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Abstract

Transformers have demonstrated remarkable in-context learning (ICL) capabilities,
adapting to new tasks by simply conditioning on demonstrations without parameter
updates. Compelling empirical and theoretical evidence suggests that ICL, as
a general-purpose learner, could outperform task-specific models. However, it
remains unclear to what extent the transformers optimally learn in-context com-
pared to principled learning algorithms. To investigate this, we employ a meta
ICL framework in which each prompt defines a distinctive regression task whose
target function is drawn from a hierarchical distribution, requiring inference over
both the latent model class and task-specific parameters. Within this setup, we
benchmark sample complexity of ICL against principled learning algorithms, in-
cluding the Bayes optimal estimator, under varying performance requirements. Our
findings reveal a striking dichotomy: while ICL initially matches the efficiency of
a Bayes optimal estimator, its efficiency significantly deteriorates in long context.
Through an information-theoretic analysis, we show that the diminishing efficiency
is inherent to ICL. These results clarify the trade-offs in adopting ICL as a univer-
sal problem solver, motivating a new generation of on-the-fly adaptive methods
without the diminishing efficiency. 1

1 Introduction

Transformers, particularly large language models (LLMs), are able to perform in-context learning
(ICL) [1]; they can adapt to new tasks simply by conditioning on demonstrations in their input prompt
[2]. Not only conveniently operated without any explicit parameter updates, but ICL even with just
a few demonstrations (a.k.a. few-shot ICL) surprisingly outperforms task-specific state-of-the-art
models in diverse tasks, from question answering to common sense reasoning [3, 4, 1].

This raises a fundamental question whether ICL can act as a universal learner, replacing task-specific
models. To answer this, we must first address a more precise question: How optimal is ICL as a
learning algorithm, compared to principled learning algorithms? In principle, this could be answered
by exhaustively benchmarking ICL against principled learning algorithm across varied data and
model scales [5, 6] and task types [7, 8]. However, the computational demands for training modern
LLMs pose significant challenges for such direct comparisons. The goal of this work is to answer the
question without such prohibitive computational demands.

To answer the question, theoretical studies have analyzed asymptotic behavior of ICL using rich tools
from statistics and learning theory, such as regret and generalization bounds [9–12]. However, these
asymptotic results fall short of fully characterizing real-world LLM behavior. For instance, the regret
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upper bound for LLMs become nearly vacuous in few-shot regimes [13, 14], which cannot explain
the striking few-show ICL performances. Moreover, because other principled learning algorithms
have the similar asymptotic behavior, it remains unclear whether ICL is a better learning algorithm
than such learning algorithms.

Physics-style or synthetic benchmarking approaches have provided valuable insights that transformers
might optimally learn in-context, isolating core aspects of LLM training in controlled environments
[15–17]. These approaches by nature can enable an efficient, comprehensive comparison between ICL
and principled learning algorithms with arbitrarily high levels of statistical significances, providing
insights that often generalize to real-world LLMs despite inherent simplifications (see Appendix A.1
for more detailed discussion on the usage of stylized setting). Notably, Garg et al. [16] and follow-
up works [18, 19] present various stylized settings where the ICL performances across different
demonstration sizes resembles the learning curve of the optimal learning algorithm (e.g., Figure 3a).
However, these works have not yet provided an explicit relationship between relevant quantities (e.g.,
sample complexity and the optimality gap). Thus, the question of to what extent transformers can
learn optimally in-context remains unanswered.

To quantify optimality of ICL as a learning algorithm, we compare ICL’s sample complexity-
related measures to those of principled learning algorithms by revisiting the performance profiles
[20]—classic benchmarking framework for optimization software. As a result, we uncover a new
insight on optimality of ICL in §3: While ICL with few-shot demonstrations achieves near optimal
sample complexity, ICL’s sample complexity sharply deteriorates as the number of demonstrations
increases in long context. Concretely, many-shot ICL often requires 1.5 times more demonstrations
than the Bayes optimal estimator to achieve the same performance. This indicates that, although
transformers are theoretically capable of implementing principled algorithms in-context [19], their in-
context learning behavior deviates significantly from the optimal learning algorithm in the many-shot
regime. We further present evidence that, unlike principled algorithms, ICL may lack fundamental
statistical properties (e.g., consistency and asymptotic efficiency) that are critical for algorithms to
effectively learn from large demonstration sizes. Crucially, as ICL performances generally improve
with more demonstrations, this novel insight would be difficult to uncover without directly comparing
ICL to the principled learning algorithms with proper sample complexity measures.

To solidify this empirical finding, we provide information-theoretic analyses demonstrating that the
diminishing efficiency is intrinsic to the ICL mechanism itself in §4. Specifically, we prove that ICL
without diminishing efficiency has stringent necessary conditions (e.g., negligible excess risk), and the
result is independent to particular instantiation of models and environments. The results explain ICL’s
deficient sample complexity compared to the principled learning algorithm in many-shot regimes.

Taken together, our work unveils a hidden technical debt in the ICL mechanism, suggesting a
nuanced view of ICL as a universal problem solver: the price we pay for its training-free adaptability
is a fundamental inefficiency in sample complexity that compounds as we push toward higher
performance targets with the current ICL mechanism as is. Crucially, this debt appears intrinsic to
the ICL mechanism and thus unlikely to be serviced by simply scaling data and model sizes. We
hope these insights clarify the trade-offs in adopting ICL as a universal problem solver and motivate
a new generation of “on-the-fly” adaptive methods without the diminishing efficiency.

2 Setup

In §2.1, we describe the meta ICL environment for evaluating ICL as a learning algorithm, followed
by designs of a transformer for solving the meta ICL task (§2.2). We then devise principled predictors
(§2.3) and compare them with transformers using performance measures defined in §2.4.

2.1 Meta ICL Environment

In the meta ICL [16], each prompt characterizes an instance of a learning problem. Specifically, a
prompt HT consists of demonstrations with a test input, i.e., HT ≜ (X1, Y1, · · · , XT , YT , XT+1),
and each output is generated by some function f∗, i.e., Yt = f∗(Xt) for t ∈ [T +1] ≜ {1, 2, · · · , T +
1}. Here, the goal of a transformer is formalized as accurately predicting YT+1 with Ht, which
requires to (implicitly) infer the underlying function f∗ from the demonstrations. We denote the
set of demonstrations as DT ≜ (X1, Y1, · · · , XT , YT ). Following the meta ICL literature [16, 18,
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19, 6], we focus on regression problems where many principled learning algorithms can be derived
analytically (cf. §2.3).

For the data generating distribution of a prompt HT , we follow the approach of sampling target
functions f∗ from a hierarchical distribution [21] to capture a more interesting aspect of a learning
algorithm—model selection. Under the hierarchical f∗, the prompt HT is realized by the following
sampling process, which is denoted as HT ∼ P(·; E) with parameters E ≜ ([M ], σ2

w, σ
2
ϵ ).

1) Sample the implicit dimensionm ∼ U([M ]) from a uniform distribution over set [M ] and construct
the (unobservable) feature space Φm(x) ≜ [1, cos(πxT ), sin(πxT ), · · · , cos(mπx

T ), sin(mπx
T )] where

T > 0 controls the frequency of the trigonometric functions.

2) Sample weight wm ∼ N (0, σ2
wI2m+1), where I2m+1 is the identity matrix with rank 2m+1. The

weight wm defines the target function f∗(x) ≜ w⊤
mΦm(x)/

√
m+ 1 where the constant

√
m+ 1

makes the variance of f∗ remains constant across differentm. We let Fm ≜ {wTΦm(·)|w ∈ R2m+1}
denote the set of all target functions with implicit dimension m.

3) Construct a prompt HT with a test output yT+1 by xt ∼ U([xmin, xmax]), yt = f∗(xt) + ϵt for
t ∈ [T + 1], where ϵt ∼ N (0, σ2

ϵ ) is a random observation noise.

This hierarchical sampling involves a rich class of functions since {1} ∪ {cos(mπx
T )}m∈N ∪

{sin(mπx
T )}m∈N forms a basis of square-integrable functions on [xmin, xmax]. Following Panwar

et al. [21], we set T = xmax = −xmin = 5 and M = 10 (our findings are indifferent to these values).

We benchmark ICL with respect to different configurations of E , called scenario, to enable compre-
hensive evaluations that could be encountered in practical scenarios (e.g., low signal-to-noise ratio
(SNR), defined as V ar(f∗)/σ2

ϵ , for emulating a highly noisy environment). We denote S as a set
of scenarios and Es as parameters of a scenario s ∈ S. We also have Hs

T ≜ (Xs
1 , Y

s
1 , · · · , Xs

T+1)
generated from P(·; Es) for each scenario s, where we omit superscripts when there is no ambiguity.

2.2 Transformers

For a transformer TFθ, we adopt the setup from Garg et al. [16] and follow-up works [21, 19, 18, 6]
that use the GPT-2 [22] architecture (cf. details in Appendix A.2). For optimizing θ in the pretraining
stage, we use the following minimization objective

L(θ) ≜ EHTtrain

[
1

Ttrain

∑Ttrain−1
t=0 (TFθ(Ht)− Yt+1)

2
]

(1)

where HTtrain is generated by the prompt distribution described in §2.1. We set Ttrain = 50 for all
scenarios, which is roughly 2 · (2M + 1) as in the previous works [16, 21], and train TFθ separately
for each scenario.

2.3 Principled Baselines

To benchmark ICL, we derive principled baselines that learn from demonstrations Dt and produce a
prediction function fb(·;Dt), where b is the identifier of a particular baseline. We denote f tb(x) ≜
fb(x;Dt) and f tICL(Xt+1) ≜ TFθ(Ht) whenever there is no ambiguity.

The optimal baseline is Bayesian model averaging (BMA), which makes prediction by aggregating
models from different hypothesis classes. Formally, it is defined as

f tBMA(x) ≜
∑

m∈[M ]p(Fm | Dt) ŵ
⊤
m(Dt)Φm(x), (2)

where p(Fm | Dt) is the posterior probability of Fm and ŵm is the ridge regression estimator
for Fm, defined as ŵm(Dt) = (Φ⊤

m,tΦm,t +
σ2
ϵ

σ2
w
I2m+1)

−1Φ⊤
m,tYt with Φm,t ∈ Rt×(2m+1) whose

k-th row is Φ⊤
m(Xk) and Yt = (Y1, · · · , Yt) ∈ Rt. The Bayes optimal estimator defined in (2)

minimizes the expected risk with respect to the true hierarchical data-generating distribution. This
is distinct from the notion of optimality in Raventós et al. [6], which is defined with respect to
an empirical pretraining distribution with a finite number of samples, such that deviating from it
can lead to better generalization. The optimality of BMA follows from two standard results that
(1) E[Yt+1|Ht] is a solution to minf∈F EYt+1

[l(f(Xt+1;Dt), Yt+1) | Ht] almost everywhere for
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all t ∈ N and F being the set of all functions from Ht to R (e.g., Lemma 1 in [23]) and (2)
E[Yt+1|Ht] =

∑
m∈[M ] p(Fm|Dt)E[Yt|Fm, Ht] = f tBMA(x) (e.g., Equation 3.58 in [24]).

We also consider a family of principled baselines that embodies different model selection strategies
with the same model fitting capacity as the optimal predictor. Such baselines make predictions by

f tb(x;Dt) = ŵ⊤
m†

b

(Dt)Φm†
b
(x), (3)

where m†
b ∈ argmaxm∈[M ]{Scoreb(m)} with Scoreb(·) being some model selection criterion of b.

2.4 Measures for Benchmarking Optimality of ICL

Inspired by seminal work [20] that benchmarks (deterministic) optimization software, we first define
the base metric measuring the optimality of a learning algorithm in s ∈ S. Then, we present the
performance measures summarizing the base metric across S. In the following, we let B contain all
baseline learning algorithms and ICL. We set the test prompt length as T = 2Ttrain = 100, which is
within the length generalization regime observed in practice [25].

Base metric. Our base metric is the performance ratio, which normalizes the sample complexity of a
learning algorithm by that of the best algorithm among all baselines.

Definition 2.1. For a learning algorithm b ∈ B at a scenario s ∈ S, the performance ratio of a
requirement r against B̃ ⊆ B is defined as Rs

b (r; B̃) = Ns
b (r)/minb̃∈B̃{Ns

b̃
(r)}, where Ns

b (r) ≜

min
{
t | E[l(f tb(Xs

t+1), Y
s
t+1)] ≤ r

}
is the sample complexity of achieving the performance r.

The performance ratio quantifies how many more demonstrations is required by a learning algorithm
to achieve certain performance level compared to the best learner among B̃. Therefore, when
BMA ∈ B̃, algorithms with Rs

b (r; B̃) = 1 have optimal efficiency at s due to the optimality of BMA.

Performance measures. Based on the performance ratio across different scenarios, our goal is to
report a “single” score that summarizes how optimal ICL is across S . However, naively summarizing
the performance ratio for a requirement r is inappropriate because the difficulty of achieving r varies
across learning problems, making comparisons inconsistent. Therefore, we define the reference
performance quantile ψQ

Bref(s) as the Q-th quantile of reference performances at s for Q ∈ (0, 1).
Here, we measure the performance quantile in a reverse order, for making higher performance quantile
analogous to higher performance. The reference performances at s is defined as a set of performances
achieved by reference models Bref ⊆ B; that is, {E[l(f tb(Xs

t+1), Y
s
t+1)]|b ∈ Bref, t ∈ [T ]}.

With this idea, the performance ratios across S is summarized by the mean performance ratio and the
performance profile, which are defined as follows.

Definition 2.2. For the performance quantile ψQ
Bref , the mean performance ratio of b ∈ B against

B̃ ⊆ B is defined as MPR(b;ψQ
Bref , B̃) ≜ 1

|S|
∑

s∈S Rs
b (ψ

Q
Bref(s); B̃).

Definition 2.3. For the performance quantile ψQ
Bref , the performance profile of b ∈ B against B̃ ⊆ B

at a ratio τ ≥ 1 is defined as

ρb(τ ;ψ
Q
Bref , B̃) = 1

|S| |{s ∈ S : Rs
b (ψ

Q
Bref(s); B̃) ≤ τ}|.

The two measures capture complementary aspects of optimality of ICL. Specifically, the mean
performance quantile quantifies the average inefficiency of a learning algorithm b in attaining a
certain performance, which is assumed to be achievable by b. In contrast, the performance profile
measures the frequency with which a model b can achieve the performance quantile given a tolerance
for inefficiency. These intuitive measures provide novel insights into optimality of ICL that are not
apparent in previous error rates-based comparisons and asymptotic analyses.

3 Benchmarking ICL Efficiency

We measure to what extents transformers efficiently learn a new task through ICL compared to the
optimal learning algorithm (§3.1) and principled baselines (§3.2).
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3.1 Can Transformer Optimally Learn In Context?

We first examine the efficiency of ICL compared to the Bayes optimal predictor, which learns new
concepts with optimal efficiency. For comprehensive evaluation, we design the test scenarios with
various levels of SNRs: S = {([M ], σ2

y, σ
2
w) |M = 10, σ2

y ∈ {0.003, 0.03, 0.3}, σ2
w ∈ {0.1, 1, 10}}

(cf. §2.1). Also, to minimize the impacts of stochasticity of the sampling process of Ht, we
evaluate performances for each scenario 512 times. Then, we analyze the mean performance
ratio of ICL against BMA for all quantiles of performances achieved by ICL; that is, we measure
MPR(ICL;ψQ

Bref
1
, B̃1) with Bref

1 ≜ {ICL} and B̃1 ≜ {ICL,BMA} for Q ∈ {0.01, 0.1, · · · , 0.9, 0.99}.
In this way, we measure the efficiency of ICL in achieving each performance level under various
difficulties in extracting information from prompts. In the following, we regard prompts with
more than 40 demonstrations as the many-shot regime where the average performance quantile is
approximately 0.5 (cf. Figure A3 in Appendix).

Figure 1 reveals a striking dichotomy in optimality of ICL.

Near optimal few-show efficiency. For low performance quantiles (Q ≤ 0.3), ICL demonstrates its
remarkable near optimal efficiency. Specifically, the mean performance ratio is at most 1.1, which
means that it requires only 10% more demonstrations on average than the optimal learning algorithm
to achieve the performance lower than ψ0.3

Bref
1
(s) for s ∈ S . Considering the average sample complexity

for the performance quantile of 0.3 is 19, this explains ICL’s impressive few-shot performance
observed in practice (e.g., demonstration sizes of 5 and 15 in Brown et al. [1]).

0.0 0.2 0.4 0.6 0.8 1.0
Performance Quantile

1.0

1.2

1.4

1.6

1.8
M

PR

Figure 1: Mean performance ratio of ICL
against BMA across different performance
requirements. The shaded areas represent the
standard deviation of the corresponding per-
formance ratio.

Suboptimal many-shot efficiency. Starting from
Q = 0.3 or more apparently from Q = 0.7 onward,
the performance ratio grows almost monotonically
with Q, increasing from around 1.1 at Q = 0.3
to around 1.2 at Q = 0.7 and to around 1.45 at
Q = 0.99. This implies that efficiency of ICL as
a learning algorithm deteriorates when pursuing high
performance requirements, which inherently requires
larger demonstration sizes. Therefore, when scaling
ICL from few-shot to many-shot regimes, expect-
ing a similar level of optimality relative to the opti-
mal learner would be an overestimation. Importantly,
the diminishing efficiency of ICL would be difficult
to uncover without our novel evaluation framework
since ICL performances generally improve with more
demonstrations [26] and its learning curve resembles
that of the Bayes optimal estimator [16].

3.2 Benchmarking ICL Against Principled Baselines

We have shown that ICL is significantly inefficient compared to BMA in high performance regimes.
While BMA is learnable by minimizing (1), it might seem unrealistic for ICL to compete with BMA
that performs the expensive model averaging operation. Thus, we compare ICL with more practical
baselines with a computational constraint that select a single model using principled criteria (cf. (3)):
Akaike Information Criterion (AIC) [27] as a minimax-rate optimal model selection mechanism,
Bayesian Information Criterion (BIC) [28] as a consistent model selection mechanism, and Bayesian
Model Comparison (BMC) as an efficient BMA alternative selecting maximum a posteriori model
class. These baselines represent the spectrum of principled model selection methods, which often
asymptotically converge to either AIC or BIC [29].

To quantify relative efficiency, we use performance profiles ρb(τ ;ψQ
Bref

2
, B̃2) with Bref

2 = {ICL,AIC}
and B̃2 = {ICL,AIC,BIC,BMC}. This allows us to measure the probability that each method
achieves a reference performance level within given sample complexity budgets, which evaluates
both efficiency and effectiveness (i.e., maximum achievable performances) of learning algorithms.

Superiority of ICL in few-shot regimes. Perhaps not surprisingly (given the results from comparison
with BMA), ICL dominates the baselines with restricted capacity under low performance requirements.
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Figure 2: Performance profiles ρb across different performance ratios τ under different target
performance quantiles Q. Each curve represents the probability that a method achieves the desired
performance within a factor τ of the best method’s sample complexity (x-axes). Figure A4 in
Appendix illustrates results for all Q.

Specifically, it achieves the perfect performance profile at τ = 1 for Q ≤ 0.3. This means that
it optimally attains the performance requirement in all scenarios when Q ≤ 0.3. Given that each
baseline has its own strength in certain scenarios, this guarantee is quite strong and not observed
in other baselines. Further, for Q = 0.4, ICL reaches a perfect performance profile within τ ≤ 1.2.
This means that ICL attains the required performance of Q = 0.4 in all scenarios by using at most
20% more demonstrations on average compared to the best method in each scenario. Conversely, all
baselines selecting a single model struggle in the low-performance regime due to high uncertainty
under a small number of demonstrations preventing them from selecting the proper model class
[30, 31]. The results highlight significance of ICL as a learning algorithm in few-shot regimes.

Inferiority of ICL in many-shot regimes. Figure 2 illustrates diminishing efficiency of ICL in
long context regimes. Specifically, as the performance requirement increases, the initial performance
profile at τ = 1 is reduced, indicating the reduced probability that ICL learns the most efficiently
among B̃2. Beside, the computational budget τ required to reach perfect performance profile increases
as the performance requirement increases. Eventually for Q ≥ 0.8, even at τ = 3, ICL achieves the
performance profile around 0.8, which means that ICL cannot reach the performance requirements
for 20% of cases by using even 3 times more demonstrations than other models.

Crucially, this increasingly suboptimal behavior is opposite to the behaviors of principled baselines. In
Figure 2, as opposed to ICL, the principled learning algorithms significantly reduce the time to reach
the (near) perfect performance profiles as Q increases. Eventually, despite their significant deficiencies
in few-shot regimes, all such baselines become more effective (achieving higher performance profiles
at τ = 3) and more efficient (sharply improving the performance profiles with respect to τ ) than ICL
in many-shot regimes. Therefore, some characteristics enabling learning algorithms to leverage large
number of demonstrations might be missing in the ICL mechanism.

To gain further insights, we qualitatively analyze MSEs across different numbers of demonstrations
for each scenario. As a trivial baseline, we also consider an ensemble that aggregates the ridge
estimators {ŵm}m∈[M ] using equal weights. Figure 3a shows that while all methods show decreasing
MSEs with more demonstrations, ICL exhibits persistent discrepancies from the principled learning
algorithms in many-shot regimes. Further, in Figure 3b, we analyze the squared prediction difference
between each model and the Bayes optimal predictor for each scenario. Critically, it reveals that
while consistent estimators (BMC, BIC) seem to converge in L2 to BMA (albeit at different rates),
ICL’s L2 distance to BMA plateaus after receiving few demonstrations. This behavior mirrors the
trivial ensemble, which does not update its hypothesis about the model class with demonstrations.
This suggests another fundamental limitation: ICL may lack asymptotic efficiency and consistency
(cf. Ding et al. [29] for formal definitions). These findings challenge the prevailing optimism about
ICL’s potential as a universal learning algorithm.

3.3 On Sources of the Diminishing Efficiency

We observe ICL falls short under high performance requirements, which typically requires longer
context sizes than the pretraining prompt (cf. Figure A3 in Appendix). Given universally observed
deficiencies of machine learning models in the out-of-distribution (OOD) regimes [32, 33], it is
tempting to attribute the diminishing efficiency to the deficiencies in OOD regimes.
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(a)

(b)

Figure 3: (a) Mean squared errors for different demonstration sizes. (b) Squared prediction differences
between BMA and other methods for different demonstration sizes. Figure A5 and A6 in Appendix
illustrates results for all s ∈ S and b ∈ B.

We take a closer look at this in Figure 3b, which corresponds to the reducible error due to the
bias-variance decomposition. Recalling that Ttrain = 50 was used for pretraining, Figure 3b and
Figure A6 in Appendix show no apparent differences in the achievable error between in-distribution
and OOD regimes, except in low SNR scenarios (σ2

w, σ
2
ϵ ) = (0.1, 0.03) and (σ2

w, σ
2
ϵ ) = (1, 0.3).

This finding aligns with the length generalization literature, which suggests that transformers often
generalize to contexts up to 2.5 times longer than those seen during pretraining [25]. Further, given
that the average performance quantile at Ttrain is 0.6, Figure 1 reveals that fundamental inefficiency
already emerges in the in-distribution regime. Therefore, the diminishing efficiency observed in §3.1
and §3.2 cannot be fully attributed to the transformers’ OOD generalization capability.

4 Analyzing Suboptimality of ICL

In this section, we explain why ICL’s efficiency as a learning algorithm diminishes in long context
by using information-theoretic tools. This theoretical grounding is crucial, as it shows that the
diminishing efficiency of ICL in long context observed in §3 is an inherent property of the ICL
mechanism itself, rather than an artifact of a specific experimental setup. Accurately identifying the
source of this limitation is essential for guiding future efforts to mitigate it.

4.1 ICL Error Decomposition

Adopting a Bayesian viewpoint [9], we denote the oracle distribution with e drawn from an environ-
ment E by P̄ t

e(·) ≜ P(Yt+1 ∈ ·|Ht, e) = P(Yt+1 ∈ ·|Xt+1, e) (e.g., E characterizes the sampling
process in §2.1 with e = (m,wm)). Similarly, we let TFθ models the conditional distribution of
outputs, i.e., TFθ(Ht) ≜ Pθ(Yt+1 ∈ · | Ht) ≜ P t

θ(·). All subsequent discussions in this section
assumes no distribution shift; that is, E is the environment under which TFθ was pretrained. We
assume that Yt+1 is either discrete or continuous.

With this notation, the ICL performance with t demonstrations from E is defined as
E [− logP t

θ(Yt+1)] = E
[
− log P̄ t

e(Yt+1)
]
+ E

[
DKL(P̄

t
e ∥ P t

θ)
]

[9]. Here, the first term is the
(irreducible) aleatoric uncertainty and constant with respect to t in our setting. The second term can
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be further decomposed as

E
[
DKL(P̄

t
e ∥ P t

θ)
]
= E

[∫
log

dP̄ t
e

dP t
θ

(y)P̄ t
e(dy)

]
= E

[
DKL(P̄

t
e ∥ P̂ t

E)
]

︸ ︷︷ ︸
≜ϵtBayes(Bayes risk)

+E
[
log

P̂ t
E(Yt+1)

P t
θ (Yt+1)

]
︸ ︷︷ ︸
≜ϵtXS(Excess risk)

, (4)

where the second equality comes from the law of total expectation and P̂ t
E(Yt+1) ≜ P(Yt+1 ∈ ·|Ht, E)

is the posterior over Yt+1 given Ht.

In (4), the Bayes risk ϵtBayes measures how well the Bayes-optimal predictor performs under uncertainty
on e. It is non-negative and decreases monotonically with more demonstrations; that is, ϵt+1

Bayes ≤ ϵtBayes
for all t ∈ N [34]. Demonstration size t required to bring this risk below a threshold q is captured
by NBMA(q) ≜ mint∈N{ϵtBayes ≤ q}. Here, q represents the absolute value of the performance
requirement (e.g., MSE), whereas Q in §3 denotes the performance quantile.

The excess risk ϵtXS measures the performance of the transformer relative to the Bayes optimal
predictor. Due to the non-negativity of excess risk and independence between TFθ and ϵtBayes, this
term determines when ICL emerges and how well it can perform. For instance, if TFθ achieves
an excess risk curve such that ϵtXS − ϵ0XS ≤ ϵ0Bayes − ϵtBayes, non-trivial ICL performance emerges,
improving upon the zero-shot performance with demonstrations. Further, if ϵtXS → 0 as t→ ∞, then
ICL is Bayes-risk consistent and asymptotically matches BMA. In §4.2, we dissect the excess risk
ϵtXS based on empirical observations in §3.

4.2 On Excess Risk

Interpreting the transformer’s prediction in the meta ICL setup as the Gaussian distribution (e.g., by
adding a small random Gaussian noise to the prediction), the squared prediction difference in Figure
3b is directly proportional to the excess risk, up to a constant scale and shift. The same applies to
each baseline’s squared prediction difference, interpreted as its own excess risks.

In this regard, Figure 3b illustrates that the transformer’s excess risk remains roughly bounded within
a modest interval in a certain length generalization regime (e.g., t ≤ 2Ttrain), suggesting that it
would perform ICL non-trivially due to the monotonicity of ϵtBayes. However, once the context length
becomes much longer than the one seen during pretraining (e.g., t > 2Ttrain in Figure 4), the excess
risk deteriorates sharply. This explains why ICL is not a consistent learner, being dominated by the
principled learning algorithms in large demonstration regimes, as we observed in §3.2. We formally
encode the above empirical observations about the non-vanishing excess risk curve as follows.
Assumption 4.1. For an environment E and a transformer TFθ, there exist constants (t̄,△XS) ∈
(N,R+) such that 0 ≤ △XS ≤ ϵt

′

XS for all t′ ≥ t̄.

The assumption states that, after some reference point t̄, the excess risks of TFθ can be lower
bounded, aligning with the behaviors illustrated in Figures 3b and 4 as well as with empirical
evidence demonstrating the deficiencies of state-of-the-art LLMs outside the length generalization
regime [35, 25]. In other words, it assumes that TFθ does not magically reduce its excess risk in the
OOD context length regimes. This may occur for various reasons such as insufficient pretraining
data or intrinsic properties of architectures. Importantly, we do not assume conditions on the cause,
only that the lower bound exists. We also emphasize that, while the excess risk is lower bounded
under Assumption 4.1, ICL performance can still improve with more demonstrations due to the
monotonicity of the Bayes risk (cf. §4.1) as observed in many-shot ICL literature [36, 26].

Crucially, as we show in §4.3, △XS controls a lower bound of ICL’s suboptimal efficiency in learning
from demonstrations. For a transformer with a strong length generalization ability, ϵt

′

XS in the
assumption can also be upper bounded, making the subsequent suboptimality analysis nearly tight.
In this regard, our analysis encompasses plausible (near) future advances in length generalization
capability. Therefore, our analysis under Assumption 4.1 is a general result highlighting the ICL
mechanism’s intrinsic flaws, isolating them from the transformer’s length generalization capability.

4.3 Analyzing Suboptimality of ICL

Next, we explain the critical suboptimality of ICL observed in §3, where ICL initially matches the
efficiency of the optimal learning algorithm but starts to significantly deteriorate in many-shot regimes.
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To this end, we define suboptimality of ICL at performance requirement q as the additional number of
demonstrations required for ICL to achieve requirement q compared to the Bayes optimal estimator,
denoted as SubOpt(q) ≜ mint{t − NBMA(q) | ϵtBayes + ϵtXS ≤ q}. Here, we define suboptimality
at q with respect to the reducible part of the ICL performance (i.e., E

[
DKL(P̄

t
e ∥ P t

θ)
]
), which is

equivalent to defining it with respect to the ICL performance up to constant scaling in q.

The following theorem constructs a lower bound of SubOpt(q) under Assumption 4.1 where I denotes
the mutual information.
Theorem 4.2. Let us assume (t̄,△XS) satisfies Assumption 4.1. For a sufficiently small q such that
NBMA(q) ≥ t̄, it holds that

SubOpt(q) ≥ LB(q) ≜ min
t∈N

{
t | I(YNBMA(q); D̃t+1 | HNBMA(q)−1) > △XS

}
(5)

where D̃t+1 is a sample from the same distribution as Dt+1.

Theorem 4.2 intuitively characterizes suboptimality (cf. Figure A2 in Appendix for an illustration
of the concept). Specifically, suppose the Bayes optimal learner requires NBMA(q) demonstrations
to achieve the performance q. Then, SubOpt(q) represents the additional demonstrations required
for ICL to compensate for the excess risk ϵtXS. Here, the compensation represents how much the
new demonstrations D̃t+1 reduce the uncertainty about YNBMA(q) given a prompt HNBMA(q)−1, which
corresponds to the conditional mutual information in (5). The theorem is proven in §B.1.

Characterizing suboptimality with I(YNBMA(q); D̃t+1 | HNBMA(q)−1) provides clear insights into ICL’s
suboptimality. Specifically, transformers with small excess risks in the non-vanishing regime are less
subject to suboptimality. Besides, since a higher performance requirement (i.e., a smaller q) increases
NBMA(q), suboptimality naturally increases due to reduced conditional mutual information. The
following theorem, which is proven in §B.2, makes this intuition precise by establishing necessary
conditions for SubOpt(q) being constant with respect to q.
Theorem 4.3. Let us assume (t̄,△XS) satisfies Assumption 4.1 and let q be such that NBMA(q) ≥ t̄.
If LB(q′) = LB(q) for all △XS < q′ < q, then either of the following condition holds:

1. Negligible excess risk: △XS ≤ I(Yt; D̃1|Ht−1) for all t ≥ NBMA(q), and LB(q) = 0,

2. Negligible diminishing returns: I(Yt̃; D̃1|Ht̃−1) <
(
1 + 1

LB(q)

)
I(Yt; D̃1|Ht−1) for all

t ≥ NBMA(q), where t̃ ≜ NBMA(q) + LB(q) and LB(q) > 0.

Non-deteriorating suboptimality has stringent necessary conditions that rarely hold in practice.
Specifically, the negligible excess risk condition requires that the information gain from a single
demonstration, regardless of demonstration size, dominates the excess risk. While this may hold for
few-shot regimes (explaining the significant efficiency of few-shot ICL), ensuring this assumption
across all prompt lengths is quite strong given the diminishing nature of I(Yt; D̃1 | Ht−1) with t in
most learning scenarios [37, 38]. For a similar reason, the negligible diminishing returns condition,
which requires a constant lower bound of I(Yt; D̃1 | Ht−1) for all demonstration sizes t, is quite
strong. Therefore, SubOpt(q) inevitably grows as q decreases, leading to increasing suboptimality of
ICL under a high performance requirement as observed in §3.

As a concrete intuition on suboptimality, we consider the following crude approximations: (A1)
ϵtBayes ≈ C1/

√
t for some constant factor C1 and (A2) ϵXS ≲ ϵtXS for all t ∈ N+. Here, (A1)

corresponds to sublinear convergence of the Bayes posterior estimator, which holds in many cases
[37, 38], and (A2) corresponds to Assumption 4.1 with (t̄,△XS) = (0, ϵXS). Replacing (A1) with
other common bounds, such as ϵtBayes ≈ C1/t or ϵtBayes ≈ C1 exp(−t), yields similar results.

Under (A1) and (A2), for performance achievable by the transformer (i.e., q > ϵXS), a simple
calculation gives SubOpt(q) ≳ C2

1

(q−ϵXS)2
− C2

1

q2 ≥ C2
1ϵXS

q2(q−ϵXS)
. Here, the rapid growth of SubOpt(q) as

q decreases highlights the inefficiency of ICL in achieving high performance requirement. Moreover,
another way of improving suboptimality by reducing ϵXS, from the perspective of the rough power
law estimations from the scaling laws [39], would require an exponential increase in pretraining data
size or computational resources. Thus, in either way, a transformer exhibits significant suboptimality
in achieving high performance through ICL compared to principled learning algorithms.
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4.4 Impacts of Scaling Computations

Given that the non-vanishing excess risk curve causes an inherent inefficiency of ICL in long context,
we explore whether improving transformers’ capacity of handling longer context can enable the
excess risk to decrease with more demonstrations, thus overcoming this fundamental limitation.
As illustrated in Figure 4, while larger models and longer pretraining prompt lengths reduce the
magnitude of the excess risk in many-shot regimes, the non-vanishing shape in long contexts persists.
Thus, simply scaling model size or pretraining prompt length does not fundamentally resolve the
inefficiency of ICL in long contexts. See Appendix A.3 for experimental settings and detailed results.

5 Related Work

Asymptotic Behavior Analysis. Xie et al. [2] show that ICL predictions converge to posterior
probabilities in asymptotic demonstration size regimes. Subsequent works expand these results to
encompass finite-sample guarantees [12, 10, 11], broader prompt distribution structures [12, 40, 10],
and structural characteristics of transformers [10]. Recent studies analyze the average cumulative
regret across demonstrations [10, 9], treating ICL as an online learning algorithm. However, practical
applications prioritize test sample performance over demonstration set performance. In this work, we
directly analyze suboptimality of ICL in achieving a specific performance requirement through the
excess sample complexity compared to the Bayes optimal learning algorithm.

Stylized ICL Benchmarks. With the meta ICL framework (cf. §2.1), Garg et al. [16] demonstrate
that transformers are capable of learning simple function classes (e.g., linear models and random
neural networks) from demonstrations, achieving error curves qualitatively similar to those of optimal
learning algorithms under asymptotic pretraining sample conditions. Subsequent works extend the
results to finite pretraining sample scenarios [6] and mixture function classes [41, 21]. Further, new
analytical frameworks that directly analyze ICL predictions reveal that ICL exhibits behavior similar
to gradient descent [19, 18]. More recently, these stylized settings have been used to probe other
sophisticated behaviors of ICL. This includes analyzing transformers’ in-context model selection
and preference for simpler hypotheses [42, 43], their ability to infer causal structures [44], and the
implicit connection between ICL and low-rank updates to MLP layers [45]. Although stylized ICL
benchmarks have been extensively studied, the optimality of ICL as a learning algorithm remains
unexplored. By comparing the sample complexity of ICL with that of principled learning algorithms,
we uncover a novel insight on the fundamental inefficiency of ICL in the many-shot learning regime.
This critical insight suggests a more nuanced view of ICL as a purported universal problem solver.

6 Conclusion

The surprisingly strong ICL performance of LLMs suggest its potential to eliminate the need for
task-specific models. To rigorously examine this potential, we developed a novel framework for
benchmarking optimality of ICL as a learning algorithm against principled learning algorithms. We
found that while few-shot ICL’s efficiency is comparable to the Bayes optimal learning algorithm, its
efficiency quickly diminishes with more demonstrations. Through information-theoretic analyses,
we showed that ICL mechanism is intrinsically inefficient in many-shot regimes. This highlights the
need for a new adaptation method that can reduce excess risk with more demonstrations, enabling
sample-efficient learning of novel tasks while preserving the update-free nature of ICL.
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A Additional Details

A.1 On Usage of Stylized Setting

Comprehensive analyses with statistical significance. The benchmark in the stylized settings in
principle enables comprehensive comparisons across different environments (e.g., S) and architectures
(e.g., different TFθ), achieving arbitrarily high levels of statistical significance. In empirical studies,
these factors are constrained to the configurations of the datasets or the computational budgets.

Comparison with the optimal method. The stylized setting enables comparison with principled
learning algorithms. Specifically, BMA considered in (2) provides the minimum achievable perfor-
mance of any learning algorithms at all prompt lengths. This strong guarantee is typically not possible
in empirical studies, as even human performances could not be an oracle or simply not possible to
attain with only the data provided to the transformer. Also, the theoretical studies themselves do not
allow for precise performance comparison, except analyzing the general asymptotic behavior that is
shared among reasonable learning algorithms.

From stylized settings to practical LLMs. Although we study stylized settings in a rigorous manner,
it does not capture all aspects of LLMs. For example, the ICL objective in (1) is not an autoregressive
loss used for pretraining LLMs, omitting the losses of predictions at each Yt. Further, the model
size and training data diversity used in our meta ICL setup are significantly smaller and less diverse
than those used in modern LLMs, such as GPT-4 [46] and Gemini 2.5 [47], which typically possess
hundreds of billions or even trillions of parameters trained on vast, heterogeneous datasets. Therefore,
one potential concern is the generalization of results obtained in stylized settings. While it cannot be
shown precisely, the findings from such stylized settings have been surprisingly well generalized to
the real-world tasks [48, 40]. For instance, Ahn et al. [48] perform synthetic experiments even with
simplified transformers to study optimization methods for LLMs that surprisingly well reproduce the
results from the real-world natural language data.

Given the significance of actionable insights from the stylized settings such as foretelling impacts
of scaling ICL to the asymptotic region of the demonstration size, which is extremely challenging
with real-world LLMs, we hold positive views on the role of stylized settings in LLM research whose
significant advantages outweigh the potential concerns on its generalization to the LLMs in practice.

A.2 Detailed Configurations

Model. For the model, we use the GPT-2 [22] architecture for TFθ, which is a standard architecture
in the meta ICL and other stylized experimental settings; that is, we define TFθ as a decoder-only
transformers [49] with 12 layers, 8 attention heads, and 256-dimensional embedding space. For
readers unfamiliar with transformers, we refer to the excellent tutorials [50, 51]. We remark that
viewing TFθ as a function from a sequence of vectors with an arbitrary length to a vector with the
same dimension does not significantly impact the understanding of core findings in this paper.

Optimization. For minimizing the ICL objective l(θ), we compute the stochastic gradient with 64
prompts and update θ by using the Adam optimizer [52] with fixed learning rate of 10−4 for one
million training iterations. Also, in order to boost the convergence speed, we use curriculum learning
[53] as recommended in [16, 21] by increasing the length of the prompt by 2 every 2,000 training
iterations until it reaches (2M + 1) (and the order of Fourier series by 1 until it reaches M ).

Computational resources for experiments. In this work, we use multiple servers which consist of
multiple GPUs including RTX 8000 (50GB) and A100 (40GB).

A.3 Impacts of Scaling Computations

We show that the non-vanishing excess risk curve of the transformer in long context causes the
efficiency of learning to diminish with more demonstrations. Therefore, a natural question is whether
enhancing transformers’ capacity of handling longer context can make the excess risk decrease with
more demonstrations and thus resolve the fundamental inefficiency. We analyze the impacts of scaling
the pretraining context lengths (by setting Ttrain to 100 and 200) and the model sizes (by scaling the
number of layers, the number of heads, the embedding dimension by factors of 0.5, 2, and 3) on
the excess risk. The pretraining losses are 1.06, 0.58, and 0.34 for models trained with Ttrain = 50,
Ttrain = 100, and Ttrain = 200, respectively. Also, the pretraining losses are 1.36, 1.19, 0.99, and 0.90
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w) = ([10], 0.03, 10) under different pretraining

prompt length for Mamba and LSTM.

for half-capacity, standard, double-capacity, and triple-capacity models respectively. Note that we
did not explore different positional encoding methods since we already use no positional encoding
scheme that is effective at length generalization [35, 54], which is from an inductive bias for the
sample order-stable learning algorithms.

Figure 4 (left) shows that increasing Ttrain significantly reduces the excess risk values, especially
for long-context regimes as desired. However, overall shape of the excess risk curve remains non-
vanishing in the long-context regime. We observe from Figure 4 (right) similar effects of increasing
the model sizes. Interestingly, larger models do not increase the length generalization regime, which
is consistent with previous results [25].

The results suggest that simply increasing computations with a larger model and a longer pretraining
prompt length does not fundamentally change the shape of the excess risk, even though their overall
scales improve. Therefore, while the degree of suboptimality can be relaxed with reduced excess risk,
the inefficiency in many-shot regimes persist.

A.4 Impacts of Different Architectures

We examine whether the non-vanishing excess risk curve in long context is unique to transformer
architecture. To this end, we ran additional experiments with Mamba [55] and LSTM [56] architec-
tures under the setup same as in §A.3. Figure A1 shows that the shapes of the excess risk curve under
Mamba and LSTM remain non-vanishing in the long-context regime, being consistent with recent
work analyzing the length extrapolation limits of Mamba [57]. Crucially, this means that the the
diminishing efficiency of ICL in long context is a general property of the ICL paradigm in sequence
models having a non-vanishing excess risk, not an artifact of the transformer architecture.

B Proof of Claims

B.1 Proof of Theorem 4.2

Proof. We first characterize suboptimality by the Bayes risk as follows:

SubOpt(q) = min
t∈Z+

{
t− NBMA(q) | ϵtBayes + ϵtXS ≤ q

}
(6)

= min
t∈Z+

{
t | ϵtBayes ≤ q − ϵtXS

}
− NBMA(q). (7)

Since q < ϵ
NBMA(q)−1
Bayes , the monotonicity of ϵtBayes and the non-negativity of ϵtXS give

min
t∈Z+

{
t | ϵtBayes ≤ q − ϵtXS

}
= min

t≥NBMA(q)

{
t | ϵtBayes ≤ q − ϵtXS

}
≥ min

t≥NBMA(q)

{
t | ϵtBayes < ϵ

NBMA(q)−1
Bayes − ϵtXS

}
.

(8)

To prove the theorem, we note the following.

16



(N1). Bayes error reduction as the conditional mutual information: The Bayes error can be
expressed as the reduction of (differential) entropy as follows.

ϵtBayes = E
[
DKL(P̄

t
e ∥ P̂ t

E)
]
= h(Yt+1|Ht)− h(Yt+1|Ht, e), for continuous Yt+1 (9)

ϵtBayes = E
[
DKL(P̄

t
e ∥ P̂ t

E)
]
= H(Yt+1|Ht)−H(Yt+1|Ht, e), for discrete Yt+1 (10)

where h is the differential entropy and H is the Shannon entropy.

Therefore, for any u ≤ v and continuous Yt+1, we have

ϵuBayes − ϵvBayes = h(Yu+1|Hu)− h(Yu+1|Hu, e)− (h(Yv+1|Hv)− h(Yv+1|Hv, e)) (11)

= h(Yu+1|Xu+1, Du)− h(Yv+1|Xv+1, Dv) (12)

= I(Yu+1; D̃v−u|Xu+1, Du) (13)

where D̃v−u ≜ (X̃1, Ỹ1, · · · , X̃v−u, Ỹv−u) is independently sampled from the same distribution as
Dv−u, the second equality comes from the conditional independence Yn+1 ⊥ Dn|Xn+1, e for any
n ∈ N+, and the last equality comes from the chain rule. For the discrete Y ’s, the same process can
be applied by replacing h with H.

(N2). Lower bound of the excess risk: Let q be such that NBMA(q) ≥ t̄. Therefore, by Assumption
4.1, we have{
t ∈ N | t ≥ NBMA(q), ϵ

t
Bayes < ϵ

NBMA(q)−1
Bayes − ϵtXS

}
⊆

{
t ∈ N | t ≥ NBMA(q), ϵ

NBMA(q)−1
Bayes − ϵtBayes > △XS

}
.

(14)

By applying (N1) and (N2) to (7), we get the desired result as

SubOpt(q) = min
t≥NBMA(q)

{
t | ϵtBayes ≤ q − ϵtXS

}
− NBMA(q)

≥ min
t≥NBMA(q)

{
t | ϵNBMA(q)−1

Bayes − ϵtBayes > △XS

}
−NBMA(q) = min

t∈N

{
t | ϵNBMA(q)−1

Bayes − ϵ
t+NBMA(q)
Bayes > △XS

}
= min

t∈N

{
t | I(YNBMA(q); D̃t+1 | HNBMA(q)−1) > △XS

}
. (15)

B.2 Proof of Theorem 4.3

Proof. Consider q1, q2 ∈ (△XS, q) such that q1 < q2 < q and NBMA(q1) > NBMA(q2). The goal is to
show necessary conditions for LB(q1) ≤ LB(q2).

Note that LB(q1) < LB(q2) is impossible because I(YNBMA(q1); D̃t+1|HNBMA(q1)−1) ≤
I(YNBMA(q2); D̃t+1|HNBMA(q2)−1) for any t ∈ N. Specifically, we have

I(YNBMA(q1); D̃t+1|HNBMA(q1)−1) ≤ I(YNBMA(q2); D̃t+1|HNBMA(q2)−1), ∀t ∈ N (16)

, which implies{
t ∈ N | I(YNBMA(q1); D̃t+1|HNBMA(q1)−1) > △XS

}
⊆

{
t ∈ N | I(YNBMA(q2); D̃t+1|HNBMA(q2)−1) > △XS

}
(17)

, and in turn LB(q1) ≥ LB(q2).

Therefore, we next show the necessary condition for LB(q1) = LB(q2).

(NC 1). Negligible excess risk: Let us suppose △XS ≤ I(YNBMA(q1); D̃1|HNBMA(q1)−1) ≤
I(YNBMA(q2); D̃1|HNBMA(q2)−1). In this case, LB(q1) = LB(q2) = 0 as desired. Since q1 and q2
are chosen arbitrary, the first necessary condition is given by

△XS ≤ I(Yt; D̃1|Ht−1), t ≥ t̄. (18)

(NC 2). No diminishing returns: If (NC 1) does not hold, we have
△XS > I(YNBMA(q1); D̃1|HNBMA(q1)−1). In this case, we rule out the possibility
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I(YNBMA(q1); D̃1|HNBMA(q1)−1) < △XS ≤ I(YNBMA(q2); D̃1|HNBMA(q2)−1) because this gives
LB(q2) = 0 and LB(q1) > 0, which contradicts LB(q1) = LB(q2).

Thus, we consider the case I(YNBMA(q1); D̃1|HNBMA(q1)−1) ≤ I(YNBMA(q2); D̃1|HNBMA(q2)−1) < △XS.
In this case, LB(q1) = LB(q2) requires the following condition

I(YNBMA(q2); D̃LB(q2)|HNBMA(q2)−1) < I(YNBMA(q1); D̃LB(q2)+1|HNBMA(q1)−1), (19)

where the condition comes from I(YNBMA(q1); D̃t+1|HNBMA(q1)−1) ≤ I(YNBMA(q2); D̃t+1|HNBMA(q2)−1)
for any t ∈ N.

By the construction of q1 and q2, we get

I(YNBMA(q); D̃LB(q)|HNBMA(q)−1) < I(YNBMA(q)+k; D̃LB(q)+1|HNBMA(q)−1+k), ∀k ∈ N+. (20)

Due to the chain rule of the mutual information, for any k̃ ∈ N+, it holds that

I(YNBMA(q); D̃k̃|HNBMA(q)−1) =

k̃−1∑
i=0

I(YNBMA(q)+i; D̃1|HNBMA(q)−1+i) ≥ k̃I(YNBMA(q)+k̃−1; D̃1|HNBMA(q)+k̃−2).

(21)
Similarly,

I(YNBMA(q)+k; D̃k̃+1|HNBMA(q)−1+k) =

k̃∑
i=0

I(YNBMA(q)+k+i; D̃1|HNBMA(q)−1+k+i)

≤ (1 + k̃)I(YNBMA(q)+k; D̃1|HNBMA(q)−1+k). (22)

Therefore, we get the second necessary condition as

I(Yt; D̃1|Ht−1) ≤ I(Yt̄+k̃−1, D̃1|Ht̄+k̃−2) <

(
1 +

1

k̃

)
I(Yt; D̃1|Ht−1), ∀t ≥ t̄, (23)

where k̃ = LB(q) > 1 for q such that NBMA(q) ≥ t̄.

C Additional Figures

Figure A2: Graphical illustration of Theorem 4.2 when q = 0.08 − σ2, where σ2 =
E
[
− log P̄ t

e(Yt+1)
]

is the irreducible aleatoric uncertainty. The solid orange and blue lines rep-
resent MSEs of BMA and ICL, respectively. Here, the dashed orange line corresponds to the
σ2 + ϵtBayes + △XS, which serves as a lower bound on MSEs of ICL. The shift by △XS induces
suboptimality that requires at least LB(q) additional number of demonstrations for ICL to achieve
the requirement q, compared to BMA.
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Figure A3: The number of demonstrations (y-axis) required to achieve each performance quantile
(x-axis). The shaded area represents the standard error. We note that performance quantile Q = 0.6
is achieved by TTrain number of demonstrations on average.
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Figure A4: Performance profiles ρb across different performance ratios τ under different target
performance quantiles Q. Each curve represents the probability that a method achieves the desired
performance within a factor τ of the best method’s sample complexity (x-axes).
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Figure A5: Mean squared errors for different demonstration sizes.

0 50 100

10 5

10 3

 2
w = 0.1, 2

y = 0.003

0 50 100
10 5

10 4

10 3

10 2
 2

w = 0.1, 2
y = 0.03

0 50 100

10 5

10 3

10 1

 2
w = 1.0, 2

y = 0.003

0 50 100

10 4

10 3

10 2

10 1

 2
w = 1.0, 2

y = 0.03

0 50 100
10 4

10 3

10 2

10 1
 2

w = 1.0, 2
y = 0.3

0 50 100

10 6

10 3

100

 2
w = 10.0, 2

y = 0.003

0 50 100

10 4

10 2

100

 2
w = 10.0, 2

y = 0.03

0 50 100

10 3

10 1

 2
w = 10.0, 2

y = 0.3

In-context examples

SP
D

ICL BMA BMC AIC BIC

Figure A6: Squared prediction differences between BMA and other methods for different demonstra-
tion sizes.
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Answer: [Yes]
Justification: We clearly state this work’s contributions and scope in the abstract and
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We make a separate section discussing the usage of stylized setting. Also, we
formally state the assumption in the main body.
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a complete (and correct) proof?
Answer: [Yes]
Justification: We provide the full set of assumptions and complete proofs.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
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of the paper (regardless of whether the code and data are provided or not)?
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non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
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