mask = segment(images, 'poverty')
4 return get_average(poverty_mask)

Program after crossover

1

2 def estimator(location):
3 images = get_satellite_image(location)
4 poverty_mask = segment(images, 'poverty')
5 education_mask = segment(images, 'education')
6 health_mask = segment(images, 'health')
7 avg_poverty = get_average(poverty_mask)
8 avg_education = get_average(education_mask)
9 avg_health = get_average(health_mask)

10 elevation = get_elevation(location)
11 nightlight_intensity = get_nightlight_intensity(location)
12 return avg_poverty, avg_education, avg_health, 1 / (1 + elevation),

1 / (1 + nightlight_intensity)↪→

C.2 ILLUSTRATION OF SIMPLIFCATION

For the following program, we show the steps of simplification. Program after crossover

1 def estimator(im):
2 building_mask = segment(im, "residential building")
3 nr_mask = segment(im, "non-residential buildings")
4 vegetation_mask = segment(im, "forest")
5 water_mask = segment(im, "lake")
6 road_mask = segment(im, "highway")

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 4: different LLMs

Test OOD
LLM L2 log L1 log L2 log L1 log

Qwen2.5-7b-instruct 0.2950 0.4039 0.4263 0.4716
llama-3-8b-instruct 0.2626 0.3842 0.3946 0.4514

llama-3.1-8b-instruct 0.2771 0.3872 0.3950 0.4518
llama-3.1-70b-instruct 0.2896 0.3958 0.4223 0.4663
Deep Model - Large 0.3974 0.4843 0.4460 0.5115

7

8 building_distance = min_pixel_distance_to_mask(building_mask)
9 nr_distance = min_pixel_distance_to_mask(nr_mask)

10 vegetation_distance = min_pixel_distance_to_mask(vegetation_mask)
11 water_distance = min_pixel_distance_to_mask(water_mask)
12 road_distance = min_pixel_distance_to_mask(road_mask)
13

14 return building_distance, nr_distance, vegetation_distance,
road_distance↪→

In the first step, as can be seen in fig. 5 (top-left graph), at the bottom right there is a leaf node that
is not a return node. We remove that node and other leaf nodes recursively resulting in a graph like
top-right.

Using regression weights our method figures out that the left most branch or
building distance is not a useful value to be returned. So in the third step we remove
that and recursively all the leaf nodes.

Figure 5: Process of simplification illustrated over a function.

D ADDITIONAL ABLATIONS

D.1 USING DIFFERENT LLMS

A key contribution of our work is to leverage the common-sense knowledge in LLMs to improve
evolutionary search. So, it is natural to question whether (a) LLMs (with similar capacity) trained
with a different large corpus of text would generate hypotheses with different levels of reliability and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: Perfomance of our method when removing the context of the problem (objective prompt
from the evolution, and when renaming and not describing the primitive functions to the LLM. We
see significant drops in performance in both cases, suggesting that both the common-sense and prior
knowledge of LLM is important to perform efficient evolutionary search.)

Method L1 log L2 log
No common-sense 0.8401 0.7186

No problem context 0.4498 0.5140
DiSciPLE full 0.2607 0.3778

(b) LLMs with larger capacity would produce more reliable hypotheses. We answer these questions
by testing recent LLMs: Qwen-2.5/7b (Team, 2024), llama-3/8b, llama-3.1/8b, llama-3.1/70b. For
ease of experimentation, we reduce the number of generations to 10 and the population size to 60.
We report the results in table 4. DiSciPLE works robustly with various LLMs and could generate
more reliable models/hypotheses than the Deep Model. While the performance of the hypotheses
varies, we do not observe any discernible difference among the various hypotheses.

D.2 ALBATION ON NOISY/UNRELIABLE PRIMITIVES

To investigate how accurate/robust should the underlying black-box model be?, we corroded the
OSM maps with a 3x3 convolution and ran DiSciPLE to generate a new hypothesis. With the
corroded OSM maps, we observe an L2 log error of 0.3713 on the test set — a large degradation in
performance compared to clean OSM maps (L2 log error: 0.2626).

D.3 ABLATIONS OF LLM COMMON-SENSE AND PRIOR KNOWLEDGE

table 5 shows more extensive evaluation performing evaluation without primitive understanding and
problem understanding.

E EXPERIMENTAL SETUP

E.1 MORE DETAILS ON CONCEPT BOTTLENECK BASELINES

For the CSIF task, the concept bottleneck features are average of past CSIF and environmental
variable and the current environmental variable. For all the other tasks, the bottleneck features are
42 categories of segments obtained from either OSM or GRAFT and the environmental variable.

E.2 MORE DETAILS ON DEEP MODELS BASELINE

For spatial tasks, we use a ResNet-18 (He et al., 2016) based U-Net (Ronneberger et al., 2015) (Deep
Model-Large). Since our model also needs to be data-efficient, to prevent overfitting, we also try
a smaller backbone of 4-layer fully convolutional network(Deep Model-Small). For CSIF, we use
LSTMs Hochreiter & Schmidhuber (1997) of different depth as our big (12-layers) and small (4)
models

F MORE DETAILS

F.1 LIST OF 42 LAND-USE CONCEPTS

Table 6 show the list of 42 concepts extracted from OpenStreetMaps and also used in GRAFT to get
partitions for critic.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

tennis courts skate park american football field swimming pool cemetery pond
golf course roundabout parking lot supermarket school marina
baseball waterfall multi-storey parking garage airport beach bridge
religious building residential building university building office farmland warehouse
forest lake nature reserve park sandy area soccer field
equestrian center shooting range non residential buildings commercial area garden dam
railroad highway river or stream wetland ice-rink coastline

Table 6: List of concepts extracted from OSM and also used via GRAFT for critic data stratification.

24

	Introduction
	Related Works
	Methodology
	Problem Formulation
	Evolutionary Search
	Feature set prediction
	Program Critic
	Program Simplification

	Results
	Implementation details
	Scientific Domains and Problems
	Population Density
	Poverty Indicator
	Aboveground Biomass
	Contiguous Solar Induced Chlorophyll Fluorescence (CSIF)

	Experimental Setup
	Results and Discussion
	Ablations

	Discussion and Conclusion
	Crossover and Mutation prompts
	Problem Specific Primitive Description
	Primitives and their descriptions for Population Density
	Primitives and their descriptions for AGB and Poverty prediction
	Primitives and their descriptions for CSIF Forecasting

	More Examples
	More Examples of Crossover
	Illustration of Simplifcation

	Additional Ablations
	Using different LLMs
	Albation on noisy/unreliable primitives
	Ablations of LLM common-sense and prior knowledge

	Experimental Setup
	More details on concept bottleneck baselines
	More details on deep models baseline

	More details
	List of 42 land-use concepts

