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Abstract

Cross-lingual summarization (XLS) addresses001
summary generation in a language different002
from that of the input document (e.g., English003
to Spanish). In the present day, the predominant004
approach to this task is to take a performing,005
pretrained multilingual language model (LM)006
and fine-tune it for XLS on the language pairs007
of interest. However, the scarcity of fine-tuning008
resources makes this approach non-viable in009
some cases. For this reason, in this paper we010
propose revisiting the summarize-and-translate011
pipeline, where the summarization and trans-012
lation tasks are performed in a sequence. This013
approach allows reusing the many, publicly-014
available resources for monolingual summa-015
rization and translation, obtaining a very com-016
petitive zero-shot performance. In addition,017
the proposed pipeline is completely differen-018
tiable end-to-end, allowing it to take advantage019
of few-shot fine-tuning, where available. Ex-020
periments over two contemporary and widely021
adopted XLS datasets (CrossSum and WikiLin-022
gua) have shown the remarkable zero-shot per-023
formance of the proposed approach, and also024
its strong few-shot performance compared to025
an equivalent multilingual LM baseline, where026
the proposed approach has been able to outper-027
form the baseline in many languages with only028
0.1X shots.029

1 Introduction030

Cross-lingual summarization (XLS) aims to take a031

document in a source language and generate a sum-032

mary in a different language, providing humans033

with the ability to efficiently understand documents034

in foreign languages. However, XLS is a challeng-035

ing task due to the limited training data available.036

Unlike for monolingual summarization, naturally-037

occurring cross-lingual document-summary pairs038

are rare, and dedicated XLS human annotation is039

demanding since it requires uncommon skills of040

the annotators (Wang et al., 2022). This has often041

led to the scraping of existing multilingual data to042

be later aligned for cross-lingual use (Ladhak et al., 043

2020; Bhattacharjee et al., 2022). 044

Given the constraints in dedicated training re- 045

sources, most recent approaches have focused on 046

exploiting available multilingual LMs (Liu et al., 047

2020; Tang et al., 2021; Xue et al., 2021) pre- 048

trained in the typical unsupervised manner over 049

large, monolingual corpora in multiple languages, 050

and fine-tuning them with the limited XLS re- 051

sources available in the targeted language pairs 052

(Perez-Beltrachini and Lapata, 2021; Ma et al., 053

2021). However, these multilingual models suf- 054

fer from well-known limitations. On the one hand, 055

the uneven pretraining of multilingual LMs often 056

results in poor knowledge transfer to low-resource 057

languages (Joshi et al., 2020; Bhattacharjee et al., 058

2022). On the other hand, the superposition of 059

too many languages in a single model can result 060

in a degradation of cross-lingual performance in 061

the downstream task (a.k.a. language interference) 062

(Pfeiffer et al., 2022). In addition, it is not trivial 063

to reuse the abundant, existing monolingual sum- 064

marization data, since fine-tuning a multilingual 065

LM with monolingual data often compromises its 066

ability to generate text in a language different from 067

the input’s (Vu et al., 2022; Bhattacharjee et al., 068

2022)—a problem known as “catastrophic forget- 069

ting” (van de Ven and Tolias, 2019). The above 070

issues compound in the impossibility of achieving 071

a satisfactory zero-shot XLS performance out of 072

conventional multilingual LMs. 073

For this reason, this work revisits the summarize- 074

and-translate approach to XLS (Wan et al., 2010), 075

with the main aim of fully leveraging the existing 076

monolingual summarization resources (i.e., train- 077

ing data, pretrained models) to obtain a performing 078

zero-shot XLS pipeline. Specifically, we propose 079

combining 1) a monolingual summarizer trained 080

with abundant resources in the source language 081

with 2) a pretrained machine translation model that 082

translates into the target language. If the quality 083
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of both models is high, such a pipeline should be084

able to achieve a significant zero-shot performance.085

Yet, it can also suffer from model misalignment086

and error propagation. Therefore, we modify the087

summarizer to output “soft” predictions, ensuring088

that the pipeline remains fully differentiable end-089

to-end (Jauregi Unanue et al., 2023). This allows090

fine-tuning it to improve the coupling of the mod-091

els, alleviate error propagation, and obtain sum-092

maries that are closer to the ideal, joint summariza-093

tion/translation of the XLS task. For immediacy,094

we refer to the proposed pipeline as SUMTRA.095

In particular, in this paper we focus on the less096

explored English-to-many XLS task (most work to097

date has focused on many-to-English (Zhu et al.,098

2019; Ladhak et al., 2020; Ma et al., 2021; Chi099

et al., 2021) or specific language pairs such as100

English-to-Chinese (Ayana et al., 2018; Zhu et al.,101

2019; Bai et al., 2021; Liang et al., 2022)). We102

believe that this is a valuable contribution as it103

provides access to summaries of the multitude of104

existing English documents for speakers of other105

languages around the world. To this aim, we have106

carried out experiments over two widely used XLS107

datasets (CrossSum (Bhattacharjee et al., 2022) and108

WikiLingua (Ladhak et al., 2020)), with a range109

of language pairs spanning high-, medium-, and110

low-resource languages. The results show a strong111

quantitative performance for the zero-shot pipeline,112

and a competitive edge over a comparable multilin-113

gual language model baseline with up to 100-shot114

fine-tuning1.115

Overall, our paper makes the following contribu-116

tions:117

• A summarize-and-translate pipeline that lever-118

ages contemporary state-of-the-art language119

models (and their resources) for the summa-120

rization and translation steps.121

• A fully differentiable approach through the122

use of “soft” summaries, making the pipeline123

fine-tunable end-to-end.124

• A novel objective function that incorporates125

a back-translation loss over the summariza-126

tion module to ground the generation of the127

intermediate summaries to the target language128

reference.129

• A comparative experimental evaluation of the130

1Our anonymized code is publicly accessible at: https:
//anonymous.4open.science/r/sumtra-6490/

proposed approach over two popular cross- 131

lingual summarization datasets spanning two 132

diverse domains, including an extensive quali- 133

tative, ablation, and sensitivity analysis. 134

2 Related Work 135

Cross-lingual summarization (XLS) has been an 136

active research topic for a long time (Leuski et al., 137

2003; Wan et al., 2010). Pre-neural methods have 138

often combined monolingual summarization and 139

machine translation (MT) modules into pipeline 140

approaches that summarize-and-translate (Orăsan 141

and Chiorean, 2008; Wan et al., 2010), or translate- 142

and-summarize (Leuski et al., 2003; Wan, 2011; 143

Boudin et al., 2011). While conceptually defensi- 144

ble, these approaches inevitably suffer from error 145

propagation between the modules, and, obviously, 146

the architectural limitations of the models of the 147

day (Zhu et al., 2019; Ouyang et al., 2019) . 148

With the recent development of multilingual pre- 149

trained language models such as mBART (Lewis 150

et al., 2020) and mT5 (Xue et al., 2021), there has 151

been a surge in XLS research that has focused on 152

fine-tuning these models with XLS datasets, and 153

as a consequence has relegated pipeline methods 154

to be regarded as mere baselines for comparison 155

(Ladhak et al., 2020; Perez-Beltrachini and Lap- 156

ata, 2021). However, the current approaches are 157

not exempt from performance limitations at their 158

turn, in particular when applied to low-resource 159

languages2. To address them, Bhattacharjee et al. 160

(2022) has attempted to transfer knowledge from 161

high- to low-resource languages by a multi-stage 162

sampling algorithm that aptly up-samples the low- 163

resource languages. Other works have explored 164

using language-specific adapter modules in various 165

cross-lingual tasks (Rebuffi et al., 2017; Houlsby 166

et al., 2019) to increase the linguistic capacity of the 167

model at a parity of trainable parameters and allevi- 168

ate language interference (Pfeiffer et al., 2022). Bai 169

et al. (2021) have proposed using a combination of 170

monolingual and cross-lingual summarization in an 171

attempt to improve performance on low-resource 172

languages. However, none of these approaches 173

has specifically focused on the zero- and few-shot 174

scenario that we canvass in our paper. 175

2We note that in the XLS task there are many dimensions in
which a language can be “low-resource”, namely: the monolin-
gual data for model pretraining; the parallel corpora for trans-
lation pretraining; and the annotated XLS document-summary
pairs.
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3 SumTra176

The proposed SUMTRA model consists of the cas-177

cade of two language models: a monolingual sum-178

marization language model, followed by a machine179

translation language model, which we refer to as180

SUM and TRA for summarize and translate, respec-181

tively.182

Let us denote the token sequence of the input183

document as x = {x1, . . . xn}, and the token pre-184

dicted by the SUM module at slot j as sj . We can185

then express the sequence of probability vectors186

output by the SUM module over the vocabulary as187

{p1, ...pj ...,pm}, with:188

pj = SUM(sj−1, x, θ) (1)189

where sj−1 is the previous predicted token and θ190

are the module’s parameters. For simplicity and191

efficiency we use greedy search for token predic-192

tion, but in principle any decoding approach can be193

used.194

The probability vectors {p1, ...pj ...,pm} are195

then individually mixed with the embedding layer196

E of the TRA module of size D × V (embedding197

× vocabulary) to obtain a sequence of expected198

embeddings, e = {e1...ej ...em}, with:199

ej = E[E]pj
= E pj (2)200

which are equivalent to “soft” predictions from201

the SUM module. These expected embeddings,202

which represent the intermediate summary, are then203

provided as input to the TRA module bypassing204

its embedding layer. Eventually, the TRA module205

predicts the translation in the target language:206

ȳ = TRA(e, σ) (3)207

where ȳ denotes the translation and σ the module’s208

parameters. Since the soft predictions from the209

SUM module do not interrupt backpropagation, the210

whole network can be trained end-to-end.211

For fine-tuning the entire SUMTRA model, we212

use the standard negative log-likelihood:213

NLL = −
T∑
t=1

log p(yt|y1, . . . yt−1, e, θ, σ) (4)214

where with {y1, . . . yT } we denote the sequence215

of ground-truth tokens in the target language, and216

with p(y) the probabilities output by the translator.217

However, fine-tuning the SUM module with only218

backpropagation from this training objective, com- 219

bined with the inherently large generation space 220

of summarization, tends to lead to summaries that 221

abstract from the target language ground-truth. For 222

this reason, we add an auxiliary training objective 223

that encourages the predicted summary to adhere 224

to the target more closely. To this aim, we first 225

back-translate the ground-truth sequence, y, into 226

the language of the summarizer (i.e., English) using 227

a reverse TRA module, and then use it as auxiliary 228

training objective for the summarizer: 229

NLLSUM = −
T∑
t=1

log p(ŷt|ŷ1, . . . ŷt−1, x, θ) (5) 230

where ŷ denotes the back-translated sequence, and 231

p(ŷ) the probabilities output by the summarizer. It 232

is interesting to note that our use of a separate sum- 233

marization module would allow us to also use other 234

typical summarization training objectives such as 235

sentence-level coherence (Li et al., 2019), coverage 236

of the input document (Parnell et al., 2022) and so 237

forth, but we leave this to future work. 238

The training objectives in Equations 4 and 5, are 239

eventually combined in a simple convex combina- 240

tion: 241

L = αNLLSUM + (1− α)NLL (6) 242

using a scaling coefficient α that acts as a hyper- 243

parameter in the loss. A sensitivity analysis is pre- 244

sented in Section 5.4. 245

4 Experimental Setup 246

4.1 Datasets, Baselines, and Evaluation 247

Metrics 248

We have carried out extensive zero and few- 249

shot experiments over twelve English-to-many lan- 250

guage pairs from the CrossSum (Bhattacharjee 251

et al., 2022) and WikiLingua (Ladhak et al., 2020) 252

datasets. We have selected six languages from 253

each dataset, and labelled them as high, medium, 254

and low-resource based on the number of sen- 255

tences used for the pretraining of the respective 256

language in mBART-50 (Tang et al., 2021) that we 257

have used as our main baseline. Languages with 258

>1M pretraining sentences have been labelled as 259

high-resource, between 100k and 1M as medium- 260

resource, and <100K as low-resource3. 261

As strong multilingual baselines, we employ the 262

mT5-m2m model of Bhattacharjee et al. (2022), 263

3As per Table 6 of Tang et al. (2021).
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Model High Medium Low Average
en-es† en-fr† en-ar† en-uk en-az en-bn†

mBART-50 (0-shot) 1.18 / 26.46 0.26 / 21.14 0.85 / 33.62 0.00 / 28.96 0.11 / 19.79 0.00 / 25.83 0.40 / 25.97
mBART-50 (50-shot) 1.18 / 26.54 0.26 / 21.06 1.27 / 36.14 0.00 / 28.96 0.17 / 20.56 0.00 / 25.00 0.48 / 26.38
mBART-50 (100-shot) 1.18 / 26.50 14.53 / 48.42 1.28 / 36.20 4.46 / 54.69 0.17 / 20.57 0.81 / 39.70 3.74 / 37.68
SUMTRA (0-shot) 20.19 / 55.41 20.87 / 53.98 15.80 / 60.33 8.74 / 59.80 13.28 / 54.09 4.04 / 54.32 13.82 / 56.32
SUMTRA (50-shot) 21.32 / 56.66 20.03 / 53.46 15.84 / 60.62 8.76 / 59.88 14.68 / 54.54 3.90 / 54.85 14.09 / 56.67
SUMTRA (100-shot) 21.47 / 56.41 21.24 / 54.06 16.08 / 60.67 9.47 / 59.98 13.97 / 54.10 4.67 / 56.28 14.47 / 56.92
mBART-50 (1000-shot) 18.29 / 53.99 17.57 / 50.76 14.36 / 60.06 7.41 / 58.01 14.32 / 54.74 7.17 / 60.53 13.19 / 56.35
mT5-m2m (Bhattacharjee et al., 2022) 22.23 / 56.86 19.27 / 52.48 16.56 / 60.49 8.63 / 59.65 18.48 / 57.27 11.49 / 66.31 16.11 / 58.84

Table 1: Results for the CrossSum dataset, grouped into high, medium, and low-resource languages. We report
ROUGE (or mROUGE as denoted with †) and BERTScore. The best scores between mBART-50 and SUMTRA are
bolded. The results for mT5-m2m that surpass SUMTRA are italicized.

Model High Medium Low Average
en-ru† en-zh† en-ar† en-tr† en-th† en-id

mBART-50 (0-shot) 0.57 / 29.54 0.00 / 36.75 0.78 / 33.29 0.91 / 23.08 1.78 / 31.11 0.94 / 26.44 0.83 / 30.04
mBART-50 (50-shot) 0.71 / 30.69 0.00 / 36.75 0.78 / 34.19 1.02 / 23.56 1.71 / 31.04 1.25 / 27.54 0.91 / 30.63
mBART-50 (100-shot) 6.77 / 52.70 0.00 / 36.75 0.79 / 34.09 6.70 / 47.84 0.63 / 31.77 1.25 / 27.32 2.69 / 38.41
SUMTRA (0-shot) 10.35 / 56.12 21.13 / 57.24 11.61 / 61.48 10.96 / 53.96 14.66 / 51.39 12.83 / 54.84 13.59 / 55.84
SUMTRA (50-shot) 11.73 / 58.33 19.70 / 60.16 11.74 / 61.79 11.44 / 54.78 15.83 / 53.04 12.79 / 55.06 13.87 / 57.19
SUMTRA (100-shot) 12.01 / 58.85 19.70 / 61.08 11.58 / 61.66 12.50 / 55.69 16.15 / 54.16 13.12 / 55.68 14.18 / 57.85
mBART-50 (1000-shot) 9.43 / 56.49 20.35 / 62.06 11.11 / 61.74 15.08 / 56.74 19.65 / 61.71 10.95 / 53.01 14.43 / 58.63

Table 2: Results for the WikiLingua dataset, grouped into high, medium, and low-resource languages. We report
ROUGE (or mROUGE as denoted with †) and BERTScore. The best scores between mBART-50 and SUMTRA are
bolded. The results for mBART-50 (1000-shot) that surpass SUMTRA are italicised.

fine-tuned on all languages and full training splits264

of the CrossSum dataset, and a pretrained mBART-265

50 (Tang et al., 2021). For the proposed approach,266

we have used the mBART-50 one-to-many variant267

for the TRA module, and the many-to-one variant268

for both the SUM module and the one-off genera-269

tion of the back-translations. To evaluate the pre-270

dictions, we have used ROUGE (Lin, 2004) and its271

multilingual adaptation4, mROUGE, which lever-272

ages language-specific tokenizers and stemmers273

(Conneau and Lample, 2019) to pre-process non-274

English text prior to a standard ROUGE calcula-275

tion. As common in summarization, we have com-276

puted the ROUGE score as average of ROUGE-1,277

ROUGE-2 and ROUGE-L F1. Similarly to Koto278

et al. (2021), we also report BERTScore (Zhang279

et al., 2020) for its greater ability to assess the280

semantic alignment of the predictions and the ref-281

erences.282

4.2 Model Training283

Prior to running the XLS experiments, we have284

trained the SUM module for monolingual summa-285

rization in English. To this aim, we have leveraged286

the English-English training split of either Cross-287

Sum or WikiLingua, and chosen the best perform-288

4For brevity, we will refer to “ROUGE” as “mROUGE”
throughout, to accommodate all languages.

ing checkpoint based on a validation criterion. We 289

have then performed a set of cross-lingual summa- 290

rization experiments in zero-shot and few-shot fine- 291

tuning configurations. For the latter, we have cho- 292

sen to fine-tune the entire SUMTRA model; how- 293

ever, it is also possible to freeze either the summa- 294

rization or the translation module, and we present 295

an ablation in Section 5.1. Further details of the 296

experimental setup are provided in Appendix A. 297

5 Results and Analysis 298

Table 1 presents the main results over the test sets 299

of the chosen language pairs from the CrossSum 300

dataset. In the table, we compare the proposed 301

SUMTRA model with mBART-50 at zero shots and 302

with variable amounts of few-shot XLS fine-tuning 303

(50 and 100 samples). For reference, we also report 304

the performance of mBART-50 with 1000 shots and 305

that of the mT5-m2m model. However, we note 306

that the latter has been fine-tuned over all the lan- 307

guage pairs in the CrossSum dataset (1,500+), and 308

with the entire available XLS training set (∼900- 309

1,500 samples per pair) (Bhattacharjee et al., 2022), 310

and should therefore be regarded as a hard-to-near 311

upper bound. The results show that SUMTRA has 312

amply outperformed mBART-50 at a parity of fine- 313

tuning examples in all cases. While this was to 314

be expected to a large extent since mBART-50 is 315
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not designed for zero-shot XLS performance, the316

zero-shot SUMTRA model has still surpassed the317

100-shot mBART-50 model by more than +10.00318

mROUGE pp and almost +20.00 BERTScore pp on319

average across the six languages. The 50-shot fine-320

tuning has improved SUMTRA’s performance in all321

the tested languages, and the 100-shot fine-tuning322

has improved for five languages out of six, proving323

the effectiveness of the proposed training objective.324

In addition, the proposed model has performed325

very well also vis-à-vis the 1000-shot mBART-50326

and mT5-m2m. In particular, our zero-shot model327

has outperformed the 1000-shot mBART-50 in four328

languages out of six in mROUGE score, and our329

50-shot model has outperformed it in five out of330

six. While SUMTRA has not reached the same av-331

erage scores as the mT5-m2m model even in the332

100-shot configuration, it has surpassed it in two333

languages (French and Ukrainian). These results334

show that the proposed approach is capable of very335

strong zero-shot performance, and with a few-shot336

fine-tuning can reach or near state-of-the-art per-337

formance. This can prove particularly useful for338

languages with a scarcity (≤ 100) of annotated339

XLS samples.340

In turn, Table 2 presents the main results for341

the WikiLingua dataset. Also for this dataset, the342

trend for the proposed model and mBART-50 has343

been similar: the proposed zero-shot model has344

surpassed the 100-shot mBART-50 in all cases, and345

by +10.90 mROUGE pp and +19.44 BERTScore346

pp on average. Very notably, our zero-shot model347

has also outperformed the 1000-shot mBART-50 in348

mROUGE score in four of the six languages, show-349

ing again that the proposed approach is capable of350

a strong performance even in the complete absence351

of annotated XLS data for fine-tuning.352

5.1 Module Fine-Tuning353

The proposed SUMTRA model has approximately354

double the number of parameters of a single355

mBART-50-large language model. However, this356

is a rather small model by contemporary standards357

(611M parameters), and SUMTRA can comfort-358

ably fit in the memory of any standard machine359

for inference. Conversely, the memory footprint360

may become an issue for some machines in the361

case of fine-tuning. For this reason, we have tested362

the SUMTRA’s performance by fine-tuning only363

either the summarizer or the translator. This is364

also to show that a significant performance can365

Figure 1: BERTScore scores for the CrossSum Spanish
and Bengali test sets with different fine-tuning configu-
rations (summarizer only, translator only, and both).

still be achieved if memory constraints force the 366

fine-tuning to be carried out at a parity of trainable 367

parameters with mBART-50. To this aim, Figure 1 368

plots the BERTScore score of the various configura- 369

tions for Spanish and Bengali at increasing amount 370

of fine-tuning. For both languages, updating only 371

the parameters of the summarizer has led to the 372

smallest improvements over the zero-shot perfor- 373

mance. It could be argued that the summarizer 374

has already been well-trained by the monolingual 375

data, and as such its relative margin for improve- 376

ment is smaller. Conversely, fine-tuning only the 377

translator with 10 shots has achieved a comparable 378

performance to fine-tuning the entire model, and 379

has surpassed it in the case of Bengali with 50 shots. 380

The trend has been the opposite for Spanish, where 381

fine-tuning the translator alone has underperformed 382

the fine-tuning of the entire model. This shows that 383

the translation component can be more sensitive to 384

the specificities of the target language. 385

If memory constraints force the fine-tuning to 386

be carried out at a parity with a single mBART-50 387

model, several other strategies could be easily put 388

in place, such as alternating between updating the 389

summarizer and the translator in turn, or fine-tuning 390

only selected layers of the modules’ encoders and 391

decoders. However, we believe that this is not 392

specially critical and have not explored it further. 393

5.2 The Catastrophic Forgetting Problem 394

In the context of multilingual models, the catas- 395

trophic forgetting problem refers to the drop in 396

multilingual performance for models that have been 397

trained with monolingual task data (Pfeiffer et al., 398

2022). Bhattacharjee et al. (2022) have explored 399
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Figure 2: Exploring the catastrophic forgetting problem
with mBART-50 and SUMTRA on the CrossSum Span-
ish test set. In the figure, mBART-50-mono refers to an
mBART-50 model first trained with the same monolin-
gual summarization data as SUMTRA.

this within their mT5-m2m model and shown that400

its zero-shot cross-lingual performance is very poor401

despite its extensive multilingual pretraining with402

a multitude of language pairs. Therefore, in this403

section we set to explore how catastrophic forget-404

ting behaves in the XLS case within a zero-shot,405

few-shot and unlimited shot scenarios.406

To this aim, Figures 2 and 3 compare the perfor-407

mance of mBART-50 with an mBART-50 model408

(nicknamed mBART-50-mono) trained over the409

same En-En monolingual summarization data that410

we used for SUMTRA before fine-tuning. The two411

plots report the BERTScore score at an increas-412

ing number of fine-tuning samples for Spanish and413

Bengali, respectively. However, for this experiment414

we have used all the 1241 available fine-tuning sam-415

ples for Bengali, and 2000 for Spanish. For both416

languages, it is manifest that SUMTRA is the only417

model that is capable of a significant zero-shot418

performance, with a difference of approximately419

+30 pp compared to both mBART-50 models. At420

zero-shot and 10-shot, the performance of mBART-421

50-mono has been even lower than that of the orig-422

inal mBART-50, confirming the catastrophic for-423

getting. However, from around 100-shots, mBART-424

50-mono has stably overtaken mBART-50, show-425

ing that its “forgotten” multilingual capabilities426

can be restored with a sufficient amount of fine-427

tuning. In the case of Spanish, mBART-50-mono428

has caught up with SUMTRA at 500-shots, and429

then progressed with a virtually identical perfor-430

mance. Conversely, for Bengali, both mBART-431

50 models have surpassed SUMTRA at 500-shots432

Figure 3: Exploring the catastrophic forgetting problem
with mBART-50 and SUMTRA on the CrossSum Ben-
gali test set. In the figure, mBART-50-mono refers to an
mBART-50 model first trained with the same monolin-
gual summarization data as SUMTRA.

and maintained a comparable performance from 433

there. These trends seem very interesting as they 434

show that, while training a cross-lingual model 435

with monolingual data undoubtedly causes a “catas- 436

trophic forgetting” of its multilingual capabilities 437

at zero- and few-shots, such capabilities can be re- 438

stored with a sufficient amount of fine-tuning, and 439

even outperform an equivalent model that has not 440

undergone monolingual training. In the case of 441

Bengali, it also shows that a single language model 442

can outperform our pipeline of two, most likely 443

because it addresses the summarization and trans- 444

lation task in a genuinely “joint” manner. However, 445

it is worth noting that our pipeline can more easily 446

and more directly take advantage of existing sum- 447

marization and translation resources, as they can 448

be independently used to train its two modules. For 449

instance, in this case we could leverage any other 450

En-Bn parallel corpora to boost the translator’s per- 451

formance. In all cases, we do not target a scenario 452

with unlimited number of fine-tuning data; rather, 453

a zero/few-shot one demanding minimal effort of 454

the annotators. 455

5.3 Qualitative Analysis 456

To allow a qualitative appreciation of the generated 457

summaries, Table 3 shows an example for Span- 458

ish, comparing an mBART-50-mono model fine- 459

tuned with 1000 shots with SUMTRA fine-tuned 460

with 1/10 of the shots (100). For the latter, we also 461

show the summary generated by the same SUM- 462

TRA model fine-tuned without the back-translation 463

(BT) loss of Equation 5. In the table, the sum- 464
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Model Summary BERTScore

Reference

Las autoridades estadounidenses amenazaron a la compañía tecnológica
Yahoo con ponerle una multa de US$250.000 diarios si el gigante informático
no le entregaba datos de usuarios.
Back-Translation: The US authorities threatened the technology company
Yahoo with a daily fine of US$250,000 if the computer giant did not provide
it with user data.

mBART-50-mono
(1000-shot)

Prediction: El gobierno de Estados Unidos publicó información sobre un
caso que ha sacudido a la empresa de informática Yahoo.

55.61

SUMTRA

Intermediate Summary: The US government threatened to impose fines of
up to $250,000 (£250,000) if it refused to comply with a court order against
Yahoo, according to newly released documents.

61.47
(100-shot) Prediction: El gobierno estadounidense amenazaba con imponer multas de

hasta 250.000 dólares (£250,000) si se niega a cumplir un decreto judicial
contra Yahoo, según documentos publicados recientemente.

SUMTRA (100-shot)

Intermediate Summary: Yahoo has been fined $250,000 (£250,000) for
breaching a US government order to monitor its online services.

54.78
(no BT loss)

Prediction: Yahoo ha sido sancionado con 250.000 dólares (250.000
libras esterlinas) por violar un decreto del gobierno estadounidense para
controlar sus servicios en línea.

Table 3: Qualitative example for Spanish (CrossSum). (Red) denotes incorrect translations or factual inconsistencies,
(Blue) denotes information from the source document, and (Green) refers to matching information in the reference
summary.

mary generated by the mBART-50-mono model465

does contain some information relevant to the ref-466

erence, such as the relationship between the US au-467

thorities and Yahoo. However, it is overall generic468

and vague. For instance, the specific mention of a469

“fine of $250,000” in the reference is not conveyed470

in the prediction. Conversely, the predictions from471

the SUMTRA models have both been able to pick472

up this fact. At its turn, the prediction from the473

model without the BT loss has incorrectly stated474

that Yahoo has already been sanctioned (ha sido475

sancionado), while the prediction from the full476

model has been in general the most informative477

and accurate. For example, it has been able to in-478

clude the entity decreto judicial (court order) that479

is not present in the reference, but is an important480

piece of information in the input document (NB:481

not shown for reasons of space), and also the key482

term amenazaba (threatened). The intermediate483

summary in English shows that this is owed to an484

effective summarization, which has been carried485

over faithfully into the Spanish translation. How-486

ever, it is also clear that the summary generated by487

the full SUMTRA model is still imperfect, having488

predicted £250,000 instead of $250,000. Another489

example is provided and commented upon in Ap-490

pendix A.7.491

5.4 Sensitivity to the Alpha Hyperparameter 492

The fine-tuning objective in Equation 6 combines 493

an XLS loss and a back-translation loss with a pos- 494

itive coefficient, α. The back-translation loss only 495

influences the summarizer, while the XLS loss in- 496

fluences the translator directly, and the summarizer 497

via backpropagation through the soft predictions. 498

To explore the sensitivity of the performance to 499

the value of the α coefficient, Table 4 reports the 500

mROUGE and BERTScore scores of the 100-shot 501

SUMTRA over Spanish and Bengali for increasing 502

α values (i.e., increasing relative influence of the 503

back-translation loss). The results show that in the 504

case of Spanish the best α value has been rather 505

high (0.95), likely because the pretrained translator 506

is already good enough for this language, and the 507

emphasis has been on keeping the summarization 508

aligned with the target. Conversely, in the case 509

of Bengali the relative weight of the XLS loss for 510

the best performance has been much higher (0.50), 511

showing that for this lower-resource language the 512

updates to the translator have proved more impor- 513

tant. 514

For our experiments, we have faced the decision 515

whether to grid-search a best value of α for ev- 516

ery language—which would have made our model 517

perform even better—or just use a trade-off value 518

for all languages, which is more practical and con- 519
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α Spanish Bengali
0.00 21.04 / 56.44 4.20 / 55.54
0.50 20.76 / 56.20 5.21 / 56.38
0.90 21.30 / 56.46 4.58 / 56.02
0.95 21.43 / 56.56 4.25 / 55.65
0.99 21.37 / 56.41 4.67 / 56.28
1.00 19.96 / 55.33 3.81 / 54.61

Table 4: mROUGE and BERTScore scores for different
α values in the objective function (CrossSum).

venient for prospective users. In the interest of520

usability, we have chosen to not over-validate α,521

selecting a somehow arbitrary fixed value of 0.99522

to emphasize the back-translation loss in all cases.523

It is perhaps worth remarking once more the524

respective impact of these two losses on the sum-525

marizer: the back-translation loss keeps the pre-526

dicted summaries more closely aligned with the527

references, while the XLS loss only influences the528

summarizer in a “looser” and indirect way via back-529

propagation of the translator’s gradients. Therefore,530

removing the back-translation loss altogether, or531

likewise keeping α very low, leads to summaries532

that still seem qualitatively very effective, but are533

less faithful to the target. This tends to penalize534

the scores, especially mROUGE, but did not seem535

undesirable to us from a qualitative perspective.536

We leave further exploration and evaluation of this537

trade-off to future work.538

5.5 Inference Time539

Given that the proposed model uses two language540

models in pipeline, we also compare its inference541

times to those of mBART-50. To this aim, Table542

5 reports the inference times per sample5 of the543

two models over the test sets of Spanish and Ben-544

gali. As to be expected, the proposed model has545

proved slower on average to generate a prediction;546

however, less than twice as slow: in the case of547

Bengali, the inference time per sample has been548

1.87x that of mBART-50, and for Spanish only549

1.15x. To justify the differences between the two550

languages, we first note that the inference times for551

mBART-50 have been nearly identical. In the case552

of SUMTRA, the modest overhead with Spanish553

has been simply due to the addition of the explicit554

translation stage. In the case of Bengali, the more555

substantial overhead has been due to the impact of556

5We have measured the inference time as the time taken to
traverse the model’s generate function, which occurs twice
per sample in SUMTRA and once in mBART-50. All other
overheads are negligible.

Model Spanish Bengali
Per Sample (s) Per Sample (s)

mBART-50 0.146 0.145
SUMTRA 0.168 0.271

Table 5: Average inference times per sample for
mBART-50 and SUMTRA over the CrossSum Spanish
and Bengali test sets (zero-shot fine-tuning configura-
tion).

an average lengthening of the predicted intermedi- 557

ate summaries, which has increased both the sum- 558

marization and the translation times. We ascribe 559

this to the fact that the back-translated summaries 560

used to fine-tune the summarization module have 561

been on average slightly longer than the references, 562

with a corresponding impact on the length of the 563

predicted intermediate summaries and processing 564

times. However, the overall speed seems to have 565

remained acceptable. 566

6 Conclusion 567

In this paper, we have proposed SUMTRA, an XLS 568

model that revisits the traditional summarize-and- 569

translate approach into a more contemporary end- 570

to-end differentiable pipeline. Given that genuine 571

XLS annotation is demanding, the main aim of 572

the proposed model is to provide a competitive 573

zero- and few-shot performance. In the paper, we 574

have tested the proposed approach over two main- 575

stream XLS datasets, comparing it with a strong 576

multilingual baseline (mBART-50) and a state-of- 577

the-art model (mT5-m2m). The model’s zero-shot 578

performance has been very strong, and also its 579

100-shot performance has been higher than that 580

of the 1000-shot baseline for the majority of the 581

languages. Through various sensitivity, ablation, 582

and qualitative analyses we have shown that the 583

proposed model benefits from the possibility to 584

separately train its component modules, and that its 585

memory and inference time overheads compared 586

to the baseline are both manageable. In the future, 587

we aim to test model configurations with different 588

base language models for the summarization and 589

translation modules, and explore alternative fine- 590

tuning strategies such as adversarial training and 591

reinforcement learning. 592

Limitations 593

The proposed approach has several limitations. The 594

most immediate is that we have limited our ex- 595

perimental validation to the English-to-many case. 596
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However, this was done only for the simplicity597

of carrying out a one-to-many set of experiments598

rather than a many-to-many. Instead, the intrinsic599

limitation of the proposed approach is that it relies600

on a separate, strong performance from both its601

summarization and translation modules. In turn,602

this assumes the availability of an adequate mono-603

lingual summarization training set for the source604

language, and an adequate parallel training cor-605

pus for the language pair—or equivalent pretrained606

models. However, both these requirements are607

much more easily met than requiring the availabil-608

ity of large XLS annotated resources.609

The memory footprint of the proposed model,610

that has 1.2B total parameters, is also more im-611

posing than that of a conventional multilingual612

model. In particular, the memory required during613

fine-tuning has been approximately 34 GB (with614

the selected hyperparameters). However, in Section615

5.1 we have shown that it is possible to fine-tune616

only one of the two modules in turn (either the617

summarizer or the translator) and still retain a re-618

markable performance, bringing back the memory619

requirements to those of a standard multilingual620

model.621

Finally, the computation of the expected embed-622

dings in Equation 2 requires the product of token623

embeddings from the translator with the probabili-624

ties assigned to those same tokens by the summa-625

rizer. This implies that the summarizer and the626

translator have to share the same vocabulary, and627

for this reason we have built them both out of the628

same base model (mBART-50-large). However, it629

should be easy to organize a redistribution of the630

summarizer’s probabilities over a different vocabu-631

lary, allowing mixing different base models.632
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Constantin Orăsan and Oana Andreea Chiorean. 2008.751
Evaluation of a cross-lingual Romanian-English752
multi-document summariser. In Proceedings of753
the Sixth International Conference on Language Re-754
sources and Evaluation (LREC’08), Marrakech, Mo-755
rocco. European Language Resources Association756
(ELRA).757

Jessica Ouyang, Boya Song, and Kathy McKeown.758
2019. A robust abstractive system for cross-lingual759

summarization. In Proceedings of the 2019 Confer- 760
ence of the North American Chapter of the Associ- 761
ation for Computational Linguistics: Human Lan- 762
guage Technologies, Volume 1 (Long and Short Pa- 763
pers), pages 2025–2031, Minneapolis, Minnesota. 764
Association for Computational Linguistics. 765

Jacob Parnell, Inigo Jauregi Unanue, and Massimo Pic- 766
cardi. 2022. A multi-document coverage reward for 767
RELAXed multi-document summarization. In Pro- 768
ceedings of the 60th Annual Meeting of the Associa- 769
tion for Computational Linguistics (Volume 1: Long 770
Papers), pages 5112–5128, Dublin, Ireland. Associa- 771
tion for Computational Linguistics. 772

Laura Perez-Beltrachini and Mirella Lapata. 2021. Mod- 773
els and datasets for cross-lingual summarisation. In 774
Proceedings of the 2021 Conference on Empirical 775
Methods in Natural Language Processing, pages 776
9408–9423, Online and Punta Cana, Dominican Re- 777
public. Association for Computational Linguistics. 778

Jonas Pfeiffer, Naman Goyal, Xi Lin, Xian Li, James 779
Cross, Sebastian Riedel, and Mikel Artetxe. 2022. 780
Lifting the curse of multilinguality by pre-training 781
modular transformers. In Proceedings of the 2022 782
Conference of the North American Chapter of the 783
Association for Computational Linguistics: Human 784
Language Technologies, pages 3479–3495, Seattle, 785
United States. Association for Computational Lin- 786
guistics. 787

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea 788
Vedaldi. 2017. Learning multiple visual domains 789
with residual adapters. 790

Yuqing Tang, Chau Tran, Xian Li, Peng-Jen Chen, Na- 791
man Goyal, Vishrav Chaudhary, Jiatao Gu, and An- 792
gela Fan. 2021. Multilingual translation from de- 793
noising pre-training. In Findings of the Association 794
for Computational Linguistics: ACL-IJCNLP 2021, 795
pages 3450–3466, Online. Association for Computa- 796
tional Linguistics. 797

Gido M. van de Ven and Andreas S. Tolias. 2019. Three 798
scenarios for continual learning. 799

Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mo- 800
hit Iyyer, and Noah Constant. 2022. Overcoming 801
catastrophic forgetting in zero-shot cross-lingual gen- 802
eration. In Proceedings of the 2022 Conference on 803
Empirical Methods in Natural Language Processing, 804
pages 9279–9300, Abu Dhabi, United Arab Emirates. 805
Association for Computational Linguistics. 806

Xiaojun Wan. 2011. Using bilingual information for 807
cross-language document summarization. In Pro- 808
ceedings of the 49th Annual Meeting of the Asso- 809
ciation for Computational Linguistics: Human Lan- 810
guage Technologies, pages 1546–1555, Portland, Ore- 811
gon, USA. Association for Computational Linguis- 812
tics. 813

Xiaojun Wan, Huiying Li, and Jianguo Xiao. 2010. 814
Cross-language document summarization based on 815

10

https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/D19-1623
https://doi.org/10.18653/v1/D19-1623
https://doi.org/10.18653/v1/D19-1623
https://doi.org/10.18653/v1/D19-1623
https://doi.org/10.18653/v1/D19-1623
https://doi.org/10.18653/v1/2022.acl-long.148
https://doi.org/10.18653/v1/2022.acl-long.148
https://doi.org/10.18653/v1/2022.acl-long.148
https://doi.org/10.18653/v1/2022.acl-long.148
https://doi.org/10.18653/v1/2022.acl-long.148
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
http://arxiv.org/abs/2106.13736
http://arxiv.org/abs/2106.13736
http://arxiv.org/abs/2106.13736
http://arxiv.org/abs/2106.13736
http://arxiv.org/abs/2106.13736
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
https://doi.org/10.18653/v1/D18-1206
http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/539_paper.pdf
https://doi.org/10.18653/v1/N19-1204
https://doi.org/10.18653/v1/N19-1204
https://doi.org/10.18653/v1/N19-1204
https://doi.org/10.18653/v1/2022.acl-long.351
https://doi.org/10.18653/v1/2022.acl-long.351
https://doi.org/10.18653/v1/2022.acl-long.351
https://doi.org/10.18653/v1/2021.emnlp-main.742
https://doi.org/10.18653/v1/2021.emnlp-main.742
https://doi.org/10.18653/v1/2021.emnlp-main.742
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
https://doi.org/10.18653/v1/2022.naacl-main.255
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
http://arxiv.org/abs/1705.08045
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
https://doi.org/10.18653/v1/2021.findings-acl.304
http://arxiv.org/abs/1904.07734
http://arxiv.org/abs/1904.07734
http://arxiv.org/abs/1904.07734
https://aclanthology.org/2022.emnlp-main.630
https://aclanthology.org/2022.emnlp-main.630
https://aclanthology.org/2022.emnlp-main.630
https://aclanthology.org/2022.emnlp-main.630
https://aclanthology.org/2022.emnlp-main.630
https://aclanthology.org/P11-1155
https://aclanthology.org/P11-1155
https://aclanthology.org/P11-1155
https://aclanthology.org/P10-1094
https://aclanthology.org/P10-1094


machine translation quality prediction. In Proceed-816
ings of the 48th Annual Meeting of the Association for817
Computational Linguistics, pages 917–926, Uppsala,818
Sweden. Association for Computational Linguistics.819

Jiaan Wang, Fandong Meng, Duo Zheng, Yunlong820
Liang, Zhixu Li, Jianfeng Qu, and Jie Zhou. 2022. A821
Survey on Cross-Lingual Summarization. Transac-822
tions of the Association for Computational Linguis-823
tics, 10:1304–1323.824

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,825
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and826
Colin Raffel. 2021. mT5: A massively multilingual827
pre-trained text-to-text transformer. In Proceedings828
of the 2021 Conference of the North American Chap-829
ter of the Association for Computational Linguistics:830
Human Language Technologies, pages 483–498, On-831
line. Association for Computational Linguistics.832

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.833
Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-834
uating text generation with bert. In International835
Conference on Learning Representations.836

Junnan Zhu, Qian Wang, Yining Wang, Yu Zhou, Ji-837
ajun Zhang, Shaonan Wang, and Chengqing Zong.838
2019. NCLS: Neural cross-lingual summarization.839
In Proceedings of the 2019 Conference on Empirical840
Methods in Natural Language Processing and the841
9th International Joint Conference on Natural Lan-842
guage Processing (EMNLP-IJCNLP), pages 3054–843
3064, Hong Kong, China. Association for Computa-844
tional Linguistics.845

A Appendix 846

A.1 Experimental Setup 847

For the evaluation of our approach, we have 848

adopted ROUGE and BERTScore to assess both 849

the surface and semantic matching between the pre- 850

dictions and the reference summaries. Given the 851

number of ROUGE variants, we have chosen to 852

report the average of ROUGE-1, ROUGE-2, and 853

ROUGE-L F1 scores. In specific, mROUGE6 has 854

been used for those languages where the underlying 855

package (NLTK) had support for the language via 856

special stemmers and/or language-specific tokeniz- 857

ers. We note that the adoption of mROUGE in the 858

XLS literature is not widespread, probably because 859

its reliance on dedicated stemmers and tokenizers 860

is somehow limiting. Given this, and a recent advo- 861

cacy for BERTScore in XLS (Koto et al., 2021), we 862

have chosen to report BERTScore extensively. To 863

ensure that we could compute it consistently for all 864

the languages in our evaluation, we have populated 865

it with the weights of the encoder of the pretrained 866

multilingual LM used for the TRA module of SUM- 867

TRA (mBART-large-50-one-to-many-mmt). 868

In both the training of the monolingual summa- 869

rizer and the few-shot fine-tuning of SUMTRA, we 870

have selected the best checkpoints based on a) ei- 871

ther meeting a validation criterion b) or reaching 872

the maximum set number of training iterations. 873

A.2 Model Hyperparameters 874

Our baseline model is the pretrained 875

mBART-large-50 (Tang et al., 2021) in its 876

various variants (one-to-many7, many-to-many8, 877

and many-to-one9). All the models have been 878

fine-tuned and run using PyTorch Lightning on a 879

single NVIDIA A40 GPU with 48 GB of memory. 880

Fine-tuning the entire SUMTRA with the chosen 881

hyperparameters uses up approximately 70% of 882

the total memory. Increasing the batch size and/or 883

the input/output sequence length correspondingly 884

increases the memory footprint. Table 6 reports the 885

full list of the hyperparameters used for training, 886

fine-tuning and inference. 887

6https://github.com/csebuetnlp/xl-sum/tree/
master/multilingual_rouge_scoring

7https://huggingface.co/facebook/
mbart-large-50-one-to-many-mmt

8https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

9https://huggingface.co/facebook/
mbart-large-50-many-to-one-mmt
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Hyperparameter Value
Training SUM

Warmup 500 steps
Input Length 512 tokens

Output Length 128 tokens
Fine-Tuning SUMTRA

Warmup 0 steps
Input Length 512 tokens

Output Length 84†/64‡ tokens
Freeze Strategy Train All
α/1− α (Eq. 6) 0.99 / 0.01

Shared Hyperparameters
Training LR 3× 10−5

Training Epochs 10
Early Stopping Criterion 2 epochs

Training Batch Size 1
Inference Batch Size 8

Gradient Accumulation 8
Optimizer AdamW

Table 6: Hyperparameters used for training and evalua-
tion of each module. (†) and (‡) superscripts correspond
to the CrossSum and WikiLingua datasets respectively.

A.3 Dataset Links and Statistics888

We refer the reader to the original papers (Lad-889

hak et al., 2020; Bhattacharjee et al., 2022) for890

detailed statistics of the CrossSum10 and WikiLin-891

gua11 datasets, as well as access to the original data892

we have made use of in this work. For quick refer-893

ence, Table 7 provides the total size of the training,894

validation, and test splits of the English-to-many895

versions of both datasets for the languages covered896

in our experiments. For the XSum dataset, we have897

downloaded the En-En data from Hugging Face12.898

Dataset Train Val Test
CrossSum 22.3K 2.8K 2.8K

WikiLingua 117.4K 16.8K 33.5K
XSum 204K 11.3K 11.3K

Table 7: Total size of the training, validation and test
splits for the languages covered in our experiments. For
XSum, we have only used the En-En data.

A.4 Impact of Additional Monolingual899

Training900

A key advantage of the proposed SUMTRA model901

is its ability to leverage the existing wealth of902

10https://github.com/csebuetnlp/CrossSum (Li-
cense: CC BY-NC-SA 4.0)

11https://github.com/esdurmus/Wikilingua (Li-
cense: CC BY-NC-SA 3.0)

12https://huggingface.co/datasets/xsum (License:
Unknown)

Figure 4: Impact of additional monolingual summa-
rization training on the zero- and few-shot BERTScore
performance over the CrossSum Spanish and Bengali
test sets.

publicly-available monolingual summarization re- 903

sources, allowing it to obtain a remarkable zero- 904

shot performance. To probe the impact of ad- 905

ditional monolingual summarization training, we 906

post-train our CrossSum En-En summarizer with 907

the XSum En-En summarization training set 908

(Narayan et al., 2018), and repeat our zero- and 909

few-shot tests over a high-resource language (Span- 910

ish) and a low-resource one (Bengali). The results 911

plotted in Figure 4 show that the zero-shot perfor- 912

mance in both languages has improved with the 913

additional training. The improvement is more evi- 914

dent in the case of Spanish, possibly because of its 915

greater linguistic similarity with English compared 916

to Bengali. With an increasing number of fine- 917

tuning samples, the performance of the two models 918

(with and without additional training) over Spanish 919

seems to have approximately converged. In the 920

case of Bengali, the performance trend has been 921

similar, but the impact of fine-tuning has been pro- 922

portionally greater. This may be because Bengali 923

is a very distant language from English, and fine- 924

tuning in the target language can prove even more 925

beneficial. We conclude that additional monolin- 926

gual summarization training can be useful to boost 927

zero-shot performance, but its impact dilutes as 928

fine-tuning takes on. 929

A.5 Cross-Domain Analysis 930

In this section, we explore the cross-domain robust- 931

ness of SUMTRA by training the summarizer on the 932

En-En data of one dataset and testing the model on 933

a different dataset (i.e., En-En CrossSum-trained 934

summarizer tested on WikiLingua, and vice versa). 935

12
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Table 8 presents the results for SUMTRA and an936

equivalent mBART-50 model, both fine-tuned with937

100-shots in Spanish and Arabic from one dataset,938

and tested in the same language from the other939

dataset. We also report the results for mBART-50940

fine-tuned with 1000 shots to show the competitive-941

ness of our approach with 1/10 of the fine-tuning942

samples.943

Model Spanish Arabic
CrossSum-tuned + WikiLingua-tested

mBART-50 (100-shot) 1.04 / 25.83 0.66 / 34.47
mBART-50 (1000-shot) 10.72 / 47.24 0.92 / 47.83
SUMTRA (100-shot) 9.89 / 46.87 5.44 / 54.07

WikiLingua-tuned + CrossSum-tested
mBART-50 (100-shot) 1.41 / 26.28 1.30 / 35.41
mBART-50 (1000-shot) 12.82 / 47.74 5.37 / 53.42
SUMTRA (100-shot) 10.82 / 44.84 5.65 / 53.00

Table 8: Cross-domain ROUGE/BERTScore scores for
Spanish and Arabic. The top rows are for CrossSum-
tuning and WikiLingua-testing, and the bottom rows for
the vice versa. For mBART-50 (1000-shot), we have
italicized the results that have surpassed SUMTRA (100-
shot).

The result trends in Table 8 are significantly944

lower than those in Tables 1 and 2; however, the945

performance gap between SUMTRA (100-shot) and946

mBART-50 (100-shot) has remained wide. These947

results further highlight the benefits of the proposed948

pipeline-based approach, as they show that it gener-949

alizes quite well across domains (news in the case950

of CrossSum, and how-to articles for WikiLingua).951

In turn, mBART-50 (1000-shot) has outperformed952

SUMTRA in some cases, but only marginally, de-953

spite requiring 10X the number of fine-tuning sam-954

ples.955

A.6 Soft vs. Hard Predictions at Inference956

Time957

In the proposed model, the use of soft predictions958

is strictly required during fine-tuning, but becomes959

an option at inference time. For this reason, in960

this section, we examine the impact of using ei-961

ther soft or hard predictions for inference. As hard962

predictions, we simply extract the argmaxed pre-963

dictions from the summarizer and pass them to the964

translator, without converting them to embedding965

space and bypassing the embedding layer of the966

translator.967

Table 9 shows the results over the CrossSum968

Spanish test set for a 100-shot configuration for969

both cases. It is clear that the hard predictions970

have led to noticeably better scores. While this971

Type mROUGE BERTScore
Hard 21.37 56.41
Soft 20.47 55.77

Table 9: Soft vs. hard predictions at inference time over
the CrossSum Spanish test set.

is only for a single language, it is reasonable to 972

assume that these results may generalize to other 973

languages, given that using the argmax provides a 974

more confident and tighter input to the translation 975

module. 976

To complement these results, we present a short 977

qualitative example in Table 10. For both types of 978

predictions, we have fine-tuned the model using the 979

soft predictions, but passed either hard or soft pre- 980

dictions to the translator module for inference. For 981

clarity, the summarizer generates the same interme- 982

diate summary in both cases. As the BERTScore 983

values show, there is little semantical difference be- 984

tween the two types of prediction. However, given 985

that the argmax has obtained a mildly higher score 986

(alongside a minor inference speedup), we have 987

chosen to use the hard predictions throughout our 988

experiments. 989

A.7 Additional Qualitative Analysis 990

To supplement Table 3, in Table 11 we show an- 991

other qualitative example for Indonesian from Wik- 992

iLingua. For this example, we have only compared 993

SUMTRA with and without the use of the back- 994

translation loss. Without the back-translation loss, 995

the summary predicted by SUMTRA has made ref- 996

erence to angel birds (burung-burung malaikat) 997

and painting (cara untuk mengecatkan) as a means 998

of decorating a costume. The prediction has also in- 999

cluded an incorrect capitalization of “you” (Anda). 1000

While we can roughly infer what the predicted sum- 1001

mary means, the summary predicted by SUMTRA 1002

with the back-translation loss has made the con- 1003

veyed meaning much clearer. Specifically, SUM- 1004

TRA with the back-translation loss has referred to 1005

making wings (buat sayap) and a halo (halo), align- 1006

ing more closely with the meaning of the reference 1007

summary (e.g., buatlah sayap). Like in the qual- 1008

itative example in Table 3, even this summary is 1009

still imperfect, as we note a false generation of the 1010

phrase “kain jambu”. However, as mentioned in 1011

the main paper, we expect that for low-resource 1012

languages such as Indonesian, dedicated training 1013

of the translator would be able to improve the trans- 1014

lation quality and further boost BERTScores. 1015
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Model Summary BERTScore

Reference
Un hombre demasiado asustado para volar debido a la pandemia vivió
sin ser detectado en un área segura del aeropuerto internacional de
Chicago durante tres meses, según los fiscales de EE.UU.

Intermediate Summary
A man arrested after allegedly stealing a badge from an airport in
Chicago was "unauthorised, non-employee" according to the official
prosecutor.

Argmax
Prediction: Un hombre detenido después de haber supuesto robo
de un badge en un aeropuerto de Chicago fue "no autorizado, no
asalariado" según el fiscal oficial.

56.03

Soft
Prediction: Un hombre detenido por supuesto robo de un cohete
de un aeropuerto de Chicago fue "no autorizado", no trabajador",
según el fiscal oficial.

55.43

Table 10: Qualitative example to support the use of the hard vs. soft predictions at inference time (CrossSum
Spanish). (Red) denotes incorrect translations or factual inconsistencies, (Blue) denotes information from the source
document, and (Green) refers to matching information in the reference summary.

Model Summary BERTScore

Reference

Buatlah sayap. Buatlah lingkaran cahaya. Kombinasikan sayap dan
lingkaran cahaya dengan kostum.
Back-Translation: Make wings. Make circles of light. Combine wings and
circles of light with costumes.

SUMTRA (100-shot)

Intermediate Summary: Make or buy wings. Make or buy a halo. Make or
buy a scarf.

57.54Prediction: Buat atau beli sayap. Buat atau beli halo. Buat atau beli kain
jambu.

SUMTRA (100-shot)
Intermediate Summary: Angel wings are a way of decorating your Hal-
loween costume.

45.63
(no BT loss) Prediction: Burung-burung malaikat adalah cara untuk mengecatkan

kostum Halloween Anda.

Table 11: Qualitative example for Indonesian (WikiLingua) for SUMTRA (100-shot) with and without the use
of the back-translation (BT) loss. (Red) denotes incorrect translations or factual inconsistencies, (Blue) denotes
information from the source document, and (Green) refers to matching information in the reference summary.

14


