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ABSTRACT
Detecting 3D lane lines from monocular images is garnering in-
creasing attention in the Autonomous Driving (AD) area due to its
cost-effective edge. However, current monocular image models cap-
ture road scenes lacking 3D spatial awareness, which is error-prone
to adverse circumstance changes. In this work, we design a novel
cross-modal knowledge transfer scheme, namely LaneCMKT, to
address this challenge by transferring 3D geometric cues learned
from a pre-trained LiDAR model to the image model. Performing
on the unified Bird’s-Eye-View (BEV) grid, our monocular image
model acts as a student network and benefits from the spatial guid-
ance of the 3D LiDAR teacher model over the intermediate feature
space. Since LiDAR points and image pixels are intrinsically two
different modalities, to facilitate such heterogeneous feature trans-
fer learning at matching levels, we propose a dual-path knowledge
transfer mechanism. We divide the feature space into shallow and
deep paths where the image student model is prompted to focus
on lane-favored geometric cues from the LiDAR teacher model. We
conduct extensive experiments and thorough analysis on the large-
scale public benchmark OpenLane. Our model achieves notable
improvements over the image baseline by 5.3% and the current
BEV-driven SoTA method by 2.7% in the F1 score, without intro-
ducing any extra computational overhead. We also observe that the
3D abilities grabbed from the teacher model are critical for dealing
with complex spatial lane properties from a 2D perspective.
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Figure 1: 3D lane detection frameworks with different modali-
ties. Both image- (a) and LiDAR- (b) based 3D lane detection
models utilize the BEV representation learning to globally
delineate lane layouts and encode modality-specific features
for the following individual lane inference. Based on this, we
utilize this unified perspective space to design a cross-modal
knowledge transfer scheme, imbuing image BEV features
with spatial awareness derived from LiDAR features.

1 INTRODUCTION
3D lane detection, aiming at localizing lane lines within the 3D ego-
vehicle coordinate system, plays a vital role in the driving scene
understanding. This technique is integral to various applications
related to vehicle control [36] and high-definition map reconstruc-
tion [20, 21]. Although LiDAR-based methods achieve remarkable
detection accuracy, there is a burgeoning interest in vision-centric
methods from both academia and industry. Compared to the com-
plex sensor suite required for LiDAR, cameras are significantly more
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cost-effective and are financially favored for mass production in the
Autonomous Driving (AD) industry. Moreover, camera images pro-
vide finer visual cues through dense pixel representations, which
are especially critical for detecting slender and long-spanning lanes.

To bridge 2D and 3D space in monocular 3D lane detection,
most studies establish a dense grid correspondence to transpose
front-viewed image features into the intermediate Bird’s Eye View
(BEV) space via Inverse Perspective Mapping (IPM) [5, 8, 9, 12, 18,
37, 43]. Aligning the image BEV feature with a lane anchor map
allows for the projection of detected lanes back into 3D space using
geometric regression and height estimation, as illustrated in Figure
1 (a). While IPM-based methods offer an end-to-end framework
for 3D lane detection, they cannot enable the monocular model to
acquire accurate spatial information, which limits their 3D lane
detection performance. The reasons are analyzed as follows: (1) IPM
inherently cannot provide depth information, which is crucial for a
monocular model to accurately estimate distances and elevations
within 3D space; (2) IPM presupposes a flat ground assumption
that does not hold consistent for real-world driving scenarios (e.g.
uphill/downhill), leading to distortions onto the image BEV feature
and deviations from the actual 3D geometry; (3) During the IPM-
based model training, spatial awareness learning is solely guided
by basic lane anchor regression, which is insufficient to direct the
monocular model to learn representative features being sensitive
to the 3D world.

On the other hand, the LiDAR point cloud offers explicit spatial
information to complement the monocular model for 3D lane detec-
tion. Recently, some works have started to explore the combination
of image pixel and LiDAR point features for performance improve-
ment.𝑀2-3DLane [25] utilizes depth estimation to project image
frontal feature into 3D space, subsequently aggregating pseudo-
lidar image and lidar features in the BEV space. Unlike conventional
query-based methods in object detection [4, 47], enriching learn-
able query embedding with more task-specific information [11, 22]
could promote model performance and training convergence. Build-
ing on this, DV-3DLane [24] integrates modality features of image
and LiDAR data at the query level and then processes this cross-
modal query set into a transformer decoder for further prediction.
While combining feature representations from multiple resources
improves lane detection accuracy, the addition of extra modality
input increases computational cost and the burden of extra cap-
turing devices during inference. Moreover, the high requirement
for calibration and synchronization across sensors restricts the
applicability of the multi-modal fusion method.

Inspired by advancements seen in AD visual tasks through cross-
modal distillation [6, 7, 10, 32, 39–42], we design a novel train-
ing scheme to boost monocular 3D Lane detection with Cross-
Modal Knowledge Transfer, namely LaneCMKT. Lane feature
representations in the image model are guided to assimilate the
non-homogeneous features extracted from a pre-trained LiDAR
model, thereby incorporating 3D geometric awareness into im-
age features while maintaining the semantic details essential for
precise lane detection. To handle the modality discrepancy in multi-
layer features, we design a dual-path knowledge transfer mech-
anism at shallow and deep levels to enhance the explicitness of
cross-modal knowledge transfer. Shallow features, rich in modality-
specific information, highlight the inherent modality gap between

point clouds and images in the initial model layers. Directly align-
ing these features of a large modality gap introduces disturbance
into the image feature learning and diminishes the effectiveness of
knowledge transfer. To address this issue, we design an adaptive
scaling strategy with quantifying lane geometric properties, which
enables the image model to selectively leverage beneficial LiDAR
features for lane instances. While the model features are encoded
into the modality-agnostic latent embedding, the alignment of deep
abstract features allows the image student model to directly access
3D contextual scene understanding from the LiDAR teacher model.
The experiments demonstrate that our monocular lane model can
significantly benefit from our proposed cross-modal knowledge
transfer framework, highlighting marked improvements in lane
detection accuracy and geometric regression.

Our main contributions can be summarized as follows:

• We present LaneCMKT, a novel training scheme for monoc-
ular 3D lane detection that enables effective cross-modal
knowledge transfer in BEV space, leveraging the spatial in-
sights from LiDAR data to enhance image feature learning.

• We design a dual-path knowledge transfer mechanism to
accurately extract multi-layer geometric knowledge from the
LiDAR teacher model. To mitigate the modality discrepancy
at shallow level features, we propose an adaptive scaling
strategy that encourages the image student model to focus
on crucial lane geometry under the supervision of LiDAR
point features.

• We conduct extensive experiments and analysis on a large-
scale lane dataset, OpenLane. Without bells and whistles, our
proposed method outperforms the baseline by 5.3% and the
BEV-driven SoTA method by 2.7% in F1 score.

2 RELATEDWORKS
2.1 Cross-Modal Knowledge Transfer for

Autonomous Driving
Knowledge transfer is a proven useful method for model compres-
sion while maintaining high accuracy [28, 29, 33, 44]. As deep learn-
ing techniques offer a pathway to interact cross-modal information
in the latent feature space [13, 16, 19, 30, 34, 35, 46], cross-modal
knowledge transfer attract increasing attention for solving multi-
modal visual tasks. Typically, a well-trained, complex teacher model
processes the input to generate informative representations which
then guide the feature learning or output logits of a student model
that receives input from a different modality. This approach can be
applied to AD visual tasks.

The LiDAR model acts as the teacher, providing explicit spatial
cues not readily available from image data alone. MonoDistill [7]
builds an image-like LiDAR teacher model by projecting LiDAR
points onto the image plane. To bridge the modality gap between
LiDAR and image data, it transfers structural cues from teacher
to student by maintaining similar local region affinity relations.
CMKD [10] pioneers BEV-based knowledge transfer that enables
the student model’s features to emulate LiDAR BEV representa-
tion. The process of distilling classification logits offers a rich cate-
gory distribution at the output end, facilitating knowledge sharing
between models. However, distillation from different input data
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modalities may introduce noise and impair performance. To ad-
dress this, BEVDistill [6] selectively weights the predictions of each
query in the LiDAR model and employs a quality control score to
estimate instance-wise importances for maximizing their mutual
information. DistillBEV [40] enhances feature transfer adaptability
by incorporating spatial attention and scale awareness. Besides the
uni-directional knowledge transfer from LiDAR points to image
pixels, the RGB image provides semantic cues to counteract the
sparsity of the LiDAR point cloud. 2DPass [42] utilizes 2D seman-
tic priors to assist LiDAR semantic segmentation, training both
student and teacher models concurrently to distill multi-modal
knowledge into a single-modal feature. Recognizing that the num-
ber of pixels in an image vastly outnumbers the points in a point
cloud, ProtoTransfer [32] aims to fully exploit image data by inte-
grating unmatched 2D and original 3D and fused features into a
prototype bank. This unified space facilitates the transfer of class-
aware knowledge to LiDAR point features, enhancing the overall
effectiveness of knowledge distillation across modalities.

2.2 3D Lane Detection
3D lane detection in a vision-centric manner attracts more andmore
research attention, but accurately reconstructing 3D information
from single-view images remains challenging. The prevalent meth-
ods apply IPM to transform 2D frontal-view space to BEV which
offers clearer geometric properties of lanes [5, 8, 9, 12, 18, 37, 43]. 3D-
LaneNet [8] and Gen-LaneNet [9] project image features into BEV
space and regress the anchor offsets of lanes with space alignment
in the 3D lane detection head. Persformer [5] adopts a query-based
method to adaptively construct BEV features with a deformable at-
tention mechanism. Despite these advancements in the end-to-end
lane detection framework, due to the inherent lack of monocular
images, the IPM-based methodologies cause ambiguity in BEV fea-
tures of lane layout and compromise its robustness [5, 18, 24]. To
address this, Anchor3Dlane [12] directly samples from original FV
image features to retain richer context information with iterative
anchor regression. CurveFormer [1], on the other hand, converts
a set of lane anchor points into learnable queries and employs a
curve cross-attention decoder to parametrically represent lane ge-
ometry. These anchor-driven approaches improve the utilization of
lane-favored spare image features but still struggle to bridge the
gap between 2D and 3D spaces effectively.

In light of these limitations, some studies attempt to reformulate
this task as a LiDAR-based BEV segmentation [14, 27, 45]. LiLaDet
[45] predicts semantic lane map on the BEV plane and then ap-
plies sparse voxel techniques for geometric regression and 3D lane
curve fitting. Although LiDAR-based representations provide pre-
cise localization information, their sparsity limits advancements in
semantic instance understanding. To overcome this, recent research
has investigated multimodal strategies that integrate synthesized
lane information from both images and point clouds [24, 25].𝑀2-
3Dlane [25] leverages LiDAR point clouds to lift image features into
3D space and combines multimodal features within the BEV space.
Additionally, DV-3DLane [24] employs an attention-based match-
ing strategy to enhance image instance-level queries with LiDAR
point features. Unlike previous works focusing on model design
and multi-modal fusion, our method designs a novel cross-modal
knowledge transfer framework to enhance image feature learning

to access 3D spatial cues of a pre-trained LiDAR teacher model
in the training phase. During the inference phase, our approach
endows the lightweight image model with vital spatial awareness
without necessitating additional modality input or extra computa-
tional costs.

3 METHODOLOGY
In this section, we delve into the details of our proposed LaneCMKT
framework. An overview of our framework is provided in Figure 2,
where we outline the general workflow of the image student model
and the pre-trained LiDAR teachermodel, as discussed in Section 3.1.
Following this, we demonstrate the dual-path knowledge transfer
mechanism, for shallow and deep level features, to allow effective
multi-layer geometric features of LiDAR data to guide image feature
learning, detailed in Section 3.2. The supervision losses of our cross-
modal transfer training are illustrated in Section 3.3.

3.1 Overall Framework
LiDAR Model. LiDAR BEV segmentation is approved to capture
global contextual knowledge that can accurately produce a semantic
map for comprehensive top-view scene understanding [45]. This
finding motivates us to distill this valuable spatial knowledge to
benefit monocular image features. Given a set of LiDAR points
𝑃 ∈ R𝑁×4 including the 𝑥 , 𝑦, 𝑧 coordinates and intensity of each
point, it is initially partitioned into a grid of pillars [17]. These pillar
features are scattered down into the 2D LiDAR BEV features that are
then forwarded into a U-shaped architecture to perform semantic
map segmentation. As depicted in Figure 2, the intermediate LiDAR
BEV features extracted from the backbone are leveraged as feature
imitation targets to guide the image-based BEV features learning,
which are denoted as 𝐹𝐿

𝑏𝑒𝑣,𝑚
∈ R𝐶𝑚×𝐻𝑚×𝑊𝑚 with𝑚 denoting the

order of the scale levels.
Image Model. Given a frontal view 2D image, a query-based trans-
former is applied as an image encoder to produce preliminary image
BEV features by utilizing the IPM transformation. Then, these fea-
tures are processed through the image backbone to generate the
intermediate image BEV features. These hierarchical BEV features,
𝐹 𝐼
𝑏𝑒𝑣,𝑚

∈ R𝐶𝑚×𝐻𝑚×𝑊𝑚 , preserve the identical tensor shapes as
LiDAR BEV features at the matching levels as shown in Figure 2.

3.2 Dual-Path Knowledge Transfer Mechanism
In learning-based models, whether CNNs or Transformers, hier-
archical features at each layer contain different types of seman-
tic information representation. It is well acknowledged that high-
resolution shallow features in the early layers exhibit basicmodality-
specific perceptible properties [40], such as texture and edge for
image pixels, and reflectivity for LiDAR points. Hence, a signifi-
cant modality gap exists across these shallow modality features. As
these features are progressively encoded into high-level abstract
representations, the modality gap diminishes. Deep features at the
bottom of a model have less about particular physical properties
captured by different sensors and more about modality-agnostic
contextual understanding relevant to the task. Based on this obser-
vation, we design a dual-path knowledge transfer mechanism for
shallow and deep level features, aiming to provide precise LiDAR
teacher features as a reference for image feature learning.



MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia Runkai Zhao, Heng Wang, and Weidong Cai

Li
D

AR
 B

EV
 

En
co

de
r

Im
ag

e 
BE

V 
En

co
de

r

La
ne

 S
eg

. 
H

ea
d 𝐿!"#

La
ne

 D
et

. 
H

ea
d

LiDAR BEV Features

𝐿$%&"

Shallow Feature Transfer 
𝐿!"#$$%&

Deep Feature Transfer
𝐿'(()

VoxelizationLiDAR Points

Frontal Image

Image BEV Features

Figure 2: The schematic overview of our proposed 3D lane cross-modal knowledge transfer framework, LaneCMKT. We aim to
bridge the learning discrepancy in BEV feature representation between the LiDAR and Image modalities for 3D lane detection.
This approach enables the image model to learn spatial-awareness features guided by the LiDARmodel. We propose a dual-path
knowledge transfer mechanism to optimize the internal-model transfer learning for shallow and deep features. Noteworthy, the
pre-trained LiDAR model is removed after training, our approach allows the image model to be enhanced without introducing
additional computational overhead during inference.

Shallow Feature Transfer. Due to the inherent sparsity in LiDAR
point clouds, the majority of LiDAR feature maps remain empty
at the shallow level. Lanes with their slender and thin shapes only
occupy a significantly small fraction of the overall scene. Therefore,
these reasons result in the data imbalance of LiDAR teacher features.
To allow image feature learning to focus on vital LiDAR geometric
features of lane instances, rather than irrelevant background noises,
we design an adaptive cross-modal scaling strategy for shallow
feature transfer, including (1) Instance Viability Scaling; (2) Length
Adaptive Scaling; (3) Curvature Adaptive Scaling.

(1) Instance Visibility Scaling. Although a monocular camera
can perceive objects at farther distances than a LiDAR sensor, its
field of view is susceptible to occlusion. Many incomplete lanes
are captured by the camera, leading to poor scene condition under-
standing. LiDAR sensors, mounted at the top of a collection vehicle,
provide a broader perceptive field and gather comprehensive road
surface information. To leverage this advantage, we introduce an in-
stance visibility scaling mask𝐺𝑥,𝑦 to convey 3D spatial information
of visible lane instances from LiDAR to monocular image:

𝐺𝑥,𝑦 =


1, if (𝑥,𝑦) ∈ 𝑅𝑐

𝜇, if (𝑥,𝑦) ∈ (𝑅𝑙 − 𝑅𝑐 )
0, if (𝑥,𝑦) ∉ 𝑅𝑙

(1)

where 𝑥,𝑦 are 2D coordinates on BEV feature maps and 𝑅𝑐 and 𝑅𝑙
are the visible lane instance regions in the image and LiDAR shallow
features, respectively. The visibility mask assigns different scaling

weights for foreground regions across different modalities, which
enables the image model to be aware of the modality perspective
differences. While some portions of visible lanes may be recognized
as False Positive (FP) from the front-view monocular perspective,
our method encourages the image model to embrace such out-of-
view spatial cues for holistic 3D scene learning.

(2) Length Adaptive Scaling. Lane lengths vary with traffic
road conditions, yet the monocular image learning is insensitive
to lane length variances. For example, shorter lanes, which occupy
fewer image pixels in the frontal view, are described by fewer image
features compared to longer lanes that span more pixels over an
image. The image model processes all lane features equally. To
address this problem, our cross-modal method aims to strengthen
the image student model learning with sensitivity to variations in
lane length. Specifically, shorter lanes require more guidance from
LiDAR-based geometric features to counteract their limited image
representation. We quantitatively represent the lane length as the
number of lane instance pixels on the BEV map, an adaptive scaling
mask 𝑆 ∈ R𝐻𝑖×𝑊𝑖 is introduced to adjust the image model’s focus
according to lane length variations:

𝑆𝑘𝑥,𝑦 = 1 − 𝑛𝑘∑𝐾
𝑘=0 𝑛

, (𝑥,𝑦) ∈ 𝑂𝑘 (2)

where 𝑛𝑘 is the number of pixels of 𝑘-th lane instance in the fore-
ground region 𝑂𝑘 .

(3) Curvature Adaptive Scaling. Besides lane length invariance,
another geometric property of lanes hindering the image model
learning is the curvature. The monocular model can easily detect
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Figure 3: Illustration of the pre-head BEV feature maps at the deepest level: from the image baseline model (a), from the LiDAR
model (b), from the image model trained with deep feature transfer (c), from the image model trained with the dual-path
knowledge transfer mechanism (d). The image BEV feature map is gradually becoming more distinctive for lane lines with our
cross-modal knowledge transfer scheme.

straight lane lines in highway driving scenarios. However, in urban
scenes with many curved roads, due to the lack of accurate spatial
cues, the image model produces ambiguous BEV features so as to
degrade the detection performance. To enhance the image model’s
awareness of the lane curvature in knowledge transfer, we introduce
a curvature scaling mask 𝑈𝑖, 𝑗 to emphasize the relevant geometric
feature guidance from the LiDAR teacher model. Specifically, a
lane curve can be parameterized as a quadratic polynomial as 𝑦 =

𝑎 · 𝑥2 + 𝑏 · 𝑥 + 𝑐 . To calculate the curvature of a lane, we quantize
the absolute curvature at each discrete point along a lane and then
average these values [3]:

𝜁𝑘 =
1
𝐼𝑘

𝐼𝑘∑︁
𝑖𝑘=1

|2𝑎𝑖𝑘 |
1 + (2𝑎𝑖𝑘 · 𝑥𝑖𝑘 + 𝑏𝑖𝑘 )3

(3)

where 𝑥𝑖𝑘 is the 𝑥 coordinate of a sample point and 𝐼𝑘 is the total
number of sample points along a lane. The curvature adaptive
scaling mask is formulated as:

𝑈 𝑘𝑥,𝑦 =

{√︁
𝜁𝑘 , if rk < 𝜑

1, else
, (𝑥,𝑦) ∈ 𝑂𝑘 (4)

where rk is the scaled sum of squared residuals derived from the
least squares fit of the quadratic polynomial of 𝑘-th lane and 𝜑 is a
quality control threshold.

In the end, combining all of the adaptive scaling masks, the
shallow feature transfer loss can be written as:

𝐿𝑠ℎ𝑎𝑙𝑙𝑜𝑤 =
1
𝛼

𝑀∑︁
𝑚

𝐾∑︁
𝑘=1

𝐻∑︁
𝑥=1

𝑊∑︁
𝑦=1

𝐺𝑘𝑥,𝑦𝑆
𝑘
𝑥,𝑦𝑈

𝑘
𝑥,𝑦 | |𝐹 𝐼𝑏𝑒𝑣,𝑚 − 𝐹𝐿

𝑏𝑒𝑣,𝑚
| |2 (5)

where 𝛼 is the sum of the scaling mask weights.

Deep Feature Transfer. Deep features, as visualized in Figure 3
(a) and (b), contain fewer modality-specific intrinsic details but are
rich in valuable global contextual embeddings. By encoding the
modality features into a high-dimensional abstract representation,

this process eliminates modal variances and preserves the consen-
sus semantic information relevant to a driving scene. To enable the
image features to effectively mimic the modality-agnostic LiDAR
geometric features, we employ the Mean Square Error (MSE) loss
to facilitate the deep feature transfer:

𝐿𝑑𝑒𝑒𝑝 =

𝑀 ′∑︁
𝑚′

| |𝐹 𝐼
𝑏𝑒𝑣,𝑚′ − 𝐹𝐿

𝑏𝑒𝑣,𝑚′ | |2 (6)

where𝑚′ is the index of the deep layers to perform feature transfer
in LaneCMKT. Deep LiDAR BEV features are well-trained for BEV
lane map segmentation which delineates lane layout within the
global context. This spatial LiDAR pattern is vital to regularize
ambiguous image BEV features. By conducting experiments, we ob-
serve that deep feature transfer contributes the most to a successful
cross-modal knowledge transfer. Please head to our ablation study
in Section 4.5 for more details.

3.3 Learning Objectives
Training Loss Function for the ImageModel. Besides the knowl-
edge transfer loss, we train the image student model with the origi-
nal lane detection loss, which is calculated for each lane anchor as
follows:

𝐿𝑙𝑎𝑛𝑒 = 𝐿𝑐𝑙𝑠 (𝑐, 𝑐) + 𝐿𝑟𝑒𝑔 ( [𝑥, 𝑧], [𝑥, 𝑧]) + 𝐿𝑣𝑖𝑠 (𝑣, 𝑣) (7)

where 𝐿𝑐𝑙𝑠 is the cross entropy loss for lane category 𝑐 , 𝐿𝑟𝑒𝑔 is the
𝑙1 norm regression loss for the offsets of anchor points along 𝑥-
and 𝑧-axis, and 𝐿𝑣𝑖𝑠 is the binary cross entropy loss for anchor
point visibility 𝑣 . We omit the index of lane anchors and other
2D auxiliary losses for brevity. We follow [38] to train the LiDAR
teacher model.

Training Loss Function for Knowledge Transfer. In summary,
the overall objective function is the sum of the shallow feature
transfer loss (5), the deep feature transfer loss (6), and the 3D lane
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Table 1: Comparison with state-of-the-art methods on OpenLane validation set. The best values are marked in bold, and the
second best values are marked in underline.

Method F1(%)↑ Cate Acc(%)↑ X Err/C (m) ↓ X Err/F (m) ↓ Z Err/C (m) ↓ Z Err/F (m) ↓
3D-LaneNet [8] 44.1 - 0.479 0.572 0.367 0.443
GenLaneNet [9] 32.3 - 0.591 0.684 0.411 0.521
Cond-IPM 36.6 - 0.563 1.080 0.421 0.892
PersFormer [5] 50.5 92.3 0.485 0.553 0.364 0.431
CurveFormer [1] 50.5 - 0.340 0.772 0.207 0.651
Anchor3DLane [12] 53.1 90.0 0.300 0.311 0.103 0.139
CurveFormer++ [2] 52.7 88.1 0.337 0.801 0.198 0.676
LaneCMKT (Ours) 55.8 89.2 0.310 0.303 0.083 0.123

Table 2: Comparison with state-of-the-art methods on OpenLane validation set under different challenging scenarios.

Method All Up & Down Curve Extreme Weather Night Intersection Merge & Split
3D-LaneNet [8] 44.1 40.8 46.5 47.5 41.5 32.1 41.7
GenLaneNet [9] 32.3 25.4 33.5 28.1 18.7 21.4 31.0
PersFormer [5] 50.5 42.4 55.6 48.6 46.6 40.0 50.7
CurveFormer [1] 50.5 45.2 56.6 49.7 49.1 42.9 45.4
Anchor3DLane [12] 53.1 45.5 56.2 51.9 47.2 44.2 50.5
SPG [43] 53.7 46.2 59.2 54.8 49.8 41.9 52.1
LaneCMKT (Ours) 55.8 47.3 58.6 53.2 48.0 42.2 51.7

task loss (7). The training loss 𝐿𝑡𝑜𝑡𝑎𝑙 can be written as:

𝐿𝑘𝑡 = 𝜆1 · 𝐿𝑠ℎ𝑎𝑙𝑙𝑜𝑤 + 𝜆2 · 𝐿𝑑𝑒𝑒𝑝
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑘𝑡 + 𝜆3 · 𝐿𝑙𝑎𝑛𝑒

(8)

4 EXPERIMENTS
4.1 Dataset and Metrics
Our experiments are conducted using the OpenLane dataset [5],
built upon the Waymo Open Dataset (WOD) [31]. This dataset is
a comprehensive large-scale collection that includes 200k frames
and 880k 3D lane annotations across six distinct driving scenarios
and 14 lane categories. The point cloud data in WOD are captured
by a top 64-beam LiDAR sensor at 10Hz frequency. We follow the
evaluation metrics proposed in GenLaneNet [9], using a distance-
based matching mechanism to evaluate the lane detection accuracy.
A positive matching of each predicted lane with ground truth is
counted when 75% of its covered y-axis reference points have a
point-wise Euclidean distance under a pre-defined distance thresh-
olding of 1.5 meters. For each matched predicted lane, we compute
the quantitative metrics including F1-score, accuracy, and X/Z dis-
tance errors. The distance errors along each axis are calculated at
the close (C) and far (F) ranges, respectively.

4.2 Implementation Setting
To prepare point cloud input, we first project LiDAR points onto the
monocular image using a camera parametric transformation and
then exclude points outside the frontal receptive field. We follow
the same top-view region of interest by previous monocular 3D
lane detection models with the xy range of [(−10, 10), (3, 103)]. We
use PointPillar [17] as the LiDAR Encoder and Persformer [5] as
the monocular encoder. To implement knowledge transfer across

two modalities, we set the matched cross-modal BEV feature maps
of shape size of [256, 128], [128, 64] as shallow level features and
[64, 32], [32, 16] as deep level features. The visibility scaling weight
𝜇 in Equation 1 is set to 10, and the curve fitting quality control 𝜑
in Equation 4 is set to 0.2.
Training. For training the LiDAR teacher model, we use an Adam
optimizer [15] with a weight decay of 1𝑒−7. The learning rate is set
to 2𝑒−3 with the training epochs of 35 and the batch size of 6. When
training the image student model in LaneCMKT, the teacher model
is frozen. We train the image model with an Adam optimizer with
a weight decay of 1𝑒−3. The learning rate is set to 2𝑒−3 with the
training epochs of 38 and the batch size of 4. We apply the cosine
annealing scheduler [23] to periodically adjust the learning rate
with 𝑇𝑚𝑎𝑥 of 8. In loss functions of Equation 8, 𝜆1, 𝜆2, 𝜆3 are set to
1, 64, 1, respectively.

4.3 Quantitative Results
Main Results. We present our experimental results on the val-
idation set of Openlane. To make a comprehensive comparison
in this study, we categorize two mainstream monocular 3D lane
detection approaches of “decoded from IPM BEV features” and “de-
coded from back-projected spare image features” to the BEV-driven
methods. As shown in Table 1, our LaneCMKT model significantly
outperforms all prior approaches by notable margins. It achieves a
remarkable improvement over the image baseline, Performer [5],
by a 5.3% increase in F1 score. We observe reductions in the dis-
tance errors by 0.175m/0.250m and 0.281m/0.308m in the X and Z
axes for the close/far range. Furthermore, our method surpasses the
BEV-driven SoTA method, Anchor3DLane [12], by 2.7% in F1 score
and shows improvements in distance errors by 0.008m in the X axis
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Figure 4: Qualitative analysis on OpenLane validation set. In each case, 3D lane prediction is projected to the frontal view and
IPM BEV perspectives for clear comparisons, and the prediction and ground truth are visualized in 3D space. Differences in
predictions between our LaneCMKT and the baseline are highlighted using colored arrows. Please zoom in to view the details.

of the far range and 0.020m/0.016m in the Z-axis of the near/far
range, respectively.

Evaluation Under Difference Driving Scenarios. Apart from
the main experimental evaluation on OpenLane, we also conduct
experiments across various challenging scenarios with F1 scores
reported accordingly. We add SPG [43] into Table 2 to make a fair
comparison, because it has a SoTA performance across these chal-
lenging driving scenarios to our best knowledge. Its robustness
comes from the strategy of re-utilizing image features to refine
coarse lane anchors during additional post-processing stages. How-
ever, this multi-stage method complicates the detection workflow
and reduces efficacy during model inference. Our model surpasses
SPG by 1.1% in the common uphill/downhill scenarios and achieves
comparable performances for other scenarios without introducing
extra processing steps or learnable model parameters. This suggests
that our method enables the monocular image model to elegantly
and effectively learn vital spatial awareness to confront challenging
driving scenarios.

4.4 Qualitative Analysis
We present a qualitative comparison between LaneCMKT and the
image baseline in Figure 4. We validate the performance of our
method by challenging scenarios, including uphill elevation (a), oc-
clusion (b), low-illumination condition (c), and irregular horizontal

lanes in the frontal view (d). The visualization of predictions in 3D
space illustrates that our method achieves more robust and accurate
3D lane predictions in these difficult perception environments com-
pared to the image baseline. This indicates that the image baseline
benefits from the spatial awareness and improved generalizability
learned from the LiDAR modality in our proposed cross-modal
knowledge transfer training scheme.

4.5 Ablation Study
We follow the previous works [5, 12, 24, 26] to conduct the ablation
study on OpenLane-300, a subset of OpenLane. Other experimental
configurations remain the same as in Section 4.2.

Effect of Dual-Path Knowledge Transfer Mechanism.We in-
vestigate the effect of image feature learning conducted at the
shallow and deep layers within our designed dual-path knowledge
transfer mechanism. As illustrated in Table 3, the deep feature
transfer contributes the most to the accuracy of lane detection and
localization. The deep features are favorable to encode lane intrinsic
spatial insights without containing much modality-specific infor-
mation, so monocular image features can directly benefit from the
geometric contextual embedding from the LiDAR teacher model.
Although using only shallow feature transfer does not yield no-
table performance gains, incorporating shallow LiDAR supervision
makes lane instance features more discriminative on the pre-head
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Table 3: Effect of the dual-path knowledge transfer mecha-
nism at distance matching threshold of 1.5 meters.

Method Shallow Deep F1(%)↑ X Error (C/F) ↓ Z Error (C/F) ↓
Baseline ✗ ✗ 58.12 0.403/0.381 0.121/0.152

LaneCMKT
✓ ✗ 58.87 0.401/0.365 0.121/0.147
✗ ✓ 59.02 0.399/0.378 0.118/0.146
✓ ✓ 59.85 0.362/0.373 0.116/0.139

Table 4: Effect of the dual-path knowledge transfer mecha-
nism at distance matching threshold of 0.5 meters.

Method Shallow Deep F1(%)↑ X Error (C/F) ↓ Z Error (C/F) ↓
Baseline ✗ ✗ 37.71 0.306/0.300 0.123/0.150

LaneCMKT
✓ ✗ 38.23 0.309/0.295 0.117/0.137
✗ ✓ 40.87 0.301/0.285 0.114/0.139
✓ ✓ 41.61 0.297/0.275 0.104/0.125

BEV maps as demonstrated in Figure 3. Therefore, the shallow and
deep level feature transfers collectively maximize lane detection
performance. Additionally, we evaluate our method performance
with more stringent distance matching criteria as shown in Ta-
ble 4. The performance improvement is augmented from 1.73 to
3.45, which underscores that the robustness and effectiveness of our
method persist even under high spatial requirements. This enhance-
ment also demonstrates that our method enhances the monocular
image model with superior 3D spatial awareness.

Effect of Adaptive Scaling Strategies. We systematically vali-
date the effect of the adaptive scaling strategies designed to bridge
the modality gap by encouraging image BEV feature learning to
focus more on critical 3D lane geometric cues. Table 3 shows that
combining shallow and deep feature transfers yields a significant
performance enhancement compared to employing shallow fea-
ture transfer alone. Therefore, we start with deep feature transfer
and progressively incorporate the instance visibility scaling, the
length adaptive scaling, and the curvature adaptive scaling. Table 5
demonstrates that each component makes a gradual improvement
for lane detection, and they collectively achieve optimal perfor-
mance. Among the scaling strategies, lane curvature scaling con-
tributes most significantly to the improvement, which demonstrates
that this geometric property scaling enables the image feature to
pay more attention to the complex lane shape under the spatial
supervision of the LiDAR model.

Effect of Different Image Encoders.We study the impact of var-
ious image encoder scales (EfficientNet-B3, B5, B7) on the detection
performance of our LaneCMKT, investigating the role of the image
encoder in the context of cross-modal knowledge transfer. As pre-
sented in Table 6, incorporating our method improves the detection
performance across various image baselines with image encoders
of different scales. Remarkably, a smaller-scale monocular model
(EfficientNet-B5) outperforms a larger-scale model (EfficientNet-B7)
when applying our LaneCMKT training scheme. This validates the
advantage of leveraging geometric features extracted from the Li-
DAR teacher model enables the image student model to beneficially

Table 5: Comparisons of the adaptive scaling strategies.
IVS denotes Instance Visibility Scaling, LAS denotes Length
Adaptive Scaling, and CAS denotes Curvature Adaptive
Scaling.

IVS LAS CAS F1(%)↑ X Error (C/F) ↓ Z Error (C/F) ↓
✗ ✗ ✗ 59.02 0.399/0.378 0.118/0.146
✓ ✗ ✗ 59.07 0.385/0.377 0.118/0.140
✓ ✓ ✗ 59.13 0.371/0.378 0.119/0.139
✓ ✓ ✓ 59.85 0.362/0.373 0.116/0.139

Table 6: Comparisons of our method with different image
encoders.

Method F1(%)↑ X Error (C/F)↓ Z Error (C/F)↓
EfficientNet-B3 58.62 0.390/0.361 0.116/0.145
EfficientNet-B3 + LaneCMKT 59.08 0.368/0.371 0.115/0.148
EfficientNet-B5 57.46 0.421/0.401 0.123/0.158
EfficientNet-B5 + LaneCMKT 58.63 0.378/0.374 0.120/0.152
EfficientNet-B7 58.12 0.403/0.381 0.121/0.152
EfficientNet-B7 + LaneCMKT 59.85 0.362/0.373 0.116/0.139

learn 3D-aware features with reduced model complexity. It is ob-
served that EfficientNet-B3 surpasses other larger monocular image
models which are prone to overfitting to the large-scale lane dataset.
Nonetheless, upon introducing our method, the performance of the
model using the EfficientNet-B3 encoder is less accurate compared
to that using the EfficientNet-B7 encoder. This suggests that the
performance gain of cross-modal knowledge transfer depends on
the interpretation ability of the student encoder. A more powerful
image encoder, such as EfficientNet-B7, allows the student model to
adapt more effectively to the feature distribution variations based
on cross-modal knowledge transfer during the training phase.

5 CONCLUSION
In this study, we present a compact cross-modal knowledge trans-
fer training framework, LaneCMKT which utilizes spatial insights
from a LiDAR-based teacher model to guide image representation
learning of the monocular student model for 3D lane detection. Our
approach includes a dual-path feature transfer mechanism for shal-
low and deep level features to adaptively distill the geometric cues
from the teacher model. Extensive experiments substantiate the
effectiveness of our 3D-to-2D knowledge transfer framework with
the remarkable improvement in detection performance compared
to the baseline and other BEV-driven SoTA methods.
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