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ABSTRACT

Comparing two images in terms of Commonalities and Differences (CaD ) is a
fundamental human capability that forms the basis of advanced visual reason-
ing and interpretation. It is essential for the generation of detailed and contex-
tually relevant descriptions, performing comparative analysis, novelty detection,
and making informed decisions based on visual data. However, surprisingly, little
attention has been given to these fundamental concepts in the best current mimic
of human visual intelligence - Large Multimodal Models (LMMs). We develop
and contribute a new two-phase approach CaD-VI for collecting synthetic visual
instructions, together with an instruction-following dataset CaD-Inst containing
349K image pairs with CaD instructions collected using CaD-VI . Our approach
significantly improves the CaD spotting capabilities in LMMs, advancing the
SOTA on a diverse set of related tasks by up to 17.5%. It is also complemen-
tary to existing difference-only instruction datasets, allowing automatic targeted
refinement of those resources increasing their effectiveness for CaD tuning by up
to 10%. Additionally, we propose an evaluation benchmark with 7.5K open-ended
QAs to assess the CaD understanding abilities of LMMs.

1 INTRODUCTION
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Figure 1: CaD-VI concept. We collect and pair densely captioned source images to form synthetic
CaD instructions using an LLM. The resulting synthetic CaD Visual Instruction dataset is used
to train the first CaD enabled LMM that is in turn used in iterative self-refinement by annotating
new paired images from additional sources using the CaD LMM, and re-training the model with a
growing and more comprehensive CaD-Inst dataset (contributed in this work).

Understanding the Commonalities and Differences (CaD ) between two signals (e.g., images) is a
basic capability innate to humans (IxXDF, 2016). Spotting change and difference alerts us to inter-
esting events happening in our surroundings, warns us of hazard, and drives us toward learning new
concepts exposed after the change or relative movement. Understanding what is common helps
structure visual information and allows differences to emerge by elimination. Together, these form
powerful tools for human learning and acquiring world knowledge.

The forefront of modern Al shifted with the recent emergence of foundation Large Language Models
(LLMs) (Bommasani et al.|[2022), where the top-performing ones (et al.,2024bja; |Anthropicl [2024;
Al@Meta, [2024) closely align to human reasoning and world-knowledge capabilities. LLMs’ great
performance and wide applicability quickly led to their wide adoption into most of the current ML
pipelines. In the Vision community, this impacted the development of Large Multi-modal Models
(LMMs) (Liu et al., 2023b; [Yang et al., 2023} et al., 2024a; |Huang et al., 2023} |Li et al., |2023b;
Dong et al.l [2024; |Sun et al, 2023a) largely considered the best available mimic of human visual
intelligence to date. While multiple methods for adding multi-modal support to LLMs have been
proposed, currently the more popular and better performing open LMMs largely rely on tuning using
Visual Instructions (VI) (Liu et al.} [2023b}, Zhu et al.l [2023b)). These methods align image tokens
produced by visual encoders to be ‘understandable’ by an LLM decoder, allowing images to be
seamlessly integrated into the LLM decoder input context stream together with the query text during
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Phase 1
Captions of Image Pairs Commonalities: CaD-InstV!
generation Both images contain the presence of a man and a building or a wall in the
Image 1: In this picture | can see a man standing and in the back | can see few background. There is also a sense of being outdoors in both pictures.
people standing and looks like a building and | can see a pillar on the left side of the
picture. training Differences:
Image 2: In this image there is a bench on which there are two women sitting and » 1. Object types: Image 1 contains a man standing and a pillar, while Image 2
there is a man walking on the floor in front of them. Beside the bench there is a includes a bench, two women sitting, a man walking, a trolley, and a wall.
trolley. In the background there is a wall. 2. Object actions: In Image 1, there are no specific actions mentioned, but Image 2
has a man walking and two women sitting. The man in Image 1 is standing, while the
the i and about the visual content of the two 1 man in Image 2 is walking on the floor.
images, including the object types, object attributes, counting the objects, * 3. Object locations: The pillar in Image 1 is located on the left side, whereas the
object action, object locations, relative positions between objects, etc. bench, women, and trolley in Image 2 are grouped together on the right side.
4. Relative positions between objects: In Image 1, the people are standing apart
LLM from each other, and the pillar is to the left of the image. In Image 2, the bench,
Image Pairs (278K) :/:drn;g;“aen: trolley are on the right side, and the walking man is in front of the bench

pERE DeEn L
<Image 1> <Image 2> Instruction
v —)

Additional Image Pairs with Annotation Phase 2 CaD-InstV2

“The firstimage shows a black and white cat while the
second image shows a gray striped cat. In the first
image, the cat is sitting or laying on furniture like a
banister, wooden chair or table, while in the second
image, the cat is lying on a picnic table in a park.”

Commonalities:
Both images contain a cat as the main object. The cats are the only main objects in the images,
Re-Annotation | and they are both located on some kind of furniture.

Differences:
. N 1. Color: The cats have different colors. The cat in the firstimage is black and white, while the
Based on the two images and the context, summarize CaD- catin the second image is gray and black.

the commonalities and differences ... LLaVvAV1 2. Furniture: The cats are on different types of furniture. The cat in the firstimage is on a
n banister, wooden chair, or table, while the cat in the second image is on a picnic table.
Image Pairs (71K) 3. Location: The cats are in different locations. The cat in the firgt image is indoors, while the CaD-Inst"!
cat in the second image is outdoors in a park.

4. Background: The backgrounds of the two images are different. The firstimage has a wall in
the background, while the second image has grass in the background.
5. Objects: The firstimage has a flower pot in the background, while the second image has no
additional objects. CaD-

LLaVvAv2

\ 4

Figure 2: Pipeline of our two-phase CaD-VI : In Phase-1, we leverage captions for image pairs and
an LLM to generate CaD VI data - CaD-Inst"'! (278K), and perform visual instruction tuning on it
to arrive at the Phase-1 model CaD-LLaVAY'! . In Phase-2, we leverage CaD-LLaVA"'! to generate
CaD VI data on additional image pairs and collect CaD-Inst"? (71K). Visual instruction tuning with
CaD-Inst"! and CaD-Inst"? leads to our final model CaD-LLaVA"Y?2 .

inference. In most recent methods (Liu et al.,[2023b; [Huang et al., 2023} [Li et al.; 2023b};[Dong et al.}

[2024), VI takes the form of a multi-turn conversation: with ‘human’ turns providing image context
and asking the questions, and LMM turns answering them (Liu et al.,[2023b). However, the majority
of VI data focused on providing merely a single image in the VI conversations (Liu et al, [2023b),
while only a few works included multi-image VI samples (Sun et al.,[2023a; [Awadalla et al.,[2023),
and surprisingly, very few included some form of CaD VI data (Huang et al.| 2023} [Li et al., 2023bza)
to enable CaD support in the resulting LMM.

Due to the fundamental importance of endowing LMMs with CaD capabilities, thus getting them
closer to achieving human visual intelligence in all its diversity, we propose CaD-VI - a multi-phase
CaD generation approach, for progressive dense and structured CaD VI data collection (concept
shown in Fig. [T), which we employ to build CaD-Inst training curriculum and associated CaD-
QA benchmark comprised of CaD-related open-ended questions, both contributed in this work. In
essence, the final CaD-Inst curriculum associates diverse and large-scale (349K) image pair collec-
tion with highly detailed and structured CaD summaries. CaD summaries computed for an additional
set of 7.6K image pairs, are used for extracting open CaD-related QA resulting in CaD-QA .

As shown in Fig.[2| the Phase-1 of CaD-VIis a ‘cold start’ where, in the absence of LMMs with sub-
stantial CaD capabilities, we leverage image captions and an LLM to hallucinate (coarse) CaD VI
data - CaD-Inst"'! (278K), where we collect structured and detailed CaD summaries for our paired
images sourced from a dense & large-scale image collection (Pont-Tuset et al.} [2020). Training on
the first phase CaD-Inst"! data we arrive at CaD-LLaVAY'! - an LMM that has strong CaD capabili-
ties compared to a large variety of leading LMMs including the very few trained with some CaD data
(see Sec. . Next, leveraging our CaD-LLaVA"Y! model to produce non-hallucinated, image-
informed CaD data, we generate additional CaD instructions into the collection CaD-Inst"? (71K).
Combining CaD-Inst"! and CaD-Inst"? we form CaD-Inst and train our final CaD-LLaVA"Y? 7B
and 13B LMMs to achieve (1) significant (up to 17.5%) absolute improvement over a large variety
of recent SOTA LMMs over a variety of 5 CaD-related existing closed-QA evaluation benchmarks

(namely BISON(Hu et al.,2019), SVO Probes(Hendricks & Nematzadeh| [2021), NLVR2(Suhr et al.|
2019), EQBEN(Wang et al., 2023)), and COLA(Ray et al.,|2023)), and (2) strong (up to over 20%)
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relative improvements on our contributed open-QA CaD benchmark - CaD-QA . Additionally, as
CaD-Inst can be safely mixed with the LLaVA VI data (Liu et al., 2023a), we show in Tab. that
our CaD-LLaVA"2 models effectively avoid forgetting the general capabilities of the corresponding
LLaVA LMMs.

Our contributions are as follows: (i) we contribute CaD-Inst - a large-scale visual instruction tuning
dataset for enhancing CaD reasoning capabilities of LMMs; (ii) we contribute CaD-QA - an open
QA evaluation benchmark for assessing CaD capabilities; (iii) we contribute and open source a CaD-
VI methodology for collecting CaD instruction tuning data and re-purposing datasets with existing
difference annotations; (iv) we demonstrate significant (up to 17.5%) improvements in CaD reason-
ing for LMMs trained using CaD-Inst as well as potential to scale CaD-Inst via self-improvement
by CaD-Inst -trained models.

2 RELATED WORK

Large Multimodal Models. LMMs have shown significant advancements in integrating visual and
textual data, enhancing the ability of deep neural networks to understand and generate multimodal
content. BLIP-2 employs a bootstrapping approach that leverages frozen image encoders and large
language models through a querying transformer, achieving remarkable results on various vision-
language tasks with fewer parameters compared to previous models (Li et al., |2023e). Similarly,
MiniGPT-4 (Zhu et al.,|2023a) and LLaMA-Adapters (Zhang et al., 2023b) utilize pretrained visual
and language models, with adapters aligning image tokens to language tokens, improving the ef-
ficiency and performance of multimodal understanding and generation. In addition to these early
models, the LLaVA series (Liu et al., [2023b)), including LLaVA 1.5 (Liu et al.,2023a) and LLaVA
1.6 (Liu et al.| 2024])), have enhanced visual instruction tuning, enabling better handling of single-
image inputs and more accurate multimodal outputs. The InternLM XComposer 2.0 VL (Zhang
et al.,|2023a), EMU2 (Sun et al., 2024)), Otter (L1 et al.,|2023b), SparklesChat (Huang et al., |2023)),
and MMICL (Zhao et al.;2024)) extend these capabilities by incorporating multiple images as input,
thereby enriching the models’ understanding and generation of text based on complex visual scenes.
These models showcase the evolution from single-image to multi-image inputs, highlighting the
progress in multimodal learning architectures and applications.

Visual Instruction Tuning Datasets. The success of LMMs builds on the collection of high-quality
visual instruction tuning data, either constructed from existing VQA datasets (Gong et al.l 2023;
Goyal et al.,|[2017b; Hudson & Manning| [2019; |Dai et al.}|2023; Li et al.,20231)), curated image-text
pairs (Zhu et al.l [2023a) and LLM-generated instruction-following data with input of rich human
annotations (Liu et al., 2023bja; |[Zhang et al.,|2023c}; |[Zhao et al.| 2023} |L1 et al.| 2023a). However,
the collection of multimodal data for learning commonalities and differences between two images
is still under-explored.

Image Commonalities and Differences. Only a few datasets contain difference-only related anno-
tation (Jhamtani & Berg-Kirkpatrick, |2018a; |Li et al. [2023a). Spot-the-diff (Jhamtani & Berg-
Kirkpatrick, 2018b) collects human-annotated short change descriptions for surveillance video
frames. Our CaD-Inst"! data collection is partially inspired by the differences-only data collec-
tion done by (Li et al.| 2023a)) as a small part of their VI strategy. However, different from (Li
et al., 2023a)) we: (i) collect both differences and commonalities (compared to only differences in
(L1 et al., |2023a)); (ii) we leverage a significantly more dense caption-source of (Pont-Tuset et al.,
2020) compared to (Chen et al} [2015) used in (Li et al., [2023a)); (iii) we are structuring our dif-
ferences in CaD according to 6 axes (whichever applicable on case basis) - object types, attributes,
counting, actions, locations, and relative positioning, also explicitly asking the LLM to extract (from
the dense captions) information along these axes, while (Li et al.,[2023a)) produced unstructured dif-
ference description text; (iv) unlike (Li et al.,|2023a)) we are not relying on the existence of manually
collected object bounding boxes; (v) the scale of our data is approx. 4 times larger than of (L1 et al.,
2023al). Due to these differences, as evident from the direct comparison in Tab. E], training the same
model on CaD-Inst"! has significant performance advantages over training on CaD instructions of
(L1 et al.| [2023a). To summarize, our work focuses on CaD understanding, largely neglected by
the visual instruction tuning community. We propose a new CaD-VI approach for collecting syn-
thetic visual instructions and enhancing the CaD analysis capabilities in LMMs. CaD-VI not only
advances the state-of-the-art in related tasks by significant margins but also complements existing
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datasets (Jhamtani & Berg-Kirkpatrick, 2018a};[Li et al.,[2023a)) by enabling their automatic targeted
refinement, thereby improving their effectiveness for CaD tuning.

3 CAD-VI - Two-PHASE CAD VISUAL INSTRUCTION TUNING

As illustrated in Fig. 2| our CaD-VI consists of two phases: in Phase-1, we employ an LLM to
generate summary of CaD for image pairs (Sec. [3.1) and perform visual instruction tuning on the
collected data (Sec. @); in Phase-2, we leverage the Phase-1 model to generate CaD on additional
image pairs and perform training with combined instruction data from both phases (Sec. [3.3).

3.1 PHASE-1A: LLM INSTRUCTION DATA COLLECTION - CAD-INsTY!

In our first phase, we leverage an LLM to generate a summary of commonalities and differences
for a pair of two images, as shown in Fig. [2] (top row). Specifically, we construct image pairs and
prompt an LLM, supplying it with two image captions (one per image) and an instruction prompt
asking it to summarize all the commonalities and differences according to the provided captions,
contributing to our first phase CaD instruction data collection denoted as CaD-Inst"'! .

Image Source. We select the Localized Narratives dataset (Pont-Tuset et al.} 2020) which consists
of 873K image-caption pairs with diverse samples sourced from COCO (Lin et al.} Chen et al.,
2015), Flickr30K (Young et al[2014), ADE20K and Open Images (Kuznetsova
et al., [2020). The captions are generated by transcription from spoken descriptions of the image
content, which are quite dense, detailed, and descriptive with an average length of 36.5 words.
To cover comprehensive visual contents and increase the diversity in terms of commonalities and
differences, we collect 278K image pairs with different levels of similarity between their captions.
We compute similarity by counting the number of overlapping nouns in the corresponding captions.

-
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Actions Relative positions| ~ User: Image 1: <image> Image 2: <image> Summarize the commonalities and
2k differences about the visual content of the two images, including the object types, object
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(c) Axis counts in CaD summaries (d) Instruction template
Figure 3: (a) Distribution of characteristics (first two words) in the CaD summary collected in CaD-
Inst! ; (b) Distribution of question types (first five words) in the evaluation benchmark CaD-QA ;

(c) Axis counts in CaD summaries; (d) Two-turn conversation template.

LLM Data Generation. In this work, we focus on employing open-source foundation models for
data collection. The current open-source LMMs do not have strong capabilities of visual reasoning
and instruction following when processing multiple input images. In this case, using caption as a
symbolic representation of each image and employing an LLM with strong text instruction-following
ability for generation of comparison summary of multiple input images is a more robust way of data
collection than using open-source LMMs. The practice of this data collection pipeline with LLMs
and dense captions is verified in the original LLaVA 2023b) and many following works
et al} [20234; [Huang et al, 2023} [Zhang et al.,[2023c).
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We leverage the Mixtral 8x7B LLM (Jiang et all |2024) for generating detailed and structured
summaries of commonalities and differences for pairs of images. As the LLM can only accept
text as input, in Phase 1 we use image captions to represent visual content of images. This is a
rather crude approximation, which is alleviated in Phase 2 of our CaD-VI approach. To encourage
the diverse and creative generation of commonalities and differences, we do not provide in-context
examples of expected output in the prompt to the LLM. Furthermore, we specifically prompt the
LLM fo structure the commonalities and differences summaries according to the following 6 visual
aspects: (i) object types; (ii) attributes; (iii) counts; (iv) actions; (v) locations; and (vi) relative
positions; as illustrated in Fig.[2] We provide detailed prompts in the Appendix. Importantly, LLM
is not forced to produce all 6 aspects in every summary; they are generated adaptively according to
the available content.

Generated Data Statistics. In CaD-Inst"! we collected structured summaries of CaD for 278K
image pairs, with average length of 157 words (40 for commonalities and 117 for differences). The
summaries are structured according to 6 axes, appearing unevenly on a case-to-case basis based on
the LLM decision. We illustrate the distribution of data characteristics in Fig. a), and the total
observed axis counts in Fig. [3(c). More statistics and details are provided in the Appendix.

CabD visual instructions data. We construct a two-turn conversation for each image pair. In the
first turn, we define the task of summarizing CaD by providing the encoded visual tokens of the
two images and instructing the model to summarize the CaD , where the response part of the turn
is the LLM-generated structured summary collected above. In this instruction, we do not provide
the image captions, forcing the model to rely only on image tokens to complete the task. In the
second turn, we reinforce the image-text alignment by employing a simple task of text-to-image
retrieval to avoid forgetting the model’s general capabilities. We randomly sample one of the two
captions and request the model to select the image (from the current pair) to which the caption
belongs. Through ablation study in Tab. [/, we show that while this task itself does not lead to
satisfying results, combining it with the task of summarizing commonalities and differences results
in significant improvement. The template for the two-turn conversation is illustrated in Fig. 3[d).

3.2 PHASE-1B: CAD VISUAL INSTRUCTION TUNING

Architecture. As illustrated in Fig. [2l we use our collected CaD-Inst"! data to perform vi-
sual instruction tuning using the open-sourced code of LLaVA-1.5 (Liu et al.l 2023a) LMM. The
LLaVA-1.5 model consists of ¢, (-;6;) - a pretrained Vicuna 1.5 (Zheng et al., 2023) LLM (fine-
tuned from LLama 2 (Touvron et al., 2023b))); ¢y (+; 0y ) - a pretrained visual encoder CLIP ViT-
L/14@336px (Radford et al., [2021); and ¢ps(+;605) - a two-layer MLP projector converting the
visual encoder tokens to post-embedding layer LLM tokens.

Given a pair of two images xv, , Ty, and the instruction x, the MLP projects the visual features com-
puted by the visual encoder into embedded language tokens, i.e. vi, = dpr(Py (zv;0v); 0a), k €
{1,2}. Then the projected visual features and instruction text tokens are concatenated and fed into
the LLM, where the response text tokens are generated in an autoregressive manner, i.e.

it = ¢r([v1,ve, 21,25 01), (1)

where :%3% denotes the i-th token in the generated response.

Training. We finetune the LLaVA-1.5 model using the LLaVA (Liu et al.,|2023b) pipeline. Specif-
ically, following LLaVA pre-training, we finetune only the pretrained projection MLP and the
(frozen) LLM with LoRA adapters (Hu et al.,2021). We minimize the CLM loss of the next to-
ken prediction in the responses:

Loy =Y —logp(ip|Vi, Vo, xr, ) @)

To preserve the general VL capabilities of the LMM, we merge CaD-Inst"! with the finetuning data
of LLaVA-1.5 (665K samples). In Tab. 4] we show that CaD-VI indeed preserves the general LMM
capabilities compared to LLaVA-1.5 as evaluated on the popular SEED benchmark (Li et al.|2023d).
The Phase-1 CaD visual instruction tuning results in our cold-start model CaD-LLaVA"! which is
an LMM that can be leveraged for annotating visual commonalities and differences.
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3.3 PHASE-2: DATA COLLECTION AND VISUAL INSTRUCTION TUNING

Phase-2a: LMM-based CaD Instruction Collection. While in Phase 1 we used an LLM to extract
a CaD summary based on human-generated captions, for Phase 2 data collection we leverage our
Phase 1 model CaD-LLaVA"! and additional image pairs to extract the CaD summaries informed by
the images directly. Here we select the Scene-Difference (Li et al.|[2023a)) collection as an additional
image source. It contains 71K pairs of similar images from COCO (Lin et al.l [2014) and provides
annotation of unstructured difference-only summaries (see Fig. [2| bottom left for an example). We
feed both the image pairs and the original annotations into our CaD-LLaVAY! model, and generate
a structured summary of both commonalities and differences. The exact prompt is provided in
the Appendix. This leads to our phase-2 CaD instruction data - CaD-InstV? . As shown in Tab.
[l our collected CaD instructions significantly improve over the utility of the original (Li et all
2023a) annotations. As part of our analysis in Tab. [5|and[6} and additional experiments provided in
Appendix, we also show that similarly out-of-distribution image pair collections or even unlabeled
image pair collections can be effectively leveraged for our Phase-2.

In Phase-2, we generate CaD data leveraging both captions and the CaD image analysis capabil-
ities of our Phase-1 model. This significantly reduces hallucinations and improves the quality of
the Phase-2 stage CaD dataset as evident by the significant performance improvement obtained by
Phase-2 model over Phase-1 model (Tab.[5]E and F). In the ablation in Sec.[6](Tab.[6) we also show
that image captions can be included in Phase-2 data collection.

In Phase-1, we have image pairs of different similarity levels while in Phase-2 we have highly similar
image pairs which lead to more fine-grained difference summaries. We combine data of both phases.

Phase-2b CaD Visual Instruction Tuning We follow the Phase-1b introduced in Sec.|3.2|for CaD
visual instruction tuning. Here we finetune on a combination of LLaVA 1.5 (Liu et al, [2023a)
finetune data (665K), CaD-Inst"! data (278K) and CaD-Inst" 2 data (71K). This phase of CaD visual
instruction tuning leads to the Phase 2 model, denoted as CaD-LLaVA"Y? .

4 CAD-QA - BENCHMARK OF OPEN-ENDED CAD QA

In order to evaluate the capability of LMMs on answering open-ended questions regarding common-
alities and differences of a pair of two images, we construct and contribute the CaD-QA benchmark.

Data Collection. Similar to the data collection pipeline introduced in Sec. [3.1] we employ Visual
Genome (Krishna et al., [2017) and the detailed image captions from SVIT (Zhao et all [2023) as
image & caption source. We collect 7.5K image pairs with 8 or more overlapping nouns in their cap-
tions. For each pair, we employ the Mixtral 8 x7B LLM to produce the structured CaD summaries
from the captions. Next, we prompt Mixtral with both the image captions and the CaD summary,
instructing it to generate a multi-turn conversation with several rounds of Q&A, providing some in-
context examples of the desired layout (see Appendix for the prompt). Finally, we randomly select
one Q&A per conversation.

Benchmark Statistics. There are 7520 QA pairs with an average answer length of 26 words. Among
these, we also include 2916 questions asking about the content of only one of the two images. It
requires the precise attention of the LMM on the corresponding image to correctly answer these
questions. Our CaD-QA covers diverse question types as illustrated in Fig. [3[b).

LLM-assisted Evaluation. Motivated by LLMs’ ability to judge response quality consistently with
human assessment (Zheng et al., 2023)), we employ the Mixtral 8 x7B LLM to compare the generated
responses to the collected open-ended QA responses. We feed the question, correct answer, and the
predicted answer into the LLM and instruct it to provide a rating between 0 and 5 for the predicted
answer quality. We provide the prompt in the Appendix. In order to mitigate the bias from the the
same LLM used for evaluation, we include additional evaluations with different LLMs, in-context
examples of scoring cases and human study in the Appendix.

5 EXPERIMENTS

Evaluation Datasets We evaluate on several VQA benchmarks of closed-ended and open-ended
questions. For closed-ended VQA on image pairs, we include BISON (Hu et al.,2019) and SVO
Probes (Hendricks & Nematzadeh, 2021) both consisting of samples with an image pair and a text
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Dataset # Instruction BISON SVO NLVR2 EQBEN COLA
Random chance Data 50% 50% 50% 25% 25%
SparklesChat 6.5K 56.70% 43.93% 58.00% 19.17% 20.00%
Otter 2.8M 40.67% 47.33% 52.00% 8.33% 8.10%
MMICL 5.8M 80.00% 88.13% 56.67% 20.83% 25.71%
EMU2-Chat 1.3M 46.00% 47.93% 60.00% 7.50% 13.33%
InternLM-XComposer2-VL >600K 80.67% 82.07% 66.67% 25.00% 32.38%
LLaVA 1.6 7B <IM 66.00% 70.40% 58.67% 20.83% 11.90%
LLaVA 1.6 13B <IM 81.33% 82.13% 60.00% 17.50% 24.76%
LLaVA 1.57B 665K 54.00% 46.80% 61.33% 17.50% 7.62%
LLaVA 1.5 13B 665K 59.33% 56.27% 66.00% 16.67% 12.38%
CaD-VI 7B IM 95.33% 92.73% 66.67% 39.17% 40.95%
CaD-VI 13B IM 96.67 % 93.00% 69.33% 42.50% 43.33%

Table 1: Performance on closed-ended VQA tasks with image pairs in accuracy. Here the method
CaD-VI denotes our Phase-2 model CaD-LLaVA"?2 .

Dataset CaD-QA VG comm. VG diff. COLA comm. COLA diff.
SparklesChat 3.01 2.41 3.12 1.52 1.22
Otter 2.20 1.88 1.97 1.37 0.81
MMICL 2.01 1.79 1.94 1.73 0.59
EMU2-Chat 1.20 1.04 1.08 1.22 0.41
InternLM-XComposer2-VL 2.90 2.08 2.69 1.72 1.36
LLaVA 1.6 7B 3.10 223 2.73 1.71 1.22
LLaVA 1.6 13B 3.19 2.19 2.69 1.93 1.01
LLaVA 1.57B 2.54 1.79 1.75 1.44 1.02
LLaVA 1.5 13B 2.65 2.16 2.41 1.57 1.10
CaD-VI7B 3.29 2.32 3.85 2.14 1.25
CaD-VI 13B 3.34 2.58 3.68 2.13 1.31

Table 2: Performance on CaD-QA and tasks of CaD summary prediction evaluated using LLM-as-a-
judge ratings (range 0 to 5). Here the method CaD-VI denotes our Phase-2 model CaD-LLaVA"?2 .

query that needs to be matched with one of the images in the pair (chance is 50%). EQBEN (Wang
et al.} 2023) and COLA (Ray et al., 2023) contain samples composed of a pair of two images to-
gether with the two textual descriptions. The goal is to correctly match images with corresponding
texts (chance is 25%). Furthermore, we evaluate on NLVR2 (Suhr et al) 2019) which comprises
samples of a pair of two images and a reasoning sentence. The task is to assess the correctness of
the reasoning and has a random chance of 50%. We also evaluate SEED-Bench Video (Li et al.,
2023d) with two frames sampled from the video to explore the generalization value of our CaD tun-
ing for video understanding. SEED-Bench Video contains three partitions from SEED-Bench and
has multi-choice questions on action recognition/prediction or procedure understanding with four
answer options per question. For open-ended tasks, use the LLM-as-a-judge metric (Sec. [d). We
evaluate open-ended QAs on our CaD-QA . Furthermore, we also directly evaluate the quality of
LMM predicted CaD summaries for 210 image pairs in COLA with shorter summaries generated
from brief captions, and for the 7.5K lengthy summaries from CaD-QA generated from detailed VG
captions. More details and statistics of the datasets are provided in the Appendix.

Implementation Details We leverage the Mixtral 8 x 7B Instruct v0.1 and set the maximum token
size to 750 data collection and 20 for open-ended task evaluation. For visual instruction tuning, we
use the official implementation of LLaVA and tune the LLaVA 1.5 7B model with LoRA. We set the
batch size to 128 and LoRA learning rate for LLM and the projector is set to 1 x 10~* and 2 x 10~°
correspondingly. All experiments are run on 4 x A100 80G GPUs. More details are in Appendix.

Comparison to State-of-the-Art LMMs

We first compare our final model CaD-LLaVAVY? (denoted by CaD-VI in Table) to state-of-the-art
LMMs on closed-ended VQA in Tablem SparklesChat (Huang et al.,2023)), Otter (Li et al.,[2023b)),
MMICL (Zhao et al.| [2024), EMU2-Chat (Sun et al 2023a)), InternLM-Xcomposer2-VL (Zhang
et al., |2023a) all include samples with multi-image inputs in the visual instruction tuning while
LLaVA 1.5 (Liu et al} [2023a) and LLaVA 1.6 (Liu et al.,[2024) are tuned with only single image
instructions. The evaluated benchmarks are challenging due to the visually very similar image pairs
with subtle compositional differences where the LMMSs could easily make an incorrect decision
leading to performance below random chance. Our CaD-VI 7B model already outperforms all the
other baselines on the five benchmarks and our 13B finetuned model further boosts the performance.
We also include the comparison to a recent video LMM in the appendix.
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Image 1 Image 2

(a)

Q: What objects are present in Image 2 that are not in Image 1?

GT: In Image 2, there is a well-equipped shower, a bathtub, a commode, a mirror, a wooden shelf, and various
items such as a green candle, air freshener spray, and silver faucet. These objects are not present in Image 1.

h . In Image 2, there is a toilet visible in the bathroom, which is not present in Image 1. The man is standing
in front of the toilet while holding an umbrella.

2o h : In Image 2, there are several objects that are not present in Image 1, including a man, a mirror, a sink, a
toilet, a shower, a window, a door, and a ceiling. The man is standing in the bathroom, and the mirror, sink,

CaD-  toilet, and shower are all located in the same room. The window and door are also present in the

LLaVA  pbathroom, and the ceiling is visible at the top of the image.

(b)

Q: What is the central figure in each image?

GT: In Image 1, the central figures are several horses and their riders, engaged in a polo game. In Image 2,
the central figure is a man holding a mountain bike.

: The central figure in each image is a man riding a bicycle.
LLaVA

2
QB : InImage 1, the central figure is a man riding a horse. In Image 2, the central figure is a man riding a
c bicycle.
aD-
LLaVA
Figure 4: Examples of Q&A pairs in CaD-QA together with LMM predicted answers (Red and
green texts denote incorrect and correct description).

Table[2)demonstrates the comparison to the baseline LMMs on open-ended tasks of CaD-QA and of
CaD summary prediction on image pairs. Our CaD-VI models outperform the baselines on four of
the five open-ended tasks, with the exception of COLA difference summary where our 13B model
achieves a rating (1.31) close to the best performing InternL.M-XComposer2 model (1.36). We
include additional evaluations with different LLMs, in-context examples of scoring cases and human
study in the Appendix, which shows that the Mixtral-assisted evaluation is valid as it maintains the
same ranking as when using strongest LLMs as judge.

In Fig. |4} we show examples of Q&A pairs in CaD-QA together with predicted answers from CaD-
LLaVA"2 model and the vanilla LLaVA 1.5 model. The vanilla LLaVA model has incorrect answers
by either mistakenly combining the contents in two images (Fig.[@{a), the man is standing in front of
the toilet while holding an umbrella) or attending to incorrect image (Fig.ﬂb)), demonstrating lack-
ing of capability of properly comparing two images. Our CaD-LLaVA"? manages to correctly dif-
ferentiate between the two images, attend to the corresponding content queried and draw a summary
of comparison. More qualitative results on CaD -QA and BISON can be found in the Appendix.

Furthermore, we explore whether our CaD instruction tuning improves video understanding evalu-
ated using SEED-Bench Video in Table 3] In the evaluation setting of LLaVA, only one frame per
SEED-Bench video is passed to the LMM. To explore the impact of our CaD tuning, we compare
this to evaluating using two frames as input. As shown in Table 3] although multiple baseline LMMs
achieve better performance in single-frame setting, our CaD-VI 13B model performs the best in the
two-frame setting with a significant performance improvement of 2.93% on top of the single-frame
performance. The only higher improvement is achieved by Otter, which however struggles below
the 25% chance level performance. This underlines that our CaD tuning improves the temporal
understanding between video frames.
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# Input Frames 1 2
SparklesChat 2181%  19.09% (V-2.72%) Model SEED-Image
Otter 18.19% 23.00% (A+4.81%) LLaVA 1.5 7B 67.34%
EMU2-Chat 43.43%  41.09% (V-2.34%) CaD-VI 7B 67.48%
InternLM-XComposer2-VL 41.07% 40.16% (v-0.91%)

LLaVA 1.6 7B 41.95%  42.03% (A+0.08%) LLaVA 1.5 13B 68.83%

LLaVA 1.6 13B 41.85% 41.35% (¥-0.50%) CaD-VI 13B 69.11%

LLaVA 1.5 7B 3743%  36.68% (V-0.75%)

LLaVA 1.5 13B 40.12%  38.78% (V-1.34%) Table 4: Performance on
CaD-VI 7B 38.40%  40.44% (A+2.04%) SEED-Bench image parti-
CaD-VI 13B 40.16%  43.09% (A+2.93%) tions for evaluation of gen-

eral VL capabilities with
Table 3: Performance on SEED-Bench video partitions by single-image input.

feeding one or two frames into the LMM:s.

Additionally, to verify that introducing multi-image CaD data into the tuning does not lead to catas-
trophic forgetting of general single-image input LMM capabilities, we also evaluate the SEED-
Bench Image partitions and report the results in Table ] Here we directly compare to same archi-
tecture baseline of LLaVA 1.5 fine-tuned using its single-image LLaVA mix 665K data. Table []
demonstrates that our CaD tuning indeed preserves the competence in single-image understanding.
Evaluation on more general VL benchmarks like MME (Fu et al., |2023) and MMBench (Liu et al.,
2023c)) can be found in the Appendix.

Training Data BISON SVO EQBEN COLA CaD-QA
A LLaVA mix 54.00%  46.80% 17.50% 7.62% 2.54
B: LLaVA mix + ScDiff orig. annot. 92.67%  90.07%  22.50% 33.81% 2.90
C: LLaVA mix + ScDiff our annot. (from scratch) 88.67% 90.80% 38.33%  36.67% 3.17
D LLaVA mix + ScDiff our annot. (refined from orig. annot.) 94.67% 91.80% 32.50%  34.76% 3.17
E LLaVA mix + CaD-Inst"'! 92.00% 9227% 34.17%  36.67% 3.27
F: LLaVA mix + CaD-Inst" ! + ScDiff our annot. (refined from orig. annot.) 95.33% 92.73% 39.17% 40.95% 3.29

Table 5: Ablation of phase-2 data collection from 71K image pairs in Scene-Difference (ScDiff). We
use CaD-LLaVA"! to generate CaD on ScDiff either from scratch or by refining from the original
annotation of unstructured difference-only summaries. Training settings in E and F lead to our CaD-
LLaVAY! and CaD-LLaVA"? models correspondingly.

6 ABLATIONS

Phase-2 Data Collection analysis. Our Phase-2 data collection introduced in Sec. [3.3|can be used

to leverage image pairs from various sources for producing effective CaD instructions. We first
ablate the data collection from the 71K image pairs in Scene-Difference (Li et al., [2023a) (ScDiff)
which contains annotation of unstructured difference-only summaries. As shown in Table[3] training
with original annotation of difference-only summaries (row B) significantly improves on the baseline
of training with LLaVA data only (row A). Then we show that using CaD-LLaVA"'! to generate
CaD instructions on ScDiff remarkably improves further, either if used from scratch (row C) or
by refining from the original annotation (row D, also illustrated in Fig. 2] bottom row). Training
with our re-annotation from scratch outperforms the original annotation on all datasets except for
BISON. Our re-annotation by refining the original annotation leads to a more balanced performance

Training Data BISON SVO EQBEN COLA CaD-QA
A LLaVA mix 54.00% 46.80% 17.50% 7.62% 2.54
B: LLaVA mix + A/G orig. captions only 55.33% 55.67% 3.33% 2.86% 2.78
C: LLaVA mix + A/G our annot. (from scratch) 90.00 % 88.53% 40.83% 42.86 % 3.21
D LLaVA mix + A/G our annot. (given orig. captions) 88.00% 86.87% 43.33% 30.48% 3.06

Table 6: Ablation of phase-2 data collection from 66K pairs of video frames in Action Genome and
GEBC (A/G). We use CaD-LLaVA"! to generate CaD on A/G either from scratch or with the prior
information from the original frame captions.
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Training Data BISON SVO CaD-QA  VGcomm. VG diff.
A: LLaVA mix 54.00% 46.80% 2.54 1.79 1.75
B: LLaVA mix + (2i retriev. 58.00% 51.33% 247 1.58 1.46
C: LLaVA mix + comm. 64.67% 79.73% 3.23 2.67 2.52
D: LLaVA mix + diff. 55.33% 72.13% 3.24 1.97 2.89
E: LLaVA mix + comm. + diff. 72.00% 82.60% 3.24 2.13 3.42
F: LLaVA mix + comm. + diff. + t2i retriev. 92.00% 92.27% 3.27 2.21 3.69
G: (F) + CaD-Inst¥ 2 95.33%  92.73% 3.29 2.32 3.85

Table 7: Ablation on components in the instruction data. Training settings in F and G lead to our
CaD-LLaVAVY'! and CaD-LLaVA"Y2? models correspondingly. Here 12i retriev. refers to the text-to-
image retrieval task (see Sec. . Training settings in F and G lead to our CaD-LLaVAY'! and
CaD-LLaVA"Y? models correspondingly.

improvement and is used as the phase-2 instruction data CaD-InstV? . We combine this with our
phase-1 data CaD-Inst""! and demonstrate the further performance boost in row F of Table

In order to show the robustness of CaD data collection capability using our CaD-LLaVA"Y! model,
we also explore applying our phase-2 data collection to visually similar frames from user videos in
Action Genome and GEBC (A/G). In Table[6] we first train a baseline using original frame captions
only and a simple instruction task of image description (row B), which leads to a significant perfor-
mance drop on EQBEN and COLA, and minimal improvement on other datasets. Then we use our
CaD-LLaVAV'! to generate CaD instructions on the frame pairs either from scratch (row C) or condi-
tioned on the frame captions (row D). Interestingly, on most datasets CaD instructions generated by
our CaD-LLaVAVY! from scratch are found to be more effective than ones generated using original
captions conditioning, likely due to lack of detail in these captions. This once again demonstrates
that our model is effective in generating CaD instructions on unlabeled data. In the Appendix, we
further show that our phase-2 data collection is effective on out-of-distribution video-surveillance
data of Spot-the-diff (SpotDiff) dataset (Jhamtani & Berg-Kirkpatrickl [2018b).

Analysis of CaD Instruction Data Components We verify the effectiveness of the components
in our instruction data by ablating on the different combinations of our tuning tasks, including: (i)
commonality summary (comm.); (2) difference summary (diff.); and (iii) text-to-image retrieval (£2i
retriev.) in Table[/] Training solely on the t2i retrieval task (row B) leads to minimum performance
improvement on BISON and SVO Probes, and performance degradation on the three benchmarks of
the open-ended tasks due to lacking of any CaD learning. Training with the commonality (row C)
and difference summary (row D) tasks separately lead to a significant boost on the VG comm (2.67)
and VG diff (2.89) tasks correspondingly. Training with combinations of the three tasks (F) boosts
the performance in comparison to the case of each single component, except for VG comm where
the commonality training (row C) leads to better results on this task. Finally, combining phase-1 and
phase-2 data (row G) leads to further performance boosts on most of the benchmarks.

7 CONCLUSIONS, LIMITATIONS, AND BROADER IMPACT

We are contributing CaD-VI - an effective, two-phase strategy for collecting Commonalities and
Differences (CaD ) Visual Instruction (VI) data, resulting in the also contributed large scale CaD-
Inst with 349K samples for verified improvement of CaD and related image and text comparative
capabilities of LMMs. Additionally, we contribute CaD-QA - a benchmark of 7.6K open-ended QA
to directly evaluate CaD capabilities between pairs of images. We extensively evaluate and validate
our CaD-VI approach, showing it leads to substantial improvements in CaD abilities and related
tasks. We further show how the very few existing CaD resources are complementary to our approach
and can be further refined automatically using our CaD-VI . We believe that our work contributes
to the important investigation and improvement of (currently somewhat missing) CaD abilities of
modern LMMs and leads to exciting future work of CaD VI tuning.

Limitations Currently, our CaD-VI only focuses on the CaD between two images, and we leave the
extension of understanding CaD and group relations on three or more images to future work.
Broader Impact Our CaD-VI, CaD-Inst, and CaD-QA significantly contribute to the understanding
and improvement of CaD capabilities in LMMs, and are intended to enhance the applicability and
utility of Al across various fields, from robotics to industrial applications. However, this LMM
improvement could also lead to job displacement, as these models could increasingly automate
complex tasks traditionally performed by humans.

10
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A INTRODUCTION

In this appendix, we first provide our source code (Sec. [B).

As additional results, we include more evaluations on the open-ended CaD-QA with different
LLMs, in-context examples of scoring cases and human study in Sec. [C.I} Then we report results
of CaD-VI on two more general vision-language benchmarks (Sec. Further include the
evaluation of a video LMM in Sec. We report the error bars (Sec)C.4), analyze the Phase-2
data collection on Out-Of-Distribution data (Sec.[C.5). Finally, we show qualitative results of
the collected CaD summaries (Sec.[C.6), and compare LMM predictions on our CaD-QA benchmark
(Sec.[C.7), and LMM predictions on the BISON dataset (Sec. [C.8).

For further insights into our approach CaD-VI , we report more statistics on our generated data
(Sec. [D.I), and statistics on the external evaluation datasets (Sec. [D.2). We provide more im-
plementation details (Sec. [E) including the specifics of baseline methods, data generation, training
and evaluation details.

At last, we provide the list of assets (Sec.[F) used in this project.

B SOURCE CODE

The source code is provided in the supplementary materials of CaD-VI.zip.

C ADDITIONAL RESULTS

C.1 ADDITIONAL EVALUATIONS OF OPEN-ENDED CAD QA

Model Mixtral 8x7B  LLaMA 3.1 70B  GPT4o mini
SparklesChat 3.01 291 2.62
Otter 2.20 1.70 1.66
MMICL 2.01 1.97 2.00
EMU2-Chat 1.20 1.26 1.34
InternLM-XComposer2-VL 2.90 2.79 2.61
LLaVA 1.6 7B 3.10 2.80 2.54
LLaVA 1.6 13B 3.19 3.00 2.67
LLaVA 1.5 7B 2.54 1.98 1.86
LLaVA 1.5 13B 2.65 2.11 1.98
CaD-VI 7B 3.29 3.02 2.72
CaD-VI 13B 3.34 3.10 2.78

Table 8: Impact of different LLMs on the LLM-assisted evaluation of the open-ended CaD QA
benchmark.

Different LLMs. In order to mitigate the bias from the same LLM used for evaluation and show the
impact of different LLMs on the LLM-assisted evaluation, we further employ LLaMA 3.1 70B and
GPT4o mini for the evaluation of CaD QA and report the resutls in Tab. [§] In case of LLaMA 3.1
70B and GPT40 mini, CaD-VT still outperforms all the other competitors. However, there is a drop
in the margin of its outperformance in comparison to the case of Mixtral model assisted evaluation.

Scoring standard descriptions. We further explore the impact of scoring standard descriptions in
the evaluation of open-ended CaD QA. We provide in-context examples for cases of different scores.
In Tab.[9] we report the evauation results with and without in-context examples of scoring cases. In
all cases. CaD-VI still outperforms the other competitors. Evaluation with in-context examples of
ratings leads to drop of ratings on Mixtral 8 x7B but slight increase of rating on LLaMA 3.1 70B.
This could due to the better in-context learning capability of LLaMA 3.1.

Human study. Furthermore, we randomly sampled 150 open-ended questions from the evaluation
benchmark and asked three volunteers to manually rate the predictions of the compared LMMs in
the range between 0 and 5. To reduce the rating efforts, we include the 13B version of CaD-VI and
LLaVA models in this task.
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Model Mixtral 8x7B  Mixtral 8x7B  LLaMA 3.1 70B  LLaMA 3.1 70B
In-context No Yes No Yes
SparklesChat 3.01 2.08 291 3.14
Otter 2.20 1.17 1.70 2.02
MMICL 2.01 1.72 1.97 2.40
EMU2-Chat 1.20 1.01 1.26 1.42
InternLM-XComposer2-VL 2.90 2.52 2.79 3.15
LLaVA 1.6 7B 3.10 2.06 2.80 2.97
LLaVA 1.6 13B 3.19 2.16 3.00 3.13
LLaVA 1.57B 2.54 1.56 1.98 2.18
LLaVA 1.5 13B 2.65 1.77 2.11 233
CaD-VI 7B 3.29 2.54 3.02 3.20
CaD-VI 13B 3.34 2.68 3.10 3.31

Table 9: Impact of in-context examples of scoring cases on the LLM-assisted evaluation of the open-
ended CaD QA benchmark.

Model CaD-VI 13B LLaVA 1.6 13B LLaVA 1.5 13B InternLM-XComposer2-VL  SparklesChat
Rating 3.61 3.42 2.84 3.05 3.30

Table 10: Human evaluation on 150 randomly sampled questions from the open-ended CaD QA
benchmark.

Model MMBench ~ MME Perception ~ MME Cognition
LLaVA 1.5 7B 65.80% 1498.09 274.64
CaD-VI 7B 65.38% 1493.21 328.57
LLaVA 1.5 13B 69.07% 1541.69 300.36
CaD-VI 13B 68.27% 1530.61 306.07

Table 11: Evaluation of CaD-VI on general vision-language benchmarks MMBench and MME.

As shown in Tab. @} the results indicate the human preference of answers from CaD-VI, which is
aligned with the choice of LLMs. In the analysis of feedback from the human study, we also have
some interesting conclusions: (1) The verbose descriptions with hallucinations from the talkative
SparklesChat are better rated by humans than LLMs (2) InternLM-XComposer2-VL could gener-
ate correct and concise descriptions of visual contents but is not good at the task of comparison
(3) LLaVA 1.6 could see more visual details than LLaVA 1.5 due to the AnyRes (any-resolution)
pipeline which benefits the comparison reasoning. In this case, using an architecture with more vi-
sual tokens to focus on local regions of images would allow comparison of more visual details via
the comparison visual instruction tuning.

C.2 ADDITIONAL EVALUATIONS ON GENERAL VISION-LANGUAGE BENCHMARKS

In the main paper, we report performance of CaD-VI on the general vision-language benchmark
SEED-Bench image (Tab. 2 in the main paper) and SEED-Bench video(Tab. 3 in the main paper),
which verifies that introducing multi-image CaD data into tuning does not lead to catastrophic for-
getting of general single-image input LMM capabilities.

Additionally, we compare the performance of CaD-VI to the original LLaVA models on MME (Fu
et al.,|2023)) and MMBench (Liu et al., [2023c¢)) in Tab.@ We see that after introducing CaD data into
tuning, there is only a slight performance drop of CaD-VI in comparison to the original LLaVA on
MMBench and MME Perception. On MME Cognition tasks, CaD-VI even has some performance
improvements.

C.3 EVALUATION OF VIDEOLLAMA?2
In the main manuscript, we include five models that train on samples with multiple input images,

i.e. SparklesChat, Otter, MMICL, EMU2-Chat, InternLM-XComposer2-VL. We additionally report
the performance of a recent video LMM VideoLLaMA?2 (Cheng et al., 2024) on the benchmark
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Model BISON SVO NLVR2  EQBEN COLA CaD-QA
VideoLLaMA2  58.00%  61.00%  64.00% 11.67% 16.67% 222

CaD-VI 7B 9533%  92.73%  66.67% 39.17% 40.95% 3.29
CaD-VI 13B 96.67%  93.00%  69.33% 42.50% 43.33% 3.34

Table 12: Evaluation of VideoLLaMA2Cheng et al.| (2024) on the benchmark datasets.

Training Data BISON SVO EQBEN COLA CaD-QA

LLaVA mix + CaD-LLaVA"! 91.78% 4+ 1.02%  92.33% + 0.57%  33.06% 4 0.96%  34.64% +2.09%  3.270 £ 0.002

Table 13: Average performance of the Phase-1 model CaD-LLaVA"Y'! on multiple runs of training.

Difference

Training Data BISON NYe] Spotting CaD-QA
A: LLaVA mix (L) 54.00% 46.80% 49.50% 2.54
B: L + SpotDiff orig. annot. 51.33% 52.27% 60.48% 2.51
C: L + SpotDiff our annot. (refined from orig. annot.) 54.00 % 54.87 % 66.67 % 2.86

Table 14: Ablation of phase-2 data collection from 15K pairs of video frames in Spot-the-diff (Spot-
Diff). We use CaD-LLaVA"Y! to generate CaD on SpotDiff by refining from the original human-
annotated difference descriptions.

datasets. As shown in Tab.[I2] our CaD-VI could outperform VideoLLaMA?2 on all the benchmarks.
The reason that the video LMM does not perform well on benchmarks of CaD capabilities could
be that it is trained to understand a video as a spatio-temporal entity instead of multiple individual
images.

C.4 ERROR BARS

We run the training of the Phase-1 model CaD-LLaVAY! multiple times and report the average
performance with standard deviation in Table@ In most evaluation cases, the standard deviation is
within around 1%.

C.5 ABLATION ON PHASE-2 DATA COLLECTION - OOD CAD REFINEMENT

In Section 6 (main paper), we perform ablation the Phase-2 data collection. Here we further explore
applying our phase-2 data collection on out-of-distribution (OOD) data of Spot-the-diff (SpotD-
iff) dataset. The dataset contains distant-view frame pairs with very subtle changes from video-
surveillance footage, which are OOD from most LMM training data.

In Table [T4] we train with SpotDiff original human-annotated difference description (row B) and
with our CaD-LLaVA"'! generated CaD summaries which is refined from the original annotation
(row C). We also evaluate on the Difference-Spotting partition on SEED-Bench 2 (Li et al., 2023c)
which contains multi-choice questions based on frame pairs from SpotDiff. In data collection and
training for this experiment, we only used the 15K training image pairs from SpotDiff which are not
included in the Difference-Spotting SEED partition. The results in Table [I4] verify that our phase-2
data collection using CaD-LLaVA"! is also effective on OOD data.

C.6 QUALITATIVE RESULTS OF CAD SUMMARIES

In Fig. 2 (main paper), we illustrate the pipeline of our two-phase CaD-VI together with two ex-
amples of Phase-1 LLM-collected CaD summary and Phase-2 LMM-collected CaD summary. Here
in Fig. 5| we provide two additional examples. Note that in Fig. [5(a), we only pass the captions
with the instruction prompt (in Fig. into the LLM. In Fig. [5[b), we pass the original annotation
and both images with the instruction prompt (in Fig. [I6) into the Phase-1 model. In the main paper
(Table 5), we demonstrate the generated CaD summary without using the original annotation also
leads to effective results.
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LLM

CaD-
LLaVA

(a)

Captionl: In this image there is a dining table on which there is a flower vase. There is a Champagne bottle.
There is laptop. There is a headphone. There at the left side of the image there is a chair on which there is a
bag. At the background of the image there is a wall and a window.

Caption2: In the image in the center we can see four persons were standing and they were smiling,which we
can see on there faces. In front of them,there is a table. On table,we can see different types of books. In the
center we can two persons were standing and the left lady is holding paper bag. In the background there is a
brick wall,banner,belts,hanger,photo frames,toys,sign board,clothes,table and few other objects.

: Commonalities:

Both images include indoor scenes with man-made objects. There is a table in both images, and the tables are
surrounded by other objects.

Differences:

1. Object types: Image 1 contains a dining table, flower vase, Champagne bottle, laptop, headphone, chair,
bag, wall, and window. Image 2 contains four people, a table, books, paper bag, brick wall, banner, belts,
hangers, photo frames, toys, sign board, clothes, and other objects.

2. Counting the objects: There are 1 dining table, 1 flower vase, 1 Champagne bottle, 1 laptop, 1 headphone,
1 chair, 1 bag, 1 wall, and 1 window in Image 1. In Image 2, there are 4 people, 1 table, many books, 1 paper
bag, 1 brick wall, 1 banner, several belts, hangers, photo frames, toys, 1 sign board, and multiple clothes.

3. Object actions: There are no specific actions involving objects in Image 1. In Image 2, four people are
standing and smiling.

4. Object locations: In Image 1, the objects are placed on the dining table and the floor. In Image 2, the
people are standing in front of the table, and the books are on the table.

5. Relative positions between objects: In Image 1, the chair is located to the left of the table. In Image 2, the
paper bag is being held by one of the women, and the other objects are placed on the table or hung on the
wall.

(b)

Original annotation: "The surfboard in the first image is a very colorful one, while the surfboard in the second
image is a decorated one. In the first image, there is only one person holding the surfboard, while in the
second image, there are three people holding the surfboard."

. Commonalities:

Both images contain a surfboard as the main object. The surfboard is being held by people in both images.
The images also have a natural background, with the first image showing water, a mountain, and the sky, and
the second image showing a building, trees, and a fence.

Differences:

1. The number of people holding the surfboard is different. In the first image, there is only one person, while
in the second image, there are three people.

2. The background in the first image is more natural, with water, a mountain, and the sky, while the
background in the second image is more urban, with a building, trees, and a fence.

3. The first image has a more open and spacious setting, while the second image has a more crowded and
enclosed setting.

4. The first image has a more dynamic and active feel, with the person holding the surfboard, while the
second image has a more static and posed feel, with the three people standing

Figure 5: Examples of (a) Phase-1 LLM-collected CaD summary and (b) Phase-2 LMM-collected
CaD summary
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C.7 QUALITATIVE RESULTS ON CAD-QA

In Fig. [6] Fig.[7]and Fig. 8] we show examples of Q&A pairs in our CaD-QA , together with the
predicted answers from CaD-LLaVA"Y? model and the vanilla LLaVA 1.5 model. We also report
the LLM ratings for the predicted answers. The vanilla LLaVA model has incorrect answers by
either mistakenly combining the contents in two images (Fig. [p[b), the man is standing in front of
the toilet while holding an umbrella), omitting one of the images (Fig. [7[a), Fig. [8(a)), attending
to the incorrect image (Fig. [7[c)) or hallucinating non-existent contents (Fig. [§[b)). The failure
demonstrates the lacking of capability of properly comparing two images. At the same time, our
CaD-Inst"? manages to correctly differentiate between the two images, attend to the corresponding
content asked in the question and draw a summary of comparison.

C.8 QUALITATIVE RESULTS ON BISON

In Fig.[9] we illustrate some examples of the binary image selection task on BISON. We instruct the
LMMs to give both the selection answer and also the reasoning for the selection. Here we compare
the vanilla LLaVA 1.5 and our CaD-LLaVAY2 . The LLaVA model, even if it captures the relevant
content in some cases, has confusion differentiating the two images (Fig. [9(a)(b)). For our CaD-
LLaVAY?2 | the key reasoning that leads to the correct answer is always covered in the structured
difference summary.
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CaD-
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LLaVA

)

CaD-
LLaVA

(a)

Q: What type of outdoor recreational activities are depicted in the two images?

GT: In Image 1, a group of young people are engaged in a game of frisbee in a park, while in Image 2, an
ongoing baseball game is shown, with players in uniforms and specialized equipment.

: The two images depict a baseball game in progress, with a batter swinging a baseball bat and a catcher

wearing a baseball glove. The scene takes place on a baseball field, where multiple people are
participating in the game. The presence of a baseball glove and the batter's swinging motion indicate that
the game is in action, and the players are actively engaged in the sport. ongoing baseball game is shown,
with players in uniforms and specialized equipment.

LLM rating: 3

: The two images depict different outdoor recreational activities. Image 1 shows a group of people playing

with a frisbee on a grassy field, while Image 2 features a baseball game with a batter, a catcher, and an
umpire. The activities in the images are distinct, with one involving a casual, informal game of frishee, and
the other being a more structured and organized baseball game.

LLM rating: 5

Image 1 Image 2

()

Q: What objects are present in Image 2 that are not in Image 1?

GT: In Image 2, there is a well-equipped shower, a bathtub, a commode, a mirror, a wooden shelf, and various
items such as a green candle, air freshener spray, and silver faucet. These objects are not present in Image 1.

: In Image 2, there is a toilet visible in the bathroom, which is not present in Image 1. The man is standing

in front of the toilet while holding an umbrella.

LLM rating: 2

: In Image 2, there are several objects that are not present in Image 1, including a man, a mirror, a sink, a

toilet, a shower, a window, a door, and a ceiling. The man is standing in the bathroom, and the mirror, sink,
toilet, and shower are all located in the same room. The window and door are also present in the
bathroom, and the ceiling is visible at the top of the image.

LLM rating: 3

Image 1 Image 2

Y

pATASI

Q: Are there any humans visible in Image 2?

GT: No, there are no visible humans in Image 2, but the presence of a train driver is implied.

: Yes, there is a man visible in Image 2, standing next to the train.

LLM rating: 0

: No, there are no humans visible in Image 2.

LLM rating: 4

Figure 6: Examples of Q&A pairs in CaD-QA together with LMM predicted answers and the corre-
sponding LLM evaluation rating for the prediction (Red and green texts denote incorrect and correct
description).
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(a)

Q: What is the central figure in each image?

GT: In Image 1, the central figures are several horses and their riders, engaged in a polo game. In Image 2,
the central figure is a man holding a mountain bike.

: The central figure in each image is a man riding a bicycle.

LLM rating: 2

: In Image 1, the central figure is a man riding a horse. In Image 2, the central figure is a man riding a

bicycle.
LLM rating: 4
Image 1 Image 2

(b)

Q: What kind of mood do the two images convey?

GT: Image 1 conveys a sense of dynamism and energy in a modern urban setting. Image 2 evokes a feeling of
tranquility and curiosity in a traditional, mysterious setting.

: The two images convey a calm and peaceful mood. In the first image, a cat is sitting in a window, looking

out, which suggests a sense of relaxation and contentment. The second image shows a bus parked on the
side of the road, with people waiting at a bus stop. The presence of the bus and the people waiting for it
indicate a sense of order and routine, which can also contribute to a calm atmosphere. The combination of
these two images creates a serene and tranquil scene, reflecting the everyday life of people and animals in
a quiet, urban environment.

LLM rating: 2

: The two images convey different moods. Image 1 has a lively and active mood, with a bus, people, a pole, a

dustbin, trees, buildings, and a cloudy sky. The presence of a bus and people suggests movement and
activity. Image 2, on the other hand, has a calm and serene mood, with a cat sitting on a window sill and a
wall in the background. The cat's presence and the stillness of the scene create a sense of tranquility.
LLM rating: 4

Image 1 Image 2

(c)

Q: What is the atmosphere like in Image 1?

GT: The atmosphere in Image 1 is lively and conveys a sense of joy and adventure for the passengers aboard
the train.

: The atmosphere in Image 1 is lively and social, with a group of people walking down a dirt road or path,

enjoying each other's company.

LLM rating: 3

: The atmosphere in Image 1 is lively and engaging, as there are people sitting on a train and taking

pictures of the scenery. The presence of a train and the outdoor setting suggest a sense of adventure and
excitement, as the passengers are enjoying their journey and capturing memories of the beautiful
surroundings.

LLM rating: 5

Figure 7: Examples of Q&A pairs in CaD-QA together with LMM predicted answers and the corre-
sponding LLM evaluation rating for the prediction (Red and green texts denote incorrect and correct
description).
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(@)

Q: Are the settings in the two images similar or different?

GT: The settings in the two images are different. Image 1 is set in a train station during winter, while Image 2
is at a beach during a sunny day.

: The settings in the two images are similar, as both depict men sitting on a bench or a wooden chair near a
m beach.
LLaVA LLM rating: 0

@ : The settings in the two images are different. Image 1 features a train station with a train on the tracks,
CaD- people walking on the platform, and buildings in the background. Image 2, on the other hand, shows two
LLavA men sitting on a bench under a colorful umbrella, with a body of water and boats in the background.

LLM rating: 5

Image 2

Q: Are there any plants or natural elements in the images?
GT: No, neither Image 1 nor Image 2 contains any plants or natural elements.
: Yes, there is a plant in the image, which is placed on the table.
LLavA LLM rating: 0

@ : No, there are no plants or natural elements in the images. Both images are indoor scenes with man-made
Cap- Objects.

LLaVA LLM rating: 5

Image 2

(c)

Q: What objects are present in each image?

GT: Image 1 contains a wooden and metallic bench, a cellphone, and some graffiti, while Image 2 features a
blue metal plow, horses, and rocky soil.

: In the first image, there is a man and a horse, while in the second image, there are two horses and a man.
LLaVA LLM rating: 1

@ : In Image 1, there is a woman sitting on a bench, and in Image 2, there are two horses, a cart, and three
CaD- people.

LLaVA LLM rating: 2

Figure 8: Examples of Q&A pairs in CaD-QA together with LMM predicted answers and the corre-

sponding LLM evaluation rating for the prediction (Red and green texts denote incorrect and correct
description).
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Text query: A large desk has a bookshelf above it.

Image 1.

The image with the bookshelf above the desk is more suitable for the caption "A large desk has a
bookshelf above it." because it clearly shows a bookshelf above the desk, which is not visible in the other
image. In the first image, the bookshelf is located above the desk, while in the second image, the
bookshelf is not visible. The first image also has a laptop and a cell phone on the desk, which are not
present in the second image

Image 2.

Reasons:

* Image 2 contains a bookshelf with books and other items, while Image 1 does not have a bookshelf.

* Image 2 has a desk with a laptop, monitor, and other items, while Image 1 has a desk with a laptop,
monitor, and other items.

* Image 2 has a wall with posters and a board, while Image 1 does not have a wall with posters or a board.
* Image 2 has a more cluttered and detailed scene compared to Image 1.

Image 1

(b) —

Text query: A group of men preparing to fly a kite being filmed by another man.

Image 1.

The image with the man holding a camera captures the essence of the scene better. In this image, there is
a man holding a camera, and another man is holding a kite. The presence of the camera indicates that the
scene is being filmed, which is the main focus of the image. In contrast, the image with the man holding a
camera and two other men standing in the grass does not clearly convey the act of filming. The presence of
the kite in the image also adds to the visual interest and context of the scene.

Image 2.

Reasons:

1. The number of people: Image 1 has two people, while Image 2 has four people.

2. Actions: In Image 1, one person is flying a kite, and the other is standing. In Image 2, all three people are
standing, and one person is holding a camera.

(c)

Text query: A man in a white sweater sitting at a table eating a whole pizza pie.

Image 1.

The image with the man in a white sweater sitting at a table eating a whole pizza pie is more suitable for
the caption because it clearly shows the man eating a pizza and wearing a white sweater. The other image,
B, shows a man cutting a pizza with a knife and fork, but it does not provide enough context to determine if
he is wearing a white sweater or not. The image A provides a more accurate representation of the man
eating a pizza and wearing a white sweater, which is the main focus of the caption.

Image 2.

Reasons:

1. The man in Image 2 is sitting at a table and eating a whole pizza pie, while the man in Image 1 is sitting
at a table and holding a glass of beer.

2. The man in Image 2 is wearing a white sweater, while the man in Image 1 is not wearing a sweater.

3. The man in Image 2 is cutting the pizza with a knife, while the man in Image 1 is not cutting anything.

Figure 9: Examples of predictions of the binary image selection task on BISON (red and green texts
denote incorrect and correct predictions). We instruct the LMMs to, besides the selection, also give
a reasoning for the answer.
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D DATASET STATISTICS

D.1 GENERATED DATA STATISTICS
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Figure 10: Distribution of length of CaD summaries (in terms of number of words) in (a) CaD-
Inst"! and (b) CaD-Inst"2

CaD-Inst"! and CaD-Inst¥?2 . In CaD-InstV! , we collected structured summaries of CaD for
278K image pairs, with an average length of 157 words (40 for commonalities and 117 for dif-
ferences). In CaD—InstV2 , we collected summaries of CaD for 71K images pairs used in Scene-
Difference (Li et al. , with an average length of 156 words (28 for commonalities and 128
for dlfferences) We demonstrate the distribution of CaD summary length (number of words) in
CaD-Inst"! (Fig.[10[a)) and in CaD-Inst"? (Fig. [10{b)).
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Figure 11: Word clouds of CaD summaries in (a) CaD-InstV?! and (b) CaD-Inst"2

In Fig. [T} We also illustrate the cloud of words covered in the CaD summaries in CaD-

InstV! (Fig. |1 a)) and in CaD-Inst"? (Fig.|1 b))

In the main paper, we mentioned that the collected summaries are structured according to approx-
imate 6 axes of characteristics: object types, attributes, counting, actions, locations and relative
positions. Note that the characteristics appear unevenly on a case-to-case basis based on the LLM
decision on individual samples. In Fig. 3(a)(main paper), we illustrate the distribution of these
sample-specific characteristics in a Sunburst chart. Here in Fig. we also illustrate the distribu-
tion of these characteristics (e.g. object types, action of people, surrounding environments, efc.) in
CaD summaries in the Phase-1 data collection CaD-Inst"'! . The structured differences are summa-
rized in terms of these characteristics (see Fig.[5(a) for an example of structured difference summary
in terms of several characteristics). The visual instruction tuning guides the model to compare im-
ages in terms of these detailed characteristics.

In the main paper, we introduced that we collect 278K image pairs with different levels of similarity
between their captions. We measure the similarity between two captions by counting the number of
overlapping nouns in the corresponding captions. Here we show the distribution of the number of
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Figure 12: Distribution of sample-specific characteristics (e.g. object types, action of people, sur-
rounding environments, efc.) in CaD summaries in CaD-Inst"'! . The distribution of these sample-
specific characteristics is also shown in a Sunburst chart in Fig. 3(a)(main paper).

overlapping nouns in Fig. [[3[a). We see that we cover image pairs with different levels of caption-
caption similarity. Furthermore, we use the CLIP ViT-B/32 model (Radford et al.,[2021) to compute
the similarity scores between the two images in each pair and report the distribution in Fig. [I3|b).
We verify that image pairs of diverse similarity levels are covered in our Phase-1 data collection

CaD-Inst"! .

CaD-QA . Our CaD-QA benchmark contains 7.5K open-ended questions with answers. Here we
show the distribution of questions types (first 5 words) and answer types (first 3 words) in Sunburst
charts in Fig. [T4] There are diverse question categories covered such as Yes/No questions, What
questions on scene characteristics such as objects, attributes and setting, and also requests to describe
specific characteristics in details.
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Figure 14: Distribution of (a) questions (first 5 words) and (b) answers (first 3 words) in the evalu-
ation benchmark CaD-QA .

D.2 STATISTICS OF EXTERNAL EVALUATION DATASETS

We evaluate on several external VQA benchmarks of closed-ended and open-ended questions. Here
we give a brief introduction on the contents and statistics.

BISON is a dataset for the binary image selection task 2019). There are 150 samples
in the evaluation benchmark, each sample consisting of a pair of two visually similar images and a
query caption. Only one image correctly matches with the query caption. It measures the ability of
the LMMs to relate fine-grained text content in the caption to visual content in the images.

SVO Probes is a benchmark designed to probe for subject, verb and object understanding in vision-
language models (Hendricks & Nematzadeh, 2021). In the benchmark, each sample consists of a
pair of two images and a query sentence, where only one image correctly matches with the query
sentence. The negative image differs from the positive image with regard to either the subject, the
verb or the object. There are 36.8K samples in the dataset. For efficient evaluation, we randomly
select 1500 samples that can be divided into 3 partitions subject, verb and object where each partition
has 500 samples with the image pair contradiction in either subject, verb or object.

EQBEN is a benchmark that focuses on visual minimal change between two images
[2023). Each sample in the benchmark consists of a pair of two images with subtle visual changes and
two corresponding captions. The dataset is comprised of frames from natural video datasets such as
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YouCook2 (Zhou et al., 2018)), Action Genome (Ji et al., 2020) and GEBC (Wang et al.| [2022), as
well as sythetic image pairs with subtle differences generated by the photo-realistic scene generator
Kubric (Greff et al., [2022) and the diffusion model Stable-Diffusion (Rombach et al.| [2022). We
employ an EQBEN subselﬂ which is released by the authors in (Wang et al.| [2023) for evaluating
the performance of LMMs specifically. The subset consists of 120 samples, comprised of frame
pairs from Action Genome and GEBC, image pairs with changes in attributes, count and location
generated by Kubric, and image pairs with style change generated by Stable-Diffusion. For each
sample, we perform the binary image selection task twice, feeding one of the descriptions for image
selection at a time. The sample is considered positively answered only when both selection tasks are
correctly solved.

COLA is a benchmark for evaluating the capabilities of vision-language models on representing
simple compositions by combing objects with their attributes (Ray et al.,[2023). Each sample in the
benchmark consists of two images with two corresponding captions. The two images have attributes
and objects that are swapped in the captions, e.g. large tree to the right of little short green tree, and
tall green tree to the right of large tall green tree. We employ the partition of multi-object setting in
the benchmark which consists of 210 image pairs and captions. Similar to evaluation on EQBEN,
we perform the binary image selection task twice for each sample.

NLVR2 is a benchmark for evaluation of the visual reasoning with natural language task which
aesses the ability of LMMs to predict whether a sentence is true about a pair of images (Suhr et al.,
2019). The task focuses on understanding of compositionalities in terms of relations, comparisons
and counting. We use the subset of 150 samples provided in SparklesChat (Huang et al., 2023) for a
fair comparison.

SEED-Bench is an evaluation benchmark on comprehensive vision-language understanding, con-
sisting of 19K multiple choice questions (Li et al., [2023d). The are two major categories in the
benchmark: SEED-Image with 14K samples and SEED-Video with 5K samples. SEED-Image con-
sists of 9 dimensions: scene understanding, instance identity, instance attributes, instance location,
instance counting, spatial relation, visual reasoning and text understanding. All samples contain
only a single input image. SEED-Video consists of 3 dimensions: action recognition, action pre-
diction and procedure understanding. The videos are from Something-Something-v2 (Goyal et al.,
2017a), EPIC-Kitchen (Damen et al.| [2022) and Breakfast (Kuehne et al.| 2014).

E IMPLEMENTATION DETAILS

E.1 BASELINES

SparklesChat (Huang et al.,, 2023) is finetuned from the first-stage pretrained model of
MiniGPT4 (Zhu et al.| [2023a). The model is finetuned with their collected multi-image dialogue
data. SparklesChat follows the architecture of MiniGPT4 and uses Vicuna 7B (Chiang et al.||[2023)),
EVA-CLIP ViT-G/14 (Fang et al., 2023) with a Q-Former from BLIP-2 (Li et al., 2023e). We use
the model weights and instruction templates available at https://github.com/HYPJUDY/
Sparkles.

Otter (Li et al.,|2023b) is finetuned from the OpenFlamingo model (Awadalla et al., 2023) with the
collected multimodal in-context instruction-response data in MIMIC-IT (Li et al.| |2023a)). We use
their most recent open-sourced version Otter-Image-LLaMA7B-LA-InContext available at ht tps :
//huggingface.co/luodian/OTTER-Image—-LLaMA7B-LA-InContext.

MMICL (Zhao et al., 2024) is based on the InstructBLIP model (Dai et al., 2023). The model is
finetuned their own collected multimodal in-context learning datast consisting of interleaved text-
image inputs, inter-related multiple image inputs and multimodal in-context learning inputs. We
evaluate with their model of the largest scale MMICL-InstructBLIP-T5-XXL, available at https:
//huggingface.co/BleachNick/MMICL-Instructblip—-T5-xx1.

1https ://entuedu-my.sharepoint.com/:u:/g/personal/tan317_e_ntu_edu_sg/
ETkpKSsmunlMpBw/7FqfUUS8BwWIX2gKkTQkDFsfOGCw—9yA?e=KGtpg0
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EMU2-Chat (Sun et al.,|[2024) is a generative multimodal model trained on large-scale multimodal
sequences. The model consists of pretrained EVA-02-CLIP-E-plus (Sun et al.,|2023b) and LLaMA-
33B (Touvron et al., [2023a). The model weights and inference code are available at https://
huggingface.co/BAAI/Emu2-Chat.

InternLM-XComposer2-VL (Zhang et al., 2023a) consists of CLIP ViT-L (Radford et al.
2021) and InternLM2-7B (Team, [2023). The model weights of the InternLM-XComposer2-
VL-7B and inference code are available at https://huggingface.co/internlm/
internlm-xcomposer2-vl-"Thb.

LLaVA 1.5 (Liu et al., [2023a) is an improved version from LLaVA (Liu et al., [2023b) with
CLIP-ViT-L-336px (Radford et al., [2021) as the visual backbone and Vicuna 1.5 (Zheng et al.,
2023)) as the LLM. Our visual instruction tuning is performed using the open-sourced code of
LLaVA 1.5. We train on the first-stage pretrained weights of LLaVA 1.5 via LoRA finetun-
ing. We evaluate both LLaVA 1.5 7B lora and LLaVA 1.5 13B lora as baselines. The models
are available at https://huggingface.co/liuhaotian/llava-vl.5-7b—1lora and
https://huggingface.co/liuhaotian/llava-vl.5-13b-1lora.

LLaVA 1.6 (Liu et al., [2024) is an improved version from LLaVA 1.5 with increased input image
resolution and improved mixture of instruction tuning data. The 7B and 13B versions are avaible on
Huggingface at https://huggingface.co/liuhaotian/llava-vl.6-vicuna-7b
and https://huggingface.co/liuhaotian/llava-vl.6-vicuna—-13b. However,
the training code is not yet available.

E.2 IMPLEMENTATION DETAILS

(System prompt:
You are an Al visual assistant and you are seeing two images. The two images are provided with two
captions, each describing the content of an image. Your task is to summarize the commonalities and
differences between the two images. Answer as you are seeing the images. Summarize the commonalities
and differences about the visual content of the two images, including the object types, object attributes,
counting the objects, object actions, object locations, relative positions between objects, etc.

User prompt:

Please summarize the commonalities and differences between the following two images:
Image 1:<captionl>

Image 2:<caption2>

\ Commonalities:

Figure 15: Prompt for the task of Phase-1 LLM-based CaD summary.

Data Collection. In Phase-1, we leverage the Mixtral 8x7B Instruct v0.1 mode with 8-bit inference
for data generation. We set the batch size to 16 and max new token to 750. The prompt for the task
of LLM-based CaD summary is given in Fig. The generation with batch 16 fits to an A100 80G
GPU.

In Phase-2, we leverage the Phase-1 model CaD-LLaVA"! 13B model to generate CaD summary
on additional image pairs. The temporature, max new tokens and number of beams are set to 0, 256
and 1. The prompt for the task of LMM-based CaD summary is given in Fig.[16]

For collecting open-ended QAs in CaD-QA , we first use the LMM to generate the CaD summaries
based on the image captions (see Fig.[[3). Then we prompt the LLM with both the image captions
and the CaD summary, instructing it to generate a multi-turn conversation with several rounds of
Q&A. We also provide some in-context samples to demonstrate the desired layout. The prompt for
the task of generating Q&A pairs based on both image captions and the CaD summary is illustrated

in Fig.

Training. We perform visual instruction tuning following the configuration in LLaVA 1.5. We set
the batch size to 128 and train for one epoch. The learning rate for LLM with LoRA and for the

*Huggingface source: https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1
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(System prompt: )

A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed,
and polite answers to the user's questions.

User prompt:

Image 1: <image>

Image 2: <image>

Here are some context of the difference between the two images:

<description>

Based on the two images and the context, summarize the commonalities and differences about the visual
content of the two images, including the object types, object attributes, counting the objects, object
kactions, object locations, relative positions between objects, etc.

Figure 16: Prompt for the task of Phase-2 LMM-based CaD summary.

projector are set to 1 x 10~* and 2 x 10~° correspondingly. The LoRA rank and alpha values are
set to 128 and 256. The training experiments are run on 4x A100 80G GPUs.

Inference. For VQA inference, the temperature, max new tokens and number of beams are set to 0,
256 and 1.

LLM-assisted Evaluation We leverage the Mixtral 8 x7B model for LLM-assisted evaluation on
open-ended questions. We feed the question, correct answer and the predicted answer into the LLM
and instruct it to provide a rating between 0 and 5. The prompt for generating the evaluation rating
is given in Fig.
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(System prompt:

You are an Al visual assistant, and you are seeing two images. The two images are provided with two
captions, each describing the content of an image. Additionally, you are provided with a summary of the
commonalities and differences between the two images. Design a conversation between you and a person
asking about the two images based on the commonalities and differences between the two images. The
answers should be in a tone that a visual Al assistant is seeing the two images and answering the
question. Ask diverse questions and give corresponding answers. Include questions about the visual
content of the two images, including the object types, object attributes, counting the objects, object
actions, object locations, relative positions between objects, etc.

User prompt:
Please design a conversation with several rounds of questions and answers, where a person asks about
the two images based on the commonalities and differences between the two images, and you answer.

Image 1: In this picture we can see two women are taking picture, side there is a glass and bottle are
placed on the table, behind we can see some people are sitting on the chairs.

Image 2: In this image, we can see some buildings. There is a bridge on the right side of the image. There
is a person and bus in the middle of the image. There is a wall beside the road. There are divider cones at
the bottom of the image. At the top of the image, we can see the sky.

Summary: Commonalities: The two images have the presence of people and man-made structures. In both
images, the people are engaged in different activities - taking a picture in Image 1 and standing in Image
2. The man-made structures include a table with objects in Image 1 and buildings, a bridge, a wall, and
divider cones in Image 2.

Differences:

1. Scene: Image 1 is set in an indoor or semi-enclosed space, such as a café or restaurant, while Image 2
is set outdoors, in a cityscape or urban environment.

2. Objects: Image 1 contains objects like a glass, bottle, and chairs, which are not present in Image 2. On
the other hand, Image 2 has elements like a bridge, wall, and divider cones, which are not in Image 1.

3. People: In Image 1, there are two women taking a picture, while in Image 2, there is a single person
standing near a bus.

4. Actions: The people in Image 1 are taking a picture, while the person in Image 2 is not engaged in any
specific action.

5. Locations: The scene in Image 1 is more confined, with a table and chairs, while Image 2 has a wider
view, including a road, buildings, and the sky.

6. Relative positions between objects: In Image 1, objects are placed on a table, while in Image 2, objects
are positioned along a road or street.

Question: Are there people in both images?

Answer: Yes, there are people in both images.

Question: what is the difference in the scene of the two images?

Answer: The scene in Image 1 is set in an indoor or semi-enclosed space, such as a café or restaurant,
while Image 2 is set outdoors, in a cityscape or urban environment.

Question: What objects are present in Image 1 but not in Image 2?

Answer: Image 1 contains objects like a glass, bottle, and chairs, which are not present in Image 2.
Question: What objects are present in Image 2 but not in Image 1?

Answer: Image 2 has elements like a bridge, wall, and divider cones, which are not in Image 1.

Question: What is the difference between people in the two images?

Answer: In Image 1, In Image 1, there are two women taking a picture, while in Image 2, there is a single
person standing near a bus.

Question: What are the people doing in the two images?

Answer: The people in Image 1 are taking a picture, while the person in Image 2 is not engaged in any
specific action.

Question: What is the difference in the locations of the two images?

Answer: The scene in Image 1 is more confined, with a table and chairs, while Image 2 has a wider view,
including a road, buildings, and the sky.

Question: What is the difference in the relative positions between objects in the two images?

Answer: In Image 1, objects are placed on a table, while in Image 2, objects are positioned along a road or
street.

Image 1: <captionl>
Image 2: <caption2>
Summary: <summary>
kQuestion:

J

Figure 17: Prompt for the task of generating Q&A pairs based on both image captions and the
CaD summary.
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( N\
System prompt:

You are an intelligent chatbot designed for evaluating the correctness of generative outputs for question-
answer pairs. Your task is to compare the predicted answer with the correct answer and determine if they
match meaningfully. Here's how you can accomplish the task:

##INSTRUCTIONS:

- Focus on the meaningful match between the predicted answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.

- Evaluate the correctness of the prediction compared to the answer.

User prompt:

Please evaluate the following question-answer pair:

Question: <question>

Correct Answer: <answer>

Predicted Answer: <prediction>

Evaluate if the predicted answer is correct with yes/no and assign a correctness score between 0 and 5,

where 0 indicates incorrect answer, and 5 signifies the highest meaningful match. Please generate the

response in the form of a Python dictionary string with keys 'pred' and 'score', where value of 'pred’ is a

string of 'yes' or 'no' and value of 'score' is in INTEGER, not STRING. DO NOT PROVIDE ANY OTHER

OUTPUT TEXT OR EXPLANATION. Only provide the Python dictionary string. For example, your response
\should look like this: {'pred': 'no', 'score': 0}.

J

Figure 18: Prompt for the LLM-assisted evaluation.
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F LIST OF ASSETS

Our image sources and annotations are obtained from public datasets. We release our data in accor-
dance to the source data licenses.

Here is a list of image sources:

* Open Images v6 (Kuznetsova et al., [2020) (https://storage.googleapis.com/
openimages/web/download_v6.html): The images are under Creative Commons
Attribution (CC BY) 2.0 license.

¢ COCO 2017 (Chen et al., 2015; |[Lin et al., 2014) (https://cocodataset.org/
#download): The images are under a Creative Commons Attribution 4.0 license.

* Flicker30K (Young et all [2014) (https://shannon.cs.illinois.edu/
DenotationGraph/): The images are the property of SmugMug or its third party
licensors and are protected by United States and international intellectual property laws.
The images are provided for researchers and educators who wish to use the dataset for
non-commercial research and/or educational purposes.

* ADE20K (Zhou et al), [2019) (https://groups.csail.mit.edu/vision/
datasets/ADE20K/index.html#Download): The images belong to MIT CSAIL
and are licensed under a Creative Common BSD-3 License.

e Visual Genome (Krishna et all 2017) (https://homes.cs.washington.edu/
~ranjay/visualgenome/api.html): The images are under a Creative Commons
Attribution 4.0 license.

Here is a list of image annotation sources:

e Localized narratives (Pont-Tuset et al., [2020) (https://google.github.io/
localized—-narratives/): The annotations are released under a Creative Common
Attribution (CC BY) 4.0 license.

e MIMIC-IT (Li et all [2023a) (https://huggingface.co/datasets/pufanyi/
MIMICIT): The annotations are released under an MIT license.

e SVIT (Zhao et al., 2023) (https://huggingface.co/datasets/BAAI/SVIT):
The annotations are licensed under a Creative Commons Attribution 4.0 license.
It should abide by the policy of OpenAl (https://openai.com/policies/
terms-of-use)). The use of original images and annotations from Visual Genome and
MS-COCO should comply with the original licenses.

Here is a list of implementation sources or model weights:

e LLaVA (Liu et al., 2023bza) (https://github.com/haotian—1iu/LLaVA): The
code is released under an Apache-2.0 license. The project utilizes certain datasets and
checkpoints that are subject to their respective original licenses, including but not limited to
the OpenAl Terms of Us for the dataset and the specific licenses for base language models
for checkpoints trained using the dataset (e.g. LLaMA community licenseE] for LLaMA-2
and Vicuna-v1.5).

e Mixtral 8x7B model (Jiang et al.,2024) (https://huggingface.co/mistralai/
Mixtral-8x7B-v0.1): The model is released under an Apache-2.0 license. Usage is
subject to the term of use for Mistral products and service

*https://openai.com/policies/eu-terms—of-use/
‘nttps://ai.meta.com/llama/license/
*https://mistral.ai/terms/#terms-of-use
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https://storage.googleapis.com/openimages/web/download_v6.html
https://storage.googleapis.com/openimages/web/download_v6.html
https://cocodataset.org/#download
https://cocodataset.org/#download
https://shannon.cs.illinois.edu/DenotationGraph/
https://shannon.cs.illinois.edu/DenotationGraph/
https://groups.csail.mit.edu/vision/datasets/ADE20K/index.html#Download
https://groups.csail.mit.edu/vision/datasets/ADE20K/index.html#Download
https://homes.cs.washington.edu/~ranjay/visualgenome/api.html
https://homes.cs.washington.edu/~ranjay/visualgenome/api.html
https://google.github.io/localized-narratives/
https://google.github.io/localized-narratives/
https://huggingface.co/datasets/pufanyi/MIMICIT
https://huggingface.co/datasets/pufanyi/MIMICIT
https://huggingface.co/datasets/BAAI/SVIT
https://openai.com/policies/terms-of-use
https://openai.com/policies/terms-of-use
https://github.com/haotian-liu/LLaVA
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-v0.1
https://openai.com/policies/eu-terms-of-use/
https://ai.meta.com/llama/license/
https://mistral.ai/terms/#terms-of-use
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