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Abstract
Real-world datasets often exhibit long-tailed dis-
tributions, compromising the generalization and
fairness of learning-based models. This issue
is particularly pronounced in Image Aesthetics
Assessment (IAA) tasks, where such imbalance
is difficult to mitigate due to a severe distribu-
tion mismatch between features and labels, as
well as the great sensitivity of aesthetics to image
variations. To address these issues, we propose
an Enhancer against Long-Tail for Aesthetics-
oriented models (ELTA). ELTA first utilizes a
dedicated mixup technique to enhance minority
feature representation in high-level space while
preserving their intrinsic aesthetic qualities. Next,
it aligns features and labels through a similarity
consistency approach, effectively alleviating the
distribution mismatch. Finally, ELTA adopts a
specific strategy to refine the output distribution,
thereby enhancing the quality of pseudo-labels.
Experiments on four representative datasets (AVA,
AADB, TAD66K, and PARA) show that our pro-
posed ELTA achieves state-of-the-art performance
by effectively mitigating the long-tailed issue in
IAA datasets. Moreover, ELTA is designed with
plug-and-play capabilities for seamless integra-
tion with existing methods. To our knowledge,
this is the first contribution in the IAA community
addressing long-tail. All resources are available
in here.

1. Introduction
Benefiting from the growth and utilization of large-scale
datasets, deep neural networks have achieved remarkable
successes in computer vision tasks. However, these net-
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Figure 1: The long-tailed distributions in mainstream IAA datasets
and resulting model bias (in blue) are mitigated by our proposed
ELTA (in red), which addresses the issue of insufficient differenti-
ation in model scores.

works often face challenges in real-world applications due
to data imbalance. It is commonly observed that mod-
els trained on long-tailed data are biased towards majority
groups with abundant samples, and away from minority
groups with fewer samples. The bias compromises the
model’s generalizability and fairness, and raises concerns
about ethical implications.

In some classical vision tasks, such as image classification
and instance segmentation, various solutions (Kang et al.,
2019; Cui et al., 2019; Yang & Xu, 2020; Wei et al., 2021;
Yu et al., 2022; Ahn et al., 2023) are proposed to mitigate
the data imbalance. However, the progress of handling
long-tailed datasets in Image Aesthetics Assessment (IAA)
lags behind classical vision tasks. As a recently emerging
research, IAA is becoming increasingly vital in various
domains, such as computational photography, art design,
and recommender systems. Unfortunately, as shown in
Figure 1, IAA encounters a particularly severe long-tail
issue, which is further complicated by its specificity.

Lack of well-defined categories. Compared to the long-tail
issues encountered in classification tasks, the IAA tasks
present unique challenges. The subjectivity in the labeling
process and the ambiguity between different aesthetic crite-
ria levels make it difficult to define clear categories. Due to
creating artificial boundaries based on scores in IAA is both
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ambiguous and not universally applicable, this absence of
well-defined categories hinders the use of many class-based
methods such as re-sampling (Chawla et al., 2002; Kang
et al., 2019; Wang et al., 2019; Bai et al., 2023), re-weighting
(Cui et al., 2019; Cao et al., 2019; Ren et al., 2020; Wang
et al., 2021b; Du et al., 2023), and data augmentation (Kim
et al., 2020; Wang et al., 2021a; Ahn et al., 2023; Perrett
et al., 2023).

Mismatch between features and labels. On the one hand,
the inherent subjectivity of IAA datasets may lead to “noise”.
For example, the same image may contain different opinions,
all of which are treated as ground truth. This uncertainty
significantly increases the learning difficulty of models and
leads to severe mismatches between labels and learning
features (Figure 2). On the other hand, image aesthetics
tend to be sensitive to some augmentations. Traditional
augmentation at the raw-pixel level (Kim et al., 2020; Park
et al., 2022; Ahn et al., 2023) may alter images’ aesthetics
without changing labels, resulting in augmented images
with incorrect labels.

Smoothness of predicted distributions. Recent semi-
supervised learning methods (Berthelot et al., 2019; Sohn
et al., 2020; Zhang et al., 2021) rely heavily on model con-
fidence and specific threshold to identify reliable pseudo-
labels. Unlike typical models, the output logits of IAA
models frequently exhibit smoother output distributions,
where confident and uncertain predictions blend seamlessly.
Consequently, simply filtering out uncertain predictions by
a high threshold becomes ineffective for generating accurate
pseudo-labels in IAA tasks.

To address the aforementioned challenges, we develop an
enhancer against long-tail for aesthetics-oriented models
(ELTA) that encompasses three key perspectives: First, un-
like traditional pixel-level augmentation methods, our ELTA
implements feature-level augmentation based on the mixup
(Zhang et al., 2017) to augment the minority. We propose
an improved sampling strategy to assign different sampling
weights to the minority and majority, enabling efficient gen-
eration of minority features even in the absence of well-
defined categories. Second, Gong et al. (Gong et al., 2022)
state that a well-trained model should exhibit a key charac-
teristic: items closer in label space should also be nearer
in feature space. Inspired by this idea, a Feature-Label
Similarity Alignment module is proposed to maximize the
consistency between feature similarity and label similarity.
Specifically, we take similarity as a metric for measuring
distance, leverage label similarity to refine feature similarity,
and optimize the model’s representation learning. Third, we
introduce an Adaptive Probability Distribution Sharpening
module to alleviate the smoothness of predicted distribu-
tions. Specifically, it is oriented by the adaptive magnitude
of temperature scaling and the learnable pseudo-label selec-
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Figure 2: T-SNE visualization of feature distributions extracted
by a classification network and an IAA network respectively. The
entire score range in IAA is divided into ten segments, with feature
points in each segment marked in different colors. The classifica-
tion features (a) clearly distinguish between different categories,
while the IAA features (b) exhibit noticeable confusion. The de-
tails are further explained in supplement material A.3.

tion threshold to obtain relatively accurate pseudo-labels.
Our contributions are concluded as follows:

• The issue of long-tailed distribution in IAA datasets is
revealed, highlighting its specificity and severe negative
effects.

• Our proposed ELTA mitigates the data imbalance by aug-
menting minority features, aligning features to labels, and
improving pseudo-labeling accuracy. To our knowledge,
this is the first solution proposed against long-tail for
aesthetics-oriented models.

• ELTA achieves state-of-the-art performance on four rep-
resentative IAA datasets. Furthermore, the integration
of ELTA with existing approaches can be seamlessly
achieved, resulting in significant improvements in per-
formance.

2. Related Works
Image Aesthetics Assessment and its long-tailed issue.
General IAA encompasses three types of tasks: aesthetic
binary classification (Datta et al., 2006; Luo & Tang, 2008),
aesthetic score regression (Ma et al., 2017; Sheng et al.,
2018; He et al., 2022; 2023a) and score distribution predic-
tion (Talebi & Milanfar, 2018; Chen et al., 2020; She et al.,
2021; Ke et al., 2021; Tu et al., 2022; He et al., 2023b),
while personalized IAA adopts an aesthetic model for indi-
vidual user’s preference (Ren et al., 2017; Lv et al., 2021;
Yang et al., 2022). Traditional methods rely on manually
designed and extracted features from images. These visual
features are then mapped to annotated labels via classifiers
or regressors. In contrast, learning-based methods use Con-
volutional Neural Networks (CNNs) or Vision Transformers
(ViTs) with robust feature extraction capabilities to replace
the manual process.
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While existing learning-based IAA methods have achieved
impressive results, they confront a critical issue: model
bias caused by the long-tailed distribution of the datasets.
This problem was first highlighted by He et al. (He et al.,
2022) in their construction of the TAD66K dataset, where
they employed a dedicated balancing strategy to mitigate it.
However, a fundamental hurdle lies in the inherent nature
of human annotation itself. The inclination of annotators to
shy away from extreme ratings inevitably induces a long-
tailed distribution, regardless of the dataset construction.
Our work addresses this issue by proposing plug-and-play
modules that leverage augmented minority features, consis-
tent feature-label alignments, and accurate self-labeling to
mitigate the long-tailed distribution.

Long-tailed Learning. Previous research on long-tailed
learning has predominantly focused on classification tasks.
Typical methods include re-sampling (Chawla et al., 2002;
Kang et al., 2019; Wang et al., 2019; Xu et al., 2022; Bai
et al., 2023) and re-weighting (Cui et al., 2019; Cao et al.,
2019; Ren et al., 2020; Wang et al., 2021b; Du et al., 2023),
which rebalance the contribution of each class. However,
these methods are less applicable to aesthetics-oriented scor-
ing tasks, which have no explicit class boundaries. Transfer
learning methods (Yang & Xu, 2020; Liu et al., 2021; He
et al., 2021; Chen & Su, 2023; Wei & Gan, 2023) aim to
transfer knowledge from majority classes to enhance the
learning of the minority. However, the highly abstract nature
of aesthetics often hinders effective knowledge extraction
and transfer. Some other methods use data augmentation
techniques to expand datasets (Kim et al., 2020; Wang et al.,
2021a; Ahn et al., 2023; Perrett et al., 2023), while they
often risk unintentionally degrading aesthetic quality and
introducing inconsistencies between the original labels and
the augmented images.

Although a small number of recent researches have focused
on long-tailed regression tasks (Yang et al., 2021; Gong
et al., 2022), we find that these methods have not fully
overcome the earlier mentioned challenges and their per-
formance gains on IAA tasks are relatively limited. This
limitation may stem from the methods’ inadequate consider-
ation of the IAA task’s inherent complexities, which include
subjectivity of aesthetic perception and the uncertainty of
aesthetic labels. Instead, we fully consider these aesthetic
properties and design a dedicated solution.

3. Method
3.1. Problem Setup

We consider two primary tasks, distribution prediction and
score regression, based on whether the labels are in dis-
tributed or single-valued form. 1) In the distribution pre-
diction task, the training set with N samples is denoted as

D = {(xi,yi)}Ni=1. Here, xi represents an input image,
and the corresponding ground truth distribution of human
ratings is indicated by the empirical probability mass func-
tion (PMF) yi =

[
y1i , y

2
i , ..., y

C
i

]
. Each element in yi rep-

resents an aesthetic quality level, with C denoting the total
number of these levels. The goal of model training is to
predict the PMF ŷi =

[
ŷ1i , ŷ

2
i , ..., ŷ

C
i

]
, which should be an

accurate estimate of yi. For each image xi, the ground truth
Mean Opinion Score (MOS) and the predicted score can
be calculated as si =

∑C
j=1 j × yji and ŝi =

∑C
j=1 j × ŷji ,

respectively. 2) In the score regression task, each image xi

is assigned a scalar score yi. Despite this, the model can still
output a distribution and then minimize the gap between the
score ŝi derived from the distribution and the ground truth
label si.

IAA datasets inevitably exhibit long-tailed distributions,
where a large number of images’ aesthetic qualities cluster
around the mean s̄ = 1

N

∑N
i=1 si. This leads to a tendency

for the models to output medium scores, which means the
minority samples with labels that deviate substantially from
the mean are prone to larger prediction errors, as indicated
by |ŝi−si| ∝ |si− s̄|. Our primary focus will be on address-
ing these amplified errors observed in minority samples.

3.2. Tail Features Augmentation

Image augmentation approaches such as cropping, flipping,
and rotation, which directly manipulate the original im-
age, can potentially destroy the intricate aesthetic infor-
mation, creating an irreversible impact independent of the
network’s learning process (Hosu et al., 2019; Chen et al.,
2020). Therefore, feature-level enhancement is a more suit-
able augmentation approach for IAA. Due to its operation
on higher-level features extracted from images, rather than
altering raw pixels, it preserves essential aesthetic qualities
while generating new, diverse samples that better represent
the minority.

As a classic technique, mixup (Zhang et al., 2017) can be
applied to generate new samples and their associated la-
bels through linear interpolation. Specifically, consider-
ing an image-label pair (xi,yi) and (xj ,yj), let zk

i , z
k
j =

fk(xi), f
k(xj) be the features extracted at the k-th layer of

a deep learning model from xi,xj . Then the mixed feature
z̃k and label ỹ are generated as follows:

z̃k = λzk
i + (1− λ)zk

j ,

ỹ = λyi + (1− λ)yj .
(1)

It should be noted that when k = 0, the input feature z0
i

is identical to the original image xi, reverting to the initial
version of mixup. In the following text, the superscript k
will be omitted for brevity.

A mixup operation involves choosing two samples, and
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Figure 3: Architecture of the proposed ELTA model. ELTA consists of three optional components: (a) TFA performs mixup between
instances sampled by our dedicated strategy to enhance minority features; (b) FLSA aligns features and labels based on their similarity
consistency; (c) APDS reshapes the predictive distributions to work together with high thresholding for high-quality pseudo-label selection.

most of the previous work used random sampling. However,
while random sampling may be effective in class-balanced
datasets, it proves inadequate for long-tailed IAA datasets.
This is due to the inherent dominance of majority instances
within such datasets, resulting in an unintended abundance
of majority features when employing random sampling and
deviating from our original objective of enhancing minority
representation.

To solve the above problem, we use the label information to
guide more sampling of the minority and design a two-stage
strategy. Initially, the sampling probability P (i) for zi is
calculated based on its score deviation from the mean score
of all samples. Samples far from the mean have high sam-
pling probabilities, thus ensuring a bias towards the minority.
Once the first sample feature zi is chosen, the probability
P (j|i) that each of the remaining features is paired with the
zi can be calculated. This probability hinges on the score
difference between the two samples. A smaller difference
means a higher chance of pairing, thus ensuring the aesthetic
similarity within pairs. The equations are detailed below:

P (i) =
exp (|s̄− si|/τ1)∑B

k=1 exp (|s̄− sk|/τ1)
, (2)

P (j|i) = exp (τ2/|si − sj |)∑
k=1,2,··· ,i−1,i+1,··· ,B exp (τ2/|si − sk|)

, (3)

where s̄ represents the mean score of all the samples within
that batch, and B is the batch size. τ1 and τ2 are temperature
hyper-parameters that can be used to regulate the level of
preference for the minority samples.

In traditional methods, the mixing factor λ in Eq. (1) is
randomly selected from a beta distribution. To enhance the
representation of minority data, We change λ to be obtained
from the following equation:

λ =
P (i)

P (i) + P (j)
=

exp (|s̄− si|/τ1)
exp (|s̄− si|/τ1) + exp (|s̄− sj |/τ1)

,

(4)
where P (j) is computed by Eq. (2). This allocation of
weights allows the sample which towards the minority more
in the pair to have a dominant influence in the mixup process,
reducing the impact of accidentally sampling a majority
sample.

3.3. Feature-Label Similarity Alignment

In IAA tasks, features often exhibit significant confusion,
as illustrated in Figure 2. This presents a challenge when
addressing data imbalance through feature augmentation.
Previous work (Gong et al., 2022) has shown items closer in
label space should also be nearer in feature space. By lever-
aging this insight, label similarity can guide the refinement
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of features. This alignment process fosters a harmonious
relationship between features and labels, promoting consis-
tency and rectifying potential mismatches.

Specifically, the images x are first fed into the encoder,
which extracts feature vectors z that capture their essential
characteristics. These feature vectors are then compared
pairwise using cosine similarity and yield a feature similarity
matrix, denoted as Mf ∈ RB×B , where the element of Mf

can be formulated as:

Mf
i,j = cos(zi, zj) =

zi · zj
|zi| · |zj |

. (5)

Each element within this matrix holds a value that quantifies
the similarity between a specific pair of feature vectors.
Besides, the similarity matrix of labels M l ∈ RB×B can
be expressed as a function φ derived from their absolute
differences:

M l
i,j = φ(si, sj) = 1− |si − sj |

max
k

sk −min
k

sk
. (6)

In particular, within the label similarity matrix, M l
i,j = 1

signifies corresponding sample pairs that share identical la-
bels, representing the highest level of similarity. Conversely,
M l

i,j = 0 indicates a complete absence of relevance. As fea-
tures are adaptable through learning, the backpropagation
process utilizes the label similarity matrix to guide the fea-
ture similarity matrix toward closer alignment, effectively
minimizing the discrepancy between them. The alignment
loss can be expressed as MSE(Mf ,M l). A tunable parame-
ter, which controls the weight of this loss, is then multiplied
with it. Subsequently, this product is added to the original
supervised loss (e.g., EMD), acting as a regularization term.

3.4. Adaptive Probability Distribution Sharpening

While expanding minority from unlabeled samples offers a
promising approach, how to properly utilize these samples
requires careful consideration. We employ an Adaptive
Probability Distribution Sharpening strategy to pseudo-label
unlabeled data, specifically seeking minority samples to
enrich diversity.

Challenges in selecting high-quality minority samples. Ex-
isting research (Berthelot et al., 2019; Sohn et al., 2020;
Zhang et al., 2021) demonstrates that setting a high thresh-
old and retaining only predictions with confidence exceed-
ing this threshold can effectively filter out samples with
large prediction errors. However, this approach confronts
challenges due to the subjective and continuous nature of
IAA labels, which leads to a softer, smoother, and less dis-
tinct predicted distribution. Consequently, identifying an
optimal threshold for selecting high-quality minority sam-
ples is difficult. Especially, setting the threshold too high
may exclude almost all potential samples, whereas a too-low

threshold could include numerous samples with significant
errors.

Reshaping the distribution adaptively. To overcome the
challenges posed by IAA’s smooth predicted distribution, we
propose a temperature scaling technique inspired by (Hinton
et al., 2015). By adjusting the original distribution, we
aim to facilitate effective threshold selection for identifying
reliable pseudo-labels. Specifically, given the logit vector
zi, the new prediction confidence distribution ŷi is obtained
as follows:

ŷi = Softmax(zi/τ) =
ezi/τ∑B
j=1 e

zj/τ
, (7)

where τ is a temperature parameter that scales logit vectors.
Increasing τ above 1 smooths the probability distribution,
while below 1 sharpens the distribution.

To prioritize reshaping minority logits and ensure they can
exceed the threshold more easily, we introduce an adaptive
temperature that adjusts the smoothness based on the indi-
vidual score of each sample. This adaptivity is achieved
by modifying the temperature factor τ in Eq. (7) to func-
tion τi(β) on the sample’s score, and then the score-based
temperature distribution can be expressed as:

τi(β) = e−β|ŝi−s̄|,

ŷi =
ezi/τi(β)∑B
j=1 e

zj/τj(β)
,

(8)

Here, |ŝi − s̄| measures the difference between a sam-
ple’s predicted score ŝi and the average score. The hyper-
parameter β > 0 controls the steepness of temperature
decline as the score difference increases. This exponentially
decreasing temperature function prioritizes sharpening for
minority samples. As the score difference grows, the tem-
perature approaches 0, resulting in a sharper distribution
of the minority. Conversely, majority samples with smaller
differences maintain a smoother distribution.

Determining hyper-parameter by grid search. Unlike pre-
vious works where the threshold is typically an indepen-
dent hyper-parameter to derive pseudo-labels, we integrate
the threshold and sharpening magnitude as interconnected
hyper-parameters. To achieve this, we introduce an addi-
tional stage to explore diverse combinations of these two
hyper-parameters via grid search. This grid search is guided
by MAE between generated and ground-truth labels. The
search goal is to pinpoint the specific hyper-parameters com-
bination that yields the most reliable and accurate pseudo-
labels.

Initially, we construct a small labeled dataset, which can
be sampled randomly from the validation set. We then
employ the trained model to assess the samples from this
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dataset and select pseudo-labels based on the APDS strategy.
Following this, a set of pseudo-labeled samples is gener-
ated, represented as D′ = {(xi,yi)|max(ŷi(β)) ≥ t}Mi=1,
where max(ŷi(β)) ≥ t denotes the condition for pseudo
label screening. Next, we calculate the labeled score
si and predicted score ŝi for each sample in D

′
(noting

that this is based on the formula si =
∑C

j=1 j × yji and

ŝi =
∑C

j=1 j × ŷji ). By adjusting the magnitude β and
the selection threshold t , different pseudo-labels can be
generated. Finally, we aim to find the parameters β∗ and
t∗ that minimize the MAE through a grid search method,
which can be expressed as:

β∗, t∗ = argmin
β,t

M∑
i=1

|ŝi(β, t)− si| (9)

Once this optimal configuration is identified, we leverage it
to rigorously filter pseudo-labels for subsequent use in the
self-training process.

3.5. Overall Architecture and Training Loss

Overall architecture. The architecture is shown in Figure 3.
Our method aims to achieve generic enhancement, indepen-
dent of the backbone choice. Therefore, we select the Swin
Transformer V2 (Liu et al., 2022), known for its versatility
and popularity, as our network backbone. In addition, We
designed the modules with flexibility in mind. Each one
is optional and can function independently. Their loose
coupling allows for easy integration or removal as needed.

Training loss. Following the selection of suitable pseudo-
labeled samples using the aforementioned strategy, these
samples are then incorporated into the original dataset for
subsequent training epochs. During the self-training pro-
cess, the loss is categorized into two types: labeled loss Ls,
derived from the original training set, and unlabeled loss Lu,
sourced from the pseudo-labeled samples:

Ls =
1

Bl

Bl∑
i=1

H
(
yl
i, f

(
xl
i

))
,

Lu =
1

Bu

Bu∑
i=1

1 [max (ŷu
i (β

∗)) ≥ t∗] ·H (ŷu
i , f (xu

i )) ,

(10)
where superscripts l and u denote labeled and unlabeled
data, respectively. H denotes the loss function and ŷu

i rep-
resents the generated pseudo-labels. The indicator function,
denoted by 1[·], assigns a value of 1 only when the maxi-
mum value of ŷu

i exceeds the threshold t∗; otherwise, its
value is 0.

4. Experiments
4.1. Experimental Settings

Datasets. We evaluate the performance of our approach on
four representative datasets: AVA (Murray et al., 2012),
AADB (Kong et al., 2016), TAD66K (He et al., 2022),
PARA (Yang et al., 2022), which are the general, multi-
attribute, theme-oriented and personalized aesthetic datasets,
respectively, for IAA tasks. More details about datasets and
train-test split ways are shown in supplement material A.1.

Evaluation metrics. We adopt two well-known evaluation
metrics, the pearson linear correlation coefficient (PLCC,
P) and the spearman rank correlation coefficient (SRCC,
S) to evaluate performance. While models trained on long-
tailed datasets often struggle with minority samples, these
samples typically make up a small portion of the datasets
and thus have a limited reflection on both holistic SRCC
and PLCC metrics. To analyze further, we sort each dataset
by its ground-truth scores and split it into three categories
based on percentiles: top 20% as "high", bottom 20% as
"low", and the remaining 60% as "medium". We consider
the "high" and "low" categories as minority samples and
the "medium" category as the majority. Then the Mean
Absolute Error (MAE) for low, medium, high categories are
calculated, denoted as L, M, H, respectively.

Benchmark models. We conduct a comparative analysis
involving 7 SOTA IAA models: NIMA (Talebi & Milanfar,
2018), HGCN (She et al., 2021), BIAA (Zhu et al., 2020),
TANet (He et al., 2022), MaxViT (Tu et al., 2022), MUSIQ
(Ke et al., 2021), EAT (He et al., 2023b), and 2 Deep Imbal-
anced Regression (DIR) models (Yang et al., 2021; Gong
et al., 2022), which excel at long-tailed regression tasks. To
ensure fairness, we use the same Swin Transformer V2 (Liu
et al., 2022) backbone for all DIR methods and ELTA. Since
some models have not been tested on all four datasets, we
retrained them using their publicly available code and rec-
ommended parameter settings. Training process is provided
in supplement material A.2.

4.2. Performance Evaluations

4.2.1. COMPARISON WITH IAA METHODS

Table 1 presents performance comparisons with IAA meth-
ods. Three key observations emerge from these results: 1)
Our method demonstrates superior performance on the AVA,
AADB, and PARA datasets compared to previous methods
in terms of PLCC and SRCC correlation metrics. However,
it slightly lags behind EAT on the TAD66K dataset because
ELTA lacks theme awareness. Despite this shortcoming, it
still ranks high against other methods. 2) ELTA achieves
SOTA performance in both L and H. This suggests ELTA
effectively reduces evaluation errors for the minority. 3)
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Table 1: Comparing our ELTA with 7 IAA methods on the four datasets. The ‘Base.’ represents a Swin Transformer baseline model
removing all the modules proposed. The best result for each metric is bolded in red.

CNN-based models Transformer-based modelsDataset Metric NIMA HGCN BIAA TANet MaxViT MUSIQ EAT Base. Ours
P ↑ 0.636 0.687 0.668 0.765 0.745 0.738 0.770 0.743 0.777
S ↑ 0.612 0.665 0.651 0.758 0.708 0.726 0.759 0.735 0.764
L ↓ 0.655 0.675 0.653 0.630 0.600 0.647 0.490 0.616 0.438
M ↓ 0.322 0.321 0.382 0.237 0.317 0.305 0.313 0.295 0.302

AVA

H ↓ 0.648 0.660 0.568 0.729 0.531 0.628 0.433 0.513 0.426
P ↑ 0.711 0.734 0.733 0.742 0.748 0.761 0.767 0.740 0.772
S ↑ 0.700 0.716 0.710 0.749 0.742 0.751 0.759 0.732 0.760
L ↓ 1.450 1.453 1.508 1.394 1.592 1.447 1.375 1.526 1.289
M ↓ 0.874 0.989 0.897 0.846 0.782 0.880 0.828 0.896 0.905

AADB

H ↓ 1.527 1.299 1.423 1.355 1.461 1.159 1.260 1.402 1.141
P ↑ 0.405 0.493 0.431 0.531 0.513 0.517 0.546 0.507 0.539
S ↑ 0.390 0.486 0.417 0.513 0.484 0.489 0.517 0.478 0.496
L ↓ 1.851 1.808 1.734 1.598 1.570 1.627 1.591 1.621 1.457
M ↓ 0.812 0.780 0.876 0.682 0.746 0.728 0.782 0.793 0.812

TAD66K

H ↓ 1.690 1.370 1.669 1.651 1.402 1.460 1.175 1.354 1.162
P ↑ 0.862 0.881 0.886 0.899 0.936 0.918 0.940 0.925 0.943
S ↑ 0.877 0.865 0.858 0.887 0.902 0.899 0.909 0.897 0.912
L ↓ 0.616 0.573 0.469 0.551 0.383 0.572 0.336 0.402 0.327
M ↓ 0.344 0.290 0.328 0.299 0.282 0.315 0.276 0.314 0.251

PARA

H ↓ 0.486 0.502 0.503 0.429 0.276 0.424 0.256 0.379 0.290

Our method slightly compromises some majority perfor-
mance, which is a common challenge in other long-tail
solutions(Zhou et al., 2023).

4.2.2. COMPARISON WITH DIR METHODS

The results of the comparison with DIR methods are shown
in Table 2. Our approach outperforms the methods presented
in (Yang et al., 2021) and (Gong et al., 2022) in two aspects.
First, it achieves SOTA in the overall performance, PLCC
and SRCC. Second, it excels in prediction for minority
samples, indicating a significant improvement in this area.

4.3. Enhancing other Methods by Plugging

To demonstrate the effectiveness of our proposed ELTA
and its seamless integration into existing methods, ELTA is
plugged into the other seven IAA methods. As illustrated in
Figure 4, we integrate FLSA and TFA as an overall optimiza-
tion module for model representation learning; following
this, we incorporate self-training with APDS module to en-
hance the final performance. Results are detailed in Table 3.
The data indicates improvements in the PLCC, SRCC, and
MAE in both low and high segments.

FLSA
(optional)

TFA
(optional)

APDS
(optional)

Input
(labeled)

Feature
Extractor

Regressor
(MLP)

Predicted
Scores

Input
(unlabeled)

Pseudo-
labels

Self-training data

Enhanced modules

Figure 4: Example of plugging our modules into other methods.

4.4. Ablations and Analysis

Effectiveness of the modules. To assess the effectiveness
of the modules, we create eight combinations by selecting
whether to use each of the three modules. The results on the
AVA dataset are shown in Table 4. We observe that the TFA
module has a relatively significant effect on reducing mi-
nority errors, while FLSA and APDS demonstrate balanced
improvements across all metrics. For example, removing
TFA module (row 7) leads to an increase in MAE by 24.9%
for the low segment and 8.7% for the high segment, in con-
trast to the configuration with all three modules active (row
8).
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Table 2: Comparing our ELTA with 2 DIR methods, L&FDS (Yang
et al., 2021) and Ranksim (Gong et al., 2022).

ModelDataset Metric L&FDS RankSim Base. Ours
P ↑ 0.752 0.759 0.743 0.777
S ↑ 0.740 0.753 0.735 0.764
L ↓ 0.588 0.542 0.616 0.438
M ↓ 0.303 0.297 0.295 0.302

AVA

H ↓ 0.509 0.485 0.513 0.426
P ↑ 0.746 0.750 0.740 0.772
S ↑ 0.735 0.738 0.732 0.760
L ↓ 1.473 1.537 1.526 1.289
M ↓ 0.888 0.881 0.896 0.905

AADB

H ↓ 1.407 1.295 1.402 1.141
P ↑ 0.509 0.514 0.507 0.539
S ↑ 0.483 0.487 0.478 0.496
L ↓ 1.611 1.560 1.621 1.457
M ↓ 0.787 0.796 0.793 0.812

TAD66K

H ↓ 1.369 1.343 1.354 1.162
P ↑ 0.933 0.930 0.925 0.943
S ↑ 0.904 0.906 0.897 0.912
L ↓ 0.371 0.363 0.402 0.327
M ↓ 0.301 0.322 0.314 0.251

PARA

H ↓ 0.360 0.345 0.379 0.290

Ablations on sampling strategy in TFA. Two ablation
tests are carried out to validate the necessity of the proposed
sampling strategy in the TFA module. The first employs
a random sampling strategy. The results indicated a 4.6%
decrease in both PLCC and SRCC. Through a look at the
labels associated with the mixed features, we find that the
augmentation occurs mainly in the majority rather than in
the minority. In the second test, we set thresholds to dis-
tinguish between majority and minority, allowing only mi-
nority features defined in this way to be mixed. Despite
experimenting with various thresholds, the optimal results
achieved were 0.755 and 0.747, still below the 0.777 and
0.764 garnered with our proposed strategy.

Ablations on hyper-parameters. In Eq. (2) and (3), two
temperature hyper-parameters are used to adjust the sam-
pling probability distribution. They determine how much
we favor the minority when selecting samples. To quantita-
tively assess how these hyper-parameters affect results, we
conduct tests with various hyper-parameter values. The out-
comes on AVA are shown in Figure 5. Notably, the SRCC
metric reaches its peak with τ1 set at 0.2 and τ2 at 4.0.

5. Conclusion
This paper reveals the long-tailed distribution in the IAA
datasets, its specificity, and the consequent model bias. To
address this issue, we propose ELTA, which comprises three

Table 3: Cross-architecture evaluations are conducted to enhance
other IAA methods, resulting in improved results on AVA.

+ Module MetricModel TFA FLSA APDS P ↑ S ↑ L ↓ M ↓ H ↓
0.636 0.612 0.655 0.322 0.648

✓ ✓ 0.649 0.631 0.614 0.338 0.628NIMA
✓ ✓ ✓ 0.658 0.640 0.593 0.340 0.601

0.687 0.665 0.675 0.321 0.660
✓ ✓ 0.700 0.675 0.582 0.343 0.593HGCN
✓ ✓ ✓ 0.714 0.693 0.564 0.329 0.575

0.668 0.651 0.653 0.382 0.568
✓ ✓ 0.682 0.675 0.596 0.390 0.514BIAA
✓ ✓ ✓ 0.699 0.687 0.544 0.381 0.497

0.738 0.726 0.647 0.305 0.628
✓ ✓ 0.748 0.734 0.603 0.311 0.562MUSIQ
✓ ✓ ✓ 0.761 0.745 0.588 0.327 0.482

0.745 0.708 0.600 0.317 0.531
✓ ✓ 0.750 0.728 0.557 0.340 0.426MaxViT
✓ ✓ ✓ 0.759 0.742 0.532 0.333 0.428

0.765 0.758 0.630 0.237 0.729
✓ ✓ 0.772 0.767 0.591 0.244 0.633TANet
✓ ✓ ✓ 0.779 0.771 0.562 0.251 0.585

0.770 0.759 0.490 0.313 0.433
✓ ✓ 0.777 0.765 0.450 0.310 0.426EAT
✓ ✓ ✓ 0.780 0.768 0.450 0.307 0.413

Table 4: Ablation of different modules on the AVA dataset.

Module Metric
TFA FLSA APDS P ↑ S ↑ L ↓ M ↓ H ↓

0.743 0.735 0.616 0.295 0.513
✓ 0.749 0.740 0.518 0.323 0.474

✓ 0.758 0.752 0.592 0.287 0.520
✓ 0.760 0.749 0.575 0.286 0.480

✓ ✓ 0.764 0.748 0.484 0.324 0.431
✓ ✓ 0.762 0.756 0.461 0.314 0.445

✓ ✓ 0.771 0.757 0.547 0.286 0.463
✓ ✓ ✓ 0.777 0.764 0.438 0.302 0.426

components: enhancing the minority features, aligning fea-
tures and labels based on similarity consistency, and im-
proving model self-training through an optimized pseudo-
labeling strategy. ELTA outperforms existing IAA and DIR
methods on four representative datasets, particularly in re-
ducing the prediction errors of minority samples. However,
like other solutions, ELTA encounters a minor decline in
majority performance. In future work, we will continue to
explore comprehensive performance enhancements without
compromising the majority.
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A. Appendix.
A.1. The Details of Datesets

The AVA dataset is the most extensive available aesthetic dataset, containing over 250,000 images, and each image is
associated with a distribution of scores in a range of 1-10. Similar to (Murray et al., 2012; Talebi & Milanfar, 2018; Chen
et al., 2020; He et al., 2022), we use 235,528 images for model training and 20,000 images for testing. AADB is an aesthetic
attribute dataset containing about 10,000 images, each scored from 1 to 5. Following the previous work (Kong et al., 2016;
Zhu et al., 2020; 2021), we use the standard split with 8,500 for training, 1,000 for testing and 500 for validation. The
TAD66K dataset contains about 66,000 images covering 47 popular themes, and each image has been annotated with score
from 1 to 10 on dedicated theme evaluation criteria. We use the official train-test split way (He et al., 2022; 2023b), 52,248
for training and 14,079 for testing. PARA is a personalized image aesthetics dataset with rich attributes, which consists of
31,220 images with annotated scores from 1 to 5. The train-test split way is the same with the work (Yang et al., 2022).

A.2. Training Details

Since the ground truth in the AVA dataset consists of the score distribution, we use the earth mover’s distance (EMD) loss
to measure the distance between the ground-truth and the predicted distribution. For the AADB, TAD66K, and PARA
datasets, we use mean squared error (MSE) loss, as these datasets only provide holistic scores. The training process is
optimized using the Adam optimizer, with a batch size of 48. Once the first round of training is completed, model evaluation
is performed to select pseudo-labels. We use these pseudo-labels for only one additional round of self-training. When
the model is trained on one labeled dataset, the unlabeled dataset used to provide the pseudo-labeled samples is randomly
sampled and constructed from other datasets with no more instances than the original training dataset.

A.3. Details of Figure 2

In Figure 2, we present a comparative analysis of feature distributions learned by a classification model and an IAA model,
using a toy experiment. To achieve this comparison, a small dataset with both category labels and aesthetic score labels is
required. Considering that the theme labels in the TAD66K dataset can be used as category information, we sample the
images from the TAD66K. The dataset obtained from this sampling adheres to a key characteristic: identical shapes in
both category distribution and aesthetic score distribution. Specifically, we choose 10 categories out of the 47 available and
divide aesthetic scores into ten equal intervals with a unit distance. In our constructed dataset, the sample size for the n-th
category corresponds to the n-th score interval, which ensures consistency in the dataset distributions for the two different
tasks. In addition, we employ identical experimental parameters and the same Swin Transformer V2 backbone network
for feature extraction, differing only in the fully connected layers at the end of the network. After training the models,
we perform dimensionality reduction on the extracted features and visualize them in Figure 2. It reveals clear boundaries
between different categories in the classification task, while features in the IAA task appear more chaotic. By eliminating
other interfering factors, including dataset distribution and backbone network, we confirm that this severe mismatch between
features and labels is indeed attributable to the intrinsic characteristics of aesthetic tasks.

A.4. Mixup strategy

In Section 3.2, we point out that feature-level enhancement is a more suitable augmentation approach for IAA. Here we give
some quantitative experimental results. We maintained the same sample selection strategy for mixup but shifted the mixup
process from the feature level to the pixel level on the original images. The results in Table 5 indicate a noticeable decline in
performance, whether we applied the TFA modules individually or all modules.

Table 5: Comparisons of feature-level augmentation and pixel-level augmentation on AVA.

Model P ↑ S ↑ L ↓ M ↓ H ↓
TFA(pixel) 0.731 0.719 0.597 0.368 0.541

TFA(feature) 0.749 0.740 0.518 0.323 0.474
TFA(pixel)+FLSA+APDS 0.752 0.741 0.487 0.340 0.485

TFA(feature)+FLSA+APDS 0.777 0.764 0.438 0.302 0.426
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A.5. Image examples

Figure 6 presents some examples from both the AVA and TAD66K datasets. The Baseline model, marked in blue, struggles
to effectively differentiate the aesthetic quality of images. Typically, its evaluation results cluster within a 4-6.5 point range,
which means significant evaluation errors for images with high or low aesthetic values. In contrast, our proposed ELTA
model, indicated in red, demonstrates improved performance. The result is closer to ground truth, which is represented in
black.
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Figure 6: Images examples with their corresponding ground-truth and predicted scores.
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