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Abstract

Conditional mean independence (CMI) testing is
crucial for statistical tasks including model de-
termination and variable importance evaluation.
In this work, we introduce a novel population
CMI measure and a bootstrap-based testing proce-
dure that utilizes deep generative neural networks
to estimate the conditional mean functions in-
volved in the population measure. The test statis-
tic is thoughtfully constructed to ensure that even
slowly decaying nonparametric estimation errors
do not affect the asymptotic accuracy of the test.
Our approach demonstrates strong empirical per-
formance in scenarios with high-dimensional co-
variates and response variable, can handle multi-
variate responses, and maintains nontrivial power
against local alternatives outside an n−1/2 neigh-
borhood of the null hypothesis. We also use nu-
merical simulations and real-world imaging data
applications to highlight the efficacy and versatil-
ity of our testing procedure.

1. Introduction
Conditional mean independence (CMI) testing is a funda-
mental tool for model simplification and assessing variable
importance, and plays a crucial role in statistics and ma-
chine learning. In traditional statistical applications, such
as nonparametric regression, CMI testing identifies sub-
sets or functions of covariates that meaningfully predict the
response variable. This is essential for improving model effi-
ciency, accuracy, and interpretability by avoiding redundant
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variables. In machine learning, CMI testing has broad ap-
plications in areas like interpretable machine learning (Mur-
doch et al., 2019), representation learning (Bengio et al.,
2013; Huang et al., 2024) and transfer learning (Maqsood
et al., 2019; Zhuang et al., 2020).

In this paper, we address the problem of CMI testing for
multivariate response variables and covariates. Specifically,
for random vectors X ∈ RdX , Y ∈ RdY , and Z ∈ RdZ ,
we test the null hypothesis H0 that Y is conditionally mean
independent of X given Z, i.e., E[Y |X = x, Z = z] =
E[Y |Z = z], a.e. (x, z) ∈ RdX+dZ . For example, consider
predicting age Y from a facial image. To test whether Y
can be predicted using images with a specific facial region
(potentially containing sensitive information) covered in
black, X can represent the covered region and Z the re-
maining facial image. Similarly, to test whether Y can be
predicted using a low-resolution version or extracted fea-
tures of a facial image, X can represent the original image
and Z a low-dimensional feature vector derived from X
using standard extraction methods (e.g., Autoencoder, Av-
erage pooling, or PCA (Berahmand et al., 2024)). Under
H0, removing X from the predictive model f(X,Z), where
f : RdX+dZ → RdY denotes the nonparametric regression
function, does not reduce prediction accuracy.

For machine learning tasks, identifying which (functions
of) covariates contribute to predicting the response is par-
ticularly important, as deep neural networks (DNNs) often
process high-dimensional data, such as images and text, that
may include irrelevant features (Li et al., 2017; Van Lan-
deghem et al., 2010). Performing dimensionality reduction
before DNN training provides several advantages: it en-
hances interpretability, improves prediction accuracy, and
reduces computational costs (Cai et al., 2018). In evaluating
DNN training, covariate significance is typically assessed
by comparing performance metrics, such as mean squared
error or classification accuracy, for DNNs trained with and
without specific covariates (Dai et al., 2022; Williamson
et al., 2023). As discussed in Section 2.3 of Williamson
et al. (2023), many common performance metrics, such
as the coefficient of determination (R2) for regression and
empirical risk with cross-entropy or 0-1 loss for binary clas-
sification, are functionals of the conditional mean functions
of Y , which means H0 will imply that the covariates are not
significant. Thus, CMI testing provides a valuable tool for
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assessing covariate importance across a variety of machine
learning applications.

1.1. Related literature

To the best of our knowledge, most existing CMI tests focus
on univariate Y and face one or more of the following three
major issues: (1) finite-sample performance deteriorates
when some or all of (X,Y, Z) are high-dimensional; (2) the
tests lack theoretical size guarantees in general nonparamet-
ric settings; and (3) they exhibit weak power in detecting
local alternatives. For a recent survey, see Lundborg (2022).
We discuss how these challenges arise and how existing
CMI tests have partially addressed them.

Performance deterioration in high dimensional setting.
This issue primarily arises from the estimation of the condi-
tional mean functions r(z) := E[Y |Z = z] and m(x, z) :=
E[Y |X = x, Z = z]. Early CMI tests, such as those in
Fan & Li (1996); Delgado & Manteiga (2001); Zhu & Zhu
(2018); Lavergne & Vuong (2000); Aıt-Sahalia et al. (2001),
relied on kernel smoothing methods for these estimations.
Consequently, these CMI tests suffer from the curse of di-
mensionality: their performance declines significantly as
the dimensions dZ , dX + dZ , and/or dY increase (Zhou
et al., 2022, Section 1). For instance, Figure 1 in Zhu & Zhu
(2018) shows that the empirical power of tests proposed by
Fan & Li (1996) and Delgado & Manteiga (2001) decreases
sharply with increasing dZ and dX , exhibiting trivial power
under a sample size of n = 200 with moderate dimension-
ality (dZ = 4 and dX ≥ 8). To address this, recent CMI
tests utilize machine learning tools, such as deep neural net-
works (DNNs) and the kernel trick, to estimate conditional
mean functions. These tools are effective in approximating
complex, high-dimensional functions with underlying low-
dimensional structures. For example, tests in Williamson
et al. (2021); Dai et al. (2022); Lundborg et al. (2024); Cai
et al. (2022); Williamson et al. (2023); Cai et al. (2024)
leverage DNNs for conditional mean estimation, achieving
better performance in high-dimensional settings.

Theoretical size guarantee. The main challenge in es-
tablishing a theoretical size guarantee stems from two
key issues. First, most of the existing CMI tests (ex-
cept the one proposed by Delgado & Manteiga (2001))
rely on the sample estimation of the population CMI mea-
sure Γ := E

[
(r(Z) − m(X,Z))2w(X,Z)

]
or its equiv-

alent forms, where w is a positive weight function. A
common plug-in estimator of Γ is given by Γ̂(r̂, m̂) =
n−1

∑n
i=1(r̂(Zi) − m̂(Xi, Zi))

2w(Xi, Zi), where r̂ and
m̂ are estimators of the conditional mean functions. For
a population CMI measure to be valid, it must uniquely
characterize CMI, meaning that the measure equals zero if
and only if H0 holds. While Γ satisfies this requirement,
its estimator Γ̂(r̂, m̂) suffers from a degeneracy problem:

under H0, Γ̂(r̂, m̂) converges to zero at a rate faster than
the n−1/2 rate at which Γ̂(r,m) − Γ converges to a non-
degenerate limiting distribution under the alternative (Fan
& Li, 1996, Section 1).

Second, the nonparametric estimation errors for r(z) and
m(x, z) typically decay slower than the n−1/2 parametric
rate, and the convergence rate of Γ̂(r̂, m̂) under H0 depends
heavily on how quickly these errors decay. For CMI tests
that use kernel smoothing to estimate the conditional mean
functions, the estimation error has an explicit form, allow-
ing it to be addressed directly, along with the degeneracy
issue, when deriving asymptotic results under H0. As a
result, all the aforementioned kernel smoothing-based CMI
tests have theoretical size guarantees. In contrast, due to the
black-box nature of DNNs, the estimation errors for r(z)
and m(x, z) cannot be explicitly decomposed or handled
in the same way as kernel smoothing estimators. Conse-
quently, addressing the degeneracy issue requires additional
debiasing procedures to mitigate the impact of these errors
and achieve accurate size control. For example, Williamson
et al. (2021) and Lundborg et al. (2024) constructed statis-
tics based on alternative forms of Γ to reduce bias. However,
the degeneracy issue persists: as shown in Theorem 1 of
Williamson et al. (2021), their estimator is

√
n-consistent

when Γ > 0, but no asymptotic results are provided un-
der H0 (i.e., Γ = 0). Similarly, the test in Lundborg et al.
(2024), which builds on the conditional independence test
from Shah & Peters (2020), relies on strong assumptions
to bypass the degeneracy issue, as outlined in Section 2.1
and Part (a) of Theorem 4 in Lundborg et al. (2024). To
address the degeneracy issue, Dai et al. (2022) introduced
additional noise of order Op(n

−1/2) to the estimator of Γ,
while Williamson et al. (2023) utilized sample splitting to
estimate separate components of an equivalent form of Γ
on different subsamples. However, both approaches are ad
hoc (Section 6.2 of Verdinelli & Wasserman (2024)) and, as
discussed in Appendix S3 of Lundborg et al. (2024), suffer
from significant power loss under the alternative hypothesis.

Weak power against local alternatives. On one hand,
the CMI tests proposed in Fan & Li (1996); Zhu & Zhu
(2018); Lavergne & Vuong (2000); Aıt-Sahalia et al. (2001);
Williamson et al. (2021); Dai et al. (2022); Williamson et al.
(2023) fail to detect local alternatives with signal strength
∆n :=

√
E[(r(Z)−m(X,Z))2] of order n−1/2, primarily

due to their reliance on the population measure Γ. Specif-
ically, the tests in Fan & Li (1996); Zhu & Zhu (2018);
Lavergne & Vuong (2000); Aıt-Sahalia et al. (2001) take
the form nhs/2Γ̂, where h → 0 is a bandwidth parame-
ter used in kernel smoothing, and s = dZ or dX + dZ .
Consequently, these tests cannot detect local alternatives
converging to the null faster than n−1/2h−s/4. The tests
in Williamson et al. (2021); Dai et al. (2022); Williamson
et al. (2023) use the population CMI measure Γ0 = Γ1−Γ2,
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Table 1. Summary of existing CMI tests. High-Dim: whether
the test has good empirical performance when some or all the
dimensions of X , Y and Z are large; Size Guarantee: whether
the test has theoretical results under H0 that guarantee accurate
asymptotic size control in general nonparametric setting; Local Alt:
whether the test can detect local alternatives with signal strength
∆n converging to zero at the parametric rate n−1/2.

Tests High-Dim Size Guarantee Local Alt
Fan & Li (1996) No Yes No

Delgado & Manteiga (2001) No Yes Yes
Zhu & Zhu (2018) No Yes No

Lavergne & Vuong (2000) No Yes No
Aıt-Sahalia et al. (2001) No Yes No
Williamson et al. (2021) Yes No No

Dai et al. (2022) Yes Yes No
Lundborg et al. (2024) Yes No Yes

Williamson et al. (2023) Yes Yes No
Cai et al. (2024) Yes Yes No

Our method Yes Yes Yes

where Γ1 = E[(Y −r(Z))2] and Γ2 = E[(Y −m(X,Z))2],
which is equivalent to Γ. Since the quadratic terms Γ1

and Γ2 can only be estimated at the n−1/2 rate, these tests
are limited to detecting local alternatives with ∆n of order
n−1/4. On the other hand, the test proposed in Cai et al.
(2024) employs sample splitting and requires the size of the
training subsample used to estimate the conditional mean
functions to be substantially larger than that of the testing
subsample. As a result, their test is limited to detecting local
alternatives with ∆n converging to zero slower than n−1/2,
which can still result in significant power loss in practice.

1.2. Our contributions

Table 1 summarizes limitations of existing CMI tests. To
overcome these challenges, we propose a novel CMI testing
procedure with the following advantages:

1. The test demonstrates strong empirical performance
even when some or all dimensions of X , Y , and Z
are high. Notably, it is well-suited for scenarios where
imaging data serve as covariates, responses, or both.

2. The test achieves precise asymptotic size control under
H0.

3. The test exhibits nontrivial power against local alterna-
tives outside an n−1/2-neighborhood of H0.

To achieve these features, we propose a new population CMI
measure closely related to the conditional independence
measure introduced in Daudin (1980). Additionally, we
develop a sample version of this population measure in a
multiplicative form, which is key to mitigating the impact of
estimation errors in nonparametric nuisance parameters (i.e.,
the conditional mean functions). Our test not only requires
estimating r(z) but also the conditional mean embedding
(CME, Song et al., 2009, Definition 3) of X given Z into a
reproducing kernel Hilbert space (RKHS) on the space of
X . Instead of directly estimating the CME using DNNs, we

train a generative neural network (GNN) to sample from the
(approximated) conditional distribution of X given Z. The
CME is then estimated using the Monte Carlo method with
samples generated from the trained GNN.

1.3. Organization and notations
The paper is organized as follows: Section 2 introduces the
proposed population CMI measure, the test statistic, and the
bootstrap calibration procedure, along with its asymptotic
properties and consistency results. Section 3 evaluates the
test using finite sample simulations, comparing it with
other methods. Section 4 presents two real data examples.
Section 5 concludes with final remarks. All proofs and
additional details are deferred to the Appendix. A Python
implementation of our proposed test procedure is available
at https://github.com/LinjunHuang86749/
Testing-CMI-Using-Generative-NN.
The following notations will be used throughout the pa-
per. For any positive integer d and random vectors
(X1, X2, . . . , Xd, Z) defined on the same probability space,
PX1X2···Xd and PX1X2···Xd|Z denote the joint distribution
of X1, X2, . . . , Xd and its conditional distribution given
Z, respectively. Let EZ represent the expectation with re-
spect to PZ , and let Pm denote the Lebesgue measure on
Rd. For a positive integer n, define [n] = {1, 2, . . . , n}.
For a probability measure µ(·) on Rd and p ≥ 1, let
Lp(Rd, µ) = {f : Rd → R :

∫
|f(x)|p dµ(x) < ∞}.

For any Hilbert spaces A and B, let A ⊗ B denote their
tensor product, and use ⟨ · , · ⟩A and ∥ · ∥A to denote the
inner product and induced norm on A, respectively. For
random vectors a, b ∈ Rd, the Gaussian kernel is defined as
K(a, b) = exp(−∥a− b∥22/(2σ2)) and the Laplacian kernel
as K(a, b) = exp(−∥a− b∥1/σ), where σ > 0 is the band-
width parameter, ∥ · ∥2 is the Euclidean ℓ2-norm, and ∥ · ∥1
is the ℓ1-norm.

2. Conditional Mean Independence Testing
In this section, we introduce a novel population measure for
evaluating CMI and propose a corresponding sample-based
statistic for conducting the CMI test. We then establish
theoretical guarantees for the proposed procedure, including
size control and power against local alternatives.

2.1. Population conditional mean independence measure
Recall that the goal is to test the null hypothesis of H0 :
E[Y |X,Z] = E[Y |Z] a.s.-PXZ against the alternative hy-
pothesis of H1 : P

(
E[Y |X,Z] ̸= E[Y |Z]

)
> 0. To moti-

vate our population measure for evaluating CMI, we begin
with the following result, which provides equivalent charac-
terizations of CMI (Daudin, 1980).
Proposition 1. If E[∥Y ∥22] < ∞, then the following prop-
erties are equivalent to each other:

(a) E[Y |X,Z] = E[Y |Z] a.s.-PXZ .

(b) E
[(
f(X,Z) − E[f(X,Z)|Z]

)
Y
]
= 0 for any f ∈
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L2(RdX+dZ ,PXZ).

(c) E
[(
f(X,Z)−E[f(X,Z)|Z]

) (
Y −E[Y |Z]

)]
= 0 for

any f ∈ L2(RdX+dZ ,PXZ).

Remark 2. It is straightforward to see that (a) ⇒ (b) ⇒
(c), and (c) implies (a) by taking f(X,Z) = E[Y ⊤c |X,Z]
over all c ∈ RdY . The only difference between (c) and (b)
in Proposition 1 is that Y is centered at E[Y |Z] in (c). This
additional centering is crucial for reducing biases from the
estimation of the conditional mean functions; our proposed
population CMI measure will be derived from (c) by consid-
ering all f within a dense subset of L2(RdX+dZ ,PXZ).

Let KX : RdX × RdX and KZ : RdZ × RdZ denote two
symmetric positive-definite kernel functions that define two
reproducing kernel Hilbert spaces (RKHS) HX and HZ
over the spaces of X and Z, respectively. Additionally, let
K0 = KX×KZ represent the product kernel, with H0 being
the corresponding RKHS induced by K0 over the product
space RdX × RdZ . Motivated by part (c) of Proposition 1,
we define linear operator Σ : RdY → H0,

Σ c =E
{[

K0

(
(X,Z), ·

)
− E

[
K0

(
(X,Z), ·

)∣∣Z]]
[
Y − E[Y |Z]

]⊤
c
}
, for any c ∈ RdY .

From the reproducing property, we see that for any f ∈ H0

and any c ∈ RdY ,

⟨f,Σ c⟩H0 =E
{[

f(X,Z)− E[f(X,Z)|Z]
][
Y − E[Y |Z]

]⊤
c
}
.

Under the assumption that the RKHS H0 is dense in
L2(RdX+dZ , PXZ), which holds if KX and KZ are L2-
or c0-universal kernels (Szabó & Sriperumbudur, 2018, The-
orem 5), such as the Gaussian and Laplacian kernels consid-
ered in this paper, the preceding display along with Propo-
sition 1 implies that the null hypothesis H0 holds if and
only if Σ is the zero operator (i.e., Σc = 0 ∈ H0 for any
c ∈ RdY ). The following proposition formalizes this intu-
ition and serves as the foundation for our proposed popula-
tion CMI measure,

Γ∗ =E
[
U(X,X ′)V (Y, Y ′)KZ(Z,Z

′)
]
, (1)

where V (Y, Y ′) =
[
Y − gY (Z)

]⊤[
Y ′ − gY (Z′)

]
, and

U(X,X ′) =KX(X,X ′)− ⟨gX(Z),KX(X ′, ·)⟩HX

−⟨ gX(Z′),KX(X, ·)⟩HX + ⟨gX(Z), gX(Z′)⟩HX .

Here, (X ′, Y ′, Z ′) is an independent copy of (X,Y, Z),
gY and gX are defined as gY (·)=E[Y |Z= · ] ∈ RdY and
gX(·)=E[KX(X, ·) |Z= · ] ∈ HX , respectively.
Proposition 3. If Assumption 4(a) holds, then (see Defi-
nition 11 in Appendix C for the definitions of the Hilbert-
Schmidt operator and norm)

(a) Σ is a Hilbert-Schmidt operator, and its Hilbert-Schmidt
norm, denoted as ∥Σ∥HS, satisfies ∥Σ∥2HS = Γ∗.

(b) The null H0 holds if and only if Γ∗ = 0.

Due to the multiplicative form inside the expectation in
equation (1), when constructing a sample version of Γ∗ as
the test statistic, the estimation errors of the two nuisance
parameters (gX and gY ) do not affect the asymptotic prop-
erties of the statistic, as long as the product of these errors
decays faster than n−1/2; see Lemma 17 in Appendix E.
This desirable property is commonly referred to as double
robustness (Bang & Robins, 2005; Zhang et al., 2024).
Our Γ∗ bears similarity to the maximum mean discrepancy-
based conditional independence measure (MMDCI) pro-
posed in Zhang et al. (2024), which was designed for testing
the stronger null hypothesis of conditional independence
(CI). While CI assumes that the conditional distribution
of the response variable Y is independent of an additional
covariate X given an existing covariate Z, the CMI assump-
tion only requires that the conditional mean function of Y
does not depend on X given Z. This means that includ-
ing X in the regression function of Y does not improve its
predictive ability in the mean squared error sense. In con-
trast, rejecting CI does not provide a direct interpretation in
terms of predictive ability (Lundborg et al., 2024, Section
1). Furthermore, the MMDCI statistic compares the joint
distribution of (X,Y, Z) under the null with its true distri-
bution using maximum mean discrepancy (MMD) (Gretton
et al., 2012), requiring stronger assumptions to fully char-
acterize CI (see Assumption 1 in Zhang et al. (2024)). In
contrast, our population CMI measure avoids using MMD to
capture the full distributional properties of (X,Y, Z), mak-
ing it more suitable for CMI testing compared to existing
population CMI measures. Computationally, the test pro-
posed in Zhang et al. (2024) requires training two generative
neural networks (GNNs) to sample from the conditional dis-
tributions of X and Y given Z, respectively. In contrast,
our proposed test statistic only requires sampling from the
conditional distribution of X given Z, resulting in lower
computational cost and reduced memory usage.

2.2. Testing procedure
To construct a sample version of Γ∗, it is necessary to
estimate gY and gX . To address the curse of dimension-
ality, we use deep neural networks (DNNs) to estimate
gY . For gX , which is an RKHS-valued function, we esti-
mate gX(z) for a fixed z ∈ RdZ by sampling M copies
{Xz,i}Mi=1 from the conditional distribution of X given
Z = z. The estimate of gX(z) is then given by the sample
average M−1

∑M
i=1 KX(Xz,i, ·) ∈ HX . Specifically, using

the noise-outsourcing lemma (Theorem 6.10 of Kallenberg
(2002); see also Lemma 2.1 of Zhou et al. (2022)), for
any integer m ≥ 1, there exists a measurable function G
such that, for any η ∼ N(0, Im) independent of Z, we
have G(η, Z) |Z ∼ PX|Z . Based on this result, we train a
generative moment matching network (GMMN, Dziugaite
et al., 2015; Li et al., 2015) to approximate G. For any
fixed z ∈ RdZ , we generate i.i.d. copies ηi from N(0, Im),
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input them into the trained GMMN Ĝ along with z, and
treat the outputs Ĝ(ηi, z) as approximately sampled from
the conditional distribution of X given Z = z. We refer to
the trained GMMN as the (conditional) generator, and de-
tailed training procedures are provided in Appendix A. Note
that other generative models, such as generative adversarial
networks (GAN) (Goodfellow et al., 2014) and diffusion
models (Yang et al., 2023), can also be applied to approx-
imate G, as long as the approximation errors satisfy mild
decaying conditions. The field of generative modeling has
recently seen significant advances, with notable examples
including Athey et al. (2024); Baptista et al. (2020); Shi et al.
(2022); Nguyen et al. (2024). Incorporating these newly de-
veloped models into our testing procedure is straightforward
and may potentially improve both the computational cost
and the performance of the proposed test.
In order to eliminate dependence on conditional gener-
ator estimation and improve test size accuracy, we fol-
low Shi et al. (2021) and adopt a sample-splitting and
cross-fitting framework to train the GMMN and DNN.
For easy presentation, we consider two-fold splitting in
this paper, although the test can be readily generalized to
the multiple-fold splitting setting. Specifically, for posi-
tive integers n, M and m ∈ [M ], let {(Xi, Yi, Zi)}ni=1
and {ηmi }ni=1 be i.i.d. copies of (X,Y, Z) and η such that{
{(Xi, Yi, Zi)}ni=1, {η1i }ni=1, . . . , {ηmi }ni=1

}
are mutually

independent. Let X̃(m)
i = G(ηmi , Zi) denote the data sam-

pled from PXi|Zi
. We divide [n] into two equal folds J (1)

and J (2) where J (1) := J (−2) = {1, 2, . . . , ⌊n/2⌋} and
J (2) := J (−1) = [n]/J (1). For j ∈ [2], we train a GMMN
generator Ĝj using data (Xi, Zi) for i ∈ J (−j). Similarly,
we train a DNN ĝj using data (Yi, Zi) for i ∈ J (−j) as an
estimator of gY (four neural networks are trained in total).
Let X̂(m)

i = Ĝj(η
m
i , Zi) and ĝY (Zi) = ĝj(Zi) if i ∈ J (j),

then we define the test statistic as

T̂n=
1

2

2∑
s=1

[ 1
n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

Û(Xj , Xk)V̂ (Yj , Yk)KZ(Zj , Zk)
]
,

where Û(Xj , Xk)=KX(Xj , Xk)−
1

M

M∑
m=1

KX(Xj , X̂
(m)
k )

− 1

M

M∑
m=1

KX(Xk, X̂
(m)
j )+

1

M

M∑
m=1

KX(X̂
(m)
j , X̂

(m)
k ),

and V̂ (Yj , Yk)=
[
Yj−ĝY (Zj)

]⊤[
Yk−ĝY (Zk)

]
.

Given the trained neural networks and assuming Gaussian
or Laplacian kernel functions are used, T̂n resembles the
average of two U-statistics of degree two, with its value
depending on pairwise distances between samples. As a
result, the computational complexity scales linearly with
the dimensions (dX + dY + dZ) and quadratically with the
sample size n. In comparison, the computational complexity
of the statistics proposed in Cai et al. (2024) and Dai et al.
(2022), both designed for univariate Y , scales linearly with
n. As will be shown in Theorem 5 below, the limiting null
distribution of nT̂n depends on the unknown distribution

PXY Z . Consequently, we cannot directly determine the
rejection threshold of nT̂n without knowing PXY Z . Instead,
we employ a wild bootstrap method to approximate the
distribution of nT̂n. Following Section 2.4 of Zhang et al.
(2018), for a positive integer B and b ∈ [B], we generate
{ebi}ni=1 from a Rademacher distribution, and define the
bootstrap version of T̂n as

M̂b
n =

1

2

2∑
s=1

{ 1
n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

Û(Xj , Xk)V̂ (Yj , Yk)

· KZ(Zj , Zk)ebjebk
}
. (2)

Since {M̂1
n, M̂

2
n, . . . , M̂

B
n } can be viewed as samples from

the distribution of T̂n (c.f. Theorem 9), we reject H0 at level
γ ∈ (0, 1) if 1

B

∑B
b=1 1{nM̂b

n>nT̂n}<γ. As a default choice,
we set B = 1, 000 throughout our numerical experiments.

2.3. Theoretical properties
In this part, we evaluate the asymptotic performance of the
test as the sample size increases, focusing on its empiri-
cal size (Type-I error) control and power against (local)
alternatives. Specifically, we aim to determine whether the
proposed test satisfies two desirable theoretical properties:
1. the probability of incorrectly rejecting the null hypothesis
converges to the specified significance level γ as the sample
size grows; 2. the test maintains the capability to detect
(local) alternative hypotheses with a deviation from null that
diminishes at the parametric rate of n−1/2.
From our procedure, we define the event Rejn :={
B−1

∑B
b=1 1{nM̂b

n>nT̂n}<γ
}

as rejecting H0. To demon-
strate that our proposed test has an accurate asymptotic
size, it suffices to prove that the probability of rejecting
H0, given that H0 is true, converges to the specified level
γ, i.e., limn→∞ P(Rejn|H0) = γ. To achieve this, we first
derive the limiting null distribution of nT̂n in Theorem 5.
Subsequently, we show the consistency of our bootstrap
procedure in Theorem 9, that is, conditional on the sample,
the rescaled bootstrap statistic converges to the same limit-
ing null distribution. To study the asymptotic power of our
proposed test, we define a local alternative hypothesis in
equation (4) whose deviation from null scales as n−α for
some α ≥ 0. The asymptotic behavior of T̂n and the boot-
strap counterpart under different values of α is analyzed in
Theorem 8 and Theorem 9, respectively. Based on these re-
sults, we derive the asymptotic power of the test in Theorem
9. Let Tn denote the oracle test statistic, defined similarly to
T̂n, except that the estimated nuisance parameters (gY , gX)
are replaced with their true values; see equation (14) in
Appendix D for the precise definition.
The following assumption is needed to derive the asymptotic
properties of our statistic.
Assumption 4. Assume M → ∞ as n → ∞. For
C0 > 0, α1, α2 ∈ (0, 1

2 ) such that α1+α2 > 1
2 , Di ∈
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{Xi, X̃
(1)
i , X̂

(1)
i }, Ei ∈ {Yi, gY (Zi), ĝY (Zi)} and i ∈

{i1, i2} where is ∈ J (s) for each s ∈ [2], we have:

(a) E
{
KX(Di, Di)∥Ei∥22KZ(Zi, Zi)

}
<C0;

(b)
[
E
{
∥E[KX(·, Xi)|Zi]−E[KX(·, X̂(1)

i )|Zi]∥2HX

[√
KZ(Zi, Zi)

+∥Ei∥22KZ(Zi, Zi)
]}]1/2

=O(n−α1);

(c)
[
E
{
∥gY (Zi)−ĝY (Zi)∥22

[√
KZ(Zi, Zi)+KX(Di, Di)

KZ(Zi, Zi)
]}]1/2

=O(n−α2).

It it worth noting that the required technical assumptions
are relatively mild and are commonly used in the literature
of CMI testing. Part (a) of Assumption 4 ensures that the
(conditional) mean embeddings into the RKHSs, as well
as the operator Σ, are well-defined and holds for bounded
kernels such as the Gaussian and Laplacian kernels. Part
(b) of Assumption 4 requires the estimation errors of the
neural networks to decay to zero at rates n−α1 and n−α2

for α1, α2 ∈ (0,∞) such that α1 + α2 > 1/2. Similar rate
requirements appear in Cai et al. (2024) and Lundborg et al.
(2024).
When estimating gY with DNNs, Bauer & Kohler (2019)
demonstrated that the decay rate for E

[
∥gY (Z)− ĝY (Z)∥22

]
can be bounded from above by n−2s/(2s+d∗), where s is the
smoothness parameter of gY , and d∗ denotes its intrinsic
dimensionality. Regarding the estimation error of the con-
ditional mean embedding of PX|Z , our requirement is less
restrictive than the assumptions based on the total varia-
tion distance between PX|Z and its estimator, which are
commonly adopted in the literature.
Specifically, if KX , KZ are bounded kernels and
∥Y ∥22 is bounded (without loss of generality, assume
they are bounded by 1), then Assumption 4 reduces
to E

[∥∥E[KX(·, Xi) |Zi] − E
[
KX(·, X̂(1)

i ) |Zi]
∥∥2
HX

]
=

O(n−2α1) and E
[
∥gY (Zi)−ĝY (Zi)∥22

]
= O(n−2α2).

Note that

E
[∥∥E[KX(·, Xi) |Zi]− E

[
KX(·, X̂(1)

i ) |Zi]
∥∥2
HX

]
=E

[{
sup

f∈HX : ∥f∥HX
≤1

E
[
f(X̂

(1)
i )− f(Xi)

∣∣Zi

]}2]
≤E

[{
sup

f :RdX→R: ∥f∥∞≤1

E
[
f(X̂

(1)
i )− f(Xi)

∣∣Zi

]}2]
=2E

[
d2TV(PX̂

(1)
i |Zi

, PXi|Zi
)
]
, (3)

where ∥ · ∥∞ denotes the function supreme norm,
and dTV(·, ·) denotes the total variation distance.
Here, the inequality in the second line is implied
by the fact that ∥f∥∞ = supx∈RdX |f(x)| =

supx∈RdX |⟨f,KX(x, ·)⟩HX
| ≤ ∥f∥HX

√
KX(x, x) ≤

∥f∥HX
. Therefore, we can also replace the error metrics in

Assumption 4 by the total variation distance and the mean
squared error, i.e., E

[
d2TV(PX̂

(1)
i |Zi

, PXi|Zi
)
]
= O(n−2α1)

and E
[
∥gY (Zi)−ĝY (Zi)∥22

]
= O(n−2α2), which are com-

mon assumptions made in existing works for characterizing
qualities of conditional generators and nonparametric regres-
sion functions. However, the total variation metric may not
be a suitable metric for characterizing the closeness between
nearly mutually singular distributions, which happens when
data are complex objects such as images or texts exhibiting
low-dimensional manifold structures (Tang & Yang, 2023).
Moreover, due to the double robustness property of our
test statistic, we do not impose separate constraints on the
respective estimation errors of gY and the mean embedding
of PX|Z . Instead, we only require that their product decays
faster than n−1/2. Notably, when gY is sufficiently smooth,
α2 can approach 1/2, allowing α1 to remain very small to
accommodate complex and high-dimensional distributions
of PX|Z (e.g., when both X and Z are images).
Theorem 5. Suppose Assumption 4 holds, then under H0,
we have that T̂n−Tn = Op

(
n−1[M−1/2+n−α1 +n−α2 ]+

n−1/2−(α1+α2)
)

as n → ∞; moreover, nT̂n
D→ T † = T †

1 +

T †
2 , where {T †

1 , T
†
2 } are i.i.d. random variables following a

mixture of centered chi-squares distribution (see Appendix
D.1).
From this theorem, we observe that the “plugged-in” test
statistic T̂n becomes asymptotically equivalent to the oracle
statistic Tn as long as α1 + α2 > 1/2. This demonstrates
the property of double robustness: the slowly decaying non-
parametric estimation errors in (gY , gX) do not compromise
the asymptotic accuracy of the test, provided the product of
these errors decays faster than n−1/2.
Now let us switch to the asymptotic power of the test under
local alternatives. We use the triple (X0, Y 0, Z0) to de-
note (X,Y, Z) under H0 and consider a sequence of triples
(X0, Y A

n , Z0) under the alternative hypothesis:

H1n : Y A
n = E[Y 0|Z0] + n−αG(X0, Z0) +Rn. (4)

Here, the RdY -valued function G and the random vector
Rn satisfy E[G(X0, Z0)|Z0] = 0 and E[Rn|X0, Z0] =
0, respectively, so that the exponent α ≥ 0 determines
the decay rate of the deviation from null under H1n; for
instance, setting α = 0 and Rn ≡ R corresponds to a fixed
alternative. The following assumption is needed to derive
the asymptotic results under H1n when α > 0.
Assumption 6. For D ∈ {KX(X0, ·), gX(Z0)}, there ex-
ists a random variable ζ ∈ RdY such that E

{
∥D∥2HX

∥Rn−

ζ∥22KZ(Z
0, Z0)

}
→0.

Remark 7. Assumption 6 implies that when α > 0, the
demeaned random vector Rn = Y A

n − E[Y A
n |X0, Z0]

converges to some random vector ζ. Instead of fixing
Rn = Y 0−E[Y 0|Z0] as in nonparametric regression mod-
els (see equation (1.1) in Zhu & Zhu (2018)), we allow Rn
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to change with n and ζ can be different from Y 0−E[Y 0|Z0].

Theorem 8. Suppose Assumptions 4 holds, then under H1n

(see Appendix D.2 for precise definitions of relevant con-
stants and random variables),

1. If α = 0, then
√
n(T̂n − c0)

D→ 1√
2

∑2
j=1 G

(0)
j as

n → ∞ for some positive constant c0 and i.i.d. mean
zero normal random variables {G(0)

1 ,G(0)
2 };

With Assumption 6 further satisfied, we have

2. If 0<α<1/2, then n2αT̂n
p→ c for some c > 0;

3. If α = 1/2, then nT̂n
D→ c+T †

A+
1√
2

∑2
j=1 Gj , where

T †
A =

∑2
j=1 T

†
Aj and {T †

A1, T
†
A2} are i.i.d. random

variables following a mixture of centered chi-squares
distribution.

4. If α > 1/2, then nT̂n
D→ T †

A.

Theorem 5 establishes that rejecting H0 if nT̂n exceeds the
rejection threshold as the (1− γ)th quantile of the limiting
distribution of T † constitutes a valid test procedure for H0

with an asymptotic size of γ for any γ ∈ (0, 1). Addition-
ally, items 1 and 2 of Theorem 8 imply that nT̂n diverges to
infinity under H1n if the deviation from the null hypothesis
decays slower than n−1/2, ensuring the power of this test
procedure to approach one as n → ∞. Together, these prop-
erties imply the minimax-optimality of the test procedure
based on the test statistic T̂n, provided the rejection thresh-
old can be computed. On the other hand, items 3 and 4 of
Theorem 8 show that the test has trivial power in detecting
alternatives that are too close to the null. This is expected,
as even for a parametric linear model, a meaningful CMI
test cannot detect local alternatives with deviations from the
null decaying faster than the n−1/2 parametric rate (e.g., see
Section 1.1 of Lundborg et al. (2024)).

Finally, we demonstrate that our proposed test in Section 2.2
based on bootstrap eliminates the need to compute the rejec-
tion threshold, and the resulting test procedure is asymptoti-
cally indistinguishable from the optimal test based on nT̂n.
For a generic bootstrapped statistic M̂M

n defined according
to equation (2) with {ebi}ni=1 replaced by independent sam-
ple {ei}ni=1 from standard normal distribution, we say that
M̂M

n converges in distribution in probability to a random
variable B∗ if, for any subsequence M̂Mk

nk
, there exists a

further subsequence M̂
Mkj
nkj

such that the conditional dis-

tribution of M̂
Mkj
nkj

given the data {Xi, Yi, Zi, η
m
i }∞i,m=1

converges in distribution to B∗ almost surely (e.g., see Defi-

nition 2.1 of Zhang et al. (2018)). We use the notation D∗

→ to
denote convergence in distribution in probability.
Theorem 9. Suppose Assumptions 4 holds, then we have
(see Appendix D.3 for precise definitions of relevant con-
stants and random variables),

1. Under H0, nM̂M
n

D∗

→ T †.

2. Under H1n with α = 0, nM̂M
n

D∗

→ T1 =
∑2

j=1 T̃j ,

where {T̃1, T̃2} are i.i.d. random variables following
a mixture of centered chi-squares distribution.

With Assumption 6 further satisfied, we have

3. Under H1n with α > 0, nM̂M
n

D∗

→ T †
A.

Furthermore, if we let M∗
nM,γ denote the (1− γ)th quantile

of nM̂M
n conditioning on the data, then the power (probabil-

ity of detecting the alternative) of our testing procedure sat-
isfies: if α<1/2, then P(nT̂n ≥ M∗

nM,γ) → 1; if α = 1/2,
then P(nT̂n ≥ M∗

nM,γ) → P(c+T †
A+

1√
2

∑2
j=1 Gj ≥

TA
0,γ), where TA

0,γ denotes the (1 − γ)th quantile of T †
A;

if α > 1/2, then P(nT̂n ≥ M∗
nM,γ) → γ.

Since P(nT̂n ≥ M∗
nM,γ) = P(Rejn), item 1 of Theorem 9

demonstrates that the proposed test achieves asymptotically
correct size; while items 2 and 3, along with the second part
of the theorem, establish that the proposed test is consistent
(the probability of rejecting H0 converges to 1) when the
alternative lies outside an n−1/2-neighborhood of H0 (i.e.,
when α < 1/2). Similar to the optimal test based on nT̂n

discussed after Theorem 8, the proposed test will also ex-
hibit trivial power in detecting alternatives that are too close
to the null (i.e., when α > 1/2).

3. Simulation Results
To evaluate the finite-sample performance of our test, we
adopt the two examples from Cai et al. (2024), where the
response variable Y is univariate. Each experiment is re-
peated 500 times with sample sizes n ∈ {200, 400, 800}.
The nominal significance level is set at 5%.
Example A1: Consider the linear regression model Yi =

β⊤
ZZi + β⊤

XXi + ϵi for i ∈ [n], where ϵi
i.i.d.∼ N(0, 0.52)

are independent of {Xi, Zi}ni=1, dX = dZ = 25 and

(Z⊤
i , X⊤

i )
i.i.d.∼ N(0,Σ) with the (i, j)th element of Σ being

Σij = 0.3|i−j| for i, j ∈ [50]. We set the first two compo-
nents of βZ as one and the rest as zero. For this example,
the null H0 corresponds to βX ≡ 0. Under the sparse alter-
native, the first two components of βX are 0.2/

√
2 and the

rest as zero. Under the dense alternative, every component
of βX is fixed at 0.2/

√
25 = 0.04.

Example A2: Consider the nonlinear regression model
Yi = β⊤

ZZi +
(
β⊤
XXi

)2
+ ϵi for i ∈ [n], under the same

βZ and {Xi, Zi, ϵi}ni=1 as in Example A1. The null H0 also
corresponds to βX ≡ 0. Under the sparse alternative, we
set the first five components of βX to be 10−1/2 and the rest
as zero. Under the dense alternative, we set the first twelve
components of βX as 24−1/2 and the rest as zero.
For T̂n, we opt to use the Laplacian kernel and the band-
width parameter for each kernel is selected according to
the median heuristic (Gretton et al., 2012, Section 8). For
comparison, we also include the simulation results for the
CMI test proposed in (Williamson et al., 2023, Algorithm

7
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Table 2. Empirical size and size adjusted power for Examples A1 and A2.

n
pMIT pMITe pMITM pMITeM

PCM PCMM VIM DSP DSPM T̂n T̂n

XGB DNN XGB DNN XGB DNN XGB DNN Oracle

Example A1

H0

200 5.6 6.4 5.8 7.0 6.2 8.4 8.0 9.6 2.0 0.0 3.2 0.0 0.0 7.0 8.8
400 6.0 4.2 8.0 5.8 11.8 9.6 14.2 13.2 3.4 0.0 4.8 0.0 0.0 6.8 7.0
800 7.0 11.2 9.8 12.8 14.2 17.2 20.2 21.0 1.2 0.0 4.8 0.0 0.0 7.2 5.4

H1 sparse
200 3.8 9.4 5.6 9.4 3.2 5.6 4.8 7.6 11.0 25.4 12.6 15.8 15.8 88.4 36.0
400 18.6 34.6 30.4 35.8 11.8 55.2 24.8 56.8 27.0 81.8 14.8 14.8 29.8 100 98.6
800 91.6 66.0 97.8 66.4 96.0 96.2 99.8 95.8 87.4 99.8 31.6 52.8 91.8 100 100

H1 dense
200 6.0 11.6 7.0 11.2 3.0 15.8 4.6 20.0 15.6 30.0 13.2 22.4 43.8 98.4 56.0
400 17.6 63.6 32.2 65.8 11.0 83.6 20.6 86.3 29.2 87.8 17.0 47.2 76.8 100 100
800 86.6 94.8 93.6 95.2 85.6 100 99.0 100 91.2 100 38.6 80.2 98.8 100 100

Example A2

H0

200 5.6 6.4 5.8 7.0 6.2 8.4 8.0 9.6 2.0 0.0 3.2 0.0 0.0 7.0 8.8
400 6.0 4.2 8.0 5.8 11.8 9.6 14.2 13.2 3.4 0.0 4.8 0.0 0.0 6.8 7.0
800 7.0 11.2 9.8 12.8 14.2 17.2 20.2 21.0 1.2 0.0 4.8 0.0 0.0 7.2 5.4

H1 sparse
200 7.4 7.6 13.0 12.2 17.6 10.2 27.0 21.0 10.6 17.2 10.6 46.4 74.6 36.8 19.2
400 27.2 24.8 47.0 29.8 28.4 50.6 57.4 60.4 23.2 82.0 26.0 73.0 90.8 80.0 76.2
800 92.2 42.6 98.6 45.6 97.6 90.0 100 91.6 94.2 100 71.8 99.6 99.8 100 100

H1 dense
200 7.6 8.2 12.0 12.8 14.4 9.4 25.0 24.8 6.6 11.2 10.6 59.4 79.4 23.8 17.6
400 14.0 32.0 27.2 36.8 15.0 67.4 33.0 75.8 13.4 43.0 12.6 84.0 96.4 57.4 57.8
800 44.2 60.0 67.6 61.6 39.8 98.4 79.4 99.2 58.0 97.2 31.2 99.6 100 99.8 99.2

3) (denoted as VIM), the single and multiple split statistics
proposed in (Lundborg et al., 2024, Algorithm 1 and 1DR)
(denoted as PCM and PCMM respectively), the single and
multiple split statistics proposed in (Dai et al., 2022, equa-
tions (3) and (7)) (denoted as DSP and DSPM respectively),
the single/multiple split CMI tests proposed in Cai et al.
(2024) (denoted as pMIT and pMITM respectively) as well
as their power enhanced versions (denoted as pMITe and
pMITeM respectively). For the four tests proposed in Cai
et al. (2024), we include the simulation results when the
conditional mean functions are learned using eXtreme Gra-
dient Boosting (XGB) and DNN. In addition, we also show
the simulation results for an oracle version of our statistic
T̂n, where the true CME and conditional mean function of
Y are used instead of their estimators.
For Example A1, as shown in Table 2, VIM and T̂n have
relatively accurate size under H0, while PCM and DSP (as
well as their multiple split versions) are severely undersized.
The empirical size for pMIT with XGB estimation method
is close to the nominal level, but it is oversized with DNN es-
timation method. The pMIT tests with multiple split and/or
power enhancement all have large size distortions and the
size distortion gets larger as n increases. For the size ad-
justed power, our test T̂n outperforms all other tests for all
values of n under both sparse and dense alternatives, and
VIM has the largest power loss although it also utilizes sam-
ple splitting and cross fitting. Note that pMITM with DNN
estimation method actually has larger power than pMITe,
which is supposed to be the power enhanced version of
pMIT.
For Example A2, as shown in Table 2, the empirical size
results are the same as in Example A1. For the size adjusted
power, DSP and DSPM have the best overall performances
(especially when the sample size is small) and our test T̂n

have similar power performance as DSP and DSPM when
n = 800. Note that the power performances of the tests

proposed in Cai et al. (2024) depends heavily on the sparsity
of the alternative and the estimation method used. The XGB
estimation method has better performance under sparse al-
ternative while the DNN estimation method outperforms
under the dense alternative.

4. Imaging Data Applications
We apply our proposed CMI method to identify important
facial regions for two computer vision tasks: recognizing
facial expressions and predicting age.

4.1. Facial expression recognition
We examine whether covering specific facial regions affects
facial expression prediction accuracy using the FER2013
dataset (Goodfellow et al., 2013), which contains 48× 48
grayscale images labeled with one of seven expressions:
angry, disgust, fear, happy, sad, surprise, neutral. Following
Dai et al. (2022), we analyze seven hypothesized regions
(HRs): top left corner (TL), nose, right eye, mouth, left eye,
eyes, and face (see Figure 2). After preprocessing as in
Section 6.D of Dai et al. (2022), we use 11,700 image-label
pairs, denoted as {(Xi, Yi)}11700i=1 , and generate images Zi

by masking HRs.
The test statistic T̂n is computed on ten subsamples (size
n = 2000), with the resulting p-values plotted in Figure 1,
alongside p-values for DSPM statistics (Dai et al., 2022)
under 0-1 loss and CE loss. To assess testing results, we
compare test accuracies from a VGG network (Khaireddin
& Chen, 2021) trained on (Yi, Zi) for each HR against the
baseline accuracy using (Xi, Yi). As shown in Figure 1, T̂n

correctly identifies the nose and TL as non-discriminative
regions (p-values above the 5% level), while rejecting H0

for other HRs, consistent with their lower test accuracies.
DSPM p-values vary by loss function, with CE loss ex-
hibiting stronger detecting power but inflated type-I error
for TL and nose. Additionally, DSPM results do not align
with accuracy trends, highlighting inconsistencies in region

8



Testing Conditional Mean Independence using GNN

Figure 1. Box plot of the p-values (left y-axis) and the test accura-
cies (red line, right y-axis) for different HRs. The blue dashed line
represents the baseline accuracy. The red dashed line represents
the 5% nominal level. The test accuracy for the face-covered case
(face acc: 37.60) is shown at the bottom right corner.

Figure 2. Original facial images in FER2013 (first column) and the
covered images with HRs: TL, nose, right eye, mouth, left eye,
eyes, face (Columns 2-8).

importance detection. Further details and a more in-depth
discussion of the results are provided in Appendix B.1.

4.2. Facial age estimation
We investigate the impact of covering specific fa-
cial regions on age prediction accuracy using the
cropped and aligned UTKFace dataset (Zhang et al.,
2017), available at https://www.kaggle.com/
datasets/abhikjha/utk-face-cropped. Five
hypothesized regions (HRs) are analyzed: top left corner
(TL), nose, mouth, eyes, and face (see Figure 4 and Ap-
pendix A.3). After converting images to grayscale and
selecting age labels between 20–59 years, we obtain 16,425
image-label pairs, {(Xi, Yi)}16425i=1 , and the masked images
{Zi}16425i=1 . The statistic T̂n is computed on ten subsamples
(n = 2000 each), with p-values and mean absolute errors
(MAE) from an EfficientNet B0 model (Tan & Le, 2019)
plotted in Figure 3. Baseline MAEs from (Xi, Yi) are also
included for comparison.
Figure 3 shows that T̂n p-values are above the 5% level
when TL, nose, or mouth is covered, indicating these re-
gions are not critical for age estimation. However, H0 is

Figure 3. Box plot of the p-values (left y-axis) and the test MAE
(red line, right y-axis) for different HRs. The blue dashed line
represents the baseline MAE. The red dashed line represents the
5% nominal level. The test MAE for the face-covered case (face
MAE: 8.42) is shown at the bottom right corner.

Figure 4. Original facial images in UTKFace (first column) and the
covered images with HRs: TL, nose, mouth, eyes, face (Columns
2-6).

rejected for eyes and face due to significantly higher test
MAEs. pMITM consistently produces low p-values, even
when TL is covered (test MAE close to baseline), indicating
oversizing. Meanwhile, pMIT fails to reject H0 in some
cases (e.g., eyes, mouth) despite higher test MAEs than the
nose-covered case, highlighting inconsistencies. Further
details and more discussions of the results can be found in
Appendix B.2

5. Conclusion
In this paper, we propose a novel conditional mean inde-
pendence test that addresses limitations of existing methods.
Using RKHS embedding, sample splitting, cross-fitting, and
deep generative neural networks, our fully non-parametric
test handles multivariate responses, performs well in high-
dimensional settings, and maintains power against local
alternatives converging at the n−1/2 parametric rate. Simu-
lations and data applications demonstrate its effectiveness.
Some potential future directions include exploring condi-
tional quantile independence testing, developing variable
selection methods with false selection rate control, and per-
forming diagnostic checks for high-dimensional regression
models.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Appendix to “Testing Conditional Mean Independence Using Generative Neural Networks”
The Appendix is organized as follows: Appendix A details the training procedure and hyperparameter selection for the
GMMN generator and DNN used in Sections 3 and 4. Appendix B provides an in-depth analysis and discussion of the
results from Sections 4.1 and 4.2. Appendix C contains the proof of Proposition 3. Appendix D formalizes and proves
Theorems 5-9. Finally, Appendix E includes an essential auxiliary lemma and its proof.

A. Implementation details
In this section, we offer additional details about the training procedure and network structure of the networks used in the paper.

In practical applications, the conditional distribution PX|Z is often unknown, and we use a generative neural network (GNN)
to train a conditional generator Ĝ : Rm ×RdZ → RdX for approximate sampling from PX|Z . By sampling a latent variable
η from a simple distribution (e.g., standard normal) over Rm, the conditional distribution of X̂ = Ĝ(η, Z) given Z (denoted
as PX̂|Z) serves as a good approximation of PX|Z .

We adopt the GMMN framework for its strong performance and alignment with our test. The conditional generator Ĝ is
trained by minimizing the sample-based squared MMD between PXZ and PX̂Z , using training data (Xi, Zi)

nT

i=1 and MnT

latent variables {ηmi : i = 1, . . . , nT , m = 1, . . . ,M}:

Ĝ = argmin
G∈G

1

nT (nT−1)

∑
k ̸=ℓ

k,ℓ∈[nT ]

Û(Xk, Xℓ) · KZ(Zk, Zℓ), (5)

with Û(Xk, Xℓ) = KX(Xk, Xℓ)−
1

M

M∑
m=1

KX

(
Xk, GX(ηmℓ , Zℓ)

)
− 1

M

M∑
m=1

KX

(
Xℓ, GX(ηmk , Zk)

)
+

1

M

M∑
m=1

KX

(
GX(ηmk , Zk), GX(ηmℓ , Zℓ)

)
,

where G represents an approximation family, such as (deep) neural networks. In the original GMMN framework by
Dziugaite et al. (2015), the Monte Carlo sample size M is fixed at one. However, our results indicate that increasing M
significantly enhances the empirical performance and stability of the training process.

Let nb denote the batch size, NT is the total training epoch, γX is the learning rate of Adam optimizer, Mb is the Monte
Carlo sample size mentioned above, dm is the dimension of the input noise η, and ρ is the distribution of the input noise.
The table below shows how the above mentioned hyperparameters are selected in each section. Other hyperparameters of
the GMMN used only in some specific section is discussed in Appendix A.1-A.3. The training procedure is outlined in
Algorithm 1.

Section nb NT γX Mb dm ρ
3 128 1000 4.9 · 10−3 10 50 N (0, 1/3 · I50)

4.1 64 300 1 · 10−3 10 2304 N (0, 1/10 · I2304)
4.2 16 300 1 · 10−3 10 50 N (0, 1/10 · I50)

Table 3. Hyperparameter selection for Ĝ

A.1. Numerical simulation in Section 3

Model structures and hyperparameters
To train the DNN ĝY , we use the model structure and hyperparameters outlined in the following table with the MSE loss.
To train the GMMN Ĝ, we follow Algorithm 1 with loss LX = Ll

X + Lg
X , where Ll

X and Lg
X are defined in equation (5)

using the Laplace Kernel and Gaussian Kernel, respectively. Let γ be the learning rate of Adam optimizer, BN represents
whether batch normalization is used, and ΓReLU is the activation coefficient of the leaky ReLU activation function. The
hyperparameter values used in Section 3 is summarized in the following table.
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Algorithm 1 Training Conditional Generator Ĝ
Input: batch size nb, data {(Xi, Yi, Zi)}i∈[n], total training epoch NT , learning rate of Adam optimizer γX , number of
synthetic samples MT , distribution of the input noise ρ
Initialize the conditional generator Ĝ
Compute the batch number bn=⌈n/nb⌉
for i = 1 to NT do

Randomly split the data {(Xi, Yi, Zi)}i∈[n] into bn batches
for b = 1 to bn do

Select (Xi, Zi) from the b-th batch
Sample ηmi ∼ ρ for i ∈ [nb], m ∈ [MT ]

Compute X̂m
i =Ĝ(ηmi , Zi) and loss LX based on equation (5)

Update Ĝ based on loss LX using Adam optimizer with learning rate γX
end for

end for
Output: Ĝ

nb NT γ # of hidden layer # of nodes BN ΓReLU drop out
Ĝ 128 1000 4.9 · 10−3 1 128 No 0.8 0.05
ĝY n 1000 2.2 · 10−3 1 256 No 0.7 0.15

Table 4. Network structure and hyperparameter selection for section 3

Baseline algorithms
We implemented the pMIT, pMITe, pMITM , pMITeM , PCM, PCMM , VIM, DSP, DSPM methods using the code provided
by Cai et al. (Section 5.1, 2024) with the default settings.

A.2. Facial expression recognition application in Section 4.1

Sampling procedure
To compute the test accuracy, we adopt the following train-test split procedure: select half of the images from each emotion
label (recall that there are 7 emotions) as the testing set (with a sample size of 5850), and use the remaining images as the
training set (with a sample size of 5850). We train the VGG network following the settings in Khaireddin & Chen (2021).
The trained network is evaluated on the testing set to get the test accuracy.

To obtain a subsample with a size of 2000, we randomly sample 2000/11700 of the triples from each emotion. To compute
T̂n, we then split this subsample equally into two folds, with each fold containing approximately 1000/11700 of the triples
from each emotion.

Model structures and hyperparameters
We use the VGG network from Khaireddin & Chen (2021) to estimate gY and follow their default hyperparameters to train
the network.
The GMMN generator is designed to process input images and noise vectors and it is trained by Algorithm 1 with loss
LX = Ll

X , where Ll
X is defined in equation (5) using the Laplace Kernel. It starts with a fully connected layer that

transforms the noise vector into a 48×48 feature map, followed by a ReLU activation. This feature map is then concatenated
with the input image, resulting in a tensor with dimensions 2 × 48 × 48. The concatenated tensor is passed through an
intermediate block consisting of four convolutional layers. Each convolutional layer has 128 output channels, a kernel size
of 3, and padding of 1, with ReLU activations applied after each layer. This output of the intermediate block is a feature
map of dimensions 128× 48× 48, which is passed through a final convolutional layer to reduce the number of channels
from 128 to 1 (the final convolutional layer has kernel size of 3 and padding of 1). A Sigmoid activation function is applied
to produce the final output, which has dimensions 1× 48× 48.
For each HR, the synthetic data X̂

(m)
i used to calculat the statistic T̂n is constructed by replacing the covered region in Zi

with the corresponding region from the output image of the trained GMMN.

14



Testing Conditional Mean Independence using GNN

Figure 5. Original facial images in FER2013 (first column) and the covered images with HRs: TL, nose, right eye, mouth, left eye, eyes,
face (Columns 2-8). From row 1 to 7, the expressions are ‘angry’, ‘disgust’, ‘fear’, ‘happy’, ‘sad’, ‘surprise’, ‘neutral’. The pixel locations
(height range, width range) for each HR are: TL: (1:6, 1:6); nose: (25:33, 21:30); right eye:(11:27, 26:46); Case mouth: (35:46, 19:31);
Case left eye: (11:27, 6:26); Case eyes: (11:27, 6:46); Case face: (5:45, 5:45).

Baseline algorithms
We implemented the DSPM (with 0-1 loss and Cross Entropy (CE) loss) using the code provided by Dai et al. (Section 6.D,
2022) with the default settings.

A.3. Facial age estimation application in Section 4.2

Sampling procedure
To compute the test MAE, we adopt the following train-test split procedure: select 50 images from each age label (recall
that age labels ranging from 20 to 59) as the testing set (with a sample size of 2000), and use the remaining images as the
training set (with a sample size of 14,425). We train the EfficientNet B0 network (Tan & Le, 2019) (with the final layer
modified to output a single value) on the training set by minimizing the MAE loss. The trained network is evaluated on the
testing set to get the test MAE.

To obtain a subsample with a size of 2000, we randomly sample 50 triples from each age label. To compute T̂n, we then
split this subsample equally into two folds, with each fold containing approximately 25 triples from each age label.

Model structures and hyperparameters
We use the EfficientNet B0 network from (Tan & Le, 2019) to estimate gY , with the following hyperparameters to train the
network: batch size nb = 128, total epochs NT = 300, learning rate γ = 1× 10−3, and the loss metric is MAE loss. We
employ the ReduceLROnPlateau learning rate scheduler, which reduces the learning rate by a factor of 0.2 if the MAE
of the testing fold does not improve for 10 consecutive epochs. The minimum learning rate is set to 1 × 10−6. To save
computation time and avoid overfitting, we adopt the early stopping technique based on the MAE of the testing fold, with an
early stopping patience of 25 epochs.

The GMMN generator is trained by Algorithm 1 with loss LX = Ll
X , where Ll

X is defined in equation (5) using the Laplace
Kernel and it adopts the same ReduceLROnPlateau learning rate scheduler and early stopping technique mentioned
above. It starts with a fully connected layer that transforms the noise vector into a 224 × 224 feature map, followed by
a ReLU activation. This feature map is then concatenated with the input image, resulting in a tensor with dimensions
2× 224× 224. The concatenated tensor is passed through an intermediate block consisting of four convolutional layers.
Each convolutional layer has 128 output channels, a kernel size of 3, and padding of 1, with ReLU activations applied after
each layer. This output of the intermediate block is a feature map of dimensions 128× 224× 224, which is passed through
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a final convolutional layer to reduce the number of channels from 128 to 1 (the final convolutional layer has kernel size of
3 and padding of 1). A Sigmoid activation function is applied to produce the final output, which has dimensions 1×224×224.

Figure 6. Original facial images in UTKFace (first column) and the covered images with HRs: TL, nose, mouth, eyes, face (Columns 2-6).
The pixel locations (height range, width range) for each HR are: TL: (1:21, 1:21); nose: (101:141, 86:141); mouth: (131:211, 21:201);
eyes: (31:101, 21:201); face: (1:201,1:224).

For each HR, the synthetic data X̂
(m)
i used to calculate the statistic T̂n is constructed by replacing the covered region in Zi

with the corresponding region from the output image of the trained GMMN.

Baseline algorithms
We implemented the pMIT, pMITe, pMITM , and pMITeM methods using the code provided by Cai et al. (Section 6.1,
2024). We modified their model to use the same EfficientNet B0 architecture that we employed. Additionally, we changed
the loss function to MAE loss and did not scale the age label Y .

B. Detailed analysis of imaging data applications
B.1. Facial expression recognition
In this application, we examine whether covering some region of a facial image will influence the prediction accuracy of
facial expression. We use the Facial Expression Recognition 2013 Dataset (FER2013, Goodfellow et al., 2013) consisting
of 48× 48 pixel grayscale facial images, each attached with a label from one of seven facial expressions: angry, disgust,
fear, happy, sad, surprise, neutral (denoted as Expression 1-7). As in (Dai et al., 2022), we consider seven cases where
different hypothesized regions (HR) are covered: top left corner (TL), nose, right eye, mouth, left eye, eyes, face; see
Appendix A.2 and Figure 2 for locations of these HRs.

After applying the same preprocessing procedure as outlined in Section 6.D of Dai et al. (2022), we obtain 11700
image-label pairs which will be the samples used in this application. Let {(Xi, Yi)}11700i=1 denote the 48× 48 pixel facial
images and their corresponding labels. Note that for any i ∈ [11700] and j ∈ [7], Yi ∈ R7 is an one-hot vector with the jth
component being one and the rest being zero if Expression j is associated with Xi. For each HR, we use {Zi}11700i=1 to
denote the facial images with the HR covered in black.

The statistic T̂n is evaluated ten times on different subsamples, with sample size n = 2000, from the 11700 triples
{(Xi, Yi, Zi)}11700i=1 and the box plot of the ten p-values are plotted in Figure 1. As comparison, we also include the
p-values of the DSPM statistics from (Dai et al., 2022) with different loss functions: 0-1 loss and Cross Entropy (CE)
loss. To evaluate the testing results, we calculated the test accuracy of a VGG network (Khaireddin & Chen, 2021)
trained/evaluated on the whole sample {(Yi, Zi)}11700i=1 , since lower accuracy indicates alternative hypothesis with stronger
signal. The resulting test accuracies for different HRs, as well as the accuracy for the VGG network trained/evaluated
{(Xi, Yi)}11700i=1 (denoted as baseline acc), are also plotted in Figure 1; see Appendix A.2 for the sampling procedure and
other implementation details.

As shown in Figure 1, the lower quantiles of the p-values from T̂n are above the 5% nominal level when nose or top left
corner of the facial image is covered, indicating that these regions are not discriminative to facial expressions. For all the
other HRs, the H0 is rejected since all the p-values from T̂n are smaller than the nominal level. The test results from T̂n is
consistent with the test accuracies for different HRs, since the test accuracies when nose or TL is covered are very close to
the baseline acc, while for other HRs the test accuracies are noticeably lower than the baseline acc. The test results from
DSPM varies drastically when different loss functions are used. For DSPM with 0-1 loss, the lower quantiles of the p-values
are above (close to) the nominal level for the cases when left eye or both eyes are covered, whereas the test accuracies
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for these cases are significantly lower than baseline acc, indicating these regions are indeed important in detecting facial
expressions. The DSPM with CE loss has stronger detecting power than DSPM with 0-1 loss since the p-values for the
former is in general smaller than the p-values for the later, which means stronger . However, when TL or nose are covered
(which correspond to the cases under H0), the lower quantiles of the p-values from DSPM with CE loss are smaller than the
nominal level, which may result in inflated type-I error. In addition, the median p-values for different HRs from DSP and
DSPM do not decrease monotonously as the test accuracies decrease.

B.2. Facial age estimation
In this application, we investigate the impact of covering specific regions of facial images on the accuracy of age
prediction using a well-cropped and aligned version of the UTKFace dataset (Zhang et al., 2017), which is available at
https://www.kaggle.com/datasets/abhikjha/utk-face-cropped. We examine five scenarios where
different HRs are covered: the top left corner (TL), nose, mouth, eyes, face; see Appendix A.3 and Figure 4 for the locations
of these HRs.

After converting the images to grayscale and selecting the age labels ranging from 20 to 59 years old, we obtain 16425
image-label pairs, which will be the samples used in this application. Let {(Xi, Yi)}16425i=1 denote the 224× 224 pixel facial
images and their corresponding age label Yi ∈ R. For each HR, we use {Zi}16425i=1 to denote the facial images with the HR
covered in black.

The statistic T̂n is evaluated ten times on different subsamples, each with a sample size of n = 2000, from the triples
{(Xi, Yi, Zi)}16425i=1 . The box plot of the ten p-values is shown in Figure 3. For comparison, we also include the p-values
of the pMIT and pMITM statistics from Cai et al. (2024). To evaluate the testing results, we calculated the MAE (mean
absolute error) of a EfficientNet B0 network (Tan & Le, 2019) trained/evaluated on the whole sample {(Yi, Zi)}16425i=1 .
The resulting MAE for different HRs, as well as the MAE for the EfficientNet B0 network trained/evaluated using
{(Xi, Yi)}16425i=1 (denoted as baseline MAE), are also plotted in Figure 1; see Appendix A.3 for the sampling procedure and
other implementation details.

As shown in Figure 3, the median of the p-values from T̂n for different HRs decrease as the MAEs increase, and they are
above the 5% nominal level when TL, nose, or mouth (three HRs with the smallest MAEs) of the facial image is covered,
indicating that these regions are not discriminative for age estimation. For the eyes- and face-covered cases, the null
hypothesis H0 is rejected since the median of p-values from T̂n are smaller than the nominal level, which makes sense since
the test MAE in these two cases are significantly larger than the baseline MAE.

The p-values from pMITM are all lower than the nominal level, even for the TL-covered case where the test MAE is close to
the baseline MAE. This is consistent with the simulation result in Section 3 where pMITM is severely oversized. The
p-values from pMIT does not change monotonously with the test MAE. Based on the median p-values, pMIT rejects H0 in
the nose-covered case but failed to reject H0 in the month- and eyes-covered cases, even though the later two have larger
test MAE than the nose-covered case.

C. Proof of Proposition 3
The following theorem comes from Theorem 2.2 in Park & Muandet (2020). Note that HX , HZ and H0 are RKHSs defined
in Section 2.1. Denote HX ⊗HZ as the tensor product space of HX and HZ (Weidmann, 1980, page 47-48).
Theorem 10. HX ⊗ HZ is generated by the functions f ⊗ g : RdX+dZ → R, with f ∈ HX and g ∈ HZ defined by
f ⊗ g(x, y) = f(x)g(y). Moreover, HX ⊗HZ and H0 are identical.
The following definition of Hilbert-Schmidt operator and Hilbert-Schmidt norm is from Definition 12.1.1 and Theorem
12.1.1 in Aubin (2000).
Definition 11. Let A and B be two separable Hilbert spaces and {ri}∞i=1 is an orthonormal base of A. A continuous linear
operator T : A → B is a Hilbert-Schmidt operator if the series

∥A∥HS =
( ∞∑

i=1

∥Tri∥2B
)1/2

(6)

converges, and ∥ · ∥HS is called the Hilbert-Schmidt norm.
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The following definition of the mean of a Hilbert space valued ranodm element is derived from Theorem 3.2.1 and Definition
7.2.1 in Hsing & Eubank (2015).
Definition 12. Let χ be a random element taking values in a separable Hilbert space A. If E∥χ∥A < 0, then χ is
Bochner integrable (Hsing & Eubank, 2015, Definition 2.6.3) and its mean Eχ is a unique element in A such that
⟨f,Eχ⟩A = E⟨f, χ⟩A for any f ∈ A.

C.1. Proof of part (a) in Proposition 3
We prove Σ is a Hilbert-Schmidt operator by showing that Σc ∈ H0 for any c ∈ RdY and ∥Σ∥2HS < 0.

To show Σc ∈ H0, denote h(x, y, z, c) =
[
K0

(
(x, z), ·

)
− E

[
K0

(
(X, z), ·

)∣∣z]][y − E[Y |z]
]⊤

c, then we have Σc =

Eh(X,Y, Z, c). By Definition 12, it suffice to show: (1), h(x, y, z, c) ∈ H0 for any c ∈ RdY and almost every (x, y, z) ∈
RdX+dY +dZ ; (2), E∥h(X,Y, Z, c)∥H0

< ∞. For part (1), it is clear that K0

(
(x, z), ·

)[
y − E[Y |z]

]⊤
c ∈ H0, and

E
[
K0

(
(X, z), ·

)∣∣z] ∈ H0 follows from Lemma 15. So part (1) is proved. For part (2), note that

E∥h(X,Y, Z, c)∥2H0
=E

{∥∥∥K0

(
(X,Z), ·

)
− E

[
K0

(
(X,Z), ·

)∣∣Z]∥∥∥2
H0

[[
Y − E[Y |Z]

]⊤
c
]2}

≤4∥c∥22E
{[∥∥K0

(
(X,Z), ·

)∥∥2
H0

+
∥∥E[K0

(
(X,Z), ·

)∣∣Z]∥∥2
H0

][
∥Y ∥22 + ∥gY (Z)∥22

]}
≤4∥c∥22E

{[∥∥K0

(
(X,Z), ·

)∥∥2
H0

+ E
[
∥K0

(
(X,Z), ·

)
∥2H0

∣∣Z]][
∥Y ∥22 + ∥gY (Z)∥22

]}
(7)

=4∥c∥22E
{[∥∥K0

(
(X,Z), ·

)∥∥2
H0

+
∥∥K0

(
(X̃, Z), ·

)∥∥2
H0

][
∥Y ∥22 + ∥gY (Z)∥22

]}
(8)

where equation (7) follows from a generalized Jensen’s inequality (Park & Muandet, 2020, Appendix A) and X̃ is a random
vector such that (X,Z)

d
= (X̃, Z) and X̃ is conditionally independent of Y given Z. By Assumption 4(a), the right hand

side of equation (8) is finite and part (2) is proved since E∥h(X,Y, Z, c)∥H0
≤ {E∥h(X,Y, Z, c)∥2H0

}1/2.
To show ∥Σ∥2HS < 0, let {ri}dY

i=1 be an orthonormal base of RdY where ri ∈ RdY is a vector with ith element being 1 and
the rest being zero for any i ∈ [dY ]. Then we have

∥Σ∥2HS =

dY∑
i=1

∥Σri∥2B

=

dY∑
i=1

∥∥∥E{[K0

(
(X,Z), ·

)
− E

[
K0

(
(X,Z), ·

)∣∣Z]][
Y − E[Y |Z]

]⊤
ri

}∥∥∥2
H0

(9)

≤2E
{[∥∥K0

(
(X,Z), ·

)∥∥2
H0

+
∥∥E[K0

(
(X,Z), ·

)∣∣Z]∥∥2
H0

∥∥Y − E[Y |Z]
∥∥2
2

]}
≤4E

{[∥∥K0

(
(X,Z), ·

)∥∥2
H0

+ E
[
∥K0

(
(X,Z), ·

)
∥2H0

∣∣Z]][
∥Y ∥22 + ∥gY (Z)∥22

]}
<∞, (10)

where equation (10) follows from equation (8). So Σ is a Hilbert-Schmidt operator.

To prove ∥Σ∥2HS = Γ∗, note that from equation (9) we have

∥Σ∥2HS =E
{〈

K0

(
(X,Z), ·

)
− E

[
K0

(
(X,Z), ·

)∣∣Z]
,K0

(
(X ′, Z ′), ·

)
− E

[
K0

(
(X ′, Z ′), ·

)∣∣Z ′]〉
H0

V (Y, Y ′)
}

=E
{〈[

KX

(
X, ·

)
− E

[
KX

(
X, ·

)∣∣Z]]
KZ(Z, ·),

[
KX

(
X ′, ·

)
− E

[
KX

(
X ′, ·

)∣∣Z ′]]KZ(Z
′, ·)

〉
H0

V (Y, Y ′)
}

(11)

=E
{〈

KX

(
X, ·

)
− E

[
KX

(
X, ·

)∣∣Z]
,KX

(
X ′, ·

)
− E

[
KX

(
X ′, ·

)∣∣Z ′]〉
HX

V (Y, Y ′)KZ(Z,Z
′)
}

=E
{
U(X,X ′)V (Y, Y ′)KZ(Z,Z

′)
}
, (12)

where equation (11) follows from Lemma 15 and equation (12) follows from the reproducing property of RKHS. So part (a)
of Proposition 3 is proved.
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C.2. Proof of part (b) in Proposition 3
The operator norm (Rudin, 1991, Theorem 4.4) of Σ is defined as

∥Σ∥OP = sup
{∣∣⟨f,Σc⟩Ho

∣∣ : ∥c∥2 ≤ 1, ∥f∥H0 ≤ 1
}
. (13)

According to Proposition 12.1.2 in (Hsing & Eubank, 2015), ∥Σ∥OP ≤ ∥Σ∥HS . If Γ∗ = ∥Σ∥2HS = 0, then we have
∥Σ∥OP = 0 which is equivalent to Σ being a zero operator. If ∥Σ∥OP = 0, then we have Σri = 0 ∈ H0 for any i ∈ [dY ],
which implies Γ∗ = ∥Σ∥2HS = 0. So we have that Γ∗ = 0 if and only if Σ is a zero operator, which is equivalent to H0

holds according to part (c) of Proposition 1.

D. Proofs of main results in Section 2.3
Define two oracle statistics as

Tn =
1

2

2∑
s=1

{
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk)

}
(14)

T̃n =
1

2

2∑
s=1

{
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (s)

Ũ(Xj , Xk)V̂ (Yj , Yk)KZ(Zj , Zk)

}

where

Ũ(Xj , Xk) =KX(Xj , Xk)− Eηm
k
KX(Xj , X̂

(m)
k )− Eηm

j
KX(X̂

(m)
j , Xk) + Eηm

j ηm
k
KX(X̂

(m)
j , X̂

(m)
k )

(15)

Denote Si = (Xi, Zi), under H1n, it is easy to see that Assumption 4 imply the following assumption:
Assumption 13. For i, α1 and Di defined in Assumption 4, we assume there is a large positive number C3 such that

(a) E
{
KX(Di, Di) +KX(Di, Di)

[
1 + ∥G(Si)∥22+∥Rni∥22

]
KZ(Zi, Zi)

}
<C3.

(b)
√

E
{
∥G(Si)∥22∥E[KX(·, X̃(1)

i )|Zi]− E[KY (·, X̂(1)
i )|Zi]∥2HX

KZ(Zi, Zi)
}
= O(n−α1) and√

E
{
∥Rni∥22∥E[KX(·, X̃(1)

i )|Zi]−E[KY (·, X̂(1)
i )|Zi]∥2KY

KZ(Zi, Zi)
}
=O(n−α1).

D.1. Proof of Theorem 5
First, we give a formalized version of Theorem 5:
Theorem 4 (formalized). Suppose Assumptions 4 holds, then under H0,

T̂n − Tn =Op

(
n−1[M−1/2 + n−α1 + n−α2 ] + n−1/2−(α1+α2)

)
and nT̂n

D→ T † = T †
1 + T †

2 , where Tn is defined in the same way as T̂n with Û(Xj , Xk), V̂ (Yj , Yk) replaced
by U(Xj , Xk), V (Yj , Yk) (see equation (14) in Appendix D) and {T †

1 , T
†
2 } are i.i.d. random variables with T †

1 =∑∞
s=1 λs(χ

2
s−1). Here, χ2

s are i.i.d. chi-square random variables with one degree of freedom, and λs’s are eigenvalues of the
compact self-adjoint operator on L2(RdX+dY +dZ , PXY Z) induced by the kernel function h((X1, Y1, Z1), (X2, Y2, Z2)) =
U(X1, X2)V (Y1, Y2)KZ(Z1, Z2); that is, there exists orthonormal basis {fi(X1, Y1, Z1)}∞i=1 of L2(RdX+dY +dZ , PXY Z)
such that

E
[
h((X1, Y1, Z1), (x, y, z))fi(X1, Y1, Z1)

]
= λifi(x, y, z).

Proof. Since T̂n −Tn = Op

(
n−1[M−1/2 +n−α1 +n−α2 ] +n−1/2−(α1+α2)

)
= op(n

−1) by Lemma 17, it suffice to show
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nTn
D→ T †. Note that

nTn =

2∑
s=1

{
n

2

(n
2

2

)−1 ∑
j<k

j,k∈J (s)

U(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk)

}

=

2∑
s=1

n

2
T (n)
s .

For any s ∈ [2], T (n)
s is a degenerate U statistic of order two and n

2T
(n)
s

D→ T †
s follows directly follows from asymptotic

theory for degenerate U statistic, see Theorem 1 in Section 3.2.2 of Lee (2019) (also stated as Lemma 16 in Appendix E).
Since {T (n)

1 , T
(n)
2 } are mutually independent, we have nTJ

D→ T †.

D.2. Proof of Theorem 8
First, we give a formalized version of Theorem 8:
Theorem 5 (formalized). Suppose Assumptions 4 holds, then under H1n,

1. If α = 0, then
√
n(T̂n − c0)

D→ 1√
2

∑2
j=1 G

(0)
j , where c0 = E

{
U(X1, X2)V (Y1, Y2)KZ(Z1, Z2)

}
>

0, and {G(0)
1 ,G(0)

2 } are i.i.d. mean zero normal random variables with variance equal to
4Var

(
E
{
U(X1, X2)V (Y1, Y2)KZ(Z1, Z2)

∣∣∣X2, Y2, Z2

})
.

With Assumption 6 further satisfied, we have

2. If 0<α<1/2, then n2αT̂n
p→ c, where c = E

{
U(X1, X2)G(X1, Z1)

⊤G(X2, Z2)KZ(Z1, Z2)
}
>0.

3. If α = 1/2, then nT̂n
D→ c+T †

A+
1√
2

∑2
j=1 Gj , where T †

A =
∑2

j=1 T
†
Aj and {T †

A1, T
†
A2} are i.i.d. random variables

with T †
A1 =

∑∞
i=1 λ

A
i (χ

2
i − 1), χ2

i are i.i.d. chi-square random variables with one degree of freedom and λA
i s are

the eigenvalues corresponding to the kernel function h((X1, ζ1, Z1), (X2, ζ2, Z2)) = U(X1, X2)ζ
⊤
1 ζ2KZ(Z1, Z2).

Here Gj are independent mean zero normal random variables, possibly correlated with T †
Aj , with variance equal to

4Var
(
E
{
U(X1, X2)

[
G(X1, Z1)

⊤ζ2+G(X2, Z2)
⊤ζ1

]
KZ(Z1, Z2)

∣∣∣ζ2, X2, Z2

})
.

4. If α > 1/2, nT̂n
D→ T †

A.

Proof. If α = 0, by Lemma 17 we have
√
nT̂n =

√
nTn + op(1), so we only need to show that

√
n(Tn − c0)

D→
1√
2

∑2
j=1 G

(0)
j . Note that

√
n(Tn − c0) =

1√
2

2∑
s=1

√
n

2

{(n
2

2

)−1 ∑
j<k

j,k∈J (s)

U(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk)− c0

}

=
1√
2

2∑
s=1

√
n

2

(
T̂ (n)
s − c0).

For any s ∈ [2], T̂ (n)
s is a non-degenerate U statistic with ET̂ (n)

s = c0 and
√

n
2

(
T̂

(n)
s − c0)

D→ G(0)
s follows directly follows

from asymptotic theory for non-degenerate U statistic, see Theorem 1 in Section 3.2.1 of Lee (2019) (also stated as Lemma
16 in Appendix E). Since {T̂ (n)

1 , T̂
(n)
2 } are mutually independent, we have

√
n(Tn − c0)

D→ 1√
2

∑2
j=1 G

(0)
j .
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If α > 0, by Lemma 17 and Assumption 6 we have

nT̂n =nTn + op(n
1/2−α+1)

=
n

2

2∑
s=1

{
n−2α

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)G(Sj)
⊤G(Sk)KZ(Zj , Zk)

}

+
n

2

2∑
s=1

{
n−α

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)
[
G(Sj)

⊤ζk+G(Sk)
⊤ζj

]
KZ(Zj , Zk)

}

+
n

2

2∑
s=1

{
n−α

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)
[
G(Sj)

⊤(Rnk − ζk)+G(Sk)
⊤(Rnj − ζj)

]
KZ(Zj , Zk)

}

+
n

2

2∑
s=1

{
1

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)
[
(Rnj − ζj)

⊤ζk+(Rnk − ζk)
⊤ζj

]
KZ(Zj , Zk)

}

+
n

2

2∑
s=1

{
1

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)(Rnj − ζj)
⊤(Rnk − ζk)KZ(Zj , Zk)

}

+
n

2

2∑
s=1

{
1

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)ζ
⊤
j ζkKZ(Zj , Zk)

}
+op(n

1/2−α+1)

=n1−2αJ1 + n1−αJ2 + n1−αJ3 + nJ4 + nJ5 + nJ6+op(n
1/2−α+1). (16)

Note that J1
p→ E

{
U(X1, X2)G(S1)

⊤G(S2)KZ(Z1, Z2)
}
= c > 0. J2 is mean zero non-degenerate U statistics and J6 is

degenerate U statistics. By Assumption 6 and part (a) of Assumption 13, we have J3 = op(n
−1/2) and J4, J5 = op(n

−1).

If 0<α<1/2, nT̂n = n1−2αJ1(1 + op(1)) → ∞. If α > 1/2, nT̂n = nJ6 + op(1)
D→ T †

A follows in the same way as in
the proof of Theorem 5. If α = 1/2, nT̂n = J1 +

√
nJ2 + nJ6 + op(1). Following similar approach as in the proof for

Theorem 2 of Lee et al. (2020), we have
√
nJ2 + nJ6

D→ 1√
2

∑2
j=1 Gj + T †

A and the proof is finished.

D.3. Proof of Theorem 9
First, we give a formalized version of Theorem 9:
Theorem 6 (formalized). Suppose Assumptions 4 holds, then we have,

1. Under H0, nM̂M
n

D∗

→ T †.

2. Under H1n with α = 0, nM̂M
n

D∗

→ T1 =
∑2

j=1 T̃j , where {T̃1, T̃2} are i.i.d random variables with T̃1 =∑∞
i=1 γi(χ

2
i − 1), χ2

i are i.i.d chi-square random variables with one degree of freedom and γis are eigenvalues
of h((X1, Y1, Z1), (X2, Y2, Z2)) = U(X1, X2)V (Y1, Y2)KZ(Z1, Z2).

With Assumption 6 further satisfied, we have

3. Under H1n with α > 0, nM̂M
n

D∗

→ T †
A.

Furthermore, if we let M∗
nM,γ denote the (1− γ)th quantile of nM̂M

n conditioning on the data, then the power (probability
of detecting the alternative) of our testing procedure satisfies: if α<1/2, then P(nT̂n ≥ M∗

nM,γ) → 1; if α = 1/2, then
P(nT̂n ≥ M∗

nM,γ) → P(c+T †
A+

1√
2

∑2
j=1 Gj ≥ TA

0,γ), where TA
0,γ denotes the (1− γ)th quantile of T †

A; if α > 1/2, then

P(nT̂n ≥ M∗
nM,γ) → γ.

Proof. Define

Mn =
1

J

J∑
s=1

{
1

n
J (

n
J − 1)

∑
j ̸=k

j,k∈J (s)

U(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk)ejek

}
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and {I1, Î1, Î2, Î3} according to the same equations as {I1, Î1, Î2, Î3} in Appendix E with KZ(Zj , Zk) replaced by
KZ(Zj , Zk)ejek. Denote E∗ and P ∗ as the conditional expectation and probability of a random variable conditioning on
{Xi, Yi, Zi, η

m
i }n,Mi=1,m=1. First, we show that the difference between M̂M

n and Mn is asymptotically negligible in the sense
that

P
(
P ∗(|nM̂M

n − nMn| ≥ ϵ) ≥ δ
)
→ 0 for any ϵ > 0, δ > 0. (17)

By Chebyshev’s inequality, it suffice to show E∗|nM̂M
n − nMn|2 = op(1), which is implied by E∗[I2

1+Î2
1+Î2

2+Î2
3 ] =

op(n
−2). Note that E∗[I2

1+Î2
1+Î2

2+Î2
3 ] = op(n

−2) is already shown in the proof of Lemma 17. For example,

E∗I2
1 =

1[
n
2 (

n
2 − 1)

]2 ∑
j ̸=k

j,k∈J (1)

H1(Xj , Xk)
2V̂ (Yj , Yk)

2KZ(Zj , Zk)
2,

and the right hand side is op(n−2) according to part (a) of the proof of Lemma 17 for I1.

E∗Î2
1 =

1[
n
2 (

n
2 − 1)

]2 ∑
j ̸=k

j,k∈J (1)

Ĥ1(Xj , Xk)
2V (Yj , Yk)

2KZ(Zj , Zk)
2,

and the right hand side is op(n−2) according to part (b) of the proof of Lemma 17 for Î1.

Note that nMn
D∗

→ T † under H0 and nMn
J

D∗

→ T1 under H1n with α = 0 is a standard result in bootstrapping for U-statistics
(see Theorem 4 in Lee et al. (2020) or Theorem 3.1 in Dehling & Mikosch (1994)).

It remains to show nMn
D∗

→ T †
A under H1n with α > 0. For i ∈ [6], define Di according to the same formulas as Ji in

equation (16) with KZ(Zj , Zk) replaced by KZ(Zj , Zk)ejek. Then we have

nMn = n1−2αD1 + n1−αD2 + n1−αD3 + nD4 + nD5 + nD6.

It is easy to see that E∗D2
i = Op(n

−2) for i ∈ [3] and E∗D2
i = op(n

−2) for i = 4, 5 (by part (a) of Assumption 13). So the

difference between nMn and nD6 is asymptotically negligible and nD6
D∗

→ T †
A follows from Theorem 4 in Lee et al. (2020)

or Theorem 3.1 in Dehling & Mikosch (1994).
To show the asymptotic power of our test, let M∗

nM,γ denote the (1 − γ)th quantile of nM̂M
n conditioning on

{Xi, Yi, Zi, η
m
i }n,Mi=1,m=1. By theorem 9 and part (ii) of Lemma 11.2.1 in Lehmann & Romano (2006), M∗

nM,γ

p→ T0,γ ,

M∗
nM,γ

p→ TA
0,γ M∗

nM,γ

p→ T1,γ under H0, H1n with α > 0 and H1n with α = 0 respectively, where T0,γ , TA
0,γ and T1,γ

are the (1− γ)th quantiles of T †, T †
A and T1 respectively. Then the asymptotic power results in Theorem 9 follows.

E. Auxiliary Lemmas and Its Proofs
In this section, we give three lemmas that are used in the proofs of Proposition 3 and Theorems 5-9.

The following lemma is used in the proof of Proposition 3.
Lemma 15. If Assumption 4(a) holds, then E

[
K0

(
(X, z), ·

)∣∣z] ∈ H0 is well defined and E
[
K0

(
(X, z), ·

)∣∣z] =

E
[
KX

(
X, ·

)∣∣z]KZ(z, ·) for almost every z ∈ RdZ .

Proof. By Assumption 4(a),

E
{
E
[
∥K0

(
(X,Z), ·

)
∥H0

∣∣Z]}
=E

{√
KX(X,X)KZ(Z,Z)

}
≤
{
E
[
KX(X,X)KZ(Z,Z)

]}1/2

< ∞, (18)

which implies E
[
∥K0

(
(X, z), ·

)
∥H0

∣∣z] < ∞ for almost every z ∈ RdZ . So from Definition 12 we have that
E
[
K0

(
(X, z), ·

)∣∣z] ∈ H0 is well defined for almost every z ∈ RdZ . Similarly, we can show E
[
KX

(
X, ·

)∣∣z] ∈ HX
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is well defined for almost every z ∈ RdZ . For any f ∈ HX and g ∈ HZ , by Assumption 4(a) we have E|f(X)| ≤
∥f∥HX

E
√
KX(X,X) < ∞ and similarly E|f(X)g(Z)| < ∞. By Theorem 10 we have〈

E
[
K0

(
(X, z), ·

)∣∣z], f ⊗ g
〉
H0

=E
[
f(X)g(z)

∣∣∣z]
=E

[
f(X)

∣∣∣z]g(z)
=E

[
⟨KX(X, ·), f⟩HX

∣∣∣z]⟨KZ(z, ·), g⟩HZ

=
〈
E
[
KX

(
X, ·

)∣∣z]KZ(z, ·), f ⊗ g
〉
H0
,

so we have E
[
K0

(
(X, z), ·

)∣∣z] = E
[
KX

(
X, ·

)∣∣z]KZ(z, ·) for almost every z ∈ RdZ and the lemma is proved.

The following lemma summarizes Theorem 1 in Section 3.2.1 and Theorem 1 in Section 3.2.2 of Lee (2019), and is used in
the proofs of Theorems 5 and 8.
Lemma 16. Let Un be a U-statistic based on kernel h(x1, x2) with σ2

1 = Var(E[h(X1, X2)|X2]) and θ = E[h(X1, X2)],
where {Xi}ni=1 are i.i.d. copies from distribution PX . We have

1. If σ2
1 > 0, then

√
n(Un − θ)

d→ N (0, 4σ2
1).

2. If σ2
1 = 0 and E[h2(X1, X2)], then nUn

d→
∑∞

s=1 λs(Z
2
s − 1), where {Zs}∞s=1 are independent standard normal

random variables, and the λs are the eigenvalues of the integral equation∫
h(x1, x2)f(x2)dPX(x2) = λf(x1).

The following lemma gives the rate at which the difference between the statistic T̂n and the oracle statistic Tn decays to
zero, which is used in the proofs of Theorems 5-9.
Lemma 17. Suppose Assumption 4 holds, then we have

1. T̂n − Tn = Op(n
−1[M−1/2 + n−α1 + n−α2 ] + n−1/2−(α1+α2)) under H0.

2. T̂n − Tn = Op(n
−min{α+1/2,1}[M−1/2 + n−α1 + n−α2 ] + n−min{α,1/2,α1+α2}−(α1+α2)) under H1n.

Proof. The proof is divided into two parts:
(a) T̂n−T̃n = Op(M

−1/2[n−1+n−1/2−(α1+α2)]) under H0 and T̂n−T̃n = Op(M
−1/2[n−1+n−1/2−(α1+α2)+n−1/2−α])

under H1n.
(b) T̃n−Tn=Op(n

−1−min{α1,α2,α1+α2−1/2}) under H0 and T̃n−Tn = Op(n
−min{α+1/2,1}−min{α1,α2,α1+α2−1/2}) under

H1n.
Note that in the following proof, we use C to denote a generic positive constant which may vary each time it appears.
Proof of part (a):
It suffice to prove the asymptotic order in part (a) for T̂ (1)

n − T̃
(1)
n where

T̂ (1)
n =

1
n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Û(Xj , Xk)V̂ (Yj , Yk)KZ(Zj , Zk),

T̃ (1)
n =

1
n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Ũ(Xj , Xk)V̂ (Yj , Yk)KZ(Zj , Zk).

Since Û(Xj , Xk) = Ũ(Xj , Xk)−H1(Xj , Xk), where

W1(j, k,m) =KX(Xj , X̂
(m)
k ) +KX(Xk, X̂

(m)
j )−KX(X̂

(m)
j , X̂

(m)
k )

− Eη1
k
KX(Xj , X̂

(1)
k )− Eη1

j
KX(X̂

(1)
j , Xk) + Eη1

jη
1
k
KX(X̂

(1)
j , X̂

(1)
k ),

H1(Xj , Xk) =
1

M

M∑
m=1

W1(j, k,m),
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we have T̂
(1)
n − T̃

(1)
n = −I1, where

I1 =
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

H1(Xj , Xk)V̂ (Yj , Yk)KZ(Zj , Zk).

For any ϵ ∈ (0, 1), by Assumptions 4, 13 and Chebyshev’s inequality, there exist a large positive number C4 such that for
any positive integer n, P(An) > 1− ϵ where

An =

{
{(Xi, Yi, Zi)}i∈J (−1)

∣∣∣∣∣E{KX(D1, D1)∥E1∥22KZ(Z1, Z1)
∣∣∣{(Xi, Yi, Zi)}i∈J (−1)

}
<C4,√

E
{
∥E[KX(·, X1)|Z1]−E[KX(·, X̂(1)

1 )|Z1]∥2HX

[√
KZ(Z1, Z1)+∥E1∥22KZ(Z1, Z1)

]}
≤ C4n

−α1 ,√
E
{
∥gY (Z1)−ĝY (Z1)∥22

[√
KZ(Z1, Z1)+KX(D1, D1)KZ(Z1, Z1)

]}
≤C4n

−α2 ,

E
{
KX(D1, D1)

[
∥G(S1)∥22+∥Rn1∥22

]
KZ(Z1, Z1)

}
<C4,√

E
{
∥G(S1)∥22∥E[KX(·, X̃(1)

1 )|Z1]− E[KY (·, X̂(1)
1 )|Z1]∥2HX

KZ(Z1, Z1)
}
≤ C4n

−α2 ,√
E
{
∥Rn1∥22∥E[KX(·, X̃(1)

1 )|Z1]−E[KY (·, X̂(1)
1 )|Z1]∥2KY

KZ(Z1, Z1)
}
≤ C4n

−α2

}
(19)

In the following proof, we fix {(Xi, Yi, Zi)}i∈J (−1) ∈ An and treat Ĝ1 and ĝ1 as fixed functions. Note that
E[H1(Xj , Xk)V̂ (Yj , Yk)KZ(Zj , Zk)] = 0, so

Var(I1) ≤
C

n2
E
[
H1(X1, X2)V̂ (Y1, Y2)KZ(Z1, Z2)

]2
+
C

n

∣∣∣E[H1(X1, X2)H1(X1, X3)V̂ (Y1, Y2)V̂ (Y1, Y3)KZ(Z1, Z2)KZ(Z1, Z3)
]∣∣∣

=I
(1)
1 + I

(2)
1

First, we show that I
(1)
1 ≤ C

n2M under H0 or H1n. For integers m1,m2 ∈ [M ] such that m1 ̸= m2, we have
E
{
W1(1, 2,m1)W1(1, 2,m2)|Y1, S1, Y2, S2

}
= 0, which implies

E
{
H1(X1, X2)

2|Y1, S1, Y2, S2

}
=

1

M
E
{
W1(1, 2, 1)

2|Y1, S1, Y2, S2

}
≤ C

M
E
{
KX(X1, X1)KX(X2, X2)+KX(X̂

(1)
1 , X̂

(1)
1 )KX(X2, X2)+KX(X1, X1)KX(X̂

(1)
2 , X̂

(1)
2 )

+KX(X̂
(1)
1 , X̂

(1)
1 )KX(X̂

(1)
2 , X̂

(1)
2 )|Y1, S1, Y2, S2

}
.

It can also be shown that V̂ (Y1, Y2)
2 ≤ CE

{
∥Y1∥22∥Y2∥22+∥ĝY (Z1)∥22∥Y2∥22+∥Y1∥22∥ĝY (Z2)∥22 + ∥ĝY (Z1)∥22∥ĝY (Z2)∥22

∣∣S1, S2

}
.

So from part (a) of Assumption 4 (conditioning on {(Xi, Yi, Zi)}i∈J (−1) ∈ An), we know I
(1)
1 ≤ C

n2M
. For I(2)1 , we have that under
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H0

I
(2)
1 =

C

nM

∣∣∣E[W1(1, 2, 1)W1(1, 3, 1)V̂ (Y1, Y2)V̂ (Y1, Y3)KZ(Z1, Z2)KZ(Z1, Z3)
]∣∣∣

≤ C

nM
E
∣∣∣⟨KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),Eη1

2
KX(X̃

(1)
2 , ·)−Eη1

2
KX(X̂

(1)
2 , ·)⟩HX

× ⟨KX(X̂
(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),Eη1

3
KX(X̃

(1)
3 , ·)−Eη1

3
KX(X̂

(1)
3 , ·)⟩HX

×
[
Y1−ĝY (Z1)

]⊤[
gY (Z2)−ĝY (Z2)

]
×

[
Y1−ĝY (Z1)

]⊤[
gY (Z3)−ĝY (Z3)

]
KZ(Z1, Z2)KZ(Z1, Z3)

∣∣∣
≤ C

nM
E
[
∥KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·)∥2HX

∥Y1−ĝY (Z1)∥22KZ(Z1, Z1)
]

× E
[
∥Eη1

2
KX(X̃

(1)
2 , ·)−Eη1

2
KX(X̂

(1)
2 , ·)∥HX∥gY (Z2)−ĝY (Z2)∥2

√
KZ(Z2, Z2)

]
× E

[
∥Eη1

3
KX(X̃

(1)
3 , ·)−Eη1

3
KX(X̂

(1)
3 , ·)∥HX∥gY (Z3)−ĝY (Z3)∥2

√
KZ(Z3, Z3)

]
.

By part (a) of Assumption 4, E
[
∥KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·)∥2HX

∥Y1−ĝY (Z1)∥22KZ(Z1, Z1)
]

< CC4. By part (b) of
Assumption 4 and Cauchy–Schwarz inequality,

E
[
∥Eη1

2
KX(X̃

(1)
2 , ·)−Eη1

2
KX(X̂

(1)
2 , ·)∥HX∥gY (Z2)−ĝY (Z2)∥2

√
KZ(Z2, Z2)

]
≤Cn−α1−α2 ,

E
[
∥Eη1

3
KX(X̃

(1)
3 , ·)−Eη1

3
KX(X̂

(1)
3 , ·)∥HX∥gY (Z3)−ĝY (Z3)∥2

√
KZ(Z3, Z3)

]
≤Cn−α1−α2 .

So we have I
(2)
1 ≤ C

n1+2(α1+α2)M
under H0. Under H1n, since E[Rni|Si] = 0,

I
(2)
1 =

C

nM

∣∣∣E[⟨KX(X̂
(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X2, ·)−Eη1

2
KX(X̂

(1)
2 , ·)⟩HX

× ⟨KX(X̂
(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X3, ·)−Eη1

3
KX(X̂

(1)
3 , ·)⟩HX

×
[
Y1−ĝY (Z1)

]⊤[
gY (Z2)−ĝY (Z2)+n−αG(S2)

]
×

[
Y1−ĝY (Z1)

]⊤[
gY (Z3)−ĝY (Z3)+n−αG(S3)

]
KZ(Z1, Z2)KZ(Z1, Z3)

]∣∣∣. (20)

By Assumptions 4 and 13, we have∣∣∣E[⟨KX(X̂
(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X2, ·)−Eη1

2
KX(X̂

(1)
2 , ·)⟩HX ⟨KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X3, ·)−Eη1

3
KX(X̂

(1)
3 , ·)⟩HX

×
[
Y1−ĝY (Z1)

]⊤[
n−αG(S2)

][
Y1−ĝY (Z1)

]⊤[
gY (Z3)−ĝY (Z3)

]
KZ(Z1, Z2)KZ(Z1, Z3)

]∣∣∣.
≤E

[
∥KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·)∥2HX

∥Y1−ĝY (Z1)∥22KZ(Z1, Z1)
]

× E
[
∥KX(X2, ·)−Eη1

2
KX(X̂

(1)
2 , ·)∥HX∥n−αG(S2)∥2

√
KZ(Z2, Z2)

]
× E

[
∥Eη1

3
KX(X̃

(1)
3 , ·)−Eη1

3
KX(X̂

(1)
3 , ·)∥HX∥gY (Z3)−ĝY (Z3)∥2

√
KZ(Z3, Z3)

]
≤Cn−α−α1−α2 ,

∣∣∣E[⟨KX(X̂
(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X2, ·)−Eη1

2
KX(X̂

(1)
2 , ·)⟩HX ⟨KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X3, ·)−Eη1

3
KX(X̂

(1)
3 , ·)⟩HX

×
[
Y1−ĝY (Z1)

]⊤[
gY (Z2)−ĝY (Z2)

][
Y1−ĝY (Z1)

]⊤[
gY (Z3)−ĝY (Z3)

]
KZ(Z1, Z2)KZ(Z1, Z3)

]∣∣∣.
≤E

[
∥KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·)∥2HX

∥Y1−ĝY (Z1)∥22KZ(Z1, Z1)
]

× E
[
∥Eη1

2
KX(X̃

(1)
2 , ·)−Eη1

2
KX(X̂

(1)
2 , ·)∥HX∥gY (Z2)−ĝY (Z2)∥2

√
KZ(Z2, Z2)

]
× E

[
∥Eη1

3
KX(X̃

(1)
3 , ·)−Eη1

3
KX(X̂

(1)
3 , ·)∥HX∥gY (Z3)−ĝY (Z3)∥2

√
KZ(Z3, Z3)

]
≤Cn−2(α1+α2)
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and∣∣∣E[⟨KX(X̂
(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X2, ·)−Eη1

2
KX(X̂

(1)
2 , ·)⟩HX ⟨KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·),KX(X3, ·)−Eη1

3
KX(X̂

(1)
3 , ·)⟩HX

×
[
Y1−ĝY (Z1)

]⊤[
n−αG(S2)

][
Y1−ĝY (Z1)

]⊤[
n−αG(S3)

]
KZ(Z1, Z2)KZ(Z1, Z3)

]∣∣∣.
≤E

[
∥KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̂

(1)
1 , ·)∥2HX

∥Y1−ĝY (Z1)∥22KZ(Z1, Z1)
]

× E
[
∥KX(X2, ·)−Eη1

2
KX(X̂

(1)
2 , ·)∥HX∥n−αG(S2)∥2

√
KZ(Z2, Z2)

]
× E

[
∥KX(X3, ·)−Eη1

3
KX(X̂

(1)
3 , ·)∥HX∥n−αG(S3)∥2

√
KZ(Z3, Z3)

]
≤Cn−2α,

which implies I
(2)
1 ≤ CM−1(n−1−2(α1+α2)+n−1−(α+α1+α2) + n−1−2α) ≤ CM−1(n−2 + n−1−2α) under H1n.

Combining with the result for I
(1)
1 , we can conclude that conditioning on {(Xi, Yi, Zi)}i∈J (−1) ∈ An, E[I1]2 ≤

CM−1(n−2 + n−1−2(α1+α2)) under H0 and E[I1]2 ≤ CM−1(n−1−2α + n−2 + n−1−2(α1+α2)) under H1n. Let Ac
n

denote the complement set of An, Under H0, since

P(| M1/2I1
n−1+n−1/2−α1−α2

| > C) ≤P(| M1/2I1
n−1+n−1/2−α1−α2

| > C,An) + P (Ac
n)

=E
[
P
(
| M1/2I1
n−1+n−1/2−α1−α2

| > C
∣∣{(Xi, Yi, Zi)}i∈J (−1)

)
1An({(Xi, Yi, Zi)}i∈J (−1))

]
+ P(Ac

n)

≤ 1

C2
+ ϵ (21)

and ϵ can be arbitrarily small, we can conclude that, without conditioning on {(Xi, Yi, Zi)}i∈J (−1) , I1 =
Op(M

−1/2[n−1+n−1/2−(α1+α2)]) under H0. Similarly, we can prove I1 = Op(M
−1/2[n−1+n−1/2−(α1+α2)+n−1/2−α])

under H1n. So part (a) is proved.
Since the same conditioning argument as in equation (21) can be used to derive the asymptotic order without conditioning
on the training data, from now on, we treat all the neural networks as fixed functions.
Proof of part (b):
It suffice to prove the asymptotic order in part (b) for T̃ (1)

n − T
(1)
n where

T (1)
n =

1
n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

U(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk).

Since Ũ(Xj , Xk) = U(Xj , Xk)− Ĥ1(Xj , Xk) and V̂ (Yj , Yk) = V (Yj , Yk)− Ĥ2(Yj , Yk), where

Ĥ1(Xj , Xk) =Eη1
k
KX(Xj , X̂

(1)
k ) + Eη1

j
KX(X̂

(1)
j , Xk)− Eη1

jη
1
k
KX(X̂

(1)
j , X̂

(1)
k )

− Eη1
k
KX(Xj , X̃

(1)
k )− Eη1

j
KX(X̃

(1)
j , Xk) + Eη1

jη
1
k
KX(X̃

(1)
j , X̃

(1)
k ),

Ĥ2(Yj , Yk) =Y ⊤
j ĝY (Zk) + ĝY (Zj)

⊤Yk − ĝY (Zj)
⊤ĝY (Zk)

− Y ⊤
j gY (Zk)− gY (Zj)

⊤Yk + gY (Zj)
⊤gY (Zk),

then we have T̃
(1)
n − T

(1)
n = −Î1 − Î2 + Î3, where

Î1 =
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Ĥ1(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk),

Î2 =
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

U(Xj , Xk)Ĥ2(Yj , Yk)KZ(Zj , Zk),

Î3 =
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Ĥ1(Xj , Xk)Ĥ2(Yj , Yk)KZ(Zj , Zk).
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Consider Î1. Under H0,

E[Ĥ1(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk)|Yj , Sj ]=E[Ĥ1(Xj , Xk)V (Yj , Yk)KZ(Zj , Zk)|Yk, Sk] = 0,

so we have

Var(Î1) =
1

n
2 (

n
2 − 1)

E
[
Ĥ1(X1, X2)

2V (Y1, Y2)
2KZ(Z1, Z2)

2
]
. (22)

Note that V (Y1, Y2)
2 ≤ C

{
∥Y1∥22∥Y2∥22+∥gY (Z1)∥22∥Y2∥22+∥Y1∥22∥gY (Z2)∥22+∥gY (Z1)∥22∥gY (Z2)∥22

}
,

Ĥ1(X1, X2)
2 ≤C

{[
Eη1

2
KX(X1, X̃

(1)
2 )− Eη1

2
KX(X1, X̂

(1)
2 )

]2
+
[
Eη1

1
KX(X2, X̃

(1)
1 )− Eη1

1
KX(X2, X̂

(1)
1 )

]2
+
[
Eη1

1η
1
2
KX(X̂

(1)
2 , X̃

(1)
1 )− Eη1

1η
1
2
KX(X̂

(1)
2 , X̂

(1)
1 )

]2
+
[
Eη1

1η
1
2
KX(X̃

(1)
1 , X̃

(1)
2 )− Eη1

1η
1
2
KX(X̃

(1)
1 , X̂

(1)
2 )

]2}
,

(23)

and
[
Eη1

2
KX(X1, X̃

(1)
2 ) − Eη1

2
KX(X1, X̂

(1)
2 )

]2 ≤ KX(X1, X1)∥Eη1
2
KX(·, X̃(1)

2 ) − Eη1
2
KX(·, X̂(1)

2 )∥2HX
, so by part (a)

and (b) of Assumption 4, we have Î1 = Op(n
−1−α1). Under H1n,

Î1 =
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Ĥ1(Xj , Xk)
[
n−αG(Sj)

]⊤[Rnk

]
KZ(Zj , Zk)

+
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Ĥ1(Xj , Xk)
[
n−αG(Sk)

]⊤[Rnj

]
KZ(Zj , Zk)

+
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Ĥ1(Xj , Xk)
[
n−αG(Sj)

]⊤[
n−αG(Sk)

]
KZ(Zj , Zk)

+
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

Ĥ1(Xj , Xk)
[
Rnj

]⊤[Rnk

]
KZ(Zj , Zk)

=Î
(1)
1 +Î

(2)
1 +Î

(3)
1 +Î

(4)
1 .

We now show Î
(1)
1 = Op(n

−1/2−α−α1) (same result holds for Î
(2)
1 and the proof is omitted). Note that

E
{
Ĥ1(Xj , Xk)

[
n−αG(Sj)

]⊤[Rnk

]
KZ(Zj , Zk)

}
= 0, by equation (23), we have

Var(Î
(1)
1 ) ≤C

n

{
E
{[

Eη1
2
KX(X1, X̃

(1)
2 )− Eη1

2
KX(X1, X̂

(1)
2 )

]2∥n−αG(S1)∥22∥Rn2∥22KZ(Z1, Z1)KZ(Z2, Z2)
}

+E
{[

Eη1
1
KX(X2, X̃

(1)
1 )− Eη1

1
KX(X2, X̂

(1)
1 )

]2∥n−αG(S1)∥22∥Rn2∥22KZ(Z1, Z1)KZ(Z2, Z2)
}

+E
{[

Eη1
1η

1
2
KX(X̂

(1)
2 , X̃

(1)
1 )− Eη1

1η
1
2
KX(X̂

(1)
2 , X̂

(1)
1 )

]2∥n−αG(S1)∥22∥Rn2∥22KZ(Z1, Z1)KZ(Z2, Z2)
}

+E
{[

Eη1
1η

1
2
KX(X̃

(1)
1 , X̃

(1)
2 )− Eη1

1η
1
2
KX(X̃

(1)
1 , X̂

(1)
2 )

]2∥n−αG(S1)∥22∥Rn2∥22KZ(Z1, Z1)KZ(Z2, Z2)
}}

=O(n−1−2α−2α1),

where the last equality follows from Assumption 13. So we have Î
(1)
1 = Op(n

−1/2−α−α1) under H1n. For Î(4)1 , the
conditional expectations of Ĥ1(Xj , Xk)

[
Rnj

]⊤[Rnk

]
KZ(Zj , Zk) given (Rnj , Sj) or (Rnk, Sk) are zero, so Î

(4)
1 =

Op(n
−1−α1) by Assumption 13. Following similar approach as for Î(1)1 , we can show Var(Î

(3)
1 ) = O(n−1−4α−2α1), which

implies Î(3)1 = Op(n
−1/2−2α−α1) under H1n. So we have Î1 = Op(n

−1/2−α−α1+n−1−α1) under H1n.
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Now consider Î2. Under H0, Î2 = Op(n
−1−α2) can be shown similar to the proof for Î1. Under H1n, let

Ĥ
(1)
1 (Xj , Xk)=Eη1

k
KX(Xj , X̂

(1)
k )−Eη1

k
KX(Xj , X̃

(1)
k ),

Ĥ
(2)
1 (Xj , Xk)=Eη1

j
KX(Xk, X̂

(1)
j )−Eη1

j
KX(Xk, X̃

(1)
j ),

Ĥ
(3)
1 (Xj , Xk)=Eη1

jη
1
k
KX(X̂

(1)
j , X̂

(1)
k )−Eη1

jη
1
k
KX(X̃

(1)
j , X̃

(1)
k )

Ĥ
(1)
2 (Yj , Yk)=Y ⊤

j ĝY (Zk)−Y ⊤
j gY (Zk),

Ĥ
(2)
2 (Yj , Yk)=ĝY (Zj)

⊤Yk−gY (Zj)
⊤Yk,

Ĥ
(3)
2 (Yj , Yk)=ĝY (Zj)

⊤ĝY (Zk)−gY (Zj)
⊤gY (Zk),

then we have

Î2 =
1

n
2
(n
2
− 1)

∑
j ̸=k

j,k∈J (1)

U(Xj , Xk)
{
Ĥ

(1)
2 (Yj , Yk)+Ĥ

(2)
2 (Yj , Yk)−Ĥ

(3)
2 (Yj , Yk)

}
KZ(Zj , Zk)

=Î
(1)
2 +Î

(2)
2 −Î

(3)
2 ,

Î
(1)
2 =

1
n
2
(n
2
− 1)

∑
j ̸=k

j,k∈J (1)

U(Xj , Xk)
[
gY (Zj)

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

+
1

n
2
(n
2
− 1)

∑
j ̸=k

j,k∈J (1)

U(Xj , Xk)
[
n−αG(Sj)

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

+
1

n
2
(n
2
− 1)

∑
j ̸=k

j,k∈J (1)

U(Xj , Xk)
[
Rnj

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

=Î
(11)
2 +Î

(21)
2 +Î

(31)
2 .

For Î(11)2 , since the conditional expectations of the summand given Sj or Sk are zero, using Assumption 4, we can show
Î
(11)
2 = Op(n

−1−α2) (see the proof for Î1 under the null). For Î(31)2 , since the conditional expectations of the summand
given (Rnj , Sj) or Sk are zero, Î(31)1 = Op(n

−1−α2) follows in the same way as Î(11)2 (using part (b) of Assumption 4 and
part (a) of Assumption 13). For Î(21)2 , we only have

E
[
U(Xj , Xk)

[
n−αG(Sj)

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

∣∣∣Sj

]
=E

[
E
[
U(Xj , Xk)

∣∣Sj , Zk

][
n−αG(Sj)

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

∣∣∣Sj

]
=0,

which implies

Var(Î
(21)
2 ) ≤C

n
E
[
U(X1, X2)

2
{[

n−αG(S1)
]⊤[

ĝY (Z2)−gY (Z2)
]}2

KZ(Z1, Z2)
2
]

≤ C

n1+2α
E
[
U(X1, X2)

2∥G(S1)∥22∥ĝY (Z2)−gY (Z2)∥22KZ(Z1, Z1)KZ(Z2, Z2)
]
.

By part (b) of Assumption 4 and part (a) of Assumption 13, Î(21)2 = Op(n
−1/2−α−α2) and we can conclude that Î(1)2 =

Op(n
−1/2−α−α2 + n−1−α2). The proof for Î

(2)
2 = Op(n

−1/2−α−α2 + n−1−α2) is similar to Î
(1)
1 and the proof for

Î
(3)
2 = Op(n

−1−α2) is similar to Î1 under the null. So we have Î2 = Op(n
−1/2−α−α2 + n−1−α2) under H1n.

Now consider the term Î3. Denote W̃1(j, k) = E
{
Ĥ1(Xj , Xk)|Zj , Zk

}
and W̃2(j, k) = E

{
Ĥ2(Yj , Yk)|Zj , Zk

}
, then we
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have

Î3 =
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

[
Ĥ1(Xj , Xk)− W̃1(j, k)

][
Ĥ2(Yj , Yk)− W̃2(j, k)

]
KZ(Zj , Zk)

+
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

W̃1(j, k)
[
Ĥ2(Yj , Yk)− W̃2(j, k)

]
KZ(Zj , Zk)

+
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

[
Ĥ1(Xj , Xk)− W̃1(j, k)

]
W̃2(j, k)KZ(Zj , Zk)

+
1

n
2 (

n
2 − 1)

∑
j ̸=k

j,k∈J (1)

W̃1(j, k)W̃2(j, k)KZ(Zj , Zk)

=Î
(1)
3 + Î

(2)
3 + Î

(3)
3 + Î

(0)
3 . (24)

We now show that Î(2)3 , Î
(3)
3 = Op(n

−1/2−(α1+α2)) and Î
(0)
3 = Op(n

−2(α1+α2)) under both H0 and H1n. Note that
E|Î(0)3 | ≤ E{|W̃1(1, 2)||W̃2(1, 2)|

√
KZ(Z1, Z1)KZ(Z2, Z2)} and

|W̃1(1, 2)| =
∣∣∣E{〈KX(·, X̂(1)

2 )−KX(·, X̃(1)
2 ),KX(·, X̃(1)

1 )−KX(·, X̂(1)
1 )

〉
HX

∣∣∣Z1, Z2

}∣∣∣
≤
∥∥Eη1

2
KX(·, X̂(1)

2 )− Eη1
2
KX(·, X̃(1)

2 )
∥∥
HX

∥∥Eη1
1
KX(·, X̃(1)

1 )− Eη1
1
KX(·, X̂(1)

1 )
∥∥
HX

.

Similarly, |W̃2(1, 2)| ≤ ∥gY (Z2) − ĝY (Z2)∥2∥gY (Z1) − ĝY (Z1)∥2, so by part (b) of Assumption 4, we have E|Î(0)3 | =
O(n−2(α1+α2)). For Î(2)3 , we have EÎ(2)3 = 0 and

Var(Î
(2)
3 ) ≤ C

n2
E
{
W̃1(1, 2)

2[Ĥ2(Y1, Y2)− W̃2(1, 2)
]2KZ(Z1, Z2)

2
}

+
C

n

∣∣∣E{W̃1(1, 2)W̃1(1, 3)
[
Ĥ2(Y1, Y2)−W̃2(1, 2)

][
Ĥ2(Y1, Y3)−W̃2(1, 3)

]
KZ(Z1, Z2)KZ(Z1, Z3)

}∣∣∣.
By part (b) of assumption 4 and equation (25), E

{
W̃1(1, 2)

2
[
Ĥ2(Y1, Y2)− W̃2(1, 2)

]2KZ(Z1, Z2)
2
}
= O(n−2(α1+α2)).

Since

Ĥ2(Y1, Y2)−W̃2(1, 2) =
[
Y1−gY (Z1)

]⊤[
ĝY (Z2)−gY (Z2)

]
+
[
Y2−gY (Z2)

]⊤[
ĝY (Z1)−gY (Z1)

]
≤
∥∥Y1−gY (Z1)

∥∥
2

∥∥ĝY (Z2)−gY (Z2)
∥∥
2
+
∥∥Y2−gY (Z2)

∥∥
2

∥∥ĝY (Z1)−gY (Z1)
∥∥
2
, (25)

Ĥ2(Y1, Y3)−W̃2(1, 3) ≤
∥∥Y1−gY (Z1)

∥∥
2

∥∥ĝY (Z3)−gY (Z3)
∥∥
2
+
∥∥Y3−gY (Z3)

∥∥
2

∥∥ĝY (Z1)−gY (Z1)
∥∥
2

by part (a) and (b) of Assumption 4, we have

E
{
W̃1(1, 2)W̃1(1, 3)

[
Ĥ2(Y1, Y2)−W̃2(1, 2)

][
Ĥ2(Y1, Y3)−W̃2(1, 3)

]
KZ(Z1, Z2)KZ(Z1, Z3)

}
= O(n−2(α1+α2)),

which implies Î(2)3 = Op(n
−1/2−(α1+α2)) and Î

(3)
3 = Op(n

−1/2−(α1+α2)) follows similarly. For Î(1)3 , since EÎ(1)3 = 0
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under H0, we can show Î
(1)
3 = Op(n

−1/2−(α1+α2)) in the same way as Î(2)3 . Under H1n,

Î
(1)
3 =

1
n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (1)

[
Ĥ1(Xj , Xk)−W̃1(j, k)

][
Yj−gY (Zj)

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

+
1

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (1)

[
Ĥ1(Xj , Xk)−W̃1(j, k)

][
Yk−gY (Zk)

]⊤[
ĝY (Zj)−gY (Zj)

]
KZ(Zj , Zk)

=Î
(11)
3 + Î

(21)
3

Î
(11)
3 =

1
n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (1)

[
Ĥ1(Xj , Xk)−W̃1(j, k)

][
n−αG(Sj)

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

+
1

n
2
(n
2
−1)

∑
j ̸=k

j,k∈J (1)

[
Ĥ1(Xj , Xk)−W̃1(j, k)

][
Rnj

]⊤[
ĝY (Zk)−gY (Zk)

]
KZ(Zj , Zk)

=Î
(111)
3 + Î

(112)
3 . (26)

We now show Î
(11)
3 = Op(n

−1/2−(α1+α2)+n−(α+α1+α2)) (same result holds for Î(21)3 and the proof is omitted). Note that

E|Î(111)3 | ≤ 1

nα
E
{
∥G(S1)∥2∥ĝY (Z2)−gY (Z2)∥2∥KX(X1, ·)−Eη1

1
KX(X̃

(1)
1 , ·)∥HX

· ∥Eη1
2
KX(X̂

(1)
2 , ·)−Eη1

2
KX(X̃

(1)
2 , ·)∥HX

√
KZ(Z1, Z1)KZ(Z2, Z2)

}
+

1

nα
E
{
∥G(S1)∥2∥ĝY (Z2)−gY (Z2)∥2∥KX(X2, ·)−Eη1

2
KX(X̃

(1)
2 , ·)∥HX

· ∥Eη1
1
KX(X̂

(1)
1 , ·)−Eη1

1
KX(X̃

(1)
1 , ·)∥HX

√
KZ(Z1, Z1)KZ(Z2, Z2)

}
=O(n−(α+α1+α2))

by Jensen’s inequality and part (b) of Assumptions 4 and 13, so we have Î
(111)
3 = Op(n

−(α+α1+α2)). Since
EÎ(112)3 = 0, following similar approach as for Î

(2)
3 we can show Î

(112)
3 = Op(n

−1/2−(α1+α2)) and conclude that
Î
(11)
3 = Op(n

−1/2−(α1+α2)+n−(α+α1+α2)). So part(b) is proved.
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