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Damage Analysis via Bidirectional Multi-Task Cascaded
Multimodal Fusion

Anonymous Author(s)

Abstract
Damage analysis in social media platforms such as Twitter is a com-
prehensive problem which involves different subtasks for mining
damage-related information from tweets (e.g., informativeness, hu-
manitarian categories and severity assessment). The comprehensive
information obtained by damage analysis enables to identify break-
ing events around the world in real-time and hence provides aids in
emergency responses. Recently, with the rapid development of web
technologies, multimodal damage analysis has received increasing
attentions due to users’ preference of posting multimodal infor-
mation in social media. Multimodal damage analysis leverages the
associated image modality to improve the identification of damage-
related information in social media. However, existing works on
multimodal damage analysis address each damage-related subtask
individually and do not consider their joint training mechanism.
In this work, we propose the Bidirectional Multi-task Cascaded
multimodal Fusion (BiMCF) approach towards joint multimodal
damage analysis. To this end, we introduce the cascaded multi-
modal fusion framework to separately integrate effective visual
and text information for each task, considering that different tasks
attend to different information. To exploit the interactions across
tasks, bidirectional propagation of the attended image-text inter-
active information is implemented between tasks, which can lead
to enhanced multimodal fusion. Comprehensive experiments are
conducted to validate the effectiveness of the proposed approach.

CCS Concepts
•Human-centered computing→ Social media; • Information
systems →Multimedia information systems.

Keywords
Damage analysis, Social network Analysis, Feature fusion, Multi-
modal deep learning, Multi-task learning
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1 Introduction
Over the past years, social media platforms such as Twitter have
become more and more popular in people’s daily life. With the
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Putin expressed his condolences to President of Iran because of the earthquake:
https://t.co/4hwqdJtoBD https://t.co/iayi92AXv6 #Russia

global
visual information

global 
visual information

3detailed 
visual information

detailed 
visual information

detailed 
visual information

Figure 1: A damage analysis sample. The attended visual re-
gions by different subtasks are marked with different colors.
The blue box represents the informativeness subtask, while
the red box represents the event classification subtask.

rapid development of web technologies, people tend to share their
daily-life and news on social media in real-time. Recently, social
medias have been exploited to identify breaking events around the
world [1, 3, 8, 9, 34, 36, 48], due to their increasing popularity. Event
detection in social media can provide real-time emergency response
to emergency events (e.g., natural disasters, vehicle damages and
missing people) happened all around the world. In general, emer-
gency event detection involves comprehensive damage analysis
consisting of several subproblems, e.g., informativeness prediction,
event classification and severity assessment [1].

The early works on social media damage analysis mainly focus
on mining damage-related information solely from texts [5, 40].
Recently, multimodal damage analysis has received increasing atten-
tions due to people’s preference of posting multimodal information
in social media [1, 4, 19]. Therefore, the CrisisMMD dataset is cre-
ated as standard benchmark for multimodal damage analysis [4].
Samples of CrisisMMD are collected by crawling blogs posted on
Twitter in times of seven natural disasters (e.g., floods, wildfires,
hurricanes, earthquakes) and featured by three class labels (i.e.,
informativeness, humanitarian categories and severity). These class
labels follow a cascaded structure, where an posted blog must be
identified as informative before it can be classified into a specific
humanitarian category and only after this classification can the
severity of the event be assessed. Afterwards, various multimodal
learning methods are proposed for multimodal damage analysis
based on the CrisisMMD benchmark [1, 2, 19, 21, 31]. Compared
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with unimodal methods, multimodal damage analysis leverages the
associated image modality to improve the identification of damage-
related information in social media [20].

However, most of existing works on multimodal damage analysis
address each damage-related subtask independently and do not con-
sider to leverage the inherent relationships across tasks [8, 26, 28,
35]. From the perspective of multi-task learning [24, 27, 50], a joint
training framework can lead to improved performance for each task
by exploiting the relationships between tasks. Although a multi-
task damage assessment system has been designed in [2], it only
organizes subtasks in a pipelined way and does not consider the
joint training of them. The motivation of jointly training damage
analysis subtasks establishes the multimodal multi-task learning
framework. Similar to general multi-task learning methods [50, 52],
existing multimodal multi-task methods mainly focus on learning
shared multimodal representations [13, 32, 49], which effectively
facilitate information sharing between different tasks. However,
they only implicitly reflect task correlations, making it less effective
when there are clear relationships among tasks. Figure 1 displays a
multimodal damage analysis sample about two cascaded tasks and
we can observe that informativeness prediction and event classifica-
tion subtasks attend to different image-text interactive information.
Specifically, the informativeness prediction task pays attention to
global features, while the event classification task further narrows
down to specific detail features based on the attended information
by the informativeness prediction task. The shared multimodal
representations can’t explicitly explore such intrinsic interdepen-
dencies and it is also challenging to meet the feature requirements
of all tasks, thus leading to degraded performance.

In this work, we propose the Bidirectional Multi-Task Cascaded
multimodal Fusion (BiMCF) approach towards joint multimodal
damage analysis. Different from previous works which implement
multi-task learning based on shared multimodal representations,
our approach deploys the multi-task interaction mechanism in the
implementation of multimodal fusion. Following [1, 15, 46], we
adopt BERT as the main backbone and integrate visual informa-
tion into token representations based on cross-modal attention
introduced in [1]. For different tasks, we introduce the cascaded
multimodal fusion framework to separately integrate visual and
text information for each task, considering the fact that different
tasks attend to different information. Furthermore, the forward and
backward gate mechanism is introduced in our bidirectional propa-
gation framework for each task to enhance task-specific feature ex-
traction and facilitate effective multimodal fusion. Specifically, the
forward gate concentrates on amplifying salient image features to
provide more detailed information, while the backward gate focuses
on expanding attention regions to offer richer global information.
Then the multimodal transformer is applied to update text features.
Therefore, our bidirectional cascaded structure can alleviate er-
rors accumulated in one direction and enhance the identification
of damage-related information. Unlike the prior works [6, 25, 43]
which consider multi-task cascades in the final prediction of labels,
our approach deploys the cascaded structure of tasks into the mul-
timodal fusion process of each task, thereby explicitly encoding
the interdependencies among subtasks into the model structure. To
this end, the cross-modal attention incorporates information from
both textual and visual modalities more effectively.

To sum up, the contributions of this work are mainly three-fold:
• We propose to implement comprehensive multimodal damage

analysis from the multi-task learning perspective, with the pur-
pose of exploiting the potential relationships between tasks.

• We propose the BiMCF approach by introducing the bidirectional
cascaded framework to implement multimodal multi-task learn-
ing, which encodes the inderpendencies among subtasks into
the model structure and enhance the multimodal fusion process.

• Comprehensive experiments on the CrisisMMD benchmark are
conducted to show the effectiveness of our approach. Our ap-
proach can achieve better performance than existing works.

2 Related Work
2.1 Damage Analysis
Damage analysis in social media can provide real-time emergency
response to emergency events. The previous works on damage
analysis mainly focus on mining damage-related information solely
from images [18, 30] or texts [5, 40, 41]. Recently, attention has been
paid to multimodal damage analysis due to people’s increasing in-
terests in posting multimodal messages on social media platforms.
In particular, Alam et al. [4] create the CrisisMMD dataset as stan-
dard benchmark for multimodal damage analysis by crawling blogs
from Twitter. Agarwal et al. [2] propose the Crisis-DIAS frame-
work towards comprehensive multimodal damage analysis based
on CrisisMMD. Recently, Liang et al. [21] consider fine-grained
cross-modal interactions in feature fusion and obtain improved dam-
age categorization performance. Mariham et al. [38] integrate the
adaptive attention mechanism with late fusion strategy to achieve
effective cross-modal interaction. Mohammad et al. [8] propose a
sequential hierarchical framework to classify social media informa-
tion, and employ different models to effectively process multimodal
data. Furthermore, Bishwas et al. [26] propose to fine-tune pre-
trained contrastive models to distinguish multimodal crisis tweets.
However, existing works address each damage-related subtask in-
dividually and do not exploit the cascaded task relationships for
training from a multi-task learning perspective.

2.2 Multimodal Multi-Task Learning
Multi-task learning exploits task relationships to regularize the
training of deep models. Most of existing works implement multi-
task learning based on task-shared representations. In multimodal
settings, existing works also build on task-shared multimodal repre-
sentations [25, 29, 43, 49], where features of different modalities are
firstly fused into a multimodal representation which is then utilized
to implement multi-task learning. Following this framework, Tan
et al. [43] propose the MultiCoFusion model for cancer prognosis
prediction from multi-modal inputs. Their approach performs al-
ternate training between different tasks on task-shared multimodal
representations. Alam [6] proposes the Multimodal Spatiotemporal
Neural Fusion network for Multi-Task Learning, in which multi-
task cascaded learning are developed on the fusion layer. Maity et
al. [25] implement both FeedBack Multi-task learning and Central-
Net Multi-task learning on fused features. Zhang et al. [49] propose
to share multimodal features on a sparse space, ensuring that only
features beneficial to decision-making are shared. In general, ex-
isting works do not consider the uniqueness and correlation of
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Figure 2: (Left) The overall architecture of the proposed BiMCF approach. First, for a pair of text and image input, we use BERT
and ViT to generate feature representations respectively. Then the image and text features are passed and updated through
MTC𝑓 and MTC𝑏 . Last, the final prediction for each task T𝑖 is decided by two output text features from both directions, namely
T𝑏T𝑖 and T𝑓 T𝑖 . (Right) The detailed frameworks of MTC𝑓 and MTC𝑏 . ‘&’ demotes max operator and ‘+’ denotes addition operator.

different tasks during multimoddal fusion. Different from existing
works which only leverage task relationships for final predictions,
this work further considers to exploit multi-task interactions in
the implementation of multimodal fusion and introduces a more
reasonable multi-task cascaded multimodal fusion framework.

3 METHODOLOGY
3.1 Problem Definition
In general, damage analysis involves three related subtasks [1, 2,
4, 21], namely informativeness prediction, event classification and
severity prediction. We adopt the same label settings used in [21].
In particular, the informativeness prediction task identifies whether
social media posts can provide useful damage-related information
for emergency response. For informative social media posts, the
event classification task further identifies the damage types. Finally,
the severity prediction task assesses the severity level of damages
reported in social media posts. The above three tasks follow the
cascaded relationship, where only an informative post can be clas-
sified into a specific humanitarian category and only after this
classification can the severity of the event be assessed.

In a multimodal setting, we are given a pair of text and image
input 𝑋 = {𝑇,𝑉 } where 𝑇 denotes a text sequence, and 𝑉 denotes
an image. The outputs consist of three labels 𝑌 = {𝑦𝐼 , 𝑦𝐻 , 𝑦𝑆 }
where 𝑦𝐼 denotes whether the input is informative, 𝑦𝐻 refers to the
humanitarian category of 𝑋 , and 𝑦𝑆 indicates the severity level of
the event. We denote the training data consisting of both paired
text and image input as well as a label set for all the three subtasks

as D = {(𝑋𝑖 , 𝑌𝑖 }𝑁𝑖=1. During inference, the target is to predict the
set of labels 𝑌𝑗 for each test instance 𝑋 𝑗 .

3.2 Motivation & Model Framework
Multi-task frameworks have been widely used to solve problems in-
volving multiple tasks in a joint manner. These frameworks include
pipelined approaches [17, 44] in which some tasks are performed
in the first place and their outputs are passed to the remaining
tasks. This operation results in error propagation when the model
does not perform well on earlier tasks. Another strategy adopts
(hard or soft) parameter sharing [27, 39] among different tasks with
the intuition that the shared parameters encode common features
or relationships across tasks. However, parameter sharing only
implicitly reflects task correlations, making it less effective when
there are clear relationships among subtasks, which is the case for
multi-level damage analysis. Specifically, the three subtasks form a
cascade structure in which the class label of each task greatly relies
on the prediction of its preceding task.

To explicitly infuse the evolution of the involved tasks, we pro-
pose a bidirectional multi-task cascaded framework which ranks
the three subtasks in the order of informativeness prediction, hu-
manitarian categorization and severity level prediction based on
the granularity (coarse to fine) of the problem. In the three cas-
caded tasks, the later task further narrows down to specific detailed
features based on the attended information by its preceding task.
Therefore, the early tasks are more coarse-grained while the later
tasks are more fine-grained. This sequential approach helps the
model gradually understand detailed information. Additionally, we

3
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have validated the superiority of our task sequence in section 4.
Inspired from the working mechanism of a zoom camera which
narrows the range of the lens but amplifies the focused area each
time it zooms in, we treat the ordered task cascade as a zooming
process. In a forward pass, we sequentially zoom in images based on
the output from a preceding task. On the other hand, an addition of
a backward pass performs the opposite operation which zooms out
an image given the output from a finer-grained task. This bidirec-
tional cascade structure propagates information in dual directions
to alleviate errors accumulated in one direction. Meanwhile, the
bidirectional flows effectively exchange information from related
tasks to enhance a better prediction for the target subtask.

To incorporate information from both textual and visual modali-
ties, we further adopt a unifiedmultimodal fusion framework across
all the tasks. Specifically, we treat text representations as a common
reference which is used to guide the attention computations over
the resulting image representations at each zooming step. The final
multimodal features for each task are obtained via cross-modal
transformers. Using text modality as a reference is attributed to
the fact that information is usually more explicitly expressed in
natural languages. To this end, we propose a bidirectional multi-
task cascaded framework with multimodal fusion to solve the three
subtasks of damage analysis in an end-to-end manner.

The overall architecture of BiMCF is shown in Figure 2. Specif-
ically, given an input textual description 𝑇 and an image 𝑉 , we
first generate a feature representation for each token in the text as
T = [t1, t2, ..., t𝑛] using a pretrained language model, e.g., BERT [10].
The image feature representations are produced following the exist-
ing works using ViT [11]. In particular, the image is first resized to
224×224 and then divided into𝑚 image patcheswhich are further re-
shaped into a sequence.We extract the features from the last layer of
ViT as visual input representations, denoted as V = [v1, .v2, ..., v𝑚].
Here we define T ∈ R𝑛×𝐷𝑡 and V ∈ R𝑚×𝐷𝑣 . BiMCF processes the
input features T and V in two opposite directions, both consisting
of three modules corresponding to three subtasks. Each 𝑖-th module
incorporates a Multimodal Task Cascading (MTC) gate which takes
the original image features V, the output image features ṼT𝑖−1 and
the output text features T̃T𝑖−1 from its preceding task as input to
decide the information flow from its preceding task. We design
different gate operations for forward pass (denoted as G𝑀𝑇𝐶−𝑓 )
and backward pass (denoted as G𝑀𝑇𝐶−𝑏 ), simulating the zoom-in
and zoom-out mechanism, respectively. The output ṼT𝑖 from each
MTC gate is then treated as the updated image representation to be
fused with the text representation T via a multimodal transformer
block. We use the final output text features T̃T𝑖 after the multimodal
fusion process for task predictions. The details of each component
will be further illustrated in the following sections.

3.3 Task-Specific Multimodal Transformers
For each task, we exploit the complex interactions between the

textual modality and the visual modality using multimodal trans-
formers. Specifically, for each task T𝑖 , given input features for a
sentence T = [x1, x2, ..., x𝑛] and an image V = [v1, .v2, ..., v𝑚],
the multimodal transformers construct its query matrix using the
text features TW𝑞 . The key and value matrices are generated
based on image features VW𝑘 and VW𝑣 , respectively, where W𝑞 ∈

R𝐷𝑡×𝐷 ,W𝑘 ,W𝑣 ∈ R𝐷𝑣×𝐷 are transformation matrices. The cross-
modal attentions then compute the attention weights over image
patches and generate an updated output matrix as:

H = softmax
( (TW𝑞) (VW𝑘 )⊤√

𝐷

)
(VW𝑣). (1)

This completes a single-head cross-modal attention computation.
With multiple heads, the final output text representation, denoted
as T̃, is computed as

T̃ = 𝑓𝐿𝑁 (𝑓𝐹𝐹 ( [H1; ...;H𝑀 ]) + T) . (2)

Here 𝑓𝐿𝑁 and 𝑓𝐹𝐹 denote layer norm and feed-forward functions,
respectively.𝑀 denotes the number of attention head. We use dif-
ferent transformer parameters for different subtasks and denote by
T̃T𝑖 = M𝑖 (V, T) as the multimodal transformer function for task T𝑖
obtained through equation (1) and (2).

3.4 Multimodal Task Cascade
Task-specific multimodal transformers only exploit cross-modal
interactions, but treat each task independently, ignoring the essen-
tial relationships among different tasks. In this aspect, multitask
frameworks are commonly used to exploit task relationships for
learning and allocating shared representations. However, it is not
clear whether these sharing strategies align with the actual task
relationships and how they promote task correlations. In this work,
we target on multi-task setting with a cascaded structure and explic-
itly encode such relation into the model architecture via Multimodal
Task Cascading (MTC) gate. To capture this dependency and or-
dered relationship between tasks, we use MTC gates within each
task module to explicitly update the features of the input image.
Different from common practices that use the same image input for
multiple tasks, in our work, we feed different tasks with distinct
image features generated from the MTC gate. In what follows, we
introduce two gating mechanisms adopted in forward information
flow and backward information flow, respectively.
Forward Gate. In the forward flow, we order the three tasks ac-
cording to the increasing granularity level, namely informativeness
prediction, humanitarian categorization, followed by severity level
prediction. The later task requires more fine-grained analysis of the
input than its preceding task and could benefit from the features
of its preceding task. For example, suppose task T𝑖 aims to predict
whether there is an event and is provided with a scaled image focus-
ing on the upper right corner. When the subsequent task T𝑖+1 aims
to predict the exact event type, it could be beneficial to zoom in the
upper right corner of the image to look for more salient evidence,
because the rest parts of the image are not relevant to events. Hence,
the objective of the forward gate is to further amplify the salient
features in each image based on the selected regions generated in
the preceding task. This is similar to a zoom-in process of a camera
which first locates a more global area of an image and amplifies
this specific area for a deeper examination.

Formally, for task T𝑖 , the forward gate considers the interaction
of the current task and its preceding task T𝑖−1. Given the original
image features V, the output text features T̃𝑓

T𝑖−1 and image features

Ṽ𝑓

T𝑖−1 computed from the module of task T𝑖−1 in the forward pass,

the forward MTC gate computes a weight score 𝑠 𝑓
𝑗
for each image

4
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patch to scale its effect prior to the multimodal fusion process. Here
we use the superscript 𝑓 to denote the forward pass. Specifically,
we first apply a max operator over two image features V and Ṽ𝑓

T𝑖−1 ,

resulting in V𝑓

T𝑖 = max(V, Ṽ𝑓

T𝑖−1 ), where max is an element-wise
selector. This operation mimics the zoom-in effect which tries to
keep salient features obtained in the preceding task. On the other
hand, the preceding task may propagate errors that negatively
affect the current task. The max operator could mitigate this issue
by retaining salient features from the original image.

The second step computes a scaling score for each image patch
according to:

M𝑓 = L 𝑓

1 (V
𝑓

T𝑖 ) · L
𝑓

2 (T̃
𝑓

T𝑖−1 )
⊤, (3)

𝑠
𝑓

𝑗
=

exp
∑𝑛

𝑘=1 M
𝑓

[ 𝑗,𝑘 ]∑𝑚
𝑗 ′=1 exp

∑𝑛
𝑘=1 M

𝑓

[ 𝑗 ′,𝑘 ]

, (4)

where L 𝑓

1 and L 𝑓

2 denote two linear transformation functions used
to project the inputs V𝑓

T𝑖 and T̃
𝑓

T𝑖−1 into R
𝑚×𝐷𝑣 and R𝑛×𝐷𝑣 , respec-

tively. Each element M𝑓

[ 𝑗,𝑘 ] in M𝑓 ∈ R𝑚×𝑛 stores the correlation
score between the 𝑗-th image patch and the 𝑘-th text token. This
reflects cross-modality correlations and treats the text modality as
a reference to guide the zooming process. Equation (4) applies a
softmax operation over the sum of correlation scores of each image
patch with text tokens. A larger score implies higher correlations of
its corresponding image patch with the text input, and thus implies
higher chance of being retained for the target task. The final output
image features are

Ṽ𝑓

T𝑖 = s𝑓 ⊙ V𝑓

T𝑖 , (5)

where ⊙ denotes row-wise multiplications. An exception happens
to the first subtask T1 where there is no preceding task for guidance.
In this case, we use T̃𝑓

T0 = T and Ṽ𝑓

T0 = V as the input to the forward

gate. For ease of notation, we use Ṽ𝑓

T𝑖 = GMTC−f (V, T̃
𝑓

T𝑖−1 , Ṽ
𝑓

T𝑖−1 ) to
denote all the above-mentioned computations for the forward gate.
Backward Gate. From an opposite perspective as the forward
gate, we additionally consider the backward information flowwhich
starts from the most fine-grained subtask, i.e., severity level predic-
tion, followed by humanitarian categorization and informativeness
prediction. Generally the finer-grained task provides a small range
of focused area in an image that is most effective for predictions.
It is then beneficial to start from this precise area and gradually
expand the region around it for subsequent tasks which are more
coarse-grained. This assembles the zoom-out process of a camera
which helps to expand the search space. Hence, the objective of the
backward gate is to pivot image attentions around some anchor
regions obtained from the preceding task.

Formally, for task T𝑖 , the backward gate G𝑀𝑇𝐶−𝑏 considers the
interaction of T𝑖 and T𝑖+1. The input of the backward gate consists
of the original image features V, the output text features T̃𝑏T𝑖+1 and
image features Ṽ𝑏T𝑖+1 from task T𝑖+1, in which the superscript 𝑏
denotes the backward pass. Different from the forward gate, the
first step of the zoom-out process uses element-wise addition to
simulate the expanding effect:V𝑏T𝑖 = V+Ṽ𝑏T𝑖+1 . Similar to the forward

gate, the second step then computes the scaling score s𝑏 as follows:

M𝑏 = L𝑏
1 (V

𝑏
T𝑖 ) · L

𝑏
2 (T̃

𝑏
T𝑖+1 )

⊤, (6)

𝑠𝑏𝑗 =
exp

∑𝑛
𝑘=1 M

𝑏
[ 𝑗,𝑘 ]∑𝑚

𝑗 ′=1 exp
∑𝑛

𝑘=1 M
𝑏
[ 𝑗 ′,𝑘 ]

. (7)

The last step produces the final image representation during the
backward propagation:

Ṽ𝑏T𝑖 = s𝑏 ⊙ V𝑏T𝑖 . (8)

Similarly, we use Ṽ𝑏T𝑖 = GMTC−b (V, T̃𝑏T𝑖+1 , Ṽ
𝑏
T𝑖+1 ) to denote all com-

putations for the backward MTC gate. When the task corresponds
to the third subtask T3, we use T̃𝑏T4 = T and Ṽ𝑏T4 = V as the input.

3.5 Joint Multi-Task Multimodal Learning
To jointly learn the three cascaded tasks in a multimodel setting,
we propose a Bidirectional Multi-task Cascaded multimodal Fusion
framework integrating the task-specific multimodal transformers
and the cascading gate respectively introduced in Section 3.3 and 3.4.
Specifically, the model takes a pair of text-image (T,V) as the input
to all three task modules. In a forward pass, we first use the forward
MTC gate to produce an output image representation for task T1:
Ṽ𝑓

T1 = G𝑀𝑇𝐶−𝑓 (V,T,V). Then a multimodal transformer block is

applied on top of Ṽ𝑓

T1 and the input text features T to obtain the

output text representation corresponding to T1: T̃𝑓

T1 = M1 (Ṽ𝑓

T1 ,T).
Subsequently, we obtain outputs for T𝑖 (𝑖 = 2, 3) sequentially via
Ṽ𝑓

T𝑖 = G𝑀𝑇𝐶−𝑓 (V, T̃
𝑓

T𝑖−1 , Ṽ
𝑓

T𝑖−1 ) and T̃𝑓

T𝑖 = M𝑖 (Ṽ𝑓

T𝑖 ,T).
In the backward pass, we first apply the backward MTC gate

on the most fine-grained task T3 to produce an output image rep-
resentation: Ṽ𝑏T3 = G𝑀𝑇𝐶−𝑏 (V,T,V). Then a multimodal trans-
former block is applied on top of Ṽ𝑏T3 and the input text features
T to obtain the output text representation corresponding to T3:
T̃𝑏T3 = M3 (Ṽ𝑏T3 ,T). Subsequently, we obtain outputs for T𝑖 (𝑖 =

2, 1) sequentially via Ṽ𝑏T𝑖 = G𝑀𝑇𝐶−𝑏 (V, T̃𝑏T𝑖+1 , Ṽ
𝑏
T𝑖+1 ) and T̃𝑏T𝑖 =

M𝑖 (Ṽ𝑏T𝑖 ,T). The final prediction for each task T𝑖 is made by con-
catenating the output text features from both directions:

ỹ𝑖 = F ([T̃𝑓

T𝑖 ; T̃
𝑏
T𝑖 ]) . (9)

Here F indicates two linear layers.
During training, the loss of T1 is:

𝐿D1 =
1
𝑁1

𝑁1∑︁
𝑗=1

𝐿T1 (𝑋 𝑗 , 𝑦 𝑗 ), (10)

where each 𝐿T1 (𝑋 𝑗 , 𝑦 𝑗 ) computes a cross-entropy loss between the
prediction ỹ𝑗 and the ground-truth label 𝑦 𝑗 for each instance, and
N1 denotes the total number of training samples in T1.

Similarly, the losses of T2 and T3 are:

𝐿D2 =
1
𝑁2

𝑁2∑︁
𝑗=1

𝐿T2 (𝑋 𝑗 , 𝑦 𝑗 ), (11)

𝐿D3 =
1
𝑁3

𝑁3∑︁
𝑗=1

𝐿T3 (𝑋 𝑗 , 𝑦 𝑗 ) . (12)

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

We further introduce three hyper-parameters 𝜆, 𝛾 and 𝜎 , con-
sidering that each task contributes differently to the final outcome.
Thus, our objective is to minimize the following aggregated loss:

𝐿D = 𝜆𝐿D1 + 𝛾𝐿D2 + 𝜎𝐿D3 . (13)

4 Experiments
In this section, we design comprehensive experiments to answer
the following four research questions:
• RQ1: How does our proposed BiMCF perform on damage analy-

sis compared to other baselines? Why does our BiMCF arrange
subtasks from coarse to fine granularity?

• RQ2: Can the MTC forward gate and backward gate achieve
zoom-in and zoom-out effects respectively? Do they facilitate
information complementarity?

• RQ3: How does our bidirectional propagation mechanism per-
form compared to unidirectional propagation?

• RQ4: Does our proposed BiMCF demonstrate strong robustness?
We also analyze the sensitivity of our BiMCF to hyper-parameters
and the layer number of bidirectional flow in the appendix.

4.1 Implementation Details
Datasets. Following the prior works on multimodal damage analy-
sis [1, 2, 19, 21], we adopt the standard CrisisMMD benchmark to
validate our approach. The samples in this dataset are multimodal
social media posts consisting of image-text pairs, which are crawled
from Twitter in times of seven natural disasters (e.g., floods, wild-
fires, hurricanes, earthquakes). Moreover, this benchmark consists
of three cascaded subtasks, i.e., informativeness prediction (task1),
events classification (task2), severity prediction (task3). The class
label of the latter task depends on that of the former task.
Settings. We employ pre-trained BERT-base and ViT as our lan-
guage and image backbones to generate 768-dimensional features.
The image input is first resized to 224×224 and then divided into
16×16 patches. During the training process, Adam is adopted as the
optimizer with a fixed learning rate of 0.000015. We use a batch
size of 32 and train the model for 20 epochs. Moreover, the dropout
rate is set as 0.8 and the hyper-parameters are determined by the
validation set. All the experiments are run on four A100 GPUs.
Baselines. The proposed approach is compared with several exist-
ing state-of-the-art baselines, including Cross-Attention [1], Crisis-
DIAS [2], interactivemulti-task learning network (IMN) [12], Aspect-
oriented Method (AoM) [51], Dual Query Prompt Sentiment Analy-
sis (DQPSA) [33], multimodal joint learning (JML) [15], VL-BERT [42],
Vision and Language Transformer (ViLT) [16], Qwen-VL [7] and
CogVLM [45]. Among them, Cross-Attention filters useless infor-
mation to achieve effective multimodality fusion. AoM, DQPSA,
Crisis-DIAS, IMN and JML are specifically designed for multimodal
multi-task learning. VL-BERT and ViLT are typically pretrained
vision and language models, which can quickly adapt to down-
stream tasks by fine-tuning. Twomultimodal large language models
(MLLMs), Qwen-VL and CogVLM, are also incorporated.

4.2 Performance Comparison (RQ1)
We compare our BiMCF with the above mentioned baselines and
present the experimental results on the CrisisMMD benchmark

in Table 1. To keep consistent with previous works, we evaluate
the performance on each task using the following three metrics:
classification accuracy,Macro F1-score andweighted F1-score. Addi-
tionally, we conduct comprehensive experiments across all possible
task sequences to demonstrate the superiority of our adopted task
sequence and display the results in Table 2.
• Obs1: Our proposed BiMCF achieves state-of-the-art re-

sults across all the adopted baselines, demonstrating satis-
factory performance improvements compare to both sin-
gle_task approaches and multi_task approaches (parallel
and cascaded). From Table 1, we can draw the following obser-
vations. First, we find that the same model generally performs
better in the single_task setting than in the parallel multi_task
setting, suggesting that parallel subtasks can negatively interfere
with each other. Although existing cascaded multi_task meth-
ods take the task interdependencies into account, they still fail
to outperform our approach. This can be attributed to that our
BiMCF fully explores the underlying relationships between the
cascaded tasks and the bidirectional flows effectively suppress
the propagation of negative messages, thus enabling a further
augmentation of the multimodal fusion capability.

• Obs2: Our proposed BiMCF exhibits superior capability
in disaster analysis compared to MLLMs We also make a
performance comparison between our approach and two cur-
rently popular MLLMs, Qwen-VL and CogVLM. Specifically, we
utilize text prompts to enable Qwen-VL and CogVLM to perform
damage predictions. From Table 1, we can observe that with-
out fine-tuning, there remains a significant performance gap
between the two MLLMs and ours. Then we apply LoRA [14]
to fine-tune Qwen-VL and CogVLM, yielding performance im-
provements of 4.3% to 10.8% in multi_task across Acc metric.
However, they still don’t surpass the performance of our model.

• Obs3: Arranging the three subtasks from coarse to fine
granularity facilitates a gradual understanding of com-
plex information and outperforms other possible task se-
quences. From Table 2, it is evident that our sequential approach
achieves the best performance, with an average improvement of
2.1% to 4.9% across all tasks. In the CrisisMMD dataset, only in-
formative tweets are used to determine the type of disaster, after
which the severity is analyzed based on that classification. There-
fore, our adopted sequence seamlessly aligns with the intrinsic
interdependencies among the three subtasks and can prove to
be preferable to other task sequences.

4.3 Visualization (RQ2)
In this part, we present the visualization of the attended image
features in different subtasks and pass mechanisms in Figure 3.
• Obs4: The MTC forward gate achieves the zoom-in effect

to keep salient features, while the MTC backward gate
achieves the zoom-out effect to obtain rich global informa-
tion. As shown in Figure 3, in the forward flow, we can observe
from top to bottom that the attended image regions are progres-
sively narrowed down to specific areas. This is because later
tasks are more fine-grained and focus more on specific details.
Similarly, in the backward flow, we can observe from bottom to
up that the attended areas expand around some anchor regions.
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Table 1: Performance comparison with baselines on CrisisMMD. ‘Single_task’ denotes treating each subtask independently.
‘Parallel multi_task’ and ‘Cascaded multi_task’ address all three subtasks simultaneously. However, the former doesn’t
consider the inherent dependencies between subtasks, while the latter does. The best results are in bold, and the second-best
results are underlined. Metrics include Acc: classification accuracy, M-F1: Macro F1-score and W-F1: weighted F1-score.

Category Method Task 1 Task 2 Task 3

Acc(%) M-F1(%) W-F1(%) Acc(%) M-F1(%) W-F1(%) Acc(%) M-F1(%) W-F1(%)

Single_task

Cross-Attention [1] 83.7 83.1 83.6 80.7 74.6 81.1 88.9 51.6 88.5
VLBert [42] 84.1 83.9 84.0 81.7 75.2 81.9 90.9 55.7 90.3
ViLT [16] 83.6 83.3 83.4 82.1 74.7 81.9 90.2 55.3 89.7
Qwen-VL [7] 75.2 74.6 75.1 71.7 69.2 71.5 86.8 50.8 86.6
Qwen-VL+LoRA [14] 76.3 75.9 76.2 73.6 71.3 73.8 88.1 51.6 87.9
CogVLM [45] 77.3 76.7 77.1 70.6 67.4 69.8 87.4 54.6 86.1
CogVLM+LoRA 79.1 79.0 78.9 72.4 68.2 71.3 89.1 55.9 88.6

Multi_task

Parallel Multi_task

Cross-Attention 80.7 80.1 80.4 79.7 72.3 79.1 86.9 50.8 85.9
VLBert 81.9 81.3 81.7 80.7 72.7 80.2 89.2 54.1 89.0
ViLT 81.2 80.9 81.0 80.1 72.6 79.8 88.7 54.6 88.1
Qwen-VL 72.6 72.3 72.5 70.1 68.3 69.7 84.2 51.9 83.6
Qwen-VL+LoRA 80.3 80.4 80.3 76.2 70.7 76.5 88.5 53.8 88.2
CogVLM 75.3 75.1 75.3 68.1 75.4 67.7 85.5 53.6 85.1
CogVLM+LoRA 81.9 81.7 81.8 78.9 76.1 78.5 89.6 54.1 89.4
IMN [12] 81.8 81.5 81.8 80.7 77.1 80.4 90.2 53.9 89.7

Cascaded Multi_task

DQPSA [33] 82.3 82.1 82.2 76.8 74.6 76.7 90.7 56.1 91.1
AoM [51] 83.1 82.8 82.9 80.6 76.1 77.1 91.1 56.3 90.9
Crisis-DIAS [2] 84.0 83.7 83.9 77.5 75.7 77.9 90.4 55.6 90.9
JML [15] 82.5 81.9 82.2 81.4 78.2 80.9 91.2 51.9 89.9
BiMCF (ours) 87.1 87.1 87.1 84.2 78.2 84.3 93.4 57.0 93.7

Table 2: Task sequence analysis across Acc (%) metric. The
task sequence ‘1->2->3’ and ‘3->2->1’ are equivalent due to
the bidirectional propagation of our BiMCF.

Task Sequence Task1 Task2 Task3

1->2->3 (ours) 87.1±0.3 84.2±0.4 93.4±0.33->2->1
1->3->2 85.9±0.4 80.2±0.4 90.7±0.22->3->1
2->1->3 84.9±0.3 81.8±0.5 91.3±0.33->1->2

This is because preceding tasks are more coarse-grained and
require abundant global information.

• Obs5: The combined MTC forward & backward gate can
comprehensively locate task-specific features and avoid
locating helpless features. Looking from left to right in Figure
3, we can observe that the forward and backward gates have
their respective advantages and are able to attend to the image
features that the other overlooks. However, they fail to locate
all task-related features and attend to some irrelevant features.
Fortunately, the combination of them helps alleviate these issues.

4.4 Ablation Study (RQ3)
In order to validate the superiority of our bidirectional cascade, we
conduct comprehensive ablation study on the CrisisMMD bench-
mark and display the results in Table 3.
• Obs6: Our bidirectional propagation mechanism alleviates

errors accumulated in one direction and allows for mu-
tual promotion in forward and backward flow, thereby
attaining better results. As shown in the first row in Table
3, the remarkable results demonstrate the effectiveness of our
bidirectional propagation mechanism. In the next two rows, we
remove the forward flow and backward flow from our model
respectively. It clearly shows that there has been a certain degra-
dation of the performance. We further carry out experiments
without incorporating forward and backward flows and see that
the results get worse as expected. From the above observations,
we can conclude that while forward flow and backward flow can
independently enhance the model’s performance, their combi-
nation allows them to exchange information more effectively,
leading to further performance improvement.

4.5 Robustness Analysis (RQ4)
Table 4 presents the performance on the three tasks when employ-
ing different text and image backbones.
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Figure 3: Visualization of the attended image information in the three substasks, considering different passmechanisms: forward
pass only, backward pass only and forward & backward pass. Given a text-image pair, the vertical arrangement symbolizes the
attended image information by different tasks after passing through the cascaded gates. The horizontal arrangement highlights
the comparison of attended information among the three propagation mechanisms.

Table 3: Ablation study. The notation ‘-forward flow’ means removing forward flow from our BiMCF model, and so on.

Model design Task 1 Task 2 Task 3

Acc(%) M-F1(%) W-F1(%) Acc(%) M-F1(%) W-F1(%) Acc(%) M-F1(%) W-F1(%)
BiMCF 87.1 87.1 87.1 84.2 78.2 84.3 93.4 57.0 93.7

-forward flow 85.1 84.7 85.3 81.7 75.1 81.9 90.7 55.0 90.6
-backward flow 84.9 84.8 84.8 82.3 75.5 82.1 91.3 55.6 91.4
-forward & backward flow 81.2 81.3 81.2 78.4 71.9 77.9 89.7 50.8 89.1

Table 4: The performance of our model on the combination
of different text and image encoders across Acc (%) metric.

Text Encoder Image Encoder Task1 Task2 Task3

BERT-base ViT 87.1±0.3 84.2±0.4 93.4±0.3
XLNet [47] ViT 88.2±0.2 84.5±0.4 93.7±0.3

RoBERTa [22] ViT 87.6±0.1 84.2±0.3 93.1±0.2
BERT CLIP [37] 86.8±0.3 84.4±0.3 93.0±0.4
BERT Swin-T [23] 87.3±0.5 84.7±0.3 93.9±0.3

• Obs7: Our proposed BiMCF demonstrates superior robust-
ness. From Table 4, we can clearly observe that our approach
can consistently achieve excellent performance with the combi-
nations of different text and image backbones. When we utilize
more powerful feature extractors, our model can obtain better

results than those reported in Table 1. This observation indi-
cates that our proposed BiMCF can effectively adapts to various
backbones without compromising its accuracy.

5 Conclusion
This work proposes the bidirectional multi-task cascaded multi-
modal fusion approach towards joint multimodal damage analysis.
Based on this, we introduce a bidirectional multi-task cascaded
framework, which ranks the three related subtasks based on the in-
creasing granularity. Through incorporating forward and backward
flow, this framework propagates information in dual directions and
exchanges information more effectively between each subtask. Con-
sidering that different tasks attend to different image information,
we further present a unified multimodal fusion framework to effec-
tively integrate information from both textual and visual modalities.
We evaluate this approach on the three subtasks of damage analysis,
and obtain superior results across all the baselines.
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Figure 4: Sensitivity analysis for the hyper-parameters(𝜆,𝛾 and 𝜎) in terms of classification accuracy.We conduct the experiments
by changing the value of one hyper-parameter within a certain range, while setting the values of other hyper-parameters to a
constant 1. All the three subtasks are included into the analysis experiment.

Figure 5: Analysis on the layer number of bidirectional flow
in terms of classification accuracy.

A APPENDIX
A.1 Supplementary Experimental Results
A.1.1 Hyper-parameter Sensitivity. In this section, we analyze the
sensitivity of our BiMCF to variations about hyper-parameters and
display the result in Figure 4.
• Obs8: The performance of our BiMCF is not sensitive to

the variations of hyper-parameters. We examine the impact
on the identification of the three subtasks when changing the
trade-off hyper-parameter 𝜆 for 𝐿D1 , 𝛾 for 𝐿D2 and 𝜎 for 𝐿D3
respectively. Taking the experiment on 𝛼 in Figure 4 as an exam-
ple, we change the value of 𝜆 within a certain range and keep
the value of other hyper-parameters as the constant 1. We can
easily find that the three curves, representing the classification
accuracy of the three subtasks, exhibits minimal fluctuations and
keep smooth, which means that our method is not sensitive to 𝜆.
Similarly, we can also find that our BiMCF is not sensitive to 𝛾
and 𝜎 as well. Therefore, the above analysis fully demonstrates
the robustness of our proposed approach.

A.1.2 Layer Analysis. In this section, we investigate how the num-
ber of bidirectional flow influence the performance of our model
and the corresponding results on the three subtasks are shown in
Figure 5.
• Obs9: When the number of the adopted bidirectional flow

is set to 2, themodel achieves optimal overall performance.
From Figure 5, we can observe that the performance of our ap-
proach is definitely improved when the bidirectional flow is in-
serted to the model, indicating that richer features are extracted
and better modality fusion is achieved. With the increase of
the layer number, the performance of the model gradually im-
proves at first, and then begins to decrease after reaching the best.
Therefore, in our experiment, we adopt two bidirectional flows,
which enables our proposed approach to achieve the optimal
performance overall.
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