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Abstract

A vast amount of expert and domain knowledge is captured by causal structural
priors, yet there has been little research on testing such priors for generalization
and data synthesis purposes. We propose a novel model architecture, Causal Struc-
tural Hypothesis Testing, that can use nonparametric, structural causal knowledge
and approximate a causal model’s functional relationships using deep neural net-
works. We use these architectures for comparing structural priors, akin to hy-
pothesis testing, using a deliberate (non-random) split of training and testing data.
Extensive simulations demonstrate the effectiveness of out-of-distribution gener-
alization error as a proxy for causal structural prior hypothesis testing and offers
a statistical baseline for interpreting results. We show that the variational version
of the architecture, Causal Structural Variational Hypothesis Testing can improve
performance in low SNR regimes. Due to the simplicity and low parameter count
of the models, practitioners can test and compare structural prior hypotheses on
small dataset and use the priors with the best generalization capacity to synthesize
much larger, causally-informed datasets. Finally, we validate our methods on a
synthetic pendulum dataset, and show a use-case on a real-world trauma surgery
ground-level falls dataset. Our code is available on GitHub.2

1 Introduction

In most scientific fields, causal information is considered an invaluable prior with strong generaliza-
tion properties and is the product of experimental intervention or domain expertise. These priors can
be in a structural causal model (SCM) form that instantiates unidirectional relationships between
variables using a Directed Acyclic Graph (DAG) [1]. The confidence in causal models needs to be
higher than in a statistical model, as its relationships are invariant and preserved outside the data
domain. In fields such as medicine or economics, where ground truth is often unavailable, domain
experts are relied on to hypothesize and test causal models using experiments or observational data.

Generative models have been crucial to solving many problems in modern machine learning [2]
and generating useful synthetic datasets. Causal generative models learn or use causal informa-
tion for generating data, producing more interpretable results, and tackling biased datasets [3–5].
Recently, [6] introduces a Causal Layer, which allows for direct interventions to generate images
outside the distribution of the training dataset in its CausalVAE framework. Another method, Causal
Counterfactual Generative Modeling (CCGM), in which exogeneity priors are included, extends the
counterfactual modeling capabilities to test alternative structures and “de-bias” datasets [7].
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CausalVAE and CCGM focus on causal discovery concurrently with simulation (i.e. reconstruction
error-based training). But in many real-world applications, a causal model is available or readily hy-
pothesized. It is often of interest to test various causal model hypotheses not only for in-distribution
(ID) test data performance, but for generalization to out-of-distribution (OOD) test data. Thus we
propose CSHTEST and CSVHTEST, which are causally constrained architectures that forgo struc-
tural causal discovery (but not the functional approximation) for causal hypothesis testing. Com-
bined with comprehensive non-random dataset splits to test generalization to non-overlapping dis-
tributions, we allow for a systematic way to test structural causal hypotheses and use those models
to generate synthetic data outside training distributions.

2 Background

2.1 Causality and Model Hypothesis Testing

Causality literature has detailed the benefits of interventions and counterfactual modeling once a
causal model is known. Given a structural prior, a causal model can tell us what parameters are
identifiable from observational data alone, subject to a no-confounders and conditioning criterion
determined by d-separation rules [1]. Because the structural priors are not known to be ground truth,
we assume a more deterministic functional form and we can make no assumptions about identifia-
bility [8]. Instead, we rely on deep neural networks to approximate the functional relationships and
use empirical results to demonstrate the reliability of this method to compare structural hypotheses
in low-data environments.

Structural causal priors are primarily about the ordering and absence of connections between vari-
ables. It is the absence of a certain edge that prevents information flow, reducing the likelihood that
spurious connections are learned within the training dataset distribution. Thus, when comparing our
architecture to traditional deep learning prediction and generative models, we show how hypothe-
sized causal models might perform worse when testing within the same distribution as the training
data, but drastically improve generalization performance when splitting the test and train distribu-
tions to have less overlap. This effect is seen the most in small datasets where traditional deep
learning methods, absent causal priors, can “memorize” spurious patterns in the data and vastly
overfit the training distribution [9].

Our architectures explore the use of the causal layer, provided with priors, as a hypothesis-testing
space. Both CSHTEST and CSVHTEST accept non-parametric (structural only, no functional-form
or parameters) causal priors as a binary Structural Causal Model (SCM) and use deep learning to ap-
proximate the functional relationships that minimize a means-squared reconstruction error (MSE).
Our empirical results show the benefits of testing structural priors using these architectures to estab-
lish a baseline for comparison where stronger causal assumptions cannot be satisfied.

3 Causal Hypothesis Gen and Variational Model

3.1 Causal Hypothesis Testing with CSHTEST

Our model CSHTEST, uses a similar causal layer as in both CCGM and CausalVAE [6, 7]. The
causal layer consists of a structural prior matrix S followed by non-linear functions defined by
MLPs. We define the structural prior S ∈ {0, 1}d×d so that S is the sum of a DAG term and a
diagonal term:

S = A︸︷︷︸
DAG

+ D︸︷︷︸
diag.

(1)

A represents a DAG adjacency matrix, usually referred to as the causal structural model in literature,
and D has 1 on the diagonal for exogenous variables and 0 if endogenous. Then, given tabular inputs
xxx ∈ Rd, Sij is an indicator determining whether variable i is a parent of variable j.

From the structural prior S, each of the input variables is “selected” to be parents of output variables
through a Hadamard product with the features xxx. For each output variable, its parents are passed
through a non-linear η fully connected neural-network. The η networks are trained as general func-
tion approximators, learning to approximate the relationships between parent & child nodes:

x̂xxi = ηi(Si ◦ xxx) (2)

2



where Si represents the i-th column vector of A, and x̂xxi is the i-th reconstructed output [10]. In the
case of exogenous variable xxxi, a corresponding 1 at Dii, ‘leaks’ the variable through, encouraging η
to learn the identity function while a 0 value forces the network to learn some functional relationship
of its parents. The end-to-end structure, as seen in Figure 1, is trained on a reconstruction loss,
defined by ℓ(xxx, x̂xx). We use the L2 loss (Mean Squared Error):

ℓCSHTEST = ||xxx− ηi(Si ◦ xxx)||22 (3)

CSHTEST can be used, then, to operate as a structural hypothesis test mechanism for two structural
causal models S and T. The basic idea is that if ℓS < ℓT, across the majority of non-random
OOD dataset splits for training and testing, then S is a more suitable hypothesis for the true causal
structure of the data than T. In section 4.3 we demonstrate the ID, OOD train/test splits to test this
generalization capacity, and our experimental results provide baselines for this approach.

x4

x1x2

Structural Prior

1 0 1 1
0 1 1 1
0 0 0 0
0 0 0 0

Structural Prior Matrix (S)

0.57 0.66 0.43 1.78
... ... ... ...
... ... ... ...
... ... ... ...

Input Data Batch (x)

◦
0.57

0.66

0

0

Trainable η Networks
(x̂xx4 = η4(xxx1,xxx2))

Figure 1: Causal Hypothesis Generative Architecture (CSHTEST) with an example of how the
Structural Prior Matrix selects for the parents of each variable or identity if it is exogenous. The η
networks approximate the functional relationships in training.

3.2 Causal Variational Hypothesis Testing with CSVHTEST

We extend CSHTEST to a variational model CSVHTEST, that includes sampling functionality like
a VAE [2]. We do this primarily for a more robust model in low Signal-to-Noise (SNR) regimes
and to generate new data points that are not deterministic on the inputs, allowing for more dynamic
synthetic data generation. CSVHTEST consists of an encoder, a CSHTEST causal layer and a
decoder. Further details are provided in the appendix A.3.1.

4 Problem Setting

4.1 Structural Hamming Distance

In causal and graph discovery literature, the Structural Hamming Distance is a common metric
to differentiate causal models by the number of edge modifications (flips in a binary matrix) to
transform one graph to another [11, 12], often described as the norm of the difference between
adjacency matrices:

H = |Ai −Aj |1 (4)

However, Structural Hamming Distance does not account for the “causal asymmetry.” The absence
of edges is a more profound statement than inclusion, as any edge could have a weight of zero.
Hence we define two types of hypotheses that are incorrect relative to ground truth, which could
have the same Structural Hamming Distances:

• Leaky hypotheses are causal hypotheses with extra links. In general, having a leaky hy-
pothesis will produce models that are more prone to overfitting, but with proper weighting,
the solution space of a leaky causal hypothesis includes the ground truth causal structure.
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• Lossy hypotheses are causal hypotheses where we are missing at least one link. Lossy
hypotheses are much easier to detect because a lossy hypothesis results in lost information.
As such, a lossy hypothesis should never do better than the true hypothesis, within finite
sampling and noise errors.

From these definitions, we define the Positive Structural Hamming Distance and the Negative Struc-
tural Hamming Distance. We define these as, for null hypothesis A0 and alternative A1,

H+(A1,A0) = |A1 > A0|1 H−(A1,A0) = |A1 < A0|1 (5)

where H+ counts how leaky the alternative hypothesis is and H− counts how lossy it is. One remark
is that H = H+ + H−, but the “net” Hamming Distance ∆H = H+ − H− can also be a naïve
indicator of how much information is passed through the causal layer.

4.2 Baseline Models

4.2.1 Simulated DAG Baselines

We empirically test our theory that an incorrect hypothesis will result in worse OOD test error using
extensive simulations. We use the same methodology as [13], simulating across multiple DAG nodes
sizes, edge counts, OOD variable splits (described further in 4.3), and Structural Hamming Distance
with iterations at the ground truth and modified DAG levels for robustness. In our experimental
results, we calculate the probability a H of 1 closer to ground truth would have a lower OOD test
error as the ratio across our simulations:

Pr(ℓCSHTEST(Sj) < ℓCSHTEST(Si))
∣∣∣ 1 = |Ai −AGT |1 − |Aj −AGT |1 (6)

where GT is ground truth, and so on for differences 2 and 3. In practice, we actually consider the
probability conditional on a tuple of the positive and negative Hamming distances (H+,H−) thus
allowing us to distinguish hypotheses that are leakier, lossier, or the specific mix of the two. Doing
so allows us to better consider the fundamental asymmetry in causality. Full hyperparameters and
test cases can be found in Appendix A.5.

4.2.2 Sun Pendulum Image Dataset

A synthetic pendulum image dataset is introduced in [6] and we use it here to produce a physics-
based tabular dataset where we know the ground truth DAG and can test the abilities of CSHTEST
and CSVHTEST. More about the dataset is described in Appendix A.2.1.

4.2.3 Medical Trauma Dataset

We also analyze our model on a real-world dataset of brain-trauma ground-level fall patients that
includes multiple health factors, with a focus on predicting a decision to proceed with surgery or
not. We used an initial SHAP analysis to select three variables of high prediction impact: Glasgow
Coma Scale/Score for head trauma severity (GCS), Diastolic Blood Pressure (DBP), the presence of
any Co-Morbidities (Co-Morb), one demographic variable Age, along with the Surgery outcome of
interest. Without the ground truth, we test two structural models shown in 2 based on knowledge of
the selected variables and how they may interact to inform the surgery decision.

H1
GCS Age

DBP

Co-
Morb

Surgery

H2
GCS Age

DBP

Co-
Morb

Surgery

Figure 2: Two hypothesized structural causal priors for a medical dataset on trauma patients and the
decision to perform surgery, H1 and H2.
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4.3 Train/Test Data Splits

In order to test generalization error, we use a deliberate non-random split of our datasets (as well
as a baseline random split). This is done on a single feature column of the tabular data at a time,
splitting the data on that column at either the 25% or 75% quantile, with the larger side (either the
upper or lower 75%) becoming the training data. An example of this train test split is visualized
for both datasets in 3. We recommend viewing OOD test error across as many dimensions and split
quantiles as possible given the size of the dataset and the available compute.

Figure 3: a) A 75% data-split on the pendulum angle feature (grey is training angle, green is testing
angles b) A 75% data-split on the Diastolic Blood Pressure data.

5 Experiments

We test CSHTEST and CSVHTEST in multiple settings. First, we justify their usage by comparing
their performance on both ID and OOD validation to their non-causal counterparts, showing that they
operate as normal when trained in ID but perform much better when trained in OOD. We provide
a table of relative loss probabilities to help interpret results using extensive simulations. Next, we
observe the benefits and limitations of the CSHTEST method when we hypothesize several possible
causal structures on the pendulum problem. Finally, we hypothesize and compare to structural priors
on the medical dataset, and simulate new data.

5.1 Generalization Ability of CSHTEST

Pendulum Comparison
Random Split

Method Train Test Train Test

NN 0.02 0.02 0.04 10.27
VAE 0.11 0.06 16.97 89.4
CSHTEST 0.03 0.03 0.02 0.26
CSVHTEST 0.064 0.51 19.81 38.62

Table 1: Comparison of Traditional Deep Learning Techniques on a random and deliberate dataset
split with CSHTEST and CSVHTEST when the ground truth causal structural information is known.

We compare the CSHTEST with a similarly sized fully-connected NN and CSVHTEST with a
similarly sized VAE. The CSVHTEST also has the same causal layers as the CSHTEST so the
variational models are larger overall than the CSHTEST and NN. Results of the pendulum are shown
in Table 1. Against ID (random) data, the CSHTEST and CSVHTEST effectively perform the same,
suggesting that there is no loss in representation by including the Causal Layer.

However, the CSHTEST and CSVHTEST models generalize much better to OOD data validation
than their respective non-causal comparisons. This demonstrates the use of the CSHTEST and
CSVHTEST as causal replacements to the NN and VAE. Conversely, as the out-of-distribution error
rate can determine the “close-ness” of our model to the true causal model, this would enable the use
of the OOD loss as a proxy for causal hypothesis testing.

5.2 Simulated DAG Hypothesis Testing

Figure 4 shows the type of empirical probability tables we can construct by simulating DAGs of
various sizes under numerous conditions detailed in the appendix A.5. We note how by compar-
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Figure 4: Probability table for a 4 node 4 edge DAG size with a linear SEM ground truth model for
DAG simulations comparing hypothesis with various Hamming Distance Tuples.

ing the Hamming Distance tuples, we do not see a smooth gradient, but jumps as the leaky/lossy
asymmetry is realized. Instead, by also incorporating the net Hamming distance to account for the
causal asymmetry, we can explain the jumps. For instance, (2,2,0) shows a marked drop off com-
pared to any lower Hamming Distance model — like ground truth (0,0,0) — because it has two edge
losses (∆H = −2) which vastly decreases needed information flow. In general, the upper triangle
of this matrix should be below 50% and decrease as the Hamming Distances grow and get lossier.
Within each Hamming distance, the values typically increase as ∆H increases. Extensive simu-
lations like this, done with similar assumptions to a comparable real-world problem, can provide
baseline probabilities even if ground truth is not known, based on the relative Hamming Distances
of the hypotheses. Further results DAG size 5x5 can be found in the appendix A.1.

5.3 Pendulum Hypothesis Testing

We consider 6 different hypotheses, shown in Figure 9, detailed in Appendix A.2.2. We arbitrarily
do a 75% OOD split of the pendulum dataset on the sun position (as an exogenous example) and the
shadow position (as an endogenous example) to test causal hypotheses.

The pendulum results are shown in Figure 5. We can clearly distinguish two tiers of results. One
tier contains GT, leaky, and 2leaky. This tier has a common H− = 0. All other DAGs, having
H− > 0 show a very clear drop in OOD test performance. Thus, for hypothesis testing, we are able
to distinguish causal hypotheses that are missing paths from ground truth. We leave it to further
research to explore how to compare many hypotheses that achieve a similar loss, such as a criterion
that favors the minimal hypothesized DAG.

Of interest is the leak-loss model, which has ∆H = 0. Its loss is generally lower than the purely
lossy hypotheses, but still achieves a higher loss than the ground truth, despite graphically being the
same level of connectedness. This result has the interesting consequence of CSHTEST being able
to reject causal hypotheses with zero net Hamming distance.

5.4 Medical Data Hypothesis Testing

In the medical dataset, the second hypothesis from 2, which includes a path from Age to No-
Comorbidities generalizes better than without the path, suggesting it is a better causal model. We use
both trained architectures to simulate OOD data, with the causal models producing higher fidelity
results to what we expect ground truth to be based on a holdout testset over the same distribution 6.
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Figure 5: Final OOD Test Error Rates of Each Hypothesized DAG structure in the Pendulum Prob-
lem over Two Splits. See Appendix A.2.4 for numerical values and training trajectories.

Medical Results
Hypothesis Train Test

H1 0.024 0.035
H2 0.017 0.025

(a) Medical results of CSHTEST for each of the hypoth-
esized causal models.

(b) The test dataset reconstruction distributions for all
models using medical H1 on the Diastolic BP 75% data

Figure 6: Medical Dataset Results

6 Conclusion

In this paper, we demonstrate the value of CSHTEST and CSVHTEST as causal model hypothesis
testing spaces and the implications as generative models. We verify the effectiveness of our method-
ology on extensive simulated DAGs where ground truth is known, and we further show performance
with ground truth and incorrect causal priors on a physics-inspired example. We show how CSHT-
EST can be used to test causal hypotheses using a real-world medical dataset with ground level
fall, trauma surgery decisions. CSHTEST offers a novel architecture, along with a deliberate data
split methodology that can empower practitioners and domain experts to improve causally informed
modeling and deep learning. There is extensive further research needed to fully realize the utility
of structural causal hypothesis testing in conjugation with deep learning function approximation.
We hope to better differentiate leaky causal models, without constraints on losses, using minimum
entropy properties such as in [14] . We also hope to extend both CSHTEST and CSVHTEST to
more flexible architecture which can combine recent progress with differential causal inference and
binary sampling to better automate full or partial causal discovery. The results are a promising start
to much further research integrating deep learning causal models with real-world priors and domain
knowledge.
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A Appendix

A.1 DAG Simulation Results

A.1.1 DAG Size 5x5: Linear

Figure 7: Probability table for a 5 node 5 edge DAG size with a linear SEM ground truth model for
DAG simulations comparing hypothesis with various Hamming Distance Tuples.

A.2 More about the Pendulum

A.2.1 Pendulum Dataset

This dataset is generated by sweeping sun positions (xsun) and pendulum angles (θ) to produce
realistic shadow width (wshadow) and shadow locations (xshadow) from deterministic non-linear
functions. Figure 8 shows the true DAG and an example generated image. Here, the sun and pen-
dulum variables are exogenous, and the shadow variables are endogenous. We take these values
u = [θ, xsun, wshadow, xshadow]

T ∈ Rd, where d = 4 and compile a tabular dataset. This method-
ology provides a physics-based dataset where the causal, ground truth causal model is known to
show the abilities of CSHTEST and CSVHTEST.

θ xsun

wshadow xshadow

Figure 8: Pendulum toy example. (a) The structural DAG dictating the pendulum tabular dataset.
(b) A visual representation of one of the results from the pendulum dataset.

Each pendulum entry is determined by the two exogenous variables, pendulum angle (θ) and sun
position (xsun). Here, the data samples are generated roughly where the angle of the pendulum and
the angle of light from the sun range ∈ (−45, 45) degrees, generated independently. Then from that,
we calculate a physics-based interpretation of the shadow position and width. In the calculation of
both of the endogenous variables, we introduce non-linearities in operating on various trigonometric

9



functions. In the shadow width case, we also deal with an maximum as we don’t want the width to
go below 0. Afterward, in most of the datasets unless otherwise mentioned, we add Gaussian noise
to the endogenous variables in the dataset so that the SNR is 10dB.

A.2.2 Pendulum Hypotheses

We introduce 6 enumerated hypotheses for the pendulum dataset, enumerated in Figure 9. We have
two hypotheses that are 1 Structural Hamming Distance away from ground truth (leaky and lossy),
and 3 that are 2 Structural Hamming Distances away (2leaky, 2lossy, and leak-loss). The choice
of which edge to add or remove were arbitrary, unless required by design. The individual names
of the hypotheses give away their purpose, as they are meant to be leaky or lossy in a specific way
to observe the empirical qualities of the different hypothesis tests. Two points of interest. Despite
including an additional leakage in 2leaky, we maintain the exogenousity of xsun, meaning that the
θ to xsun is purely a leakage term from the SCM’s perspective. Secondly, the leak-loss hypothesis
has a net Hamming distance of 0 and structurally still has the same connectivity as ground truth.
However, due to the choice of paths, it likely has some functional limitations.

θ xsun

wshadow xshadow

GT

θ xsun

wshadow xshadow

leaky

θ xsun

wshadow xshadow

lossy

θ x∗
sun

wshadow xshadow

2leaky

θ xsun

wshadow xshadow

2lossy

θ xsun

wshadow xshadow

leak-loss

Figure 9: The 6 enumerated pendulum hypotheses that we try out. Red and thin arrows are arrows
that we remove from the true DAG and green arrows are arrows that we add to the true DAG. In the
case of 2leaky, we maintain xsun as an exogenous variable, but allow θ information to also influence
its value.

We also tried a couple other hypotheses, such as adding the link from θ to xsun by dropping the
exogenousity of xsun and the inverse DAG (which is just the same ground truth DAG except with
inverted arrows). Neither of them performed well, so we removed them from further analysis.

A.2.3 Pendulum Training Architecture and Hyperparameters

Unfortunately, there is a limitation with regards to hyperparameters. Because we are effectively
using the average loss over several random initializations onto the generalization set as the primary
proxy of SCM “goodness,” the hyperparameters that we choose to represent the η neural networks
do have possible effects in our overall methods.

• 50 Epochs. 40 Iterations.
• Causal η networks: [4, 16, 4] nodes per output.
• For CSVHTEST, Encoder and Decoder networks: [4, 4] node MLP per input.
• Normally-distributed initializations.
• Activation: Soft Leaky ReLU.
• Optimizer: PSGD (discussed further in A.4). Initial Learning Rate of 0.01.
• Cosine Annealing Scheduler. Warm Restarts implemented for non-variational models.
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Figure 10: Loss trajectory of the Sun Split OOD Run

Figure 11: Loss trajectory of the Shadow Position Split OOD Run

A.2.4 Further Pendulum Results

Full numerical results of Figure 2. Train and Loss trajectory curves are shown in Figures 10 and 11.

Hypothesis GT lossy leaky 2lossy 2leaky leak-loss

Sun 7.14± 0.92 13.48± 1.06 7.41± 0.98 13.26± 0.92 7.21± 0.79 11.66± 1.15
Shadow Position 10.63± 1.09 17.29± 1.16 11.02± 0.93 17.56± 0.60 10.98± 2.16 14.75± 1.08

Table 2: Mean and Standard Deviation of the Final Test Loss in Pendulum Hypothesis Testing
Experiments.

A.3 Background Theory

A.3.1 Variational Hypothesis testing and Data Generation with CSVHTEST

We extend CSHTEST to a variational model CSVHTEST, that includes sampling functionality like
a VAE [2]. Thus CSVHTEST can generate new data points that are not deterministic on the inputs,
allowing for synthetic data generation. CSVHTEST consists of an encoder, a CSHTEST causal
layer and a decoder.

These encoder and decoder networks do not compress the data, but enable a transformation of the
inputs to a normally distributed space, enabling sampling without preventing the relevance of the
causal priors given by Si. Thus, CSVHTEST is an extension of CSHTEST with

zzzi = fenc(xxxi), ẑzzi = ηi(Si ◦ zzz), x̂xxi = fdec(ẑzzi) (7)
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The loss function for CSVHTEST includes a weighted Kullback–Leibler (KL) divergence loss to
normalize the latent space on top of the reconstruction loss as in CSHTEST. We also add a weighted
latent reconstruction loss for the embedded CSHTEST which enforces separation of the encoder and
decoders as transformations, and the η networks as the functional approximators on these transfor-
mations.

ℓKL = KL(zzzi||N (0, 1)) (8)
ℓlatent = ℓ(zzz, ẑzz) (9)

ℓMSE = ||xxx− ηi(Si ◦ xxx)||2 (10)
ℓCSHTEST = ℓMSE + λKL ∗ ℓKL + λlatent ∗ ℓlatent (11)

A.3.2 Constructing a Causal Generative Model

Following the classic VAE model, given inputs x, we encode into a latent space z with distribution
qϕ where we have priors given by p(·) [2].

ELBO = EqX

[
Ez∼qϕ [log pθ(x|z)]−D(qϕ(z|x)∥pθ(z))

]
(12)

In [6], the causal layer is described as a noisy linear SCM:

z = ST z+ ϵϵϵ (13)

which finds some causal structure of the latent space variables z with respect to a matrix S. By itself,
S functions as the closest linear approximator for the causal relationships in the latent space of z.

A non-linear mask is applied to the causal layer so that it can more accurately estimate non-linear
situations as well. Suppose S is composed of column vectors Si. For each latent space concept i,
define a non-linear function gi : Rn → R and modify equation (13) such that

zi = gi(Si ◦ z) + ϵϵϵ (14)

where ◦ is the Hadamard product. In this formulation, the view of S changes from one of function
estimation to one of adjacency. That is, if S is viewed as a binary adjacency matrix, the gi functions
take the responsibility of reconstructing z given only the the parents, dictated by Si ◦ z. In the sim-
plest case, if gi(v) =

∑
j vj , the summation of all the values of v, then Equation (14) degenerates

back to Equation (13) [15].

Including the causal layer introduces many auxiliary loss functions that we mostly adopt [6]. First is
a label loss (15), where the adjacency matrix S should also apply to the labels u. This loss is used in
pre-training in its linear form to learn a form of S prior to learning the encoder and decoders. After
pre-training, we apply a nonlinear mask fi that functions similarly to gi, but operates on the label
space directly, but with the same S.

ℓu = EqX

[
n∑

i=1

∥ui − fi(Si ◦ u)∥2
]

(15)

The latent loss tries to enforce the SCM, described by Equation (14).

ℓz = Ez∼qϕ

[
n∑

i=1

∥∥∥zi − gi(Si ◦ z)2
∥∥∥] (16)

Further enforcing the label spaces, we can define a prior p(z|u). We use the same conventions as
in [6] and say that

p(z|u) ∼ N (un, I)

where un ∈ [−1, 1] are normalized label values. This translates to an additional KL-loss.

We notice that the Variational version CSVHTEST often works better than CSHTEST in the pres-
ence of noise. Results are shown in Figure 12.
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Figure 12: Comparison of CSHTEST, CSVHTEST, NN, and VAE in the presence of noise

A.4 Causal Problems and the Investigation of Optimizers

While working on the causal problems, because of the input of so many zeros in the structural
Hadamard product, the loss space is not very well-behaved. As a result, we notice some inconsis-
tency in loss trajectory with different optimizers. We do an initial investigation on the possibilities
of different optimizers in our problem space.

Initially optimizers Adam, SGD, Adabelief, and PSGD [16–19] are compared primarily for mean
OOD MSE test loss across iterations in a limited number of test cases [20, 21]. Due to better per-
formance, Adabelief and PSGD are compared in a more robust set of cases. Figure 13 shows a
scatter plot of the final losses across all test cases, and a subset of the results are listed in Table
A.4. Although PSGD routinely outperform AdaBelief both in mean final loss and variance (across
3 iterations per test), there were select conditions and DAGs in which any single optimizer would
underperform or not converge. We leave it to further research to investigate optimizer performance
and considerations for causally informed deep learning architecture that are constrained in unique
ways than traditional deep learning models. PSGD had better loss in 171 cases, and lower variance
in 148 of the 176 test cases.

Optimizer Test Cases (176 total, every combination of below):

• DAG Size (number of nodes, number of edges): (4,4), (5,5)

• SEM: linear, nonlinear generative functions

• Model: CSHTEST, CSVHTEST

• SNR: 0 noise (inf SNR), 7 dB

• Hamm (Sturctural Hamming Distance): 0 (ground truth), 1

• Split: ID (in-dsitribution or random), OOD (out-of-dist. or 75% quantile split)

• Split Number: Which node/variable is data being split on (not relevant to ID)

Table A.4 has results for DAG Size (4,4) nonlinead
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Figure 13: Comparison of final test loss of optimizers PSGD and AdaBelief across 176 unique tests

AdaBelief PSGD
Model SNR Hamm Split Split_Num

CHGen 7.0 0 ID 1 0.17 ± 2.26e-04 0.15 ± 6.74e-06
OOD 0 0.17 ± 2.26e-04 0.15 ± 6.74e-06

1 0.17 ± 2.26e-04 0.15 ± 6.74e-06
2 0.17 ± 2.26e-04 0.15 ± 6.74e-06
3 0.17 ± 2.26e-04 0.15 ± 6.74e-06

1 ID 1 0.2 ± 6.69e-03 0.16 ± 1.18e-03
OOD 0 0.2 ± 6.69e-03 0.16 ± 1.18e-03

1 0.2 ± 6.69e-03 0.16 ± 1.18e-03
2 0.2 ± 6.69e-03 0.16 ± 1.18e-03
3 0.2 ± 6.69e-03 0.16 ± 1.18e-03

inf 0 ID 1 0.0 ± 4.07e-05 0.0 ± 9.75e-10
OOD 0 0.0 ± 4.07e-05 0.0 ± 9.75e-10

1 0.0 ± 4.07e-05 0.0 ± 9.75e-10
2 0.0 ± 4.07e-05 0.0 ± 9.75e-10
3 0.0 ± 4.07e-05 0.0 ± 9.75e-10

1 ID 1 0.0 ± 3.92e-05 0.0 ± 2.54e-10
OOD 0 0.0 ± 3.92e-05 0.0 ± 2.54e-10

1 0.0 ± 3.92e-05 0.0 ± 2.54e-10
2 0.0 ± 3.92e-05 0.0 ± 2.54e-10
3 0.0 ± 3.92e-05 0.0 ± 2.54e-10

CVHGen 7.0 0 ID 1 0.33 ± 4.85e-02 0.9 ± 1.54e+00
OOD 0 0.33 ± 4.85e-02 0.9 ± 1.54e+00

1 0.33 ± 4.85e-02 0.9 ± 1.54e+00
2 0.33 ± 4.85e-02 0.9 ± 1.54e+00
3 0.33 ± 4.85e-02 0.9 ± 1.54e+00

1 ID 1 0.28 ± 2.72e-02 0.19 ± 9.08e-04
OOD 0 0.28 ± 2.72e-02 0.19 ± 9.08e-04

1 0.28 ± 2.72e-02 0.19 ± 9.08e-04
2 0.28 ± 2.72e-02 0.19 ± 9.08e-04
3 0.28 ± 2.72e-02 0.19 ± 9.08e-04

inf 0 ID 1 0.0 ± 3.55e-06 0.0 ± 1.08e-09
OOD 0 0.0 ± 3.55e-06 0.0 ± 1.08e-09

1 0.0 ± 3.55e-06 0.0 ± 1.08e-09
2 0.0 ± 3.55e-06 0.0 ± 1.08e-09
3 0.0 ± 3.55e-06 0.0 ± 1.08e-09

1 ID 1 0.18 ± 8.86e-02 0.0 ± 1.62e-08
OOD 0 0.18 ± 8.86e-02 0.0 ± 1.62e-08

1 0.18 ± 8.86e-02 0.0 ± 1.62e-08
2 0.18 ± 8.86e-02 0.0 ± 1.62e-08
3 0.18 ± 8.86e-02 0.0 ± 1.62e-08
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Figure 14: Example of loss curves for optimizers PSGD and AdaBelief inf,1 dB SNR and 0,1
Hamming Distance.

A.5 DAG Simulation Settings

A.5.1 Training Hyperparameters

The following fixed setting where used when training models for the simulations. A random seed
(1) was used in all experiments.

• 100 Epochs

• Random Weight Matrix N(0, 1) for linear model weights

• Linear model η nets size: [4,4] MLP

• Non-linear model η nets size: [4,16,8,2] MLP

• activation function: Soft Leaky ReLU

• 10 Iterations of a Ground Truth DAG per DAG size

• 5 Iterations of modified DAGs per Hamming Distance

• 100 data points (N) per DAG of training data

• Optimzer: PSGD

• Noise Gaussian, 0-mean, variance calculated per SNR

• Split Number: Which node/variable is data being split on (not relevant to ID)

A.5.2 Test Cases

• DAG Size (number of nodes, number of edges): (4,4), (5,5)

• SEM: linear generative functions

• Model: CSHTEST

• SNR: 0 noise (inf SNR), 5 dB

• Hamm (Structural Hamming Distance): 0 (ground truth), 1, 2, 3, 4

• OOD (out-of-dist. or 75% quantile split)

• Split Number: Which node/variable is data being split, one per each variable (4 for a 4
node graph)
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A.6 Final Losses with Sample Variances

Train Test
Hypothesis Split Model

H1 Random CGen 0.02± 2.34e− 07 0.02± 9.42e− 08
CVGen 7.09± 1.71e+ 00 8.21± 2.44e+ 00

DBP 75% CGen 0.02± 2.00e− 06 0.04± 3.82e− 06
CVGen 0.74± 1.81e− 02 0.23± 2.32e− 02

GCS 25% CGen 0.02± 4.67e− 07 0.03± 2.67e− 06
CVGen 0.39± 4.62e+ 00 1.08± 4.28e+ 00

H2 Random CGen 0.02± 6.01e− 08 0.02± 3.88e− 07
CVGen 7.1± 3.82e+ 00 8.17± 5.36e+ 00

DBP 75% CGen 0.02± 5.07e− 07 0.03± 6.59e− 08
CVGen 0.74± 3.66e− 03 0.17± 3.16e+ 01

GCS 25% CGen 0.02± 1.30e− 07 0.06± 5.45e− 05
CVGen 0.36± 2.44e+ 00 3.83± 3.94e+ 00

16


	Introduction
	Background
	Causality and Model Hypothesis Testing

	Causal Hypothesis Gen and Variational Model
	Causal Hypothesis Testing with CSHTest
	Causal Variational Hypothesis Testing with CSVHTest

	Problem Setting
	Structural Hamming Distance
	Baseline Models
	Simulated DAG Baselines
	Sun Pendulum Image Dataset
	Medical Trauma Dataset

	Train/Test Data Splits

	Experiments
	Generalization Ability of CSHTest
	Simulated DAG Hypothesis Testing
	Pendulum Hypothesis Testing
	Medical Data Hypothesis Testing

	Conclusion
	Appendix
	DAG Simulation Results
	DAG Size 5x5: Linear

	More about the Pendulum
	Pendulum Dataset
	Pendulum Hypotheses
	Pendulum Training Architecture and Hyperparameters
	Further Pendulum Results

	Background Theory
	Variational Hypothesis testing and Data Generation with CSVHTest
	Constructing a Causal Generative Model

	Causal Problems and the Investigation of Optimizers
	DAG Simulation Settings
	Training Hyperparameters
	Test Cases

	Final Losses with Sample Variances


