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Abstract
In Inverse Reinforcement Learning (IRL), we
learn the underlying reward function of humans
from observations. Recent work shows that we
can learn the reward function more accurately by
observing the human in multiple related environ-
ments, but efficiently finding informative environ-
ments is an open question. We present AMBER,
an information-theoretic algorithm that generates
highly informative environments. With theoreti-
cal and empirical analysis, we show that AMBER
efficiently finds informative environments and im-
proves reward learning.

1. Introduction
When studying sequential human decision making, we often
model the human as a Reinforcement Learning (RL) agent.
In Inverse Reinforcement Learning (IRL) we aim to learn
the human’s reward function, i.e. how the human values var-
ious outcomes of a task, from their behavior. By interpreting
the reward function, we can form hypotheses about the rea-
sons behind their behavior. For example, Yu et al. (2019) use
IRL to determine how doctors decide the amount of sedative
dosing in the intensive care unit. Thereby, we can better un-
derstand the decision making process of successful doctors.
While promising, traditional IRL approaches face a com-
mon and significant challenge, reward non-identifability:
many different reward functions can induce the same policy,
i.e, one may not be able to learn the ground-truth reward
function (Cao et al., 2021; Kim et al., 2021; Metelli et al.,
2021; 2023).

In a recent work, Environment Design for IRL, Buening
et al. (2024) introduces an algorithm for improving reward
identifiability by iteratively observing the human in a set of
related environments. In each iteration, the Environment-
Design algorithm observes the human interact in a new
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environment. Each new environment is designed to increase
our knowledge about the unknown reward function. While
promising, the algorithm is computationally expensive and
does not have theoretical performance guarantees.

In this paper, we develop a theoretically-grounded and ef-
ficient Environment-Design approach to mitigate the non-
identifiability of reward learning in IRL. Specifically, our
contributions are: (1) we provide intuition and theory to
characterize high information-gain environments, (2) we ef-
ficiently compute these environments during each iteration
of our algorithm, and (3) we provide theoretical and empiri-
cal analysis of the performance of our algorithm, showing
that our algorithm outperforms existing baselines for reward
learning. Throughout this work, we draw parallels to ideas
from neuroscience and psychology.

We start with Related Works and Background, introducing
key ideas such as IRL and Behavior Maps (Ankile et al.,
2023). We set up the environment design problem setting in
section 4. In section 5 we show how we can find environ-
ments with high information gain by quantifying the entropy
of their Behavior Maps. This motivates AMBER, Active
Maximization of Behavior Map Entropy, a computationally-
efficient approach to Behavior Map entropy maximization
based on implicit differentiation. In section 5.3 we show
that AMBER monotonically converges to high entropy envi-
ronments, allowing us to conclude that we contract towards
the ground-truth values. In section 6 we provide empirical
evidence, showing that AMBER efficiently identifies high-
entropy environments and learns R up to high precision,
outperforming baselines. All proofs can be found in the
appendix.

2. Related work
Inverse Reinforcement Learning Inverse Reinforcement
Learning (IRL) is a powerful paradigm for learning Markov
Decision Process (MDP) parameters by observing the behav-
ior of a human (Rust, 1994; Ng et al., 2000). A well known
problem in IRL is non-identifiability: many different pa-
rameters induce the same optimal behavior (Russell, 1998).
Thereby, the true parameters of the human can not be fully
recovered. Previous work in IRL has mostly focused on
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how to choose a parameter from this set of feasible parame-
ters, rather than resolving the non-identifiability. Common
approaches are entropy maximization (Ziebart et al., 2008),
maximum margin planning (Ratliff et al., 2006) or adopting
a Bayesian perspective (Ramachandran and Amir, 2007).
Instead of choosing a parameter from a set of otherwise
indistinguishable options, our work narrows in on the true
parameters by observing the human in a related scenario,
for example under a different transition function.

Active learning of reward functions Actively learning
preferences of humans is a well studied problem. Within
IRL, previous work has mostly focused on learning a more
robust reward function by eliciting the human’s feedback
under the initial transition dynamics. Lopes et al. (2009);
Lindner et al. (2021; 2022) query the human’s behavior in
different states while Ibarz et al. (2018); Wilde et al. (2021)
ask the human to rate different behaviors. The field of
Preference Elicitation (PE) (Rashid et al., 2008) studies how
to optimally query a human’s preferences about different
options, such as movie genres. Common approaches are
Information Theory (Rokach and Kisilevich, 2012; Canal
et al., 2019; Martin et al., 2023) or Bayesian Regret based
(Boutilier et al., 2006; Boutilier, 2013). We also aim to
ask the human a sequence of informative questions, but we
allow the underlying setting to be sequential, unlike in PE.

Environment Design From a theoretic perspective in IRL,
it is well known that non-identifiability of the reward func-
tion can be resolved up to a constant by observing the hu-
man under different transition dynamics or discount rates
(Cao et al., 2021). Based on this theoretic insight, Buen-
ing et al. (2024) recently proposed Environment Design
(ED), assuming an active learning approach to overcome
non-identifiability when learning the reward function R. ED
proceeds over a sequence of episodes. In each episode, a
learner chooses an environment for the human to act in, with
the aim of resolving as much uncertainty in R as possible.
A large number of environments is generated by randomly
changing the transition dynamics from the initial environ-
ment, and the chosen environment is the one that maximizes
the Bayesian regret of the value function (which is empiri-
cally better than other options). The intuition is that we pick
an environment where the current reward estimate predicts
the behavior of the human as poorly as possible. We instead
choose our environment in a computationally-efficient and
information-theoretic way, proving that our method chooses
a high information-gain environment. We also show our
method empirically outperforms Buening et al. (2024).

3. Background
This section provides background on concepts from Inverse
Reinforcement Learning and Information Theory, used to

derive the intuition and theory behind AMBER.

(Inverse) Reinforcement Learning A Markov Decision
Process (MDP)M is a tuple (S,A, R, T, γ) where S is a (fi-
nite) state space,A is a (finite) action space, R : S×A → R
is a reward function, T : S ×A× S → [0, 1] is a transition
function and γ ∈ [0, 1) is a discount rate. An optimal hu-
man solves for a policy π∗ that maximizes the expected, dis-
counted return Jπ := E[

∑∞
t=0 γ

tRt(s, a)]: π∗ = maxπ J
π

(Sutton and Barto, 2018). The value function V π of a
policy π is given as the unique fixed point of the soft
Bellman operator B : BV π = logsumexpa∈A

[
R(s, a) +

γ
∑

s′∈S T (s′|s, a)V (s′)
]
. Here, we choose the soft ver-

sion of the Bellman operator over the hard maxa∈A version
such that we can differentiate through B (Levine, 2018; Ba-
con et al., 2019; Nikishin et al., 2022). The Inverse RL
problem consists of estimating R given length L observa-
tions τ1:N := {(s0, a0), (s1, a1), ..., (sLi

, aLi
)}i=1,...,N of

the human (Ng and Russell, 2000).

Definitions and notation We call the unknown parts
of R that we aim to learn the human reward parameters
U ⊆ R|S|×|A|, denote our current belief over U by PU

and the ground-truth human parameters by UGT . We call
an MDP without a human parameter an environment E, or
M\U . Inserting a specific user parameter U into E yields a
complete MDP in which we can observe the behavior of the
human. We define an intervention i ∈ I as a perturbation
of an environment E to generate a new environment E′ and
denote the set of all possible interventions by I . For ex-
ample, we could intervene on an environment by randomly
changing the transition function or by doubling all rewards.
Finally, we define a behavior as all observations that were
generated while pursuing the same goal. Due to stochas-
ticity of the environment, the human may take different
paths to reach the same goal, but we do not consider this
important. With a slight abuse of notation, we also denote
behavior with τ .

A decision rule d : τ → i maps behaviors to interventions
and the optimal Bayesian decision rule d∗(l) is a decision
rule that minimizes a loss function l : U × I → R given a
prior PU over U . The entropy H(X) := E[− log(X)] of a
random variable X measures the uncertainty of X and the
information gain IG(X|A = a) := H(X)−H(X|A = a)
measures the reduction in uncertainty of a random variable
X by observing another random variable A take on value
a. The maximum entropy distribution of a discrete random
variable taking N ∈ N values has equal probability 1

N on
all N outcomes.

Behavior maps (BM) A Behavior Map Y of an environ-
ment E maps user parameters U ∼ PU to expected behav-
iors τ1, ..., τN (Ankile et al., 2023).
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Figure 1. A behavior map

Let PY denote the conditional probability of observing be-
havior τ in environment E given user parameter U :

PY(E,U) := P [τ |E,U ] (1)

Then, the Behavior Map Y denotes the expected behavior:

Y[U ] := EPY(E,U)[τ ], U (2)

Figure 1 shows an example Behavior Map for the example
in figure 6. For high golden carrot reward values, the rabbit
picks the golden carrot (green behavior) while for high nor-
mal carrot reward values, the rabbit picks the normal carrot
(orange behavior). Note that the distribution in equation 1
is a Dirac distribution for fixed E,U if the human uses a
deterministic policy.

4. Problem Setting for Environment Design
In the general Environment Design (ED) problem setting
(Buening et al., 2024), we are interested in learning some
ground-truth parameters UGT of a human by iteratively ob-
serving trajectories over a sequence of related environments.
We maintain a belief PU,m over the human parameters, at
each episode m, starting with a prior PU,0. After observing
the human in the initial environment E0, we update our
current belief, yielding PU,1.

We know, from literature, that ground-truth parameters are
not generally identifiable by observing trajectories in a sin-
gle environment. Thus, in Environment Design, we observe
the human in a chosen new environment and collect addi-
tional trajectories to help further identify UGT . We generate
a new environment Em+1 by slightly perturbing the cur-
rent one Em, i.e. with an intervention i ∈ I . For example,
an intervention could be to randomly change the transition
function of Em: we need to choose the set of valid interven-
tions. Ideally, we choose a new environment that provides
us with the maximum amount of additional information
about UGT . We formalize this choice as the following opti-
mization problem:

min
i∈I

EU∼PU,m
[l(U, i)] (3)

where the loss function l(U, I) → R captures our notion
of information gained by performing i. For example, the
Bayesian regret loss function used in Buening et al. (2024)
quantifies how well we can predict the behavior of the
human in the new environment Em+1, given our current
knowledge PU,m. Our method will have a different loss.
After observing the human in Em+1, we update our belief
to PU,m+1. This procedure is repeated for M episodes. We
show an overview of the ED framework in appendix 2.

In the above, we make two key assumptions: (i) optimality
of the human (otherwise we can’t assume that the behavior
is caused by the ground-truth human parameters) and (ii)
constant ground-truth values across environments (so that
we can aggregate information from the same human across
different environments).

In summary, there are two main design choices in ED: the
loss function l and the set of interventions I . The loss
function l must both capture the informativeness of an in-
tervention and be efficiently optimized over I . The set of
interventions I must both be able to generate low loss val-
ues and generate environments with stationary ground-truth
parameters UGT . The remainder of this paper studies our
choice of l and I .

5. AMBER: Finding high information gain
environments via behavior maps

The Environment Design setup relies on being able to effi-
ciently identify new environments that provide the largest
amount of additional information on the unknown parame-
ters. In this section, we characterize these high information
gain environments. Using our characterization, we derive a
new Environment-Design algorithm, AMBER, for maximiz-
ing information gain in each episode.

First, in section 5.1, we connect high information gain envi-
ronments to Behavior Maps (i.e. the distribution of expected
“behaviours” under the current belief) that have high entropy.
Second, in section 5.2 we describe how we can maximize
the entropy of the Behavior Map. Based on our analysis, we
define our algorithm AMBER, which identifies a single high
information gain environment for each episode of ED, by
maximizing the entropy of corresponding Behavior Maps.

Within each episode, in section 5.3 we show that AMBER
monotonically converges to an environment E∗ with entropy
at least as large as the entropy of a Bernoulli random variable
B∗ with p = 0.5. That is, AMBER maximizes information
gain every episode. Thus, by observing the human in E∗, we
reduce the posterior uncertainty by half in every iteration.
This means that our belief over the ground-truth parameters
contracts across multiple episodes when performing ED
with environments computed by AMBER.
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Finally, we note that while AMBER’s theoretical setup is for
learning an arbitrary set of parameters U , in this work, we
focus only on learning the reward R (instead of including
human transition parameters or discount factor, for exam-
ple).

5.1. High information gain environments have high
entropy behavior maps

Suppose we observed the human in an environment E, yield-
ing a posterior PU . Due to parameter non-identifiability, PU

will likely be spread out. We focus on the region around the
posterior mode, which we call the Region-of-Interest (ROI).
Intuitively, a high-information gain environment E∗ is one
that cuts down the ROI as much as possible. Equivalently,
in a high-information gain environment E∗, each behavior
corresponds to a region of the ROI of similar mass. Thus,
any behaviour the human chooses will reduce the posterior
uncertainty by a maximal amount. Hence, our goal is to
find an environment E∗ such that the Behavior Map of E∗,
when restricted to the ROI, consists of more than two behav-
iors, with each behavior covering the same percentage of
the Behavior Map. Note that this distribution corresponds
to the Maximum Entropy Behavior Map. We formalize this
intuition in our first theorem (formal statement and proof in
Appendix A.1):

Theorem 5.1 (Maximizing the entropy of the behavior map
maximizes information gain). The intervention i∗ that max-
imizes information gain is the intervention that maximizes
the entropy of the Behavior map Y , i∗ = supi∈I H(Y).

Theorem 5.1 assumes that the policy of the human is deter-
ministic. This is not a strong assumption as there always
exists an optimal policy that is deterministic (Sutton and
Barto, 2018).

5.2. AMBER: an algorithm for maximizing the entropy of
Behavior Maps

Given a posterior PU and an environment E, we compute
the Behavior Map Y of E restricted to the ROI. Now, as-
sume that the Behavior Map has behaviors τ1, ..., τN . For
behavior τ , we define its ‘cover number’ of the Behavior
Map C(τ |E) ∈ [0, 1], which quantifies the proportion of
the Behavior Map that it covers. In Figure 1, the cover num-
ber of both behaviors is equal to 0.5 (they cover half the
map each). By the previously derived Maximum Entropy
principle, our goal is to find an environment E∗ such that

C(τ1|E∗) = ... = C(τN |E∗) =
1

N
. (4)

As we assume that the human behaves optimally, C(τ |E)
corresponds to all U ∼ PU such that the value function is
maximal for the respective behavior, where the inequality is

meant element-wise:

V (τi|E,U) ≥ V (τj |E,U),∀j ∈ {1, ..., N}, i ̸= j. (5)

Definition 5.2 (Excite and inhibit). Let τ be some behav-
ior and C(τ |E) be its cover number. Then, we say an
intervention-generated environment E′ excites the human
about τ if C(τ |E′) increases and inhibits the human about
τ if C(τ |E′) decreases.

Now, we increase H(Y) by exciting the human about behav-
iors τi, i ∈ {1, ..., N} which cover less than their maximum
entropy share (C(τi|E) < 1

N ) and inhibiting the human
about behaviors τj , j ∈ {1, ..., N} that cover more than
their respective maximum entropy share (C(τj |E) > 1

N ).
As the cover number C(τ |E) of behavior τ corresponds to
all user parameters under which the value function restricted
to τ is maximal, AMBER increases the value function along
states visited by behavior τi and decreases the value func-
tion along states visited by behavior τj by changing R or
T :

R =

n∑
i=1

R+ ϵ11{C(τi|E)< 1
N }∇RV

∣∣
τi

−ϵ11{C(τi|E)> 1
N }∇RV

∣∣
τi

(6)

T = softmax
( n∑
i=1

T + ϵ11{C(τi|E)< 1
N }∇TV

∣∣
τi︸ ︷︷ ︸

Excite τi

− ϵ11{C(τi|E)> 1
N }∇TV

∣∣
τi︸ ︷︷ ︸

Inhibit τi

)
(7)

where ϵ1, ϵ2 > 0 are stepsizes and we use a softmax over T
such that T remains a probability distribution Nikishin et al.
(2022). Note that we focus our experiments on changing T
to learn a fixed true R, and so we only consider equation
7. We repeat equation 7 until C(τi|E) ≈ 1

N ∀i = 1, ..., N
(within a threshold) and provide an overview of AMBER in
algorithm 1.

The gradient of V can be computed via implicit differ-
entiation. We note that the AMBER updates above require
the computation of ∇V . The gradient of V with respect
to R and T can not be directly computed as there exists
no closed form expression for V . Instead, we can locally
compute it via Implicit Differentiation (Bacon et al., 2019;
Nikishin et al., 2022).

5.3. Theoretical Properties of AMBER

In the following, we provide theoretical properties of the
AMBER algorithm. In particular, we show that AMBERmono-
tonically converges to a high information gain environment
within each episode. Thus, across multiple episodes, we can
conclude that our posterior contracts towards the true value.
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Algorithm 1 Finding a single high information gain envi-
ronment with AMBER

Input: Current belief PU , initial environment E, step-
sizes ϵ1, ϵ2 ∈ R+

Compute Region of Interest over PU

while not C(τi) ≈ 1
N ∀i = 1, ..., N do

Compute Behavior Map Y of E restricted to Region of
Interest, yielding behaviors τ1, ..., τN
for j = 1, ..., N do

if C(τj) < 1
N then

R = R+ ϵ1∇RV
∣∣
τj
{Excite}

T = Softmax
(
T + ϵ2∇TV

∣∣
τj

)
else if C(τj) > 1

N then
R = R− ϵ1∇RV

∣∣
τj
{Inhibit}

T = Softmax
(
T − ϵ2∇TV

∣∣
τj

)
end if

end for
E ← R, T

end while
Return Maximum Entropy R or T

AMBER balances information gain and generalizability
of U . The set of interventions I is in a tradeoff between
achieving high information gain (expressive I , or many
changes to initial environment) and stationarity of human
parameters UGT across different environments (restrictive
I , or few changes to initial environment). In the following,
we discuss how AMBER’s choice of I , i.e. small gradient
updates on R or T , balances this conflict.

AMBER generates high information gain environments.
First, we argue that if the Behavior Map is not almost surely
constant (there are at least two different behaviors), then
there always exists a reward function R or transition func-
tion T such that the entropy of the Behavior Map Y is larger
or equal to the entropy of a Bernoulli random variable B∗
with p = 0.5. We require the Behavior Map to not be con-
stant such that there exists at least one behavior we can
excite and a different behavior we can inhibit. The entropy
of the Bernoulli random variable B∗ corresponds to halfing
the Behavior Map:

Theorem 5.3 (Existence of high entropy R or T ). Let Y
be a Behavior Map. If Y is not almost surely constant, i.e.
there exist at least two different behaviors τi, i = 1, 2, ..., N ,
then there exists either a reward function R∗ or a transition
function T ∗ such that:

H(Y|E(R∗)) ≥ H(B∗) (8)
H(Y|E(T ∗)) ≥ H(B∗), (9)

or, there exists an environment such that the resulting Be-
havior Map is at least halved.

Second, we show that AMBER’s learning update generates a
sequence of environments such that their information gain is
monotonically increasing and converges to an environment
with entropy larger or equal to B∗:
Theorem 5.4 (AMBER monotonically converges to high
entropy environments). Let E(n), n ∈ N be a sequence of
environments generated via AMBER during the while loop
in algorithm 1. Then

1. the entropy of their Behavior Maps is monotonically
increasing.

2. E(n) converges to an environment with Behavior Map
entropy larger or equal to B∗.

AMBER generates environments that are similar to the ini-
tial environment. Recall that one of our key assumptions
is the stationarity of the human parameters UGT across dif-
ferent environments in ED. In any iteration, if we presented
the human with a qualitatively different new environment,
then it is no longer reasonable to expect stationarity. Thus,
we now verify that AMBER proposes high information gain
environments that are similar to the initial environment.

In psychology, the notion of environment, or task, similarity
has long been studied, ranging from geometric (Torgerson,
1965) over template matching (Larsen and Bundesen, 1996)
to transformational (Imai, 1977) approaches. We follow
the work of Tversky (1977), measuring the similarity S of
environments E1 and E2 generated by AMBER as a function
f of the number of features in common between E1 and E2

and the number of features different between E1 and E2:

S(E1, E2) := f(E1 ∩ E2)− f(E1 − E2)− f(E2 − E1)
(10)

An environment’s features are (S,A, R, T ). By definition,
the state and action spaces are equal for environments E1

and E2 generated with AMBER and, by lemma A.8 (propor-
tionality of gradients), R and T of the different behaviors are
proportional across tasks. Thereby, we have preserved the
gestalt of the task; this provides support for our assumption
that UGT is constant across different environments.

6. Experiments
In our experiments, we aim to answer the following ques-
tions: (1) Does AMBER identify high information-gain en-
vironments? (2) Does AMBER, paired with the Environ-
ment Design paradigm, resolve non-identifiability? (3) Does
AMBER converge exponentially fast to the ground-truth pa-
rameters UGT ? (4) Is AMBER computationally efficient?

6.1. Set-Up

Environments We consider the maze environment from
Buening et al. (2024) and aim to learn the values of the
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rewards in the top right (R1) and bottom left (R2) corner
(UGT := {R1, R2}), see the appendix for more details.
Hence, we define two behaviors in this environment: choos-
ing R1 and choosing R2.

Methods We compare three methods: (i) AMBER, (ii)
ED-BIRL from Buening et al. (2024) which randomly in-
serts walls in the environment and picks the environment
with highest Bayesian regret, and (iii) conventional Bayesian
IRL BIRL (Ramachandran and Amir, 2007). For compara-
bility, all methods use the log-likelihood of the trajectories
and the ROI to calculate the posterior distribution (Herman
et al., 2016). Therefore the only differences between the
methods are (i) the environments in which we observe the
human and (ii) the resulting trajectories of the human. We
let each method run for 15 episodes and observe the human
once in each episode. All results are averaged across 5 runs.

Metrics We use the following metrics: how often each
behavior was chosen (to quantify how informative the envi-
ronments are), the posterior mean (to quantify accuracy of
learning), size of the Region of Interest (to quantify poste-
rior contraction rate) and runtime (to quantify computational
efficiency).

6.2. Results

AMBER identifies high information gain environments.
Figure 2 shows the cover numbers (left) and resulting
entropy (middle) in the maze environment after the first
(green), third (blue) and fifth episode (blue). At the start
of each episode, the Behavior Map restricted to the ROI
is mostly covered by one behavior (behavior 2) which is
expected due to non-identifiability. Next, AMBER starts
inhibiting the human about behavior 2 until behavior 1 be-
comes favourable for the first time (C(behavior 1) > 0).
This is repeated until both behaviors cover approximately
similar portions of the Behavior Map, indicated by the black,
dashed line. Generally, it becomes harder to create equal
cover numbers in later episodes as it requires more precise
tradeoffs, but this effect is limited as we still reach equal
cover numbers quickly. The middle figure in 2 shows the
resulting entropy of the Behavior Map during episodes 1,
3 and 5. As the cover numbers of all behaviors are ap-
proximately equally large at the end of each episode, the
entropy of the Behavior Map monotonically converges to
H(B∗). The right hand side shows how often each behavior
is chosen over 15 episodes. In a maximum information
gain setting, both behaviors are equally favourable, so both
behaviors should be chosen equally often on average. We
see that BIRL always chooses the same behavior - as ex-
pected as there is no environment design. ED-BIRL does
slightly better, sometimes picking the other behavior but can
not make both behaviors equally desirable. AMBER, on the

other hand, manages to make both behaviors approximately
equally attractive, making the human pick both behaviors
approximately equally often.

AMBER learns parameters that are non-identifiable in a
single environment. The top row in figure 3 shows the
mean ratio of R := R1

R2
of the posterior distribution over

time for BIRL, ED-BIRL and AMBER where R is evenly
spaced between 1 and 3. Here, we report the ratio as it
corresponds to the maximum amount of identifiability one
can achieve due to reward shaping. In the first example
where R = 1, we see that all methods converge to the true
value. This is expected as this reward ratio corresponds to
the maximum entropy environment where both behaviors
are equally desirable. Nonetheless, we note that AMBER
converges much faster to the ground-truth value. For all
other reward ratios (plots 2-5), BIRL and ED-BIRL con-
verge to roughly the same reward ratio of R = 2. AMBER,
on the other hand, converges to the ground-truth value for
the ratios 2-4. Only for the largest ratio R = 3 does it
not converge to the ground-truth value within 15 episodes.
Additionally, note that there is almost no variance in the
learning of AMBER as the excite and inhibit part of AMBER
is deterministic.

AMBER converges exponentially fast to UGT . The bot-
tom row in figure 3 shows the size of the ROI for different
R values. In our experiments, we set the size of the ROI
to 0.8, e.g. the ROI contains 80% of the posterior mass.
Thereby, the size of the ROI shrinks in every iteration by at
least this factor, indicated by the grey dashed line. The other
grey line corresponds to a halfing of the ROI in every itera-
tion, the fastest convergence speed possible if there are only
two behaviors. We once again see that there is a difference
between R = 1 and R ̸= 1. In the R = 1 case (leftmost
plot), BIRL and ED-BIRL converge the fastest as they are
already in the maximum information gain environment. In-
terestingly, AMBER converges slightly slower. Nonetheless,
no method achieves the fastest possible posterior contrac-
tion. For R ̸= 1 we see that BIRL and ED-BIRL have the
slowest possible convergence rate. This further supports our
claim that both methods struggle to find informative environ-
ments. AMBER, on the other hand, converges faster than the
minimal rate as it observes the human in informative envi-
ronments. Thereby, we can conclude that AMBER converges
exponentially fast to the ground-truth values. Nonetheless,
AMBER also doesn’t achieve the theoretically optimal con-
traction rate of 1

2 .

AMBER efficiently finds environments. Table 2 shows the
mean wall-clock time in seconds required to generate one
environment. BIRL is by far the most efficient as it always
observes the human in the base environment. Thereby, the
only computation it performs is the calculation of the ROI.
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Figure 2. Cover numbers (left figure, equal values are better), resulting entropy (middle figure, higher is better) and behavior counts (right
figure, equal values are better) in the maze environment. We see that AMBER takes few iterations to find a good environment within each
episode (left two figures), and the human picks the two behaviors in AMBER environments in equal rates (right figure), unlike baselines.

Figure 3. AMBER converges quicker than competing methods to the true rewards. Top row plots the posterior ratio mean of R := R1/R2

over episodes, and bottom row plots the size of the ROI over episodes for BIRL, ED-BIRL and AMBER for different ground-truth ratios
R ∈ {1, 1.5, 2, 2.5, 3} (left to right). AMBER is much closer to the theoretical best (halving) than other methods.

Table 1. Mean runtime in seconds to generate one environment

BIRL ED-BIRL AMBER

Runtime 0.27 (0.05) 52.98 (5.78) 5.92 (17.93)

ED-BIRL is computationally more expensive due to the
calculation of the Bayesian Regret, where we generated 150
environments in our experiments. AMBER is computation-
ally cheaper because we generate new environments in an
informed fashion. Nonetheless, the variance in the run-time
is higher as generating high-information gain environments
becomes more difficult in later episodes, as we also saw in
figure 2.

7. Discussion & Conclusion
In this paper, we introduced a novel Environment-Design
algorithm, AMBER, that identifies environments that maxi-

mize the information gain for an unknown reward function
in an IRL setting. We theoretically and empirically demon-
strated that AMBER efficiently identifies high-information
gain environments, learns unknown reward functions and
outperforms baselines. We conclude the paper by highlight-
ing connections to other domains, as well as limitations and
future work.

AMBER is inspired by balanced networks. Our inspira-
tion for AMBER and the terminology we use comes from
Balanced Networks from neuroscience (Van Vreeswijk and
Sompolinsky, 1996). There, a collection of binary neurons
is modeled as two sets of neurons: excitatory neurons that
fire and pass on information and inhibitory neurons that
decrease the probability of information being shared. Then,
we say that the network is balanced if both populations have
the same mean activity. This is akin to AMBER balancing
the cover number C(τ |E) of the different behaviors.

7
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AMBER identifies low cognitive load environments.
AMBER changes the relative value of different behaviors.
As the gradient of the value function is proportional to the
value function by lemma A.8, AMBER does not change the
relative values of states within a behavior. Thereby, the
human has to not make any inter-behavior decisions again.
Rather, the human only has to weigh off entire behaviors
against each other. Hence, AMBER identifies environments
with low cognitive load (Koppol et al., 2020).

Limitations and future work. The main limitation of
AMBER is the computation of the Behavior Map to deter-
mine the cover numbers, which we approximated in our
experiments with a grid calculation. Each value in the grid
corresponds to solving one MDP. Thereby, the number of
policy optimizations grows exponentially in the number of
unknown parameters. For future work, we are interested in
extending our experiments to learning not just rewards R,
but also T and γ. From a theoretical perspective, we aim to
show that AMBER contracts to UGT and want to better under-
stand to what degree our theorems hold under suboptimality.
Finally, from an application perspective, we are interested
in how to convert environments generated with AMBER into
interpretable, ideally natural language, prompts.

Acknowledgements
The authors thank Ruben Solonch for helpful comments.
This material is based upon work supported by the National
Science Foundation under Grant No. IIS-2107391. Any
opinions, findings, conclusions, or recommendations ex-
pressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

References
Lars L Ankile, Brian S Ham, Kevin Mao, Eura Shin,

Siddharth Swaroop, Finale Doshi-Velez, and Weiwei
Pan. Discovering user types: Mapping user traits by
task-specific behaviors in reinforcement learning. arXiv
preprint arXiv:2307.08169, 2023.

Pierre-Luc Bacon, Florian Schaefer, Clement Gehring, An-
imashree Anandkumar, and Emma Brunskill. A la-
grangian method for inverse problems in reinforcement
learning. In NeurIPS Optimization Foundations for Rein-
forcement Learning Workshop, 2019.

Craig Boutilier. Computational decision support: Regret-
based models for optimization and preference elicitation,
2013.

Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale
Schuurmans. Constraint-based optimization and utility

elicitation using the minimax decision criterion. Artificial
Intelligence, 170(8-9):686–713, 2006.

Thomas Kleine Buening, Victor Villin, and Christos Dimi-
trakakis. Environment design for inverse reinforcement
learning. In Proceedings of the 41st International Con-
ference on Machine Learning, Proceedings of Machine
Learning Research. PMLR, 2024.

Gregory Canal, Andy Massimino, Mark Davenport, and
Christopher Rozell. Active embedding search via noisy
paired comparisons. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 902–
911. PMLR, 09–15 Jun 2019.

Haoyang Cao, Samuel Cohen, and Lukasz Szpruch. Identifi-
ability in inverse reinforcement learning. In M. Ranzato,
A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman
Vaughan, editors, Advances in Neural Information Pro-
cessing Systems, volume 34, pages 12362–12373. Curran
Associates, Inc., 2021.

Michael Herman, Tobias Gindele, Jörg Wagner, Felix
Schmitt, and Wolfram Burgard. Inverse reinforcement
learning with simultaneous estimation of rewards and
dynamics. In Artificial intelligence and statistics, pages
102–110. PMLR, 2016.

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving,
Shane Legg, and Dario Amodei. Reward learning from
human preferences and demonstrations in atari. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems, volume 31. Curran As-
sociates, Inc., 2018.

Shiro Imai. Pattern similarity and cognitive transformations.
Acta Psychologica, 41(6):433–447, 1977.

Kuno Kim, Shivam Garg, Kirankumar Shiragur, and Stefano
Ermon. Reward identification in inverse reinforcement
learning. In International Conference on Machine Learn-
ing, 2021.

Pallavi Koppol, Henny Admoni, and Reid Simmons. Iter-
ative interactive reward learning. In Participatory Ap-
proaches to Machine Learning, International Conference
on Machine Learning Workshop, Virtual, 2020.

Axel Larsen and Claus Bundesen. A template-matching pan-
demonium recognizes unconstrained handwritten charac-
ters with high accuracy. Memory & Cognition, 1996.

Sergey Levine. Reinforcement learning and control as prob-
abilistic inference: Tutorial and review. arXiv preprint
arXiv:1805.00909, 2018.

8



AMBER: An Entropy Maximizing Environment Design Algorithm for Inverse Reinforcement Learning

David Lindner, Matteo Turchetta, Sebastian Tschiatschek,
Kamil Ciosek, and Andreas Krause. Information directed
reward learning for reinforcement learning. In M. Ran-
zato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wort-
man Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 3850–3862. Cur-
ran Associates, Inc., 2021.

David Lindner, Andreas Krause, and Giorgia Ramponi.
Active exploration for inverse reinforcement learning.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Informa-
tion Processing Systems, volume 35, pages 5843–5853.
Curran Associates, Inc., 2022.

Manuel Lopes, Francisco Melo, and Luis Montesano. Active
learning for reward estimation in inverse reinforcement
learning. In Joint European conference on machine learn-
ing and knowledge discovery in databases, pages 31–46.
Springer, 2009.

Carlos Martin, Craig Boutilier, and Ofer Meshi. Model-free
preference elicitation. In NeurIPS 2023 Workshop on
Adaptive Experimental Design and Active Learning in
the Real World, 2023.

Alberto Maria Metelli, Giorgia Ramponi, Alessandro Con-
cetti, and Marcello Restelli. Provably efficient learning of
transferable rewards. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pages 7665–7676. PMLR,
18–24 Jul 2021.

Alberto Maria Metelli, Filippo Lazzati, and Marcello
Restelli. Towards theoretical understanding of inverse
reinforcement learning. In International Conference on
Machine Learning, pages 24555–24591. PMLR, 2023.

Andrew Ng and Stuart Russell. Algorithms for inverse
reinforcement learning. ICML ’00 Proceedings of the
Seventeenth International Conference on Machine Learn-
ing, 05 2000.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2, 2000.

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and
Pierre-Luc Bacon. Control-oriented model-based rein-
forcement learning with implicit differentiation. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pages 7886–7894, 2022.

Deepak Ramachandran and Eyal Amir. Bayesian inverse
reinforcement learning. In Proceedings of the 20th In-
ternational Joint Conference on Artifical Intelligence,
IJCAI’07, page 2586–2591, San Francisco, CA, USA,
2007. Morgan Kaufmann Publishers Inc.

Al Mamunur Rashid, George Karypis, and John Riedl.
Learning preferences of new users in recommender sys-
tems: an information theoretic approach. Acm Sigkdd
Explorations Newsletter, 10(2):90–100, 2008.

Nathan D. Ratliff, J. Andrew Bagnell, and Martin Zinkevich.
Maximum margin planning. In Proceedings of the 23rd
International Conference on Machine Learning, volume
148 of ACM International Conference Proceeding Series,
pages 729–736. ACM, 2006. ISBN 1-59593-383-2. doi:
10.1145/1143844.1143936.

Lior Rokach and Slava Kisilevich. Initial profile genera-
tion in recommender systems using pairwise comparison.
IEEE Transactions on Systems, Man, and Cybernetics,
Part C (Applications and Reviews), 42(6):1854–1859,
2012.

Stuart Russell. Learning agents for uncertain environments
(extended abstract). In Proceedings of the Eleventh An-
nual Conference on Computational Learning Theory,
COLT’ 98, page 101–103, New York, NY, USA, 1998. As-
sociation for Computing Machinery. ISBN 1581130570.
doi: 10.1145/279943.279964.

John Rust. Chapter 51 structural estimation of markov deci-
sion processes. volume 4 of Handbook of Econometrics,
pages 3081–3143. 1994. doi: https://doi.org/10.1016/
S1573-4412(05)80020-0.

Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. The MIT Press, second edi-
tion, 2018.

Warren S. Torgerson. Multidimensional scaling of similarity.
Psychometrika, 1965.

Amos Tversky. Features of similarity. Psychological Review,
84(4):327–352, 1977. doi: 10.1037/0033-295X.84.4.327.

Carl Van Vreeswijk and Haim Sompolinsky. Chaos in neu-
ronal networks with balanced excitatory and inhibitory
activity. Science, 274(5293):1724–1726, 1996.

Nils Wilde, Erdem Bıyık, Dorsa Sadigh, and Stephen L
Smith. Learning reward functions from scale feedback.
arXiv preprint arXiv:2110.00284, 2021.

Chao Yu, Jiming Liu, and Hongyi Zhao. Inverse reinforce-
ment learning for intelligent mechanical ventilation and
sedative dosing in intensive care units. BMC Medical
Informatics and Decision Making, 19, 04 2019. doi:
10.1186/s12911-019-0763-6.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell,
Anind K Dey, et al. Maximum entropy inverse rein-
forcement learning. In Aaai, volume 8, pages 1433–1438.
Chicago, IL, USA, 2008.

9



AMBER: An Entropy Maximizing Environment Design Algorithm for Inverse Reinforcement Learning

A. Appendix
The appendix is structured as follows:

1. Proofs

(a) Maximum information gain environments have maximum entropy Behavior Maps
(b) AMBER converges to high entropy environments
(c) Reward and transition functions are proportional to the gradient of the value function

2. Details for empirical section

(a) Details on Maze environment
(b) Hyperparameters

3. Environment Design pseudocode
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A.1. Proof: maximum information gain environments have maximum entropy behavior maps

Theorem A.1 (Maximizing the Entropy of the Behavior Map Maximizes Information Gain). Suppose the policy of the
human is deterministic and we use the following loss function:

l(u, i) := −IG(PU |π∗[i, UGT ]) (11)

e.g. the loss of observing the human in a sub-optimal environment is having low information gain. Here, π∗[i, UGT ] is
a random variable that returns the behavior of the human given an environment generated via intervention i and their
ground-truth parameters UGT .
Then, we have

i∗ := argmin
i∈I

d∗(l) = sup
i∈i

H(Y) (12)

The optimal intervention is the intervention that maximizes the entropy of the Behavior Map.

Proof.

i∗ = argmin
i∈I

Eu∼PU
[−IG(PU |π∗[i, u])] (13)

= argmax
i∈I

Eu∼PU
[H(PU )−H(PU |π∗[i, u] = τ)] (14)

= argmin
i∈I

Eu∼PU
[H(PU |π∗[i, u] = τ)] (15)

= argmax
i∈I

Eu∼PU
[H(π∗[i, u] = τ |PU )︸ ︷︷ ︸

= 0 as τ is constant

−H(π∗[i, u]) + H(PU )︸ ︷︷ ︸
Independent of i

] , Bayes Rule for Cond. Entropy. (16)

= argmax
i∈I

Eu∼PU
[H(π∗[i, u])] (17)

= argmax
i∈I

Eu∼PU
[Eτ∼π∗[i,u]

[
− log(τ)

]
] (18)

(19)

Next up, for a fixed i ∈ I , note that the random variable π∗[i, UGT ] is almost surely constant as the policy of the human is
deterministic. Using the convention 0 · log(0) := 0 thereby yields:

argmax
i∈I

Eu∼PU
[Eτ∼π∗[i,u]

[
− log(τ)]

]
= argmax

i∈I
Eu∼PU

[− log(Eτ∼π∗[i,u]

[
τ ])

]
(20)

= argmax
i∈I

Eu∼PU
[− log(Y)

]
(21)

= argmax
i∈I

H(Y) (22)

A.2. Proof: AMBER converges to high entropy behavior maps

This section aims to prove that AMBER monotonically converges to high entropy environments. To this end, we first define
the cover number C(τ) of a behavior τ in definition A.2. C(τ) measures what proportion of the Behavior Map is covered by
the behavior τ and quantifies the entropy of the Behavior Map. Second, we define in definition A.3 the AMBER learning
update which increases entropy by exciting and inhibiting behavior. Third, we show that the cover number has useful
properties when using the AMBER update, namely it is monotonic, continuous and converges to 1 (excite) or 0 (inhibit),
section A.4. Fourth, using these properties we can prove that there exist high entropy reward and transition functions R∗ and
T ∗, theorem A.5, and that AMBER monotonically converges to R∗ and T ∗, theorem A.7.
To keep notation concise, we prove all theorems for the reward function R. However, all results also hold with identical
arguments for T .
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Definition A.2 (Cover number). Given a Behavior Map Random Variable Y for a fixed reward function R, define for
behavior τi, i = 1, ..., N its cover number C(R, τi):

C(R, τi) :=

∫
u
1{V (τi|R,u)>V (τj |R,u)∀j=1,...,N,i̸=j}du∫

u
1du

(23)

here N ∈ N is the number of different behaviors which is finite as the state and action spaces are finite and the inequality is
meant element-wise.

Definition A.3 (AMBER update). Define AMBER ’s update procedure:

Excite: f+(R, τ) := R+ ϵ∇RV |τ (24)
Inhibit: f−(R, τ) := R− ϵ∇RV |τ (25)

where R is a reward function, τ is behavior, ϵ > 0 is a step size and V is a value function under a greedy policy given an
arbitrary reward and transition function.

Theorem A.4 (Properties of the cover number). If R is such that ∇RV ≥ c > 0 for some universal constant c, then the
cover number C(R, τ) has the following properties :

1. (i) Probability: C(R, τ) ∈ [0, 1]

2. (ii) Law of Total Probability:
∑N

i=1 C(R, τ) = 1

3. (iii) Monotonicity: C(f+(R), τ) ≥ C(τ) and C(f−(R), τi) ≤ C(τ)

4. (iv) Continuity: C(R, τ) is continuous in R

5. (v) Asymptotic Behavior: limn→∞ C(fn
+(R), τ) = 1 and limn→∞ C(fn

−(R), τ) = 0

Proof. (i) Probability: Definition.
(ii) Law of Total Probability: Linearity.
(iii) Monotonicity:
First, note that

V (s|f+(R), u) = E
[ ∞∑
k=0

γkf+(R)k|s, u
]

, Definition (26)

= E
[ ∞∑
k=0

γkRk + (ϵ∇RV |τi)k|s, u
]

, Definition (27)

= E
[ ∞∑
k=0

γkRk|s, u
]
+ ϵE

[ ∞∑
k=0

γk(∇RV |τi)k|s, u
]

, Linearity (28)

= V (s|R, u) + ϵV (s|∇RV |τiu) , Definition (29)
≥ V (s|R, u) + ϵV (s|c, u) , Assumption A.4 (30)

= V (s|R, u) +
ϵ

1− λ
c1{s∈τ} (31)

≥ V (s|R, u) (32)

Thereby, for the set Ū(τi, R) := {u ∈ U : V (τi|R, u) ≥ V (τj |R, u)∀j = 1, ..., N, i ̸= j} we have that

Ū |(τi, R) ⊆ Ū |(τi, f+(R)) (33)

so the claim follows by the definition of the cover number. Here, the set Ū(τi, R) corresponds to all parameters u ∈ U such
that behavior τ is optimal under that parameter. We can do an identical argument for f−, yielding the second claim.
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(iv) Continuity:
Let Rn be a sequence of reward functions such that Rn → R,n→∞. To show (iv), we show that

lim
n→∞

C(Rn, τi) = C(R, τi) (34)

In the following, we denote by DCT the Dominated Convergence Theorem. W.l.o.g. we can assume that ∃N ′ ∈ N, c′ ∈ R :
|Rn| ≤ c′ ∈ R ∀n ≥ N ′ where the inequality holds element-wise. Now, we have that

lim
n→∞

C(Rn, τi) = lim
n→∞,n≥N ′

C(Rn, τi) (35)

= lim
n→∞,n≥N ′

∫
u
1{V (τi|Rn,u)>V (τj |Rn,u)∀j=1,...,N,i̸=j}du∫

u
1du

, Definition (36)

=

∫
u
limn→∞,n≥N ′ 1{V (τi|Rn,u)>V (τj |Rn,u)∀j=1,...,N,i̸=j}du∫

u
1du

, DCT (37)

=

∫
u
1limn→∞,n≥N′{V (τi|Rn,u)>V (τj |Rn,u)∀j=1,...,N,i̸=j}du∫

u
1du

, Set Theoretic Limit (38)

=

∫
u
1limn→∞,n≥N′{V (τi|Rn,u)≥V (τj |Rn,u)∀j=1,...,N,i̸=j}du∫

u
1du

, τj ̸= τi. (39)

=

∫
u
1{limn→∞,n≥N′ V (τi|Rn,u)≥limn→∞,n≥N′ V (τj |Rn,u)∀j=1,...,N,i̸=j}du∫

u
1du

, Sandwich (40)

=

∫
u
1{limn→∞,n≥N′ E[

∑∞
k=0 γkRn

k |τi,u]≥limn→∞,n≥N′ E[
∑∞

k=0 γkRn
k |τj ,u]∀j=1,...,N,i̸=j}du∫

u
1du

(41)

=

∫
u
1{E[limn→∞,n≥N′

∑∞
k=0 γkRn

k |τi,u]≥E[limn→∞,n≥N′
∑∞

k=0 γkRn
k |τj ,u]∀j=1,...,N,i̸=j}du∫

u
1du

, DCT (42)

=

∫
u
1{E[

∑∞
k=0 limn→∞,n≥N′ γkRn

k |τi,u]≥E[
∑∞

k=0 limn→∞,n≥N′ γkRn
k |τj ,u]∀j=1,...,N,i̸=j}du∫

u
1du

(43)

=

∫
u
1{E

∑∞
k=0 γkRk|τi,u]≥E[

∑∞
k=0 γkRk|τj ,u]∀j=1,...,N,i̸=j}du∫

u
1du

, Rn → R (44)

=

∫
u
1{E

∑∞
k=0 γkRk|τi,u]>E[

∑∞
k=0 γkRk|τj ,u]∀j=1,...,N,i̸=j}du∫

u
1du

, τj ̸= τi. (45)

=

∫
u
1{V (τi|R,u)>V (τj |R,u)∀j=1,...,N,i̸=j}du∫

u
1du

(46)

= C(R, τi) , Definition (47)

(v) Asymptotic behavior:
With an argument identical to (iii), we have that

V (s|fn
+(R), u) ≥ V (s|R, u) +

n

1− λ
c1{s∈τ} (48)

Thereby, we have that V (s|fn
+(R))|τ =∞ for n→∞ and thereby

Ū |(τi, V (s|f∞
+ (R)) = U (49)

which yields the desired claim. The argument for f− works the same way.

With these auxiliary results done, we can come to the second main result:
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Theorem A.5 (Existence of high entropy environments). Let Y be a Behavior Map random variable. If Y is not almost
surely constant, e.g. there exist at least two different behaviors τi, i ∈ {1, 2, ...}, then there exists a reward function R∗ or a
transition function T ∗ such that

H(Y|R∗) ≥ H(B∗) (50)

where B∗ is a Bernoulli random variable with p = 0.5, e.g. there exists a reward function R∗ such that the resulting
Behavior Map is at least halved.

Proof. First, assume that there exist exactly two behaviors τ1, τ2. W.l.o.g. assume that C(R, τ1) < 0.5. Now, by property
(v), limn→∞ C(fn

+(R), τ1) = 1. By continuity (iii), the Mean Value Theorem yields that there exists an R∗ such that
C(R∗, τ1) = 0.5. Here, the Mean Value Theorem holds as the reward function is finite dimensional, as S,A are finite
by assumption. Now, property (ii) yields that C(R∗, τ2) = 0.5. Thereby, P (Y = τ1) = P (Y = τ2) = 0.5 and hence
H(Y|R∗) = H(B).

Next, assume that there exist more than two behaviors:

Y ∈ {τ1, ..., τN}, N ≥ 3, almost surely (51)

Now, define a reduced Behavior Map Ỹ:

Ỹ = τ11{Y=τ1} + τ21{Y≠τ1} (52)

Then, we have that H(Ỹ) ≤ H(Y) and by the previous argument H(Ỹ) = H(B∗) so

H(Y) ≥ H(B∗) (53)

Now, the previous theorem only yields that there exists a reward function R∗ that halves the BM. Next, we want to show
that AMBER converges to R∗.
To this end, define the AMBER learning procedure h:

Definition A.6 (AMBER Learning). Let Y be a Behavior Map random variable and τ1, ..., τN , N ∈ N be the observed
behavior. Then, define our learning procedure:

h(R) :=

N∑
i=1

f−(R, τi)1{C(R,τi)>
1
N } (54)

, e.g. we inhibit all behaviors that cover more that their maximum entropy share of the Behavior Map.

In definition A.6, we only inhibit behavior and don’t excite behavior as it simplifies the notation. In practice, we both excite
and inhibit to converge faster.

Theorem A.7 (AMBER monotonically converges to high entropy environments.). Let E(0) be an environment and E(n), n ∈
N be a sequence of environments generated via A.6. If all environments allow for at least two behaviors, then we have:

H(Y|E(n+1)) ≥ H(Y|E(n)) (55)

lim
n→∞

H(Y|E(n)) ≥ H(B∗) (56)

Proof. We first show that the entropies of the Behavior Maps are monotonically increasing.
To this end, let E(n) be an environment generated via A.6 with N different behaviors and τ1, ..., τM be its behaviors with
cover numbers larger than 1

N . Applying the AMBER update once decreases or keeps the cover number of all behaviors
τ1, ..., τM equal by (iii) in theorem A.4. Due to (ii) in theorem A.4, the cover numbers of all other behaviors must thereby
increase or stay equal from which the claim follows.
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To show the second statement, we first note that the entropy is upper bounded as there are only finitely many optimal
behaviors. As the sequence H(Y|E(n)) is monotonic by the previous argument, it thereby converges to some environment
E′ with entropy H ′. Now suppose, for sake of contradiction, that H

′
< H(B∗). Let τ1, ..., τN , N ≥ 2 be the behaviors

of E′. As H
′
< H(B∗), there must exist a behavior τ∗ with cover number C(τ∗) > 1

N . With an argument identical to
the previous one, performing another AMBER update yields an environment E

′′
where the cover number of τ∗ decreased.

Thereby, we have that H
′′
> H

′
, a contradiction.

A.3. Proof: proportional gradients

Lemma A.8 (Proportionality of gradients). Let V,R, T be value, reward and transition function, respectively. Let π be a
Boltzmann policy. Then the value function is approximately proportional to its gradient w.r.t. the reward and transition
function:

V π ∝∼ ∇RV
π, V π ∝∼ ∇TV

π (57)

Proof. Recall that the Bellman equation for the value function is given by:

V π(s) =
∑
a∈A

π(a|s)
∑
s′∈S

T (s′|s, a) [R(s, a) + γV π(s′)] (58)

Solving it for the value function yields:

V π = (I − γPπ)−1Rπ (59)

where Tπ is the state transition matrix under policy π, with elements Pπ(s, s′) =
∑

a∈A π(a|s)T (s′|s, a) and Rπ is the
expected reward vector under policy π, with elements Rπ(s) =

∑
a∈A π(a|s)R(s, a). Thereby, we have:

∂V π

∂Rπ
= (I − γPπ)−1 (60)

Since Rπ(s) =
∑

a∈A π(a|s)R(s, a), taking the derivative with respect to R(s, a) yields:

∂Rπ(s)

∂R(s, a)
= π(a|s) (61)

Combining the two derivatives using the chain rule, we have:

∂V π

∂R(s, a)
=

∂V π

∂Rπ
· ∂Rπ

∂R(s, a)
= (I − γPπ)−1 · π(a|s) (62)

As the human uses a Boltzmann policy, we have:

∂V π

∂R(s, a)
=

∂V π

∂Rπ
· ∂Rπ

∂R(s, a)
= (I − γPπ)−1 · eβQ

∗(s,a) (63)

Thereby, the result follows as the Value-Function is approximately proportional to the Q-Function.
We can use an identical argument for the transition function to yield:

∂V π(s)

∂P (s′|s, a)
= γ(I − γPπ)−1Rπ(I − γPπ)−1π(a|s) (64)

= γV π(s)(I − γPπ)−1π(a|s) (65)
∝ V π(s) (66)

Figure 4 shows an example of theorem A.3.
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Figure 4. Grid world with reward function (left), value function (middle) and gradient of the value function with respect to the reward
function (right)

Figure 5. Maze Environments used. We aim to learn the values of the rewards in the top right and bottom corner.

A.4. Further details on the experiments

This section provides further details on the experiments.

Maze environment We consider the maze environment from (Buening et al., 2024) and aim to learn the value of the
reward function in the top right and bottom left corner, figure 5. The human starts in the top left corner. They transition into
the intended state with probability p = 0.9 and ”slip” into an adjacent state with probability p = 0.1. Their discount rate is
γ = 0.8. In each episode, we observe the human once.

Hyperparameters Table 2 shows the hyperparameters used in the empirical section.

A.5. Environment Design pseudocode

Algorithm 2 shows the general Environment Design algorithm.
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Table 2. Hyperparameters for experiments

Method Parameter Value

AMBER Stepsizes ϵ1, ϵ2 0.0001

Behavior Map mesh size 20

ED-BIRL # environments 150

# walls 5

Monte Carlo sampler Metropolis-Hastings (default)

# Monte Carlo samples 400

# Monte Carlo burn-In 150

Algorithm 2 Environment Design Framework

1: Input: Prior PU , initial environment E
2: Input: Interventions I , loss function l(U, I)
3: E1, PU,1 ← E,PU

4: for m = 1, ...,M do
5: Observe human in Em to get τm
6: Update belief PU,m|(τ1, ..., τm)
7: Find optimal intervention: i∗ = mini∈I EU∼PU,m

[l(U, i)]
8: Design new environment Em+1 with i∗

9: end for
10: Return posterior PU,M
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B. Additional Figures

Figure 6. Visual overview of AMBER (Panel 1). A rabbit chooses between a nearby carrot and a distant golden carrot. We want to
learn how the rabbit values the carrots. Observing the rabbit pick the more favourable golden carrot (Panel 2) only slightly reduces our
uncertainty about R. In the density plots (right hand side), yellow corresponds to high probability while blue is low probability. Based on
the uncertainty in the yellow region, AMBER (Panel 3) generates a related scenario by perturbing the transition that makes both carrots
equally desirable: A wolf was seen near the golden carrot. Thereby, the rabbit has to make a harder, and hence more informative, choice.
Observing the rabbit pick the normal carrot over the golden carrot thereby halves the uncertainty about R. Iterating this procedure yields
exponentially fast convergence to the ground-truth reward parameters.
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