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Abstract

Image deblurring plays a crucial role in enhancing visual clarity across various
applications. Although most deep learning approaches primarily focus on sSRGB
images, which inherently lose critical information during the image signal pro-
cessing pipeline, RAW images, being unprocessed and linear, possess superior
restoration potential but remain underexplored. Deblurring RAW images presents
unique challenges, particularly in handling frequency-dependent blur while main-
taining computational efficiency. To address these issues, we propose Frequency
Enhanced Network (FrENet), a framework specifically designed for RAW-to-RAW
deblurring that operates directly in the frequency domain. We introduce a novel
Adaptive Frequency Positional Modulation module, which dynamically adjusts
frequency components according to their spectral positions, thereby enabling pre-
cise control over the deblurring process. Additionally, frequency domain skip
connections are adopted to further preserve high-frequency details. Experimental
results demonstrate that FrENet surpasses state-of-the-art deblurring methods in
RAW image deblurring, achieving significantly better restoration quality while
maintaining high efficiency in terms of reduced MACs. Furthermore, FrENet’s
adaptability enables it to be extended to sSRGB images, where it delivers com-
parable or superior performance compared to methods specifically designed for
SRGB data. The source code and pre-trained models are publicly available at
https://github.com/WenlongJiao/FrENet,

1 Introduction

Image blur remains a pervasive challenge in computational photography, critically degrading visual
quality and impeding downstream vision tasks. While deep learning has revolutionized image
deblurring, most methods focus on processed sRGB images [27, 146, 149, 13 22} |6], which suffer
from irreversible information loss during the image signal processing (ISP) pipeline processing,
including dynamic range compression and nonlinear transformations [[1]]. In contrast, RAW sensor
data preserves linearity and high dynamic range, offering superior restoration potential through direct
processing before ISP-induced degradations [42]]. Despite this advantage, RAW image deblurring
remains underexplored and faces challenges in effectively handling frequency-dependent blur patterns
and maintaining computational efficiency.

Recent advancements in SRGB deblurring highlight the efficacy of CNNs [5] and Transformers [46]
for spatial domain processing. However, directly applying these techniques to RAW data proves
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suboptimal due to fundamental differences in noise characteristics and frequency response between
the two domains [9]. Furthermore, spatial-domain methods may overlook the intrinsic relationship
between blur formation and frequency domain representations, where convolutional degradations
appear as multiplicative perturbations [[18]]. While some frequency-aware architectures have emerged
for SRGB restoration [26], they often rely on computationally expensive attention mechanisms,
unsuitable for RAW processing. They also lack adaptive spectral modulation capabilities that are
necessary for capturing the complex frequency characteristics of RAW data.

To address these issues, we propose Frequency Enhanced Network (FrENet), a specialized RAW-to-
RAW deblurring framework. Specifically, FrENet is built upon a U-Net architecture that integrates
spatial and frequency domain processing to achieve efficient RAW image deblurring from three key
perspectives. First, the core contribution of FrENet lies in a novel Adaptive Frequency Positional
Modulation (AFPM) module, which dynamically adjusts frequency components according to their
spectral positions. By leveraging a lightweight MLP to learn position-dependent modulation kernels,
AFPM ensures precise control over critical frequency bands for detail recovery. Second, we incorpo-
rate frequency domain skip connections to preserve high-frequency details that are often lost during
spatial downsampling. Third, our design prioritizes computational efficiency by adopting a compact
CNN-based architecture, thereby avoiding computationally expensive Transformer operations while
delivering superior performance.

Experiments demonstrate that our FrENet establishes a new state-of-the-art method for RAW image
deblurring, achieving a 0.69dB PSNR improvement while requiring 75% fewer MACs compared to
LoFormer-L [26] on the Deblur-RAW dataset [[20]. Notably, FrENet exhibits remarkable adaptability.
When applied to sSRGB deblurring without any architectural modifications, it outperforms specialized
sRGB deblurring methods on the RealBlur dataset [29]] by 0.97dB PSNR (on RealBlur-J). These
results validate our core contribution: adaptive frequency modulation enables both superior restoration
quality and computational efficiency.

Our main contributions are three-fold:

* We propose a dedicated RAW-to-RAW deblurring network that systematically integrates
spatial and frequency domain processing, explicitly leveraging the linearity and full spectral
information of RAW data through learnable frequency modulation.

* A novel Adaptive Frequency Positional Modulation module is introduced to dynamically
calibrate frequency components using location-dependent kernels via spectral position
encoding.

* An efficiency-optimized network architecture is adopted, featuring frequency-aware skip
connections for detail preservation across scales and compact convolution-Fourier hybridiza-
tion to reduce computational costs.

2 Related Work

2.1 Image Deblurring in SRGB Domain

Deep learning methods have largely dominated the field of image deblurring by learning end-to-end
mappings from blurred to sharp images, effectively tackling the challenging blind deblurring problem.

CNN-based sRGB Deblurring: Early deep learning approaches utilized Convolutional Neural
Networks (CNNs) [38}130,132]] often alongside traditional techniques. More recent CNN architectures
moved towards purely end-to-end training, employing multi-scale strategies [[27, 133, [7] or dynamic
mechanisms [48} [12] to handle varying blur levels and scales. Networks like MPRNet [45] and
HINet [4] further advanced performance through multi-stage refinement and sophisticated feature
fusion. Notably, NAFNet [5]] showcased the potential of a simple yet highly optimized U-shaped
CNN architecture for efficient and effective deblurring by focusing on basic building blocks. Inspired
by NAFNet’s efficiency, our network utilizes a similar lightweight CNN backbone. However, most of
these CNN-based methods primarily operate in the spatial domain and are designed and trained on
sRGB data, facing a significant domain gap when applied directly to RAW data due to differences in
noise, dynamic range, and processing pipeline.

Transformer-based SRGB Deblurring: Vision Transformers (ViTs) and their variants have been
adapted for sSRGB deblurring [3], leveraging their capability to model long-range dependencies



crucial for global blur patterns. To reduce the high computational cost of standard attention for
high-resolution images, efficient Transformer designs like window-based attention [21]], depth-wise
convolution-based attention [46l], and localized attention schemes [37, 35] have been proposed.
Some recent Transformer-based methods, such as FFTformer [[18] and Loformer [26], have explored
incorporating frequency domain analysis within their architectures, demonstrating benefits for sSRGB
restoration. While these methods show promise in leveraging frequency information, they are tailored
for the SRGB domain, are typically based on computationally different Transformer architectures,
and may not offer the fine-grained, adaptive frequency modulation capability required to address the
complex frequency characteristics and noise found in RAW data.

2.2 RAW Image Restoration

Operating directly on RAW sensor data offers significant advantages for image restoration tasks.
Unlike sRGB data which has undergone irreversible processing by the camera’s ISP, RAW data
preserves linear intensity, high dynamic range, and richer original information, providing a better
foundation for comprehensive restoration [[1} 42].

RAW Image Deblurring: While traditional methods [34,|51]] explored RAW image deblurring, deep
learning research specifically for RAW-to-RAW deblurring is less developed than in the SRGB domain.
Liang et al. [20] pioneered this deep learning sub-area with an end-to-end framework and dataset,
processing both packed multi-channel and original single-channel RAW data. ELMformer [23]] later
introduced an efficient Transformer for RAW restoration, including deblurring on single-channel
inputs. More recently, RawlR [10] addressed realistic RAW degradation synthesis and proposed a
model for joint denoising and deblurring. While these deep learning works confirm the advantages of
RAW domain deblurring, they primarily operate spatially. Crucially, they often lack fine-grained,
adaptive processing of frequency components—yvital for effectively separating blur and noise from
scene details in the RAW data’s frequency domain. Other works [[L1} 50l 28] explore RAW data for
related tasks like joint processing pipelines but do not focus on general RAW-to-RAW deblurring
with explicit frequency analysis.

Other RAW Restoration Tasks: The potential of processing RAW data has been successfully
demonstrated in other image restoration tasks, including denoising [2, [14} 17} 44], super-resolution
(39,140, 19,143\ 16], and low-light enhancement [2} 15,47, 41]. These studies collectively underscore
the superior restorability offered by the RAW format. However, they address different types of
degradations (primarily noise or resolution) and largely rely on spatial domain processing techniques.
Our work specifically targets the deblurring problem and explores the relatively unutilized potential
of integrating adaptive frequency analysis within the RAW domain for this task.

In summary, while deep learning has achieved significant success in SRGB deblurring, including recent
explorations|[18 126, 25] into frequency domain processing within Transformer architectures[36]],
deep learning research for RAW image deblurring is less mature. Furthermore, existing RAW
deblurring methods have not fully exploited the benefits of adaptive frequency domain analysis for
better separation and restoration of details from blur and noise. Our proposed FrENet aims to fill
this gap by presenting a novel RAW-to-RAW deblurring framework that combines an efficient CNN
backbone with a unique adaptive frequency perception module designed to leverage the specific
challenges and characteristics of RAW data in the frequency domain.

3 Proposed Method

3.1 Overall Framework

Given that the frequency domain of images provides reliable information about blur patterns [24]],
we use the Fast Fourier Transform (FFT) for frequency-based image component analysis. Notably,
image blurring, a convolution in the spatial domain, corresponds to element-wise multiplication
in the frequency domain, which fundamentally simplifies the restoration problem in this domain.
This allows us to retain high-frequency information in the original image and analyze blur patterns
to guide image deblurring. Our method, Frequency Enhanced Net (FrENet), focuses on effective
frequency-domain processing within the U-shape architecture, as shown in Fig. [[[a).

Our FrENet comprises L scales, i.e., it contains L encoder layers, L decoder layers, and a bottleneck
layer. It starts with an initial convolutional layer that converts the input blurry image y € RCinxHxW
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Figure 1: The architecture of our FrENet is designed with a compact convolution-Fourier hybrid
structure, ensuring efficient inference. The key module FACM integrates global frequency information
via SCA and local frequency details through AFPM. Notably, AFPM incorporates learnable frequency
kernels determined by their spectral positions. Cooperated with frequency skip connections, AFPM
substantially enhances frequency details, leading to significant performance improvements over
state-of-the-art methods.

(Cyn, = 4 for RAW image after packing) into higher-dimensional image features f5"°¢ € RE*H*W

for subsequent processing. Each layer of the encoder, decoder, and bottleneck consists of multiple
Frequency Enhanced Blocks (FrE-Blocks). The network ends with a final convolutional layer that
converts image features of the last decoder layer fi¢¢ € RE*H#xW into the final deblurred image
& € RCn*HXW The overall pipeline of our FrENet can be described as follows:

"¢ = Convsx3(y),
Ji"¢ = Encoder;(f""{) = FrE-Blocky,, (fi"7),i € {1,2,..., L}
dec — Bottleneck(ff") = FrE-Block, ("), M

d°¢ — Decoder;(f°°) = FrE-Blocky,, (f1°°, ¢, fl"°),i € {L,L —1,...,1}

3

& = Convsys(f7),

where n; and m; represent the number of blocks in the i-th scale of the encoder layer and decoder
layer, [ denotes the number of blocks in the bottleneck of the architecture. In the encoder, as the
scale ¢ increases, the spatial resolution of the feature halves, and the channel number doubles, i.e.,

fine e R?©*27 %57 In the decoder, this process is symmetric, with the spatial resolution of the

iOx H oy W . .
feature doubling and channel number halving, i.e., ¥ € R?€X37 %57 Our key innovations are:



1) Both frequency-domain and spatial-domain skip connections are set up between each encoder
and decoder layer to feed the spatial feature "¢ and frequency feature f/°"° to the decoder layer.
The frequency skip connection feature f/¢" in the i-th scale is sourced from the n;-th FrE-Block.
This enables richer transmission of multi-scale spectral information along the encoder-decoder
path. 2) Designing FrE-Blocks as the core processing units within each U-Net layer to directly
handle frequency features, where both global and local frequency information can be well exploited
for improving deblurring performance. We describe the details of the core unit FrE-Block in the
following.

3.2 Frequency Enhanced Block

Each FrE-Block consists of a Frequency Adaptive Context Module (FACM) and a Feed-Forward
Network (FFN) as shown in Fig.[T(a). For the structure of FFN, we adopt an implementation consistent
with that used in Restormer [46]. The details of the FFN structure are provided in Appendix [A]

The details of FACM are shown in Fig. [[(b). We take the first scale as an example. For simplicity, the
input and output of each block are denoted as f;,, and f,.:, respectively, without using subscripts.
Given the feature in spatial domain f;, € RE*H>*W we first adopt the FFT operation to convert
the image from the spatial domain to the frequency domain and use the shift function FFT-Shift
to recenter the zero-frequency component of the spectrum to the middle. If the FrE-Block is in a
decoder layer, we adopt frequency skip-connections. The initial FFT-transformed feature is summed
with the frequency domain feature from the corresponding encoder layer’s last FrE-Block (which
is the frequency domain output before IFFT), and the result is used as ff,cq. If the FrE-Block is
in an encoder layer or the bottleneck layer, the FFT-transformed features are directly used as fy.cq.
Considering that the values of features become complex numbers after the FFT, we concatenate their
real and imaginary parts along the channel dimension. To mitigate the significant data distribution
changes inherent in FFT, layer normalization (LN) is applied to stabilize the frequency features:

fnor’rn = LN(Concat(iR(ff,,.eq), j(fffeq))) (2)

where R, J represents the real and imaginary parts, respectively.

Then, the frequency features f,,,,,, undergo initial shared processing designed to extract foundational
frequency patterns. A 1 x 1 convolution is first applied for channel-wise information fusion, such as
between real and imaginary components. Next, a 3 X 3 depthwise convolution is applied to calculate
local correlations between frequency bands in the frequency domain. A SimpleGate (SG) activation
function [3] is then applied to obtain intermediate feature fprocessed:

fprocessed = SG(DCOHVS x3 (Convl x1 (.fnorm))) 3)

The resulting feature map fprocesseq is then processed through two parallel branches to capture
both local details and global context within the frequency domain: 1) Local Frequency Feature
Enhancement Branch and 2) Global Frequency Context Branch.

Local Frequency Feature Enhancement Branch: This branch feeds f},;ocesseq into our proposed
AFPM module. Due to the fact that different positions in the frequency domain represent image
signals of different frequency bands, the proposed AFPM adaptively modulates features by generating
position-aware weights. It adjusts features across different frequency bands based on their locations
in the frequency domain, unlike traditional approaches that often apply uniform operations in
different positions. To achieve this, AFPM employs position-sensitive, learnable operations that
enhance the representation of specific frequency bands. We first divide the frequency feature map
Sprocessed € REXHXW into multiple feature patches, each sized C' x p x p:

.fll R .fln
fprocessed = : , M=

We use the center of each patch as its position index ¢j to indicate its relative location in the original
feature map. The distance from the patch to the center of the feature map is defined as d;; as shown
in Fig. [T[c). We apply two Kernel-Bias Generators (KBGs) to dynamically generate two position-
specific components, i.e., position-aware kernels and biases conditioned on distance d;; € R?*!*1,
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KBG contains two fully connected layers and GELU activations in between. By feeding the distance
d;; into two KBGs, we can obtain position-aware kernels w;; € R'*P*P and biases b;; € R *1x1,
respectively. The kernels and biases adaptively adjust the significance of local frequency features for
the current restoration task. Each kernel and bias is shared across channel dimension. Subsequently,
following this kernel-bias application, we apply a 1 x 1 convolution across the channel dimension to
further refine and adjust the channel features. Taking the patch with index ¢j as an example, we use a
weighted sum operation to combine the kernel with the frequency-domain patch and add the bias to
adaptively adjust the frequency-domain features. This process is expressed as follows:

AFPM(f,;) = (Convix1(wi; * fi; + bij)) © fij 5)

where * represents the weighted sum operation, ® represents the element-wise multiplication. Notably,
we can compute all patches in parallel and place them back according to their index to obtain f,cq;-
More information of AFPM is provided in Appendix [B]

Global Frequency Context Branch: Operating in parallel, this branch takes the same features as
input, and applies Simplified Channel Attention (SCA) mechanism from NAFNet [3]]. It aggregates
global spatial information across the frequency map and computes channel-wise attention weights,
allowing the network to recalibrate features based on global frequency context. It can be represented
as:

.fglobal = SCA(.fprocessed) = (COHV1 x1 (AVgPOO:I-(fp'rocessed))) © .fprocessed (6)

where AvgPool represents the average pooling.

The features from the local branch fj,cq; and the global branch fg;.pq; are then fused, typically via
element-wise addition:

.ffused = floca,l + fgloba,l (7)
This fused feature map fryseq is passed through a final 1 x 1 convolution for further feature
integration and potential dimensionality adjustment. Lastly, the processed frequency-domain features
are first shifted by the inverse shift function FFT-IShift to reverse the centering of the zero-frequency
component in the frequency domain, ensuring the reconstructed spatial-domain image is correct.
If this FrE-Block is the last block of the current encoder layer, the complex-valued output at this
stage is stored for the frequency domain skip connection to the corresponding decoder layer. Before
applying IFFT, since the preceding operations are performed on the concatenated real and imaginary
parts of the frequency-domain features, the processed feature map is first split into two equal halves
along the channel dimension. These two halves are then interpreted as the real and imaginary parts,
respectively, and are combined to form a complex-valued tensor, which is then transformed back to
the spatial domain using IFFT, yielding the output feature map f,q;.

4 Experiments

4.1 Experiment Setup

Model Configuration: We evaluated two model configurations based on the FrENet architecture:
FrENet was configured with a feature width of 32 and 24 processing FrE-Blocks, and FrENet+
employed a feature width of 64 and 20 FrE-Blocks. Within every AFPM, we divide the feature map
into an 8 x 8 grid of non-overlapping patches. If downsampling leads to very small feature map sizes
(< 8 x 8), we adopt a coarser granularity in this layer.

Dataset: We evaluate our method on five datasets: Deblur-RAW [20] in the RAW domain, and GoPro
[27], HIDE [31]], RealBlur-R, and RealBlur-J [29]] in the SRGB domain. For the HIDE dataset, we
specifically evaluate our method using the model trained on the GoPro dataset.

Implementation Details: For the Deblur-RAW [20] dataset, we adopted the preprocessing method-
ology used by RawNet [20]]. This involved subtracting the black level and subsequently normalizing
the raw data to the range [0, 1] by dividing by the maximum signal value. During training, 128 x 128
patches were randomly cropped from the normalized single-channel raw images. These single-
channel patches, containing the RGGB Bayer pattern, were then packed into a 4-channel format
which served as the network input. We employed the Adam optimizer with a batch size of 16.
The initial learning rate was set to 0.001 and decayed using a cosine annealing scheduler over 1000
training epochs. All models evaluated on the Deblur-RAW dataset were trained by us on NVIDIA
RTX 5880 Ada Generation GPU.
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Figure 2: Visual results of RAW blurry images. The images are visualized after being processed into
sRGB domain using the LibRaw pipeline.

For extension to sSRGB images, we only changed C;,, = 3 in FrENet without any other modifications.
For the RealBlur dataset, we used the same settings as Deblur-RAW except that training was
conducted using 256 x 256 x 3 patches. For the GoPro dataset [27], we adopted training configurations
from NAFNet [[3]].

For evaluation on test sets, we employed the sliding window strategy [8] to process full-resolution
images. The sliding window size was equal to the training patch size, and the overlap size was half
of the window size. Specifically, for the RealBlur test set, we utilized the official image alignment
method provided by the dataset creators [29]], ensuring a fair comparison.

Loss Function: In terms of the loss function, we used a weighted sum of £; loss and Frequency
Reconstruction (FR) loss L¢,: £ = L1 + 0.01L¢,, where L, = ||F(I) — F(I)||, and I,I,F
represent the deblurred image, the ground-truth and FFT operator, respectively.

Evaluation Metric: We evaluate the performance of image restoration methods using the Peak
Signal-to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM) as primary image quality
metrics. Model efficiency, including Multiply-Accumulate Operations (MACs) and the number of
parameters (Params), is calculated using relevant Python libraries.

4.2 Main Results

4.2.1 Evaluation on RAW Image Deblurring

Table 1: Comparison of different image restoration methods on the Deblur-RAW dataset. PSNR and
SSIM values are average scores evaluated in the RAW domain. MACs and Params are calculated on
128 x 128 x 1 patches.

Methods PSNRT SSIM1T MACs(G)) Params(M) |
NAFNet64 3] 40.35 0.982 3.96 67.79
DeepRFT [24]] 42.40 0.988 5.05 9.55
Restormer [46] 42.86 0.989 8.82 26.10
Stripformer [33]] 42.97 0.991 10.62 19.71
FFTFormer [18] 43.96 0.991 8.22 14.88
LoFormer-S [26]] 42.97 0.990 3.27 16.36
LoFormer-L [26]] 44.04 0.992 8.98 48.98
FrENet(Ours) 44.73 0.993 2.22 19.76
FrENet+(Ours) 45.63 0.994 7.30 48.38

As shown in Tablem our proposed methods, FrENet and FrENet+, demonstrate superior performance
on the Deblur-RAW dataset. Our FrENet+ model achieves state-of-the-art image restoration quality
with the highest PSNR (45.63 dB) and SSIM (0.994). Our FrENet model also delivers strong perfor-



mance (PSNR 44.73 dB, SSIM 0.993), surpassing prior methods like LoFormer-L. and FFTFormer,
while being remarkably efficient. FrENet achieves the lowest MACs (2.22 G) among all compared
methods, presenting an excellent balance of quality and computation. FrENet has 19.76M parameters;
FrENet+ offers higher quality with 48.38M parameters and 7.30G MACs.

4.2.2 The Advantage of RAW Image Deblurring

Table 2: Effectiveness of Deblurring in RAW vs. sSRGB Domain. We compare two pipelines: (i)
deblurring in the RAW domain before ISP conversion, and (ii) deblurring in the SRGB domain after
ISP conversion. Both pipelines use the identical LibRaw ISP. PSNR/SSIM are evaluated in the final
sRGB domain.

Methods Pipeline PSNR 1 SSIM 1
LoFormer-L [26] 6)) 35.66 0.9656
LoFormer-L [26]] (i) 31.26 0.9565
FrENet (1) 36.12 0.9683
FrENet (ii) 31.39 0.9574

We compared RAW vs. sRGB deblurring. To ensure a fair comparison, we used an EXIF tool to copy
the original metadata to the deblurred RAW and utilized an identical LibRaw ISP for both pipelines.
Table 2] confirms the pre-ISP approach is superior, with FrENet gaining 4.73 dB PSNR. This shows
that the ISP’s lossy operations irretrievably degrade information, making pre-ISP restoration essential.

4.2.3 Evaluation on sSRGB Image Deblurring

Table 3: Quantitative comparison on sSRGB datasets. * indicates that the results are inferred using the
checkpoint provided by the author, which are not reported in [26].

Synthetic | Real-world
GoPro HIDE RealBlur-R RealBlur-J
Methods PSNR1T SSIM1 | PSNRT SSIM1T || PSNRT SSIM1 | PSNRT SSIM 1
Restormer [46] 32.92 0.961 31.22 0.942 36.19 0.957 28.96 0.879

DeepRFT+ [24] 33.52 0.965 31.66 0.946 40.01 0.973 32.63 0.933
FFTFormer [18] 34.21 0.969 31.62 0.945 40.11 0.973 32.62 0.932
LoFormer-B [26] 33.99 0.968 31.71 0.948 40.23 0.974 32.90 0.933
LoFormer-L [26] 34.09 0.969 31.86 0.949 40.60* 0.976* 32.88* 0.936*

FrENet+(Ours) 34.11 0.969 | 3192 0.949 || 40.74 0975 | 33.87 0.939

Table [3| provides a quantitative comparison of FrENet+ on synthetic (GoPro, HIDE) and real-world
(RealBlur-R, RealBlur-J) sSRGB deblurring datasets. FrENet+ demonstrates strong performance
across all benchmarks. On synthetic datasets, it achieves leading results on HIDE (PSNR 31.92
dB, SSIM 0.949) and competitive performance on GoPro (PSNR 34.11 dB, SSIM 0.969). Notably,
our method excels on the challenging real-world datasets. FrENet+ sets a new state-of-the-art on
RealBlur-R with the highest PSNR (40.74 dB) and SSIM (0.975), significantly outperforming prior
methods. Similarly, on RealBlur-J, it achieves the highest PSNR (33.87 dB) and SSIM (0.939),
showing a clear advantage. These results highlight FrENet+’s effectiveness and robustness for diverse
sRGB image restoration tasks, particularly in real-world scenarios.

4.3 Ablation Study

We conduct a comprehensive ablation study to investigate the contribution of different components
and design choices within our proposed FrENet, evaluated on the Deblur-RAW dataset. The results
are presented in Table[5]and Table[6] Our study focuses on: (1) the necessity of frequency domain
modeling, (2) the roles of Spatial and Frequency Skip Connections in FrENet, and (3) the effectiveness
and internal mechanisms of FrE-Block.

Necessity of Frequency Domain Processing: To validate our core design choice of operating
primarily in the frequency domain, we created a spatial-only analogue, FrENetSpatial. This was



Blur Sharp Restormer FFTFormer LoFormer-L FrENet+(Ours)

Figure 3: Visual results of real blurry images from RealBlur-J dataset.

Table 4: Ablation on the necessity of frequency domain processing.

Method | PSNR | SSIM

FrENetSpatial | 41.89 | 0.9894
FrENet (Ours) | 44.73 | 0.9931

achieved by removing all FFT and iFFT operations from our architecture, forcing all modules like
convolutions to process features purely in the spatial domain. As shown in Tabled] the performance
collapses: FrENetSpatial achieves only 41.89 dB PSNR, while our full FrENet reaches 44.73 dB.
This massive 2.84 dB gain confirms that processing features within the frequency domain is the
primary driver of our model’s success.

Table 5: Ablation study of spatial and frequency skip connections.

Spatial Skip Connection ~ Frequency Skip Connection | PSNR  SSIM

X v 4391 0.9899
v X 44.39 0.9927
v v 44.73  0.9931

Effectiveness of Frequency Domain Skip Connections: We evaluate the contribution of the skip
connections within the overall FrENet’s UNet architecture. As shown in Table 5} the full architecture,
incorporating both Spatial and Frequency skip connections, achieves 44.73 dB PSNR and 0.9931
SSIM. Ablating the proposed Frequency Skip Connection while retaining the standard Spatial Skip
Connection leads to a noticeable performance decrease to 44.39 dB PSNR and 0.9927 SSIM. This
demonstrates the significant positive impact of integrating frequency-domain information via the
Frequency Skip Connection, complementing the spatial information from the traditional Spatial Skip
Connection and highlighting a key architectural innovation of FrENet.

Table 6: Ablation study of FrE-Block.

Method | Local Branch ~ Global Branch ~ Division Granularity | PSNR ~ SSIM
Average Pooling | v v 8 x 8 | 44.35 0.9927
v v 2x2 44.44  0.9928
4 v 4x4 44.52  0.9929
Adaptive X v 8x8 4448  0.9928
4 X 8 x 8 44.67  0.9930
v v 8x8 44.73  0.9931

Effectiveness of Local and Global Branches: As shown in Table [6] we evaluate the interplay
between our Local Branch and Global Branch under otherwise identical settings. Our full proposed
model, combining both branches, achieves the best performance (44.73 dB PSNR, 0.9931 SSIM).
Ablating the Global Branch and using only our Local Branch leads to a slight performance de-
crease (44.67 dB PSNR, 0.9930 SSIM), indicating the Global Branch’s complementary contribution.
Conversely, ablating our Local Branch and relying solely on the Global Branch results in a more



significant performance drop (44.48 dB PSNR, 0.9928 SSIM), highlighting the critical importance of
our AFPM.

Effectiveness of Division Granularity: To investigate the influence of the division granularity within
the FrE-Block’s feature processing, we compared different division sizes while keeping both the
Local and Global Branches active. As shown in Table[6] decreasing the granularity from 8 x 8 to
4 x 4 and further to 2 X 2 consistently leads to a performance drop. Specifically, changing from the
optimal 8 x 8 division (64 patches) results in a decrease from 44.73 dB to 44.52 dB PSNR and 0.9931
t0 0.9929 SSIM for the 4 x 4 division (16 patches), and even lower scores (44.44 dB PSNR, 0.9928
SSIM) for the 2 x 2 division (4 patches). This trend clearly indicates that a finer-grained division is
more effective for extracting and modulating features, likely enabling the module to capture richer
and more detailed local contextual and positional information within the feature map.

Effectiveness of Adaptive Modulation: As shown in Table[6] we compare our proposed adaptive
modulation mechanism within the AFPM to a variant that employs a simpler, fixed pooling strategy
for feature aggregation. The results indicate that the performance of the pooling-based approach
is significantly inferior to that of our proposed adaptive modulation mechanism. This comparison
not only validates the effectiveness of our AFPM but also highlights its superiority in adaptively
processing frequency-domain features compared to the fixed pooling-based method.

5 Limitations

Despite achieving state-of-the-art deblurring performance and being more efficient than Transformer-
based methods, FrENet has limitations. First, the heavy reliance on FFT and IFFT introduces
substantial computational cost for high-resolution images. Second, the AFPM’s simplified positional
encoding may fail to fully capture complex spatial dependencies, indicating the need for more
advanced techniques.

6 Conclusion

Based on the importance of analyzing image frequency characteristics for image restoration, we
propose the Frequency-Enhanced U-Net (FrENet). FrENet integrates traditional spatial domain skip
connections with frequency domain skip connections and operates directly on frequency features
within its core processing unit, the FrE-Block. The FrE-Block contains a Frequency Adaptive
Context Module that utilizes Adaptive Frequency Positional Modulation for local frequency details
and Simplified Channel Attention for global spectral context, enabling precise modulation and
utilization of frequency features to significantly improve image restoration performance. Furthermore,
the adaptive frequency modulation mechanism demonstrates potential applicability to other image
restoration tasks in RAW domain.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims and scope of our work are accurately described in the Abstract
and Introduction sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our method in section[3] including its computa-
tional cost and reliance on specific data properties.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results or formal proofs.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a detailed description of the proposed method, experimental
setup, and necessary hyperparameters in section [3|and section 4]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide open access to our code and data in the paper, including detailed
instructions for reproducing the main experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides a detailed description of training and test details in section

1]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not include statistical significance results due to the prohibitive cost
of training both our model and baselines, and because for the majority of our baselines
statistical significance results were not reported.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We quantify the computational complexity of our model by reporting its MACs
and parameter count in Table [} This information helps estimate the required compute
resources.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our research
fully conforms with all its principles and requirements.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential negative societal impacts of our image deblurring
method in Appendix [E]
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper does not pose such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All sources and licences have been accredited to the best of our knowledge.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release our code, including documentation, pretrained checkpoints
and instructions for usage.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendices

A Details of FFN

Our FrE-Block utilizes a FFN module adapted from the Gated-Dconv FFN structure introduced in
Restormer [46]]. Given an input feature f;, € REXHXW the FEN processes it through two parallel
branches followed by an element-wise product and a residual connection.

The first branch processes f;,, through a 1 x 1 convolution for channel expansion, a 3 x 3 depth-wise
convolution for spatial feature mixing within each channel group, and a GELU activation function.
The second branch processes f;,, through a 1 x 1 convolution followed by a 3 x 3 depth-wise
convolution.

The outputs of these two branches are multiplied element-wise, acting as a content-aware gating
mechanism that selectively modulates the features. Finally, a 1 x 1 convolution projects the features
back to the original channel dimension, and a residual connection is added to the input f;,,.

The structure can be mathematically represented as:

Sout = fin + Conviy1 (GELU(DConvsy3(Convixi(fin)))) ® (DConvsys(Convixi(fin))) (1)

where Convj; denotes a 1 x 1 convolution (often with channel expansion/reduction internally),
DConvsy s is a 3 X 3 depth-wise convolution, GELU is the Gaussian Error Linear Unit activation, and
©® represents element-wise multiplication. This structure allows the network to learn complex feature
transformations while maintaining computational efficiency and capturing local spatial context.
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B Discussion of AFPM

This appendix provides a detailed discussion of the AFPM module, the core component of our
FrE-Block designed for position-aware frequency feature refinement.

As discussed in the main text, different locations in the frequency domain represent image content at
different spatial frequencies (low frequencies near the center, high frequencies towards the periphery).
AFPM leverages this property to adaptively process features based on their spectral position.

The module takes a frequency feature map fp,ocessed € REXHXW 44 input. We first divide fprocessed

into a grid of non-overlapping patches f;; € RE*PXP where (i, j) indicates the patch’s row and
column index in the grid, and the grid has m = H/p rows and n = W/p columns.

For each patch (i, j), we first compute its normalized Euclidean distance d;; € R**'*! from the
patch’s center to the center of the entire feature map. This scalar distance d;; serves as a proxy for the
dominant frequency range covered by this patch and is used as input to the Kernel-Bias Generators.

AFPM then employs two lightweight Kernel-Bias Generators (KBGs). Each KBG is an MLP consisting
of two linear layers with an intermediate GELU activation, implementing a non-linear mapping.
These KBGs dynamically generate position-aware parameters conditioned on d;;:

* Akernel w;; € RP*P: Generated by KBG**""¢!(d, ;). This kernel provides spatial weights
specific to the patch’s frequency location and is shared across all C' channels.

* Abias b;; € RV*1*1: Generated by KBG"%*(d,;). This provides a location-specific bias,
also shared across channels.

These generated parameters are used to modulate the patch features. The modulation is performed as
follows for each patch f;;:

AFPM(fi;) = (Conviyxi(wsj * fij + bij)) © fij (2)

Here, w;; * f;; denotes a channel-wise weighted summation: for each channel, the p x p feature slice
of f;; is element-wise multiplied by the shared 1 x p X p kernel w;;, and the results are then summed
spatially, yielding an intermediate feature of size R®*!*1. The position-aware bias b; ; (broadcast
to RE*1x1) is added to this aggregated feature. Subsequently, a 1 x 1 convolution processes this
RE*1x1 tensor. This convolution facilitates channel-wise interactions and transforms the aggregated,
position-biased information into a refined per-channel modulation factor of size R®*!* !, Finally, this
modulation factor is broadcast back to the patch dimensions R¢*P*P and element-wise multiplied
(®) with the original patch features f;;. This process allows AFPM to learn position-dependent,
channel-wise scaling factors that adaptively enhance or suppress frequency components within each
patch based on its location in the spectrum.

The adaptive, position-aware modulation performed by AFPM is visually demonstrated in Figure [B.]
(which includes feature maps and generated kernels w; ; in the RAW domain) and Figure(feature
maps in the SRGB domain). The KBGs’ behavior, central to AFPM’s adaptivity, is particularly evident
from the visualized kernels w; ; in Figure These 1 x p x p kernels are shown for different
spectral patch locations across various network stages (Encoder;, Bottleneck, Decodery). In
these kernel visualizations, darker colors indicate higher learned weight values, and lighter colors
represent lower values. The indices ¢, j in w; ; (e.g., wo,0, W1,1, W22, W3 3 as shown in the figure)
correspond to patches at varying normalized Euclidean distances d;; from the center of the frequency
map. For instance, wy o represents the kernel for a patch in a peripheral, high-frequency region (e.g.,
top-left if following standard image indexing), while kernels with higher indices like w3 3 (assuming
a 4 x 4 display of kernels) are progressively closer to the center, corresponding to lower-frequency
regions.

Observing the visualized kernels w; ; and feature maps in Figure and Figurereveals several
key aspects:

* Positional Specificity of Kernels and Modulation: The structure and intensity patterns
of the kernels w; ; in Figur visibly change with their spectral position. For exam-
ple, in Encoder; of Figure [B.1] the peripheral kernels (e.g., wo,0, w1,1) appear to have
more distinct, higher-intensity (darker) patterns compared to the more central kernels (e.g.,
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w3 2, w3, 3), which might be smoother or have generally lower intensity values. This sug-
gests that AFPM learns to apply stronger or more structured modulation to high-frequency
components (potentially to enhance details or suppress specific noise patterns) and a differ-
ent, perhaps more subtle or uniform, modulation to low-frequency components (to adjust
overall brightness or contrast in those bands). The resulting AFPM( fprocessed) maps reflect
these position-specific modulations. This directly confirms that the KBGs learn to generate
distinct spatial weighting strategies based on the input distance d;;.

* Layer-wise Adaptation and Effect on Features: The characteristics of the learned kernels
and their impact on feature maps adapt across different network layers and domains:

— In early encoder stages (e.g., Encoder; in both Figure[B.T|and [B.2)), AFPM appears to
perform initial spectral refinement. The kernels might be learning to selectively boost
certain structural frequencies or perform a gentle equalization. The AFPM( fprocessed)
maps show subtle but widespread adjustments compared to fprocessed-

— In the bottleneck (middle row of both figures), features are highly compressed. The
kernels w; ; (in Figure @ appear to adapt to this abstract representation, and the
resulting AFPM( fprocessea) Shows more pronounced, localized changes, likely focusing
on preserving or transforming features critical for the decoder.

— In decoder stages (e.g., Decoder;, bottom row of both figures), the modulation is
critical for reconstruction and often more aggressive. In Figure [B.T|(RAW), the kernels
w; ; for Decoder; might learn to strongly amplify frequencies corresponding to edges
while suppressing others. This is reflected in AFPM( fprocessea) Where structured details
appear sharpened. Notably, in Figure [B.2] (SRGB) for Decoder;, specific patterns
in fprocesseq that resemble blur artifacts (e.g., diffuse diagonal bands or "ghosting")
are visibly suppressed or transformed in AFPM( fprocessed), leading to a cleaner fo;.
This targeted suppression in the SRGB domain highlights AFPM’s ability to adapt its
frequency modulation to combat different manifestations of blur.

* Content-Independent Nature of Kernels: It is crucial to reiterate that the kernels w;;
themselves are generated based only on the patch’s spectral position d;;, not its content f;;.
The visualization of w;; in Figure thus purely reflects the learned spatial modulation
strategy for a given frequency location. The actual content adaptation occurs when this
position-specific kernel modulates the patch features f;; as per Equation

This layer-dependent and position-specific modulation capability, evidenced by both the overall
feature map transformations (Figure Figure and the varying structures of the generated
kernels (Figure[B.T), arises directly from the KBGs. By allowing the network to learn how to weight
and shift frequency components based on where they are in the spectrum, AFPM provides a powerful
and flexible mechanism for adaptive frequency domain processing.

In the main paper, our ablation studies on division granularity (comparing 2 x 2,4 x 4, and 8 x 8
grids for patch division within AFPM) demonstrated that a finer-grained division generally leads to
better performance, with the 8 x 8 grid yielding the best results among those tested. This suggests
that enabling AFPM to operate on more localized spectral regions allows for more precise modulation.
For instance, we also experimented with fixing the kernel size of w;; to 4 x 4 while increasing the
number of patches (i.e., making the grid finer than 8 x 8 such that each patch is smaller than 4 x 4 is
not possible, rather, if the feature map is H x W, a k x k grid means p = H/k, W/k. If p is fixed at
4, then a larger H, W means more patches). Conceptually, if each patch becomes very small (e.g.,
if p itself was reduced, like using p = 4 for the patch size which w;; operates on, and having more
such patches in a larger grid), this could offer even more precise control, and preliminary tests indeed
showed further improvements. However, this significantly increases the number of KBG evaluations
(if each patch gets its own kernel) or the complexity of managing these smaller patches, leading
to higher parameter counts and computational costs. Therefore, the 8 x 8 grid represented a good
balance of performance and efficiency for our reported results.
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Figure B.1: Multi-level feature visualization of the key stages around AFPM in the RAW do-
main. Each row shows the input frequency feature map ( fprocessed ), the output after AFPM

(AFPM( fprocessed)), the spatial domain output of the block (fo.:) , and kernels w; ; generated by
KBGs from a representative block in Encoder;, Bottleneck, and Decoder;. Deeper colors represent

|
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Figure B.2: Multi-level feature visualization of the key stages around AFPM in sSRGB domain. Each
row shows the input frequency feature map ( fprocessed )» the output after AFPM (AFPM( fprocessed)),
and the spatial domain output of the block (f,,:) from a representative block in Encodery,
Bottleneck, and Decoder;. Deeper colors represent higher values.
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C Performance and Efficiency Analysis

C.1 Inference Efficiency on Full-Resolution Images

While the main body of the paper analyzes computational efficiency on the 128x 128 patches
used during training, it is crucial to evaluate the model’s practical performance on full-resolution
images, which is the typical use case. To this end, we employ a standard sliding-window approach
for inference. The high-resolution input image is partitioned into overlapping 128x128 patches,
processed independently, and the results are then stitched together to reconstruct the final output. This
strategy is a common practice in the field, also adopted by competing methods like LoFormer[26]]
and DeepRFT[24]], ensuring a fair comparison.

We benchmarked the end-to-end inference time and GPU memory usage on full-resolution RAW
images using a single NVIDIA RTX 5880 Ada GPU. As shown in Table [C.1] the results confirm
that our model’s efficiency on small patches translates to a significant real-world advantage. FrENet
is demonstrably faster (1.36x to 3x) and more memory-efficient than powerful Transformer-based
baselines in this practical, end-to-end scenario.

Table C.1: Efficiency Comparison on Full-Resolution RAW Images.

Methods \ Params(M)| GPU Memory(MB)| Runtime(ms)]
Restormer [46]] 26.10 1238.71 102.95
FFTFormer [18]) 14.88 2193.03 222.56
LoFormer-L [26] 48.98 2391.10 222.49
FrENet+(Ours) 19.76 1083.30 75.36

C.2 Module-Level Efficiency Analysis

To provide a deeper understanding of the computational cost distribution within our model, we present
a module-level analysis of a single FrE-Block. The analysis, detailed in Table [C.2] reveals that our
proposed core components, the AFPM and SCA modules, are highly parameter-efficient. Combined,
they account for only 28.1% of the model’s total parameters and a mere 1.8% of the MACs.

The majority of parameters and computational load are attributed to standard architectural components,
such as the Feed-Forward Network (FFN) and convolutional layers. This breakdown underscores
that our model’s performance gains stem from the targeted and efficient design of its novel modules
rather than an increase in overall model complexity.

Table C.2: Per-Module Cost Analysis of FrENet on 128 x 128 size patches.

Module | Params(M) MACs(G) Runtime (ms)
Convolutional Layers 6.0 (30.4%) 0.92 (41.4%) 0.149 (16.0%)
AFPM Module 2.86 (14.4%) 0.03(1.4%) 0.103 (11.1%)
SCA Module 2.71 (13.7%)  0.01 (0.4%) 0.039 (4.2%)
Others (e.g., Layernorm) | 8.29 (41.9%) 1.26 (56.7%) 0.639 (68.7%)
Total 19.76 2.22 0.93
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C.3 Visualization of Comparison

Figure [C.3| presents a quantitative comparison of various image deblurring methods on the Deblur-
RAW dataset, illustrating the trade-off between deblurring performance (PSNR, Y-axis) and compu-
tational efficiency (MACs, X-axis). The size of each bubble indicates the model’s parameter count.
Positioned in the upper-left region, our proposed method FrENet demonstrates superior performance
at a significantly lower computational cost. Specifically, FrENet achieves state-of-the-art deblurring
performance. Compared to competitive methods like LoFormer-L, which achieve comparable PSNR,
FrENet requires considerably fewer MACs. This plot clearly showcases FrENet’s effectiveness in
balancing high restoration quality and computational efficiency on the Deblur-RAW dataset.

46.0
45.51
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45.04 LoFormer-L
44.54 FFTFormeér
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43.59 LoFormer-S Restormer
% 43.01 DeepRFT
o 42,51
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40.0 1 \\’/

39.54
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MACs (G)

Figure C.3: Performance (PSNR) and efficiency (Params, MACs) comparison of various image
deblurring methods on the Deblur-RAW dataset.
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D Visual Results

NAFNet64

NAFNet64

FrENet(Ours) FrENet+(Ours)

Figure D.4: Visual results on the Deblur-RAW dataset.
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Figure D.5: Visual results on the Deblur-RAW dataset.
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Figure D.6: Visual results on the RealBlur-J dataset.
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Figure D.7: Visual results on the RealBlur-R dataset.
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Figure D.8: Visual results on the GoPro dataset.
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Figure D.9: Visual results on the HIDE dataset.
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E Boder Impacts

While advanced deblurring algorithms offer simple image enhancement to the public, their use also
raises concerns about potential malicious applications, especially regarding privacy issues. Blurring
is often used to protect personal information, such as faces and personal IDs. To prevent potential
misuse, image forensics algorithms can be used, which are designed to authenticate images. Many
of these algorithms focus on training classifiers to distinguish between images captured in the real
world and images processed by deep learning models.
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