
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LARGE LANGUAGE MODELS ARE DEMONSTRATION
PRE-SELECTORS FOR THEMSELVES

Anonymous authors
Paper under double-blind review

ABSTRACT

In-context learning with large language models (LLMs) delivers strong few-shot
performance by choosing few-shot demonstrations from the entire training dataset.
However, previous few-shot in-context learning methods, which calculate similarity
scores for choosing demonstrations, incur high computational costs by repeatedly
retrieving large-scale datasets for each query. This is due to their failure to recog-
nize that not all demonstrations are equally informative, and many less informative
demonstrations can be inferred from a core set of highly informative ones. To this
end, we propose FEEDER (FEw yet Essential Demonstration prE-selectoR), a novel
pre-selection framework that identifies a core subset of demonstrations containing
the most informative examples. This subset, referred to as the FEEDER set (DFEEDER),
consists of demonstrations that capture both the “sufficiency” and “necessity” infor-
mation to infer the entire dataset. Notice that DFEEDER is selected before the few-shot
in-context learning, enabling more efficient few-shot demonstrations choosing in a
smaller set (DFEEDER). To identify DFEEDER, we propose a novel effective tree based
algorithm. Once selected, it can replace the original dataset, leading to improved
efficiency and prediction accuracy in few-shot in-context learning. Additionally,
DFEEDER also benefit fine-tuning LLMs, we propose a bi-level optimization method
enabling more efficient training without sacrificing performance when datasets
become smaller. Our experiments are on 6 text classification datasets, 1 reasoning
dataset, and 1 semantic-parsing dataset, across 8 LLMs (ranging from 335M to 8B
parameters), demonstrate that: (i) In few-shot inference, FEEDER achieves superior
(or comparable) performance while utilizing only half the input training data. (ii)
In fine-tuning, FEEDER significantly boosts the performance of LLMs.

1 INTRODUCTION

Large language models (LLMs), e.g., GPT (Brown et al., 2020), Gemma (Team et al., 2024), and
Llama (Touvron et al., 2023), have demonstrated impressive performance across a wide range of tasks
by employing few-shot inference, often referred as in-context learning (Brown et al., 2020; Dong
et al., 2022). This approach avoids the computational expense associated with fine-tuning LLMs.
Here, the core challenge is how to select the most effective demonstrations from a large training set.
Early methods (Qiu et al., 2022; Liu et al., 2021; Rubin et al., 2021; Wang et al., 2022) primarily
selected demonstrations based on relevance, using similarity scores between each demonstration and
the input question. Recent studies (Levy et al., 2022; Köksal et al., 2022; Zhou et al., 2023) have also
incorporated diversity, uncertainty, or clustering based metrics along with similarity, acknowledging
that measuring each example in isolation is inefficient. This is because previous methods fail to
recognize that not all demonstrations contribute equally across different LLMs and domains. A small
set of highly informative examples can often capture enough information to infer many of the less
informative ones. By not focusing on this core set, prior approaches end up processing unnecessary
data, resulting in higher computational costs and lower efficiency in few-shot inference.

Our main idea is to identify the most informative subset that can effectively replace the entire original
dataset, which is grounded in the consistency of LLMs. As observed by (Jang & Lukasiewicz, 2023),
LLMs demonstrate strong performance in tasks such as transitive inference. On this promise, we
propose a demonstration pre-selector named FEEDER (FEw yet Essential Demonstration prE-selectoR).
Concretely, our FEEDER, served as a core subset selector over the training dataset, examines input
demonstrations in terms of “sufficiency” and “necessity”. Sufficiency investigates whether prompting

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

FEEDER Input
and Output

Training
Dataset

Frozen
Large Language Model

(a) In-Context Learning with Frozen LLM

Trainable
Large Language Model

(b) Fine-Tuning with Trainable LLM

Test
Input Data

Training
Dataset FEEDER Input

Output to Test
Input

Output to
FEEDER Input

conditioned

Loss

FEEDER
Output

Demonstration
Retriever

Figure 1: Overview of FEEDER that operates effectively within both in-context learning and fine-tuning settings.
In the in-context learning setting, depicted in (a), we first pre-select a core set termed FEEDER from the training
dataset, and then incorporate existing demonstration retrievers to get samples regarding specific test input. This
selected set is characterized by its sufficiency and necessity conditioned on the frozen LLM. In the fine-tuning
setting, shown in (b), FEEDER allows the LLM to be tuned on the fixed subset, and this subset is intentionally
selected to be a faithful representation of the training dataset, with the dual objectives of maintaining data
quality and minimizing computational expenses. The above two processes can be encapsulated into a bi-level
optimization framework, allowing for iterative refinement of both the selected FEEDER and the fine-tuned LLM.

a demonstration enhances LLM performance on domain-specific tasks, while necessity assesses
whether a newly considered demonstration offers redundant information compared to those already
included. The resulting sets of selected demonstrations, identified as sufficient and necessary, form
what we term FEEDER sets.

To efficiently select a FEEDER set from the training dataset, the exhaustive enumeration and evaluation
of all possible subsets is impractical. Therefore, we devise a tree based approximation algorithm to
examine whether each demonstration is sufficient and necessary to represent other demonstrations.
Our identification of FEEDER sets can be characterized as a core-set selection approach, producing
a subset of training instances that is highly informative for downstream tasks, including in-context
learning and fine-tuning. In the in-context learning setting, our FEEDER can also benefit from the
use of various demonstration selectors, by utilizing a pre-selected FEEDER set as the retrieval pool
instead of the entire training dataset to generate n-shot demonstrations. Additionally, we demonstrate
that a FEEDER set also can enhance the fine-tuning process. Specifically, we show that fine-tuning
the performance of LLMs with a single epoch on the pre-selected subset proves to be more effective
than doing so on the entire training dataset. The above observations collectively give rise to a novel
bi-level framework, wherein we formulate the pre-selection of FEEDER sets and the fine-tuning of
LLMs on the pre-selected subset as a unified bi-level optimization problem. It comprises an outer
level for extracting a FEEDER set using a frozen LLM and an inner level for fine-tuning the LLM with
the fixed FEEDER set. This iterative process involves utilizing the tuned LLM for the new FEEDER
selection in the subsequent iteration.

Our empirical evaluations span 6 text classification datasets, 6 LLM bases ranging from 335M to 7B,
and 6 existing demonstration selectors (e.g., random, similarity-based, and diversity-based). Results
consistently demonstrate that efficiency and effectiveness of FEEDER: In terms of efficiency, our
pre-selected FEEDER saves nearly half of the data size. In terms of effectiveness, using FEEDER rather
than the full training dataset, consistently yields superior (or comparable) performance in the few-shot
inference. Moreover, results also indicate that fine-tuning LLMs on FEEDER consistently leads to
significant improvements compared to fine-tuning on the entire training dataset. The evaluation of
FEEDER is further expanded to 1 reasoning task and 1 semantic-parsing task, providing consistent
results with trends observed in the text classification task.

2 A DATA-CENTRIC PERSPECTIVE FROM IN-CONTEXT LEARNING TO
FINE-TUNING

We begin by delineating two distinct contexts where FEEDER operates: in-context learning setting
and fine-tuning setting. Throughout this paper, we approach both scenarios from a data-centric
perspective (Strickland, 2022), emphasizing the significance of data quality over data quantity.

In the in-context learning setting, we are given a training dataset DTRAIN = {(xn,yn)}Nn=1 consisting
of pairs of input data (e.g., questions) and output labels (e.g., answers). We are also given a test
dataset DTEST = {(xm,ym)}Mm=1, where we assume that DTRAIN share the same support set (Yosida,
2012) with DTEST. Our goal is to develop a demonstration selector that extracts n-shot demonstrations
from the training dataset, denoted as DDEMO ⊆ DTRAIN. We use ΨLLM : X × D → Y to represent a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

LLM using selected demonstrations as the context. Here, x· ∈ X is an input text, y· ∈ Y is the
corresponding output, and (x·,y·) ∈ D is one demonstration. Formally, our objective is to minimize:

L(DDEMO,DTEST) =
∑

(xm,ym)∈DTEST

ℓ
(
Ψ∗

LLM(xm,DDEMO),ym

)
, (1)

where ℓ(·, ·) is the task-specific loss function, and Ψ∗
LLM(·) means that the LLM is frozen. However,

since we do not have access to DTEST during the training phase, it is impractical to optimize the
demonstration selection directly by minimizing L(DDEMO,DTEST).

Instead, we re-consider the demonstration selection task as a two-stage problem, where we first
pre-select a subset of high-quality demonstrations from DTRAIN as the retrieval pool, i.e., a FEEDER
set denoted as DFEEDER; and then we apply existing demonstration selectors such as random or
similarity-based retrievers on DFEEDER, to choose the corresponding demonstrations as context for
a specific test instance. Our key idea is that a high-quality training dataset DFEEDER should be both
representative of the entire training dataset DTRAIN and as minimal in size as possible. Formally, we
use the loss function L(DFEEDER,DTRAIN) from Eq. (1) to evaluate our pre-selector, i.e., how well the
representation of DFEEDER aligns with DTRAIN. Then, our objective can be written as:

min
DFEEDER⊆DTRAIN

|DFEEDER|, s.t. L(DFEEDER,DTRAIN) ≤ L(DTRAIN,DTRAIN). (2)

This formulation indices that DFEEDER should be not only sufficient but also necessary to represent
DTRAIN, thus removing redundant data points to save computation costs meanwhile maintaining LLM
performance.

Our pre-selected set of high-quality data DFEEDER also can be applied to fine-tune LLMs. Concretely,
instead of fine-tuning LLMs on the entire training dataset DTRAIN, DFEEDER allows us to fine-tune
LLMs with few but high-quality data, reducing computation costs. In this case, the LLM ΨLLM is
usually trainable, and our goal can be formulated as:

min
ΨLLM

E(xn,yn)∈D∗
FEEDER

[ℓ
(
ΨLLM(xn, ∅),yn

)
], (3)

where D∗
FEEDER means that the selected DFEEDER is fixed during fine-tuning.

Algorithm 1: Bi-level Optimization
Input: Training dataset DTRAIN, LLM ΨLLM.
Output: Approximated set D̃FEEDER, tuned
LLM ΨLLM.
Initialize D̃FEEDER = DTRAIN.
for each iteration do

Update D̃FEEDER by using our
approximation algorithm with frozen
LLM ΨLLM.

Tune LLM ΨLLM by using Eq. (3) as our
loss function on fixed D̃FEEDER.

end

Given the above analysis, we can further bridge
the (pre)-selection of DFEEDER and the LLM fine-
tuning on DFEEDER into a bi-level optimization
framework. On the outer level, following Eq. (2),
we optimize the selection of DFEEDER in the con-
text of a frozen LLM Ψ∗

LLM; while on the inner
level, following Eq. (3), we optimize the LLM
ΨLLM using the fixed dataset D∗

FEEDER. The bi-
level optimization procedure described above is
amenable to repetition, enabling iterative refine-
ment of both the selected DFEEDER and the tuned
LLM. The overall process is summarized in Al-
gorithm 1, and the construction of our FEEDER
set is detailed in the subsequent sections.

3 CONNECTIONS TO EXISTING WORK

With the growing capabilities of LLMs, data (often referred to as “demonstrations”) selection has
gained prominence, which involves selecting suitable examples as the context for in-context learning
(Dong et al., 2022; Yang et al., 2023; Zhou et al., 2022) or filtering a subset from training examples
for fine-tuning (Sachdeva et al., 2024; Zhou et al., 2024). Previous solutions have revolved around
constructing either parameter-free selection mechanisms (Wang et al., 2022; Zemlyanskiy et al., 2022;
Gao et al., 2023) or neural-based selection methods (Pasupat et al., 2021; Liu et al., 2021; Gupta et al.,
2021; Rubin et al., 2021; Li et al., 2023). Recent investigations (Xia et al., 2024; Marion et al., 2023)
focus on mining training examples for fine-tuning specific tasks, with (Wang et al., 2024) extending
this approach to in-context learning. In contrast to previous methods that use LLMs as demonstration

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

selectors, our work leverages the powerful few-shot inference capabilities of LLMs by employing
them as pre-selectors. Building on the observation from (Jang & Lukasiewicz, 2023) that LLMs excel
at high-level logical reasoning such as transitive inference, our approach examines “sufficiency” and
“necessity” to identify a core set of training examples. This pre-selection process remains consistent
regardless of test datasets, thereby eliminating the need for re-computation across different test sets.
The resulting FEEDER sets can serve a dual purpose: they can be used as candidate input contexts or
to fine-tune the LLM. In both scenarios, FEEDER can significantly reduce the computation costs by
substituting the entire training dataset with FEEDER sets.

4 FEEDER: PRE-SELECTING SUFFICIENT AND NECESSARY DEMONSTRATIONS

Let X,C denote variables for the input and the context (i.e., selected demonstrations). We introduce
Y , a boolean variable, to represent whether the corresponding output is correct. For simplicity, we
use Yxn

= 1 to denote Y = 1|X = xn, meaning that the LLM generates the correct output for
the input xn. Similarly, Yxn

= 0, equivalent to Y = 0|X = xn, indicates that LLM produces an
incorrect output for xn.

For convenience, we introduce S, a variable to record the original status of the LLM before new
plug-in and unplug operations (denoted as plug(·) and unplug(·) respectively). The connections
between the above operations and the do(·) operation in causality are discussed in Appendix A1.

4.1 RELATIONSHIP BETWEEN DEMONSTRATIONS: FROM INSTANCE LEVEL TO SET LEVEL

We begin by considering the relationship between two examples, denoted as (xn,yn) and (xm,ym).

Sufficiency relationship is introduced to assess whether plugging in one data point is adequate for the
LLM to produce the correct answer to another data point. Formally, we define sufficiency as:
Definition 1 (Sufficient Instance). Given tuple (X,Y,C, S), a training sample (xn,yn) is considered
sufficient for another one (xm,ym), if the following equation holds:

Yxm
= 1|plug((xn,yn));C = ∅, S = (Yxm

= 0). (4)

It means that when plugging in (xn,yn), it would correct the LLM’s answer to xm.

Necessity relationship is introduced to assess whether it is necessary to retain a particular plugged-in
data point to maintain the correct output of another data point. Its formal definition can be written as:
Definition 2 (Necessary Instance). Given tuple (X,Y,C, S), a training sample (xn,yn) is consid-
ered necessary for another one (xm,ym), if the following equation holds:

Yxm
= 0|unplug((xn,yn));C = ((xn,yn)), S = (Yxm

= 1). (5)

It means that prior to unplugging (xn,yn), the LLM’s output is correct. However, when we do unplug
(xn,yn) from the context, it causes the LLM to offer an incorrect output.

The above definitions of sufficiency and necessity metrics, operating on the instance level, are further
clarified with examples in Appendix A2.1. Extending these definitions to the set level, a sufficient
set signifies that plugging in a specific set is adequate to ensure the correct outputs for all examples
in another set, while a necessary set implies that removing any example from this set would result
in incorrect answers for at least one example within another set. Formal definitions for the above
set-level metrics, along with examples, are available in Appendix A2.2.

Taking into account both the sufficiency and necessity metrics, we define a subset of the training
dataset DTRAIN as DFEEDER, if it can be both sufficient and necessary to represent DTRAIN. Formally, we
describe DFEEDER as follows:
Definition 3 (FEEDER Set). Given tuple (X,Y,C, S) and DTRAIN, a subset of DTRAIN, is considered
as a FEEDER set (denoted as DFEEDER), if the following conditions are satisfied:

(i) Y(x1...,xN) = 1N |plug(DFEEDER);C = ∅, S = (Y(x1...,xN) ̸= 1N) holds.

(ii) Y(x1...,xN) ̸= 1N |unplug(D′
FEEDER);C = DTRAIN, S = (Y(x1...,xN) = 1N) holds for any subset

of DFEEDER (denoted as D′
FEEDER).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

1N denotes N -dimensional vectors whose elements are all 1s. (i) and (ii) respectively imply that
plugging in DFEEDER is sufficient and necessary to maintain the LLM generating correct output.

We illustrate the concept of FEEDER via specific examples in Appendix A2.3. Strictly following the
above definition to discover a FEEDER set is impractical because the constraints are too stringent and
the computational costs are prohibitively high with O(2N) computational complexity. Therefore, we
propose an approximation algorithm for discovering a FEEDER set in the following subsection.

4.2 AN APPROXIMATION ALGORITHM FOR DISCOVERING FEEDER

Check Whether

An Example of Approximation Algorithm for FEEDER

and have a Sufficiency

Relationship, Remove Unnecessary Parts

Check Whether and have a Sufficiency

Relationship, Remove Unnecessary Parts

Figure 2: An illustrated example of our approx-
imation algorithm for FEEDER. At each iteration
(corresponding to each layer of the tree), we check
whether there is a sufficiency relationship between
each pair of nodes. After each check, we remove
those unnecessary parts from W·.

Grounded in the observation by (Jang & Lukasiewicz,
2023) that LLMs excel at transitive inference, we
hypothesize that sufficiency is transitive among sets.
Specifically, if DA is a sufficient set for DB, and DB is
a sufficient set for DC, then DA is also a sufficient set
for DC. We provide case studies in Appendix A11.1
to verify the feasibility of this assumption. Based on
this, we design a tree-based algorithm to filter out
unnecessary portions of DTRAIN, while retaining the
sufficient subset to represent the entire DTRAIN.

Concretely, we exploit the transitivity to construct a
tree, where each node represents a set of instances;
and our tree expands from the bottom to the top. For-
mally, we use the variable K to represent the depth
of the tree, corresponding to the number of iterations.
Specifically, we use k = 1, 2, . . . ,K to refer to each
k-th iteration; and during each k-th iteration, we gen-
erate the (k + 1)-th layer of the tree. We denote Wk

as the set of nodes after the k-th iteration. We initial-
ize W0 by assigning all the samples in DTRAIN as the
bottom nodes:

W0 := {Wn := {(xn,yn)}|(xn,yn) ∈ DTRAIN}. (6)
During each k-th iteration, we generate Wk from Wk−1. This is achieved by examining the sufficiency
relationship between every pair of nodes in Wk−1, denoted as Wi,Wj ∈ Wk−1. In this evaluation,
we assess whether the following equation holds true by assigning Wi and Wj as WIN and WOUT, or
vice versa:

Y({xn|xn∈WOUT}) = 1|WOUT||plug(WIN);C = ∅, S, (7)
where S is loosened to allow for any value. If the above equation holds, it signifies that plugging in
WIN is sufficient for the LLM to generate the correct output to any input in WOUT. In other words,
once we have WIN included in the plugged-in context, it is unnecessary to further include WOUT.
Formally, we can derive the following equation from Eq. (7):

Y({xn|xn∈WOUT}) = 1|WOUT||unplug(WOUT);C = (WIN ∪WOUT), S, (8)

where S is loosened to be any value. Concretely, there are three possible scenarios by examining
each pair of nodes in Wk−1: (i) If both Wi and Wj are sufficient sets for each other, then we select
the one with fewer elements to append to Wk. (ii) If only one of Wi and Wj is a sufficient set for
the other, then we append the sufficient set to Wk. (iii) If neither Wi nor Wj is a sufficient set, we
append Wi ∪Wj to Wk. After performing the above calculations for each pair of nodes, we remove
them from Wk−1. When there is only one element left in Wk−1, it is directly appended to Wk. This
process continues until W· contains only one element.

We can effectively remove unnecessary samples from DTRAIN by extending the above tree structure
from the bottom to the top. Simultaneously, the complexity of the above algorithm with K iterations
(corresponding to a tree depth of K + 1) is O(K log

|DTRAIN|
2). In practice, we investigate the impact

of varying K and find that setting K = 1 already yields excellent performance. This indicates that
one-shot inference by the LLM to assess sufficiency between each pair of samples is sufficient. Once
the results are computed, we merge them to form the resulting set. Figure 2 illustrates the process for
K = 2. When K = 1, the top-level check between W1 and W1 ∪W2 is no longer required.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Performance comparisons on text classification datasets are conducted in the in-context learning setting.
We report both the mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots.
Refer to Appendix A5.2 for more extended results on datasets FPB, SST-5, TREC.

ΨLLM(·) D n
SUBJ SST-2 COLA

RAN SIM DIV RAN SIM DIV RAN SIM DIV

SMA (0.3B)

DTRAIN

1 41.3 (7.2) 41.1 (0.1) 41.1 (0.1) 48.9 (4.6) 24.5 (0.2) 24.5 (0.2) 29.0 (5.4) 38.8 (0.1) 38.8 (0.1)

2 47.3 (7.2) 62.8 (0.1) 71.9 (0.2) 51.2 (5.8) 65.7 (0.1) 62.5 (0.2) 30.9 (4.6) 38.5 (0.2) 36.2 (0.1)

5 51.8 (5.5) 85.8 (0.3) 70.1 (0.2) 62.6 (5.6) 79.4 (0.2) 61.7 (0.1) 39.4 (5.8) 49.3 (0.1) 47.0 (0.2)

10 62.4 (5.0) 88.0 (0.2) 78.2 (0.1) 50.9 (4.9) 83.8 (0.3) 76.9 (0.2) 31.6 (4.6) 52.5 (0.2) 58.8 (0.2)

DFEEDER

1 42.8 (2.4) 44.9 (1.1) 44.9 (1.1) 49.8 (4.2) 48.1 (1.9) 48.1 (1.9) 29.6 (4.1) 35.1 (1.5) 35.1 (1.5)

2 55.9 (3.3) 63.4 (1.6) 74.7 (0.9) 67.3 (4.4) 67.7 (1.4) 64.7 (1.5) 31.3 (2.2) 41.7 (1.2) 34.9 (1.9)

5 57.5 (4.0) 86.9 (0.7) 69.8 (1.0) 70.3 (4.4) 77.9 (1.2) 68.5 (1.9) 35.2 (2.0) 57.3 (1.2) 54.6 (1.7)

10 63.5 (4.4) 88.7 (1.5) 79.7 (2.0) 75.2 (6.2) 83.0 (1.7) 77.2 (1.5) 59.3 (3.8) 68.7 (2.4) 68.5 (2.9)

MED (0.8B)

DTRAIN

1 42.5 (5.2) 43.6 (0.1) 43.6 (0.1) 49.0 (4.3) 42.3 (0.2) 42.3 (0.2) 42.1 (5.7) 48.3 (0.1) 48.3 (0.1)

2 58.1 (6.3) 88.3 (0.2) 87.0 (0.3) 68.0 (5.2) 70.7 (0.1) 59.6 (0.2) 41.1 (4.2) 36.8 (0.2) 37.7 (0.1)

5 66.7 (4.5) 86.2 (0.2) 86.7 (0.1) 49.1 (4.3) 80.6 (0.1) 67.5 (0.2) 46.2 (4.7) 53.8 (0.2) 48.5 (0.3)

10 48.6 (6.0) 85.9 (0.1) 73.9 (0.2) 71.1 (4.5) 84.6 (0.1) 73.1 (0.2) 43.4 (4.5) 55.5 (0.2) 56.1 (0.4)

DFEEDER

1 45.8 (5.1) 46.4 (0.4) 46.4 (0.4) 49.1 (3.0) 47.7 (1.3) 47.7 (1.3) 46.6 (3.8) 45.1 (1.1) 45.1 (1.1)

2 63.1 (4.5) 89.7 (1.5) 86.8 (1.3) 69.8 (3.8) 73.0 (2.9) 61.2 (2.1) 36.6 (3.5) 37.0 (2.8) 34.6 (2.0)

5 73.4 (4.3) 88.2 (1.9) 88.8 (1.7) 59.3 (2.4) 80.9 (1.3) 69.6 (1.7) 59.2 (3.3) 68.6 (1.6) 66.6 (1.7)

10 52.0 (3.8) 87.4 (1.3) 75.6 (1.2) 76.0 (3.0) 86.7 (1.4) 75.6 (1.8) 59.3 (4.8) 68.8 (2.0) 68.9 (1.8)

NEO (1.3B)

DTRAIN

1 42.8 (3.9) 42.1 (0.1) 42.1 (0.1) 49.2 (3.7) 33.8 (0.1) 33.8 (0.1) 25.5 (3.4) 36.5 (0.2) 36.5 (0.2)

2 48.5 (4.2) 88.3 (0.2) 72.6 (0.3) 76.8 (3.5) 81.5 (0.1) 76.3 (0.4) 30.7 (3.1) 55.5 (0.2) 56.5 (0.4)

5 51.6 (5.0) 90.5 (0.2) 81.7 (0.2) 65.1 (3.5) 80.8 (0.2) 66.1 (0.3) 40.0 (3.6) 55.9 (0.1) 52.5 (0.2)

10 48.5 (5.8) 85.9 (0.3) 81.9 (0.1) 69.8 (4.8) 84.1 (0.1) 69.7 (0.1) 39.6 (4.5) 59.3 (0.3) 63.4 (0.1)

DFEEDER

1 43.2 (4.0) 46.3 (1.0) 46.3 (1.0) 49.3 (5.1) 48.3 (1.9) 48.3 (1.9) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

2 62.6 (3.5) 89.4 (1.5) 73.8 (2.1) 75.1 (2.8) 82.6 (2.1) 78.5 (1.9) 59.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 69.4 (5.6) 91.2 (1.8) 82.9 (1.3) 73.2 (4.2) 82.9 (2.7) 71.6 (2.4) 58.7 (3.2) 67.2 (2.4) 65.8 (1.8)

10 58.7 (3.3) 87.2 (1.7) 84.3 (2.8) 72.4 (3.4) 85.8 (2.5) 71.8 (2.9) 59.8 (2.8) 68.8 (1.4) 68.9 (1.3)

GEM (2B)

DTRAIN

1 45.0 (5.9) 48.1 (0.6) 48.1 (0.6) 51.2 (6.8) 52.2 (0.8) 52.2 (0.8) 37.5 (7.0) 40.5 (1.3) 40.5 (1.3)

2 62.3 (6.9) 82.5 (1.8) 74.2 (1.3) 71.5 (5.6) 78.5 (1.5) 75.9 (0.9) 40.6 (5.9) 62.5 (1.0) 61.6 (0.5)

5 68.0 (7.1) 91.5 (1.2) 84.2 (1.6) 70.2 (5.6) 80.5 (1.6) 80.6 (0.7) 46.5 (5.9) 67.2 (1.8) 65.6 (0.6)

10 50.3 (8.2) 86.2 (1.9) 85.6 (0.8) 68.2 (4.8) 85.5 (1.5) 76.3 (1.3) 50.2 (7.4) 69.8 (1.5) 71.5 (1.2)

DFEEDER

1 48.2 (4.2) 49.5 (1.0) 49.5 (1.0) 52.6 (4.6) 53.1 (0.8) 53.1 (0.8) 38.9 (5.2) 39.6 (0.8) 39.6 (0.8)

2 65.2 (2.9) 85.2 (1.0) 80.3 (0.8) 74.2 (4.9) 82.1 (1.2) 83.0 (0.7) 52.5 (2.5) 68.9 (2.1) 67.8 (1.5)

5 72.2 (6.2) 94.5 (5.3) 85.5 (0.7) 72.0 (4.2) 83.6 (2.1) 84.5 (1.7) 55.2 (4.8) 77.6 (2.5) 73.9 (2.3)

10 60.5 (4.0) 86.5 (2.5) 88.4 (2.4) 70.5 (5.6) 92.6 (2.6) 78.5 (5.3) 58.6 (4.6) 75.6 (2.9) 76.6 (2.5)

LAR (6B)

DTRAIN

1 44.9 (6.6) 49.5 (0.1) 49.5 (0.1) 48.2 (2.9) 47.0 (0.1) 47.0 (0.1) 38.9 (6.7) 41.2 (0.2) 41.2 (0.2)

2 55.4 (3.5) 85.5 (0.1) 86.5 (0.2) 68.1 (4.2) 78.7 (0.2) 77.5 (0.1) 42.8 (4.0) 45.5 (0.3) 45.6 (0.2)

5 51.2 (4.4) 90.8 (0.2) 82.7 (0.1) 75.2 (3.3) 80.7 (0.1) 77.8 (0.2) 48.5 (3.3) 51.8 (0.3) 52.1 (0.2)

10 57.7 (4.8) 87.3 (0.1) 85.3 (0.1) 72.1 (3.8) 77.6 (0.1) 76.5 (0.2) 59.1 (4.2) 60.3 (0.1) 61.0 (0.2)

DFEEDER

1 43.9 (4.2) 51.2 (1.0) 51.2 (1.0) 49.6 (2.4) 51.3 (1.6) 51.3 (1.6) 41.2 (2.1) 43.8 (1.8) 43.8 (1.8)

2 65.7 (3.0) 91.5 (1.1) 88.8 (1.6) 73.5 (2.5) 85.7 (4.2) 76.1 (2.1) 61.8 (2.1) 63.1 (1.5) 60.1 (1.4)

5 53.7 (3.8) 92.9 (0.8) 91.5 (1.4) 77.6 (4.0) 81.0 (1.3) 79.4 (1.0) 50.6 (2.7) 63.3 (1.4) 65.8 (1.4)

10 58.0 (3.4) 88.8 (0.9) 87.8 (1.2) 83.8 (2.8) 86.4 (2.0) 87.2 (1.3) 59.7 (3.0) 67.5 (1.9) 68.4 (2.2)

LLA (7B)

DTRAIN

1 42.9 (6.6) 48.5 (0.1) 48.5 (0.1) 46.2 (2.7) 49.1 (0.1) 49.1 (0.1) 40.1 (6.1) 42.0 (0.2) 42.0 (0.2)

2 51.9 (4.4) 90.7 (0.1) 85.2 (0.2) 67.8 (3.2) 73.5 (0.2) 74.5 (0.2) 43.5 (4.5) 47.4 (0.2) 49.6 (0.1)

5 51.6 (3.2) 86.8 (0.2) 82.9 (0.1) 74.8 (3.8) 81.2 (0.2) 78.7 (0.2) 50.2 (3.7) 52.6 (0.2) 48.2 (0.3)

10 56.1 (4.6) 81.3 (0.1) 85.7 (0.1) 73.2 (3.1) 76.3 (0.1) 77.1 (0.1) 59.6 (4.3) 55.3 (0.2) 60.0 (0.4)

DFEEDER

1 43.8 (4.3) 49.7 (1.0) 49.7 (1.0) 47.2 (2.4) 50.8 (1.7) 50.8 (1.7) 41.2 (2.1) 43.8 (1.8) 43.8 (1.8)

2 54.8 (3.0) 92.5 (1.1) 84.8 (0.7) 72.2 (3.1) 82.5 (4.0) 80.1 (2.6) 50.8 (2.3) 58.6 (1.7) 53.5 (1.3)

5 53.7 (3.8) 87.9 (1.8) 91.5 (1.4) 78.3 (4.6) 83.2 (1.1) 80.1 (1.4) 53.8 (2.8) 65.3 (1.6) 61.8 (1.4)

10 58.0 (3.4) 85.8 (0.9) 87.8 (1.2) 85.0 (2.2) 87.1 (2.2) 86.9 (1.0) 60.5 (3.1) 68.0 (1.7) 68.4 (2.0)

Table 2: A complementary table to Table 1 presents the corresponding results for the demonstration selectors
UNC, CLU, LVM.

ΨLLM(·) D n
SUBJ SST-2 COLA

UNC CLU LVM UNC CLU LVM UNC CLU LVM

LAR (6B)

DTRAIN

1 53.5 (6.3) 49.3 (4.4) 51.5 (2.1) 49.0 (2.9) 47.5 (1.5) 47.8 (1.1) 42.0 (6.5) 39.8 (1.5) 40.2 (1.2)

2 87.8 (3.7) 86.5 (4.1) 86.3 (3.5) 75.6 (4.2) 80.1 (2.2) 79.0 (2.4) 49.6 (4.0) 46.8 (5.0) 47.5 (3.3)

5 90.7 (4.5) 88.2 (4.4) 89.4 (4.2) 81.8 (3.3) 82.2 (3.3) 80.7 (4.4) 55.4 (3.5) 56.4 (4.3) 58.8 (3.3)

10 88.3 (4.8) 90.7 (3.8) 91.3 (4.1) 80.5 (3.8) 78.8 (3.9) 76.8 (4.1) 58.4 (4.2) 62.1 (3.6) 61.5 (4.5)

DFEEDER

1 55.3 (4.2) 50.9 (4.4) 50.2 (3.2) 50.3 (2.4) 48.4 (3.4) 48.3 (2.6) 43.8 (2.1) 40.8 (3.5) 42.5 (5.1)

2 89.8 (3.0) 89.7 (3.5) 89.5 (2.5) 77.1 (2.5) 82.5 (3.5) 83.0 (3.2) 60.0 (2.1) 57.8 (4.4) 58.1 (3.5)

5 92.3 (3.8) 92.0 (2.4) 91.8 (2.9) 81.2 (4.0) 80.8 (3.8) 80.4 (2.9) 62.4 (2.7) 61.6 (3.7) 62.3 (2.4)

10 90.8 (3.4) 92.0 (2.4) 91.8 (2.9) 81.2 (2.8) 80.8 (3.8) 80.4 (2.9) 62.4 (3.0) 62.7 (3.1) 62.5 (2.5)

LLA (7B)

DTRAIN

1 49.0 (6.6) 48.5 (5.6) 47.5 (5.1) 49.2 (2.7) 48.2 (3.7) 48.7 (3.1) 40.1 (6.1) 41.1 (4.1) 41.0 (3.2)

2 89.2 (4.4) 87.8 (3.5) 88.7 (4.1) 75.1 (3.2) 72.5 (2.2) 74.7 (4.2) 48.5 (4.5) 45.2 (4.0) 46.4 (1.2)

5 82.9 (3.2) 80.1 (2.2) 83.8 (1.2) 83.7 (3.8) 81.5 (3.0) 82.2 (1.2) 53.2 (3.7) 51.2 (2.5) 52.6 (2.2)

10 86.2 (4.6) 82.1 (4.4) 83.3 (2.1) 76.4 (3.1) 75.2 (3.7) 74.8 (4.1) 63.5 (4.3) 62.6 (4.0) 60.3 (2.2)

DFEEDER

1 49.7 (4.3) 45.8 (4.3) 48.7 (5.1) 51.8 (2.4) 48.4 (3.5) 50.3 (2.7) 43.0 (2.1) 42.2 (2.5) 42.8 (1.8)

2 91.8 (3.0) 90.8 (3.4) 91.5 (2.4) 78.1 (3.1) 73.5 (3.1) 76.5 (4.0) 49.5 (2.3) 48.8 (2.3) 50.6 (2.7)

5 89.5 (3.8) 88.7 (4.8) 86.9 (2.8) 84.1 (4.6) 82.3 (4.5) 83.8 (4.1) 60.8 (2.8) 58.8 (3.8) 59.3 (2.6)

10 88.8 (3.4) 88.0 (4.4) 86.8 (2.9) 80.9 (2.2) 85.1 (2.0) 83.4 (2.2) 67.4 (3.1) 64.5 (3.4) 66.0 (2.7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Performance comparisons on reasoning GSM8K dataset and semantic-parsing SMCALFlow dataset
are conducted in the in-context learning setting. We report both the mean and variance of accuracy using 8
different seeds and 5 different permutations of n-shots. Refer to Appendix A5.3 for more extended results on
demonstration selectors CLU, LVM.

ΨLLM(·) D n
GSM8K SMCALFlow

RAN SIM DIV UNC RAN SIM DIV UNC

GEM (2B)

DTRAIN

1 6.54 (1.56) 15.16 (0.17) 15.16 (0.17) 10.51 (0.78) 8.54 (1.64) 19.12 (0.15) 19.12 (0.15) 11.21 (0.89)

2 8.56 (0.85) 18.89 (0.85) 19.52 (0.45) 17.58 (0.27) 9.56 (0.84) 20.05 (0.36) 22.50 (0.41) 13.58 (0.77)

5 15.30 (2.89) 20.31 (0.58) 21.56 (0.78) 19.30 (0.90) 18.56 (4.58) 28.65 (0.95) 27.89 (1.85) 25.22 (3.56)

10 17.45 (4.21) 21.52 (0.49) 20.85 (0.55) 20.66 (1.84) 19.85 (5.21) 30.58 (1.04) 28.56 (0.58) 31.00 (0.88)

DFEEDER

1 10.25 (0.51) 16.25 (0.21) 16.25 (0.21) 11.12 (1.78) 9.64 (0.55) 20.54 (0.66) 20.54 (0.66) 15.25 (0.87)

2 13.76 (0.48) 19.68 (0.13) 20.51 (1.55) 16.85 (3.65) 10.25 (0.52) 20.03 (0.18) 24.25 (2.65) 17.58 (6.58)

5 18.52 (5.21) 22.58 (0.85) 22.05 (0.77) 20.20 (2.05) 20.44 (5.12) 30.54 (4.58) 32.54 (5.21) 28.95 (3.66)

10 19.20 (5.22) 22.20 (1.45) 23.52 (2.20) 22.10 (6.21) 21.52 (2.01) 31.48 (1.52) 31.02 (2.54) 30.01 (1.20)

LAR (6B)

DTRAIN

1 1.21 (0.83) 2.84 (0.25) 2.84 (0.25) 2.54 (0.21) 1.78 (0.72) 10.21 (0.85) 10.21(0.85) 9.25 (0.77)

2 1.44 (0.65) 4.01 (0.13) 5.21 (0.25) 4.25 (0.85) 2.67 (0.98) 9.91 (0.20) 10.02 (0.88) 8.54 (0.74)

5 2.58 (0.85) 6.85 (0.78) 8.02 (1.84) 7.88 (1.95) 6.20 (0.84) 14.02 (1.58) 12.05 (1.88) 10.88 (2.01)

10 3.20 (0.77) 7.05 (1.20) 8.14 (1.65) 8.01 (1.01) 8.05 (0.84) 15.25 (1.77) 13.33 (1.54) 11.99 (1.65)

DFEEDER

1 2.27 (0.49) 3.11 (0.15) 3.11 (0.15) 3.00 (0.56) 2.35 (0.59) 11.52 (1.85) 11.52 (1.85) 10.42 (1.02)

2 2.80 (0.53) 4.16 (0.14) 5.55 (0.82) 4.85 (1.20) 3.51 (0.71) 10.73 (0.07) 11.05 (0.80) 9.22 (1.03)

5 3.24 (0.84) 8.25 (1.58) 8.47 (0.77) 7.99 (1.25) 6.88 (0.66) 15.20 (1.58) 14.44 (1.69) 12.00 (2.03)

10 3.66 (0.80) 7.52 (1.88) 8.55 (2.21) 8.10 (2.28) 8.66 (1.03) 16.85 (3.21) 15.55 (2.90) 13.50 (2.25)

LLA (7B)

DTRAIN

1 2.45 (0.83) 3.52 (0.88) 3.52 (0.88) 3.05 (0.25) 2.25 (0.64) 10.25 (0.85) 10.25 (0.85) 9.01 (0.33)

2 2.65 (0.77) 4.97 (0.18) 5.62 (0.85) 4.12 (0.47) 4.97 (0.84) 10.05 (2.36) 10.52 (1.45) 11.20 (1.54)

5 3.54 (0.88) 8.25 (0.89) 7.25 (0.96) 7.88 (0.64) 7.52 (0.85) 16.20 (1.85) 15.28 (1.75) 15.33 (1.30)

10 4.25 (0.36) 8.85 (0.85) 9.21 (1.98) 8.10 (1.11) 8.70 (1.05) 18.95 (1.25) 19.55 (2.01) 17.52 (2.66)

DFEEDER

1 3.54 (0.51) 4.44 (0.89) 4.44 (0.89) 3.36 (0.66) 3.64 (0.55) 10.89 (0.63) 10.89 (0.63) 10.02 (0.69)

2 3.76 (0.48) 5.68 (0.13) 6.66 (0.58) 4.85 (0.88) 4.25 (0.52) 12.03 (0.16) 11.13 (1.10) 12.50 (2.01)

5 4.20 (1.23) 9.22 (1.01) 8.81 (0.98) 8.20 (1.14) 8.25 (1.25) 17.20 (3.66) 16.66 (5.20) 16.06 (2.22)

10 5.02 (1.51) 10.22 (1.32) 9.25 (0.79) 9.45 (0.66) 9.20 (0.77) 20.11 (2.02) 21.25 (3.36) 20.22 (4.02)

LLA-3 (8B)

DTRAIN

1 78.24 (6.56) 79.56 (3.42) 79.56 (3.42) 78.42 (3.76) 12.37 (6.65) 15.64 (2.34) 15.64 (2.34) 14.35 (4.56)

2 79.55 (7.29) 83.40 (4.53) 83.67 (4.05) 81.23 (3.53) 13.21 (4.34) 16.74 (3.45) 17.43 (3.65) 16.60 (4.62)

5 81.45 (5.43) 83.47 (5.63) 84.52 (4.76) 82.34 (5.34) 14.53 (5.23) 16.54 (2.35) 17.87 (1.35) 16.52 (3.21)

10 82.31 (6.34) 84.42 (3.24) 84.53 (4.45) 84.12 (4.44) 14.63 (4.53) 16.50 (2.21) 18.64 (2.34) 17.87 (2.23)

DFEEDER

1 80.23 (4.43) 81.21 (3.45) 81.21 (3.45) 79.64 (2.34) 13.56 (3.22) 16.55 (2.31) 16.55 (2.31) 15.40 (2.44)

2 82.13 (4.76) 84.43 (3.23) 83.88 (3.33) 82.22 (3.43) 14.03 (3.35) 17.45 (3.64) 17.77 (3.20) 17.00 (4.57)

5 82.55 (5.96) 85.03 (3.66) 84.77 (3.77) 83.56 (3.76) 14.58 (3.45) 18.22 (2.78) 18.12 (2.01) 17.53 (2.55)

10 84.56 (2.33) 85.79 (3.56) 85.43 (4.55) 84.98 (4.76) 14.99 (4.65) 16.66 (2.33) 18.78 (3.42) 18.01 (2.44)

Our tree based approximation algorithm can also maintain the remaining set to be sufficient to
represent the entire DTRAIN, as verified in the following proposition.

Proposition 1 (D̃FEEDER is an Approximation of DFEEDER). If we successively apply our tree based
approximation algorithm on DTRAIN for multiple runs to obtain a subset (denoted as D̃FEEDER), then
D̃FEEDER is sufficient to represent DTRAIN.

We provide the proof of the above proposition in Appendix A3, which demonstrates that our ap-
proximation algorithm can effectively remove unnecessary samples from DTRAIN while ensuring that
the resulting set remains sufficient to represent the entire training dataset. The above tree based
approximation algorithm is summarized in Algorithm 2 in Appendix A3.

Additionally, we present another algorithm for finding an exact sufficient and necessary subset from
DTRAIN, along with its proof and deployment discussion, in Appendices A4.1 and A7. Moreover, our
above tree-based algorithm can be iterated across multiple rounds to further reduce the necessary
components. Specifically, the resulting FEEDER set from one round can be used as the input for the
subsequent round. This iterative process can also yield an exact sufficient and necessary subset, as
demonstrated in Appendix A4.2. Through empirical investigation, we examine the impact of varying
the number of rounds R and find that a single round (R = 1) already achieves great performance.

5 EVALUATING FEEDER INTO REAL-WORLD APPLICATIONS

Our primary focus is on the in-context learning setting, and we also extend it to the fine-tuning setting,
where our pre-selected DFEEDER can represent and replace the entire training dataset DTRAIN to reduce
the computation cost. Our evaluations are mainly conducted on 6 text classification datasets: SST-2
(Socher et al., 2013), SST-5 (Socher et al., 2013), COLA (Warstadt et al., 2018), TREC (Voorhees
& Tice, 2000), SUBJ (Pang & Lee, 2004), and FPB (Malo et al., 2014). These datasets cover a
range of tasks from sentiment classification and linguistic analysis to textual entailment. We also
further assess FEEDER on reasoning dataset GSM8K (Cobbe et al., 2021) and semantic-parsing dataset

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 4: Performance comparisons on text classification datasets are conducted in the fine-tuning setting, where
we tune the LLMs and evaluate their few-shot inference performance. We report both the mean and variance
of accuracy using 8 different seeds and 5 different permutations of n-shots. Refer to Appendix A8.2 for more
extended results on datasets FPB, SST-5, TREC.

ΨLLM(·) D n
SUBJ SST-2 COLA

RAN SIM DIV RAN SIM DIV RAN SIM DIV

SMA (0.3B)

DTRAIN

1 67.8 (7.2) 83.7 (0.1) 83.7 (0.1) 61.3 (8.1) 71.6 (0.2) 71.6 (0.2) 59.3 (5.2) 69.4 (0.2) 69.4 (0.2)

2 69.1 (4.3) 88.7 (0.2) 86.9 (0.2) 73.5 (3.2) 75.8 (0.5) 74.2 (0.3) 64.1 (5.7) 74.1 (0.2) 74.0 (0.3)

5 70.8 (5.1) 73.3 (0.1) 72.7 (0.2) 74.6 (4.1) 82.8 (0.3) 75.3 (0.2) 60.9 (4.6) 76.7 (0.3) 76.4 (0.3)

10 89.2 (4.1) 94.0 (0.2) 91.6 (0.2) 70.8 (2.9) 84.5 (0.2) 77.4 (0.2) 70.7 (3.8) 75.7 (0.3) 77.6 (0.5)

DFEEDER

1 93.0 (4.3) 93.5 (1.8) 93.5 (1.8) 89.5 (4.3) 88.4 (1.6) 88.4 (1.6) 81.5 (3.3) 82.6 (1.4) 82.6 (1.4)

2 96.1 (3.8) 94.1 (1.3) 92.6 (1.2) 92.6 (2.8) 94.4 (0.6) 93.8 (0.7) 90.2 (3.8) 91.2 (1.7) 90.8 (0.9)

5 85.7 (3.5) 94.7 (1.5) 94.1 (1.1) 87.5 (4.1) 92.5 (1.7) 93.7 (1.7) 87.7 (3.2) 89.6 (2.7) 90.0 (3.9)

10 90.5 (3.3) 95.5 (1.3) 95.6 (1.4) 91.9 (2.9) 93.1 (2.1) 89.0 (1.4) 91.3 (3.5) 92.4 (1.8) 93.5 (1.9)

MED (0.8B)

DTRAIN

1 67.8 (7.2) 83.7 (0.1) 83.7 (0.1) 61.3 (8.1) 71.6 (0.2) 71.6 (0.2) 59.3 (5.2) 69.4 (0.2) 69.4 (0.2)

2 69.1 (4.3) 88.7 (0.2) 86.9 (0.2) 73.5 (3.2) 75.8 (0.5) 74.2 (0.3) 64.1 (5.7) 74.1 (0.2) 74.0 (0.3)

5 70.8 (5.1) 73.3 (0.1) 72.7 (0.2) 74.6 (4.1) 82.8 (0.3) 75.3 (0.2) 60.9 (4.6) 76.7 (0.3) 76.4 (0.3)

10 89.2 (4.1) 94.0 (0.2) 91.6 (0.2) 70.8 (2.9) 84.5 (0.2) 77.4 (0.2) 70.7 (3.8) 75.7 (0.3) 77.6 (0.5)

DFEEDER

1 93.0 (4.3) 93.5 (1.8) 93.5 (1.8) 89.5 (4.3) 88.4 (1.6) 88.4 (1.6) 81.5 (3.3) 82.6 (1.4) 82.6 (1.4)

2 96.1 (3.8) 94.1 (1.3) 92.6 (1.2) 92.6 (2.8) 94.4 (0.6) 93.8 (0.7) 90.2 (3.8) 91.2 (1.7) 90.8 (0.9)

5 85.7 (3.5) 94.7 (1.5) 94.1 (1.1) 87.5 (4.1) 92.5 (1.7) 93.7 (1.7) 87.7 (3.2) 89.6 (2.7) 90.0 (3.9)

10 90.5 (3.3) 95.5 (1.3) 95.6 (1.4) 91.9 (2.9) 93.1 (2.1) 89.0 (1.4) 91.3 (3.5) 92.4 (1.8) 93.5 (1.9)

NEO (1.3B)

DTRAIN

1 72.7 (5.2) 91.0 (0.1) 91.0 (0.1) 65.4 (4.4) 72.5 (0.2) 72.5 (0.2) 61.8 (5.2) 68.5 (0.2) 68.5 (0.2)

2 74.1 (4.3) 93.7 (0.2) 92.1 (0.3) 74.5 (3.2) 75.8 (0.4) 76.4 (0.5) 70.8 (5.7) 63.9 (0.2) 64.3 (0.4)

5 71.8 (5.5) 74.8 (0.3) 75.8 (0.4) 73.6 (4.1) 77.8 (0.3) 76.3 (0.2) 68.7 (4.7) 75.4 (0.8) 74.9 (0.4)

10 90.2 (4.0) 93.6 (0.4) 92.5 (0.4) 72.8 (2.9) 81.5 (0.2) 78.8 (0.2) 72.7 (3.4) 76.7 (0.4) 77.5 (0.7)

DFEEDER

1 93.5 (4.3) 94.1 (1.4) 94.1 (1.4) 91.2 (3.8) 92.7 (1.5) 92.7 (1.5) 86.8 (3.3) 89.6 (0.9) 89.6 (0.9)

2 95.5 (3.9) 95.1 (1.3) 96.6 (1.8) 88.6 (2.4) 93.4 (0.6) 94.2 (0.5) 84.2 (3.7) 87.3 (0.7) 89.5 (0.9)

5 91.5 (3.8) 95.7 (1.0) 95.3 (1.4) 89.4 (2.7) 92.5 (1.8) 93.7 (1.9) 89.7 (3.2) 92.4 (2.3) 90.8 (1.8)

10 92.8 (3.1) 96.0 (1.4) 94.8 (1.2) 90.9 (2.0) 93.6 (1.6) 92.2 (1.8) 89.3 (3.9) 93.5 (1.7) 94.4 (1.6)

SMCALFlow (Andreas et al., 2020). For each dataset, we directly follow the official splits to obtain
DTRAIN and DTEST.

To evaluate the performance of our approach, we employed two GPT-2 variants (Radford et al., 2019):
one with 335M parameters denoted as SMA, and the other with 774M parameters denoted as MED;
one GPT-neo with 1.3B parameters denoted as NEO; one GPT-3 variant (Brown et al., 2020) with 6B
parameters denoted as LAR; one Gemma-2 variant (Team et al., 2024) with 2B parameters denoted as
GEM, one Llama 2 variant (Touvron et al., 2023) with 7B parameters denoted as LLA, and Llama 3
variant (Meta, 2024) with 8B parameters, as the LLM base.

5.1 EVALUATING FEEDER IN THE IN-CONTEXT LEARNING SETTING

Since our DFEEDER works as a pre-selector, when applied in the in-context learning setting, we propose
incorporating demonstration selectors into FEEDER. In other words, our evaluations follow an ablative
approach, with the baseline involving the direct application of these demonstration selectors on DTRAIN.
This baseline can be regarded as treating these methods both as pre-selectors and demonstration
selectors. For ease of deployment, our DFEEDER is identified using only a one-shot inference check
(i.e., K = 1) and a single-round run (i.e., R = 1), unless otherwise stated.

Concretely, we conducted an evaluation of FEEDER in conjunction with following 6 selectors: (i) RAN
is the random selector, which selects input demonstration randomly from the retrieval pool; (ii) SIM
is the similarity-based selector (Sorensen et al., 2022; Gonen et al., 2022), which selects relevant
demonstrations in terms of the cosine similarity metric over the embedding vectors generated by a
sentence transformer (Reimers & Gurevych, 2019); (iii) DIV is the diversity-based selector (Ye et al.,
2022), which selects similar and diverse demonstrations in terms of maximal marginal relevance
(Carbonell & Goldstein, 1998); (iv) UNC is the uncertainty-based selector (Köksal et al., 2022) that
conducts selections according to their uncertainty metric; (v) CLU is the clustering-based selector
(Zhou et al., 2023) that searches demonstrations by clustering. (vi) LVM uses LLMs as latent variable
models (Wang et al., 2024) to learn latent variables for down-streaming in-context learning. Please
refer to Appendix A5.1 for detailed descriptions of the above demonstration selectors.

Experimental results regarding in-context learning performance are reported in Tables 1, 2 and 3. We
also present the reduction of our FEEDER in Figure 4. Our findings are summarized as follows.

FEEDER is an effective demonstration pre-selector (i.e., compressor) and can benefit from diverse
demonstration selectors. By combining the results from Table 1 and Figure 4, it is evident that

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

FEEDER enables the retention of almost half of the training samples while consistently achieving
superior or comparable performance across popular demonstration selectors, including RAN, SIM,
and DIV. Experimental results using UNC, CLU, and LVM as demonstration selectors are depicted
in Table 2, providing additional evidence supporting the efficacy of FEEDER as a proficient data
pre-selection method for in-context learning. We also evaluate the few-shot performance on more
complex tasks using LLMs GEM, LAR, and LLA, with the corresponding results reported in Table 3.
The table demonstrates that, even though LLMs may not perform well on these tasks, our FEEDER
can consistently enhance their performance.

FEEDER performs well with a large number of shots. In Table 1, we can observe many cases where
the LLM performance drops when the number of shots increases from 5 to 10 (e.g., SMA and MED on
COLA dataset). This may be caused by the introduction of noisy and redundant shots. Our FEEDER
addresses this issue by evaluating the sufficiency and necessity of each demonstration. To further
verify this claim, in Appendix A9.3, we duplicate the training dataset and evaluate NEO’s performance.
Our results show that FEEDER minimizes the negative impact on the LLM, supporting its effectiveness
in managing demonstration quality.

5.2 EVALUATING FEEDER IN THE FINE-TUNING SETTING

Here, we extend our FEEDER to the fine-tuning setting. As formulated in Section 2, our pre-selection
and the LLM fine-tuning can be integrated into a bi-level optimization framework. Specifically, in our
evaluation, we assess the performance of FEEDER by initially fine-tuning the LLM on the pre-selected
DFEEDER. Subsequently, we use the tuned LLM to generate a new DFEEDER, and evaluate the LLM
within the in-context learning setting, using the new DFEEDER as the retrieval pool.

For comparison, our baseline is to initially fine-tune the LLM with DTRAIN and then evaluate the LLM
within the in-context learning setting, using DTRAIN as the retrieval pool. Due to budget constraints,
we limit our evaluation to LLMs with up to 2B parameters (i.e., SMA, MED, NEO).

Experimental results are reported in Table 4. Our findings are summarized as follows.

Figure 3: Performance comparisons on fine-tuning
NEO with running our approximation algorithm to
pre-select DFEEDER with different run R. Our eval-
uation operates on COLA dataset in the zero-shot
setting after fine-tuning on 1000 and 2000 batches.

FEEDER achieves substantial improvements when
compared to fine-tuning with DTRAIN. As illustrated
in Table 4, using FEEDER sets consistently yields sub-
stantial improvements compared to using DTRAIN for
fine-tuning. This emphasizes the potential for achiev-
ing enhanced performance by utilizing a small yet
high-quality dataset for fine-tuning, while simultane-
ously reducing computational expenses. By combin-
ing the results from Table 1 and Table 4, we can see
that fine-tuning LLMs provides greater performance
improvements compared to augmenting LLMs with
contexts. Furthermore, our FEEDER achieves even
better performance gains in the fine-tuning setting.
One potential explanation is that in this scenario, fine-
tuning can leverage input demonstrations more ef-
fectively than prompting can, and our high-quality
FEEDER can therefore provide greater benefits.

FEEDER’s performance first rises and then drops with increasing tree algorithm runs R. Figure 3
visualizes the impact of employing different numbers of runs of our approximation algorithm (as
described in Section 4.2) to derive DFEEDER for fine-tuning NEO. For ease of comparison, the results
of fine-tuning NEO on DTRAIN are also included with the blue line. The observations suggest that
fine-tuning with a smaller dataset with high data quality can enhance performance, but excessively
reducing the dataset size may not lead to the desired outcomes. Also, it also indicates that fine-tuning
LLMs on “unnecessary” data samples would not help. This trend may be summarized as a trade-off
between data quantity and data quality, and similar observations are reported in (Chen et al., 2023).

We also investigate the performance of FEEDER with varying tree depths (i.e., the number of iterations
K), which exhibits a similar trend to increasing the number of tree algorithm runs. Detailed results
and discussions are provided in Appendix A9.2. These findings further verify that identifying an

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

� 	 	�

�-' "+�)#���������-(,

�

	���

���

����

����

���

����

����

����

�
%/
"

�������������	

����

���

����

����

����

���

��

�
�
�

� 	 	�

�-' "+�)#��)-(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
.
�

�&%*�.

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
.
�

� 	 	�

�-' "+�)#���������-(,

�

	���

���

����

����

���

����

����

����

�
%/
"

� �����������

���

����

����

����

����

����

���	

���

����

�
�
�

� 	 	�

�-' "+�)#��)-(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
.
�

�&%*�.

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
.
�

� 	 	�

�.(#,�*$���������.)-

�

	���

���

����

����

���

����

����

����

�
&0
#

�!�����������

����

����

����

��

���

���

�����

���

�
�
�

� 	 	�

�.(#,�*$��*.)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���(�''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
'&
+
�
/
�

�'&+�/

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+
�
/
�

� 	 	�

�-' "+�)#���������-(,

�

	���

���

����

����

���

����

����

����

�
%/
"

�!�����������	�

���

���

��

����

���

�
�
�

� 	 	�

�-' "+�)#��)-(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
.
�

�&%*�.

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
.
�

� 	 	�

�,&�!*�("���������,'+

�

	���

���

����

����

���

�
$.
!

�!�����������	

��	�

��	

��	�

��	�

��	�

��
�

�
�
�

� 	 	�

�,&�!*�("��(,' +

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����&�%%

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
%$
)
�
-
�

�%$)�-

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
(
#
%(
+
+
�
�
%$
)
�
-
�

� 	 	�

�,&�!*�("���������,'+

�

	���

���

����

����

���

�
$.
!

�"�����������

��	�

��	�

��
�

��

��
�

��
�

��
�

����

�
�
�

� 	 	�

�,&�!*�("��(,' +

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����&�%%

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
%$
)
�
-
�

�%$)�-

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
(
#
%(
+
+
�
�
%$
)
�
-
�

� 	 	�

�,&�!*�("���������,'+

�

	���

���

����

����

���

�
$.
!

�#�����������

��

����

���

����

���

���

��

�
�
�

� 	 	�

�,&�!*�("��(,' +

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����&�%%

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
%$
)
�
-
�

�%$)�-

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
(
#
%(
+
+
�
�
%$
)
�
-
�

� 	 	�

�-'�!+�)"���������-(,

�

	���

���

����

����

���

�
%/
!

�$�����������	�

���	

���

����

����

���

����

����

����

�
�
�

� 	 	�

�-'�!+�)"��)-(,

��
�

��
�

��
�

����

���	

���

�
�
�
�

�����'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
.
�

�&%*�.

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
#
&)
,
,
�
�
&%
*
�
.
�

� 	 	�

�-' "+�)#���������-(,

�

	���

���

����

����

���

����

����

����

�
%/
"

� �����������

���

����

����

����

����

����

���	

���

����

�
�
�

� 	 	�

�-' "+�)#��)-(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	 	�

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
.
�

�&%*�.

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
.
�

Figure 4: Performance comparisons for running our approximation algorithm to pre-select FEEDER with different
runs R are evaluated in terms of accuracy (denoted as ACC) with RAN as the retriever and the size of the resulting
FEEDER set (denoted as Size). Each sub-figure is entitled with Dataset+LLM base+n shots.

informative subset from the training dataset-either by increasing the number of rounds or the number
of iterations—can significantly enhance the performance of the LLM. However, overly narrow subsets
may limit the potential performance gains.

We also provide empirical results of the time complexity associated with FEEDER in Appendix A10,
and scaling up FEEDER into larger LLMs and real-world datasets in Appendix A6.

5.3 CASE STUDY WITH ARTIFICIAL DATA POINTS GENERATED BY LLMS

Subsequently, we conduct a case study to substantiate the central proposition of this paper: whether
the assessment of the quality of demonstrations should depend on the specific LLM in use. We
consider the factual error made by Google Bard in the first demo1. We further prompt gpt-3.5-turbo
to generate 5 sufficient and necessary statements for the fact. We evaluate separately using these
statements as a prompt to gpt-3.5-turbo, and find that either one of the generated statements is
sufficient and necessary to answer the question “What took the very first pictures of a planet outside of
our own solar system?” We then evaluate the performance of gpt-j-6b with the above 5 statements,
and find that only the 1-st or the 5-th statement is sufficient and necessary instance to answer the
above question. Combining the results of gpt-j-6b and gpt-3.5-turbo verifies one of the core
insights of our paper: the evaluation of prompting a demonstration should consider the specific LLM
in use. Please refer to the detailed description of prompts and outputs in Appendix A11.2.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a novel demonstration pre-selector FEEDER, designed to leverage LLMs’
powerful transitivity inference capabilities to identify high-quality demonstration and provide an ap-
proximate approach for their discovery. Our experimental results showcase the significant advantages
of FEEDER across diverse LLM bases in both in-context learning and fine-tuning settings. Due to
budget limitations, our paper presents results only for LLMs with up to 10B parameters for in-context
learning evaluation and up to 2B parameters for the fine-tuning setting. In the future, it would be
valuable to explore the use of larger LLMs and extend the applications of FEEDER to areas such as
data safety and data management.

1https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

10

https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, et al. Task-oriented dialogue as dataflow synthesis.
Transactions of the Association for Computational Linguistics, 8:556–571, 2020. 8

Eyal Ben-David, Nadav Oved, and Roi Reichart. Pada: A prompt-based autoregressive approach for
adaptation to unseen domains. arXiv preprint arXiv:2102.12206, 3, 2021. 16

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 1, 8,
16

Jaime Carbonell and Jade Goldstein. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 335–336, 1998. 8, 24

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vijay
Srinivasan, Tianyi Zhou, Heng Huang, et al. Alpagasus: Training a better alpaca with fewer data.
arXiv preprint arXiv:2307.08701, 2023. 9

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021. 7

Joe Davison, Joshua Feldman, and Alexander M Rush. Commonsense knowledge mining from
pretrained models. In Proceedings of the 2019 conference on empirical methods in natural
language processing and the 9th international joint conference on natural language processing
(EMNLP-IJCNLP), pp. 1173–1178, 2019. 16

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 16

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. A survey for in-context learning. arXiv preprint arXiv:2301.00234, 2022. 1, 3, 15

Liat Ein Dor, Alon Halfon, Ariel Gera, Eyal Shnarch, Lena Dankin, Leshem Choshen, Marina
Danilevsky, Ranit Aharonov, Yoav Katz, and Noam Slonim. Active learning for bert: An empirical
study. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 7949–7962, 2020. 16

Dan Feldman. Introduction to core-sets: an updated survey. arXiv preprint arXiv:2011.09384, 2020.
16

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning, pp. 1050–1059.
PMLR, 2016. 16

Lingyu Gao, Aditi Chaudhary, Krishna Srinivasan, Kazuma Hashimoto, Karthik Raman, and Michael
Bendersky. Ambiguity-aware in-context learning with large language models. arXiv preprint
arXiv:2309.07900, 2023. 3, 15

Tianyu Gao. Prompting: Better ways of using language models for nlp tasks. The Gradient, 2021. 16

Daniel Gissin and Shai Shalev-Shwartz. Discriminative active learning. arXiv preprint
arXiv:1907.06347, 2019. 16

Hila Gonen, Srini Iyer, Terra Blevins, Noah A Smith, and Luke Zettlemoyer. Demystifying prompts
in language models via perplexity estimation. arXiv preprint arXiv:2212.04037, 2022. 8

Chengcheng Guo, Bo Zhao, and Yanbing Bai. Deepcore: A comprehensive library for coreset
selection in deep learning. In Database and Expert Systems Applications: 33rd International
Conference, DEXA 2022, Vienna, Austria, August 22–24, 2022, Proceedings, Part I, pp. 181–195.
Springer, 2022. 16

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Vivek Gupta, Akshat Shrivastava, Adithya Sagar, Armen Aghajanyan, and Denis Savenkov. Retronlu:
Retrieval augmented task-oriented semantic parsing. arXiv preprint arXiv:2109.10410, 2021. 3

Myeongjun Erik Jang and Thomas Lukasiewicz. Consistency analysis of chatgpt. arXiv preprint
arXiv:2303.06273, 2023. 1, 4, 5, 20

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.
16

Abdullatif Köksal, Timo Schick, and Hinrich Schütze. Meal: Stable and active learning for few-shot
prompting. arXiv preprint arXiv:2211.08358, 2022. 1, 8, 25

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021. 16

Itay Levy, Ben Bogin, and Jonathan Berant. Diverse demonstrations improve in-context compositional
generalization. arXiv preprint arXiv:2212.06800, 2022. 1, 15

David D Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional data.
In Acm Sigir Forum, volume 29, pp. 13–19. ACM New York, NY, USA, 1995. 16

Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang,
and Xipeng Qiu. Unified demonstration retriever for in-context learning. arXiv preprint
arXiv:2305.04320, 2023. 3, 15

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for gpt-3? arXiv preprint arXiv:2101.06804, 2021. 1, 3, 15, 16

Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
prompts and where to find them: Overcoming few-shot prompt order sensitivity. arXiv preprint
arXiv:2104.08786, 2021. 16

Pekka Malo, Ankur Sinha, Pekka Korhonen, Jyrki Wallenius, and Pyry Takala. Good debt or bad
debt: Detecting semantic orientations in economic texts. Journal of the Association for Information
Science and Technology, 65(4):782–796, 2014. 7

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker.
When less is more: Investigating data pruning for pretraining llms at scale. arXiv preprint
arXiv:2309.04564, 2023. 3, 15

AI Meta. Introducing meta llama 3: The most capable openly available llm to date. Meta AI, 2024. 8

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summariza-
tion based on minimum cuts. arXiv preprint cs/0409058, 2004. 7

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. Controllable semantic parsing via retrieval
augmentation. arXiv preprint arXiv:2110.08458, 2021. 3

Judea Pearl. Causality: models, reasoning, and inference, 1980. 15

Judea Pearl. Causality. Cambridge university press, 2009. 15

Guanghui Qin and Jason Eisner. Learning how to ask: Querying lms with mixtures of soft prompts.
arXiv preprint arXiv:2104.06599, 2021. 16

Linlu Qiu, Peter Shaw, Panupong Pasupat, Tianze Shi, Jonathan Herzig, Emily Pitler, Fei Sha, and
Kristina Toutanova. Evaluating the impact of model scale for compositional generalization in
semantic parsing. arXiv preprint arXiv:2205.12253, 2022. 1

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 8

Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks.
arXiv preprint arXiv:1908.10084, 2019. 8, 24

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond the
few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors in
Computing Systems, pp. 1–7, 2021. 16

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633, 2021. 1, 3, 15

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H Chi,
James Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms.
arXiv preprint arXiv:2402.09668, 2024. 3

Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask prompted training enables
zero-shot task generalization. arXiv preprint arXiv:2110.08207, 2021. 16

Timo Schick and Hinrich Schütze. Exploiting cloze questions for few shot text classification and
natural language inference. arXiv preprint arXiv:2001.07676, 2020. 16

Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Autoprompt:
Eliciting knowledge from language models with automatically generated prompts. arXiv preprint
arXiv:2010.15980, 2020. 16

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empirical methods in natural language processing, pp.
1631–1642, 2013. 7

Taylor Sorensen, Joshua Robinson, Christopher Michael Rytting, Alexander Glenn Shaw, Kyle Jef-
frey Rogers, Alexia Pauline Delorey, Mahmoud Khalil, Nancy Fulda, and David Wingate. An
information-theoretic approach to prompt engineering without ground truth labels. arXiv preprint
arXiv:2203.11364, 2022. 8

Eliza Strickland. Andrew ng: Farewell, big data. IEEE Spectrum, Mar, 2022. 2

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024. 1, 8, 26

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023. 1, 8, 26

Ellen M Voorhees and Dawn M Tice. Building a question answering test collection. In Proceedings of
the 23rd annual international ACM SIGIR conference on Research and development in information
retrieval, pp. 200–207, 2000. 7

Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu, Siqi Sun, Ruochen Xu, Chenguang Zhu, and
Michael Zeng. Training data is more valuable than you think: A simple and effective method by
retrieving from training data. arXiv preprint arXiv:2203.08773, 2022. 1, 3, 15

Xinyi Wang, Wanrong Zhu, Michael Saxon, Mark Steyvers, and William Yang Wang. Large language
models are latent variable models: Explaining and finding good demonstrations for in-context
learning. Advances in Neural Information Processing Systems, 36, 2024. 3, 8, 15, 25

Alex Warstadt, Amanpreet Singh, and Samuel R Bowman. Neural network acceptability judgments.
arXiv preprint arXiv:1805.12471, 2018. 7

Albert Webson and Ellie Pavlick. Do prompt-based models really understand the meaning of their
prompts? arXiv preprint arXiv:2109.01247, 2021. 16

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi Chen. Less:
Selecting influential data for targeted instruction tuning. arXiv preprint arXiv:2402.04333, 2024.
3, 15

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023. 3

Xi Ye, Srinivasan Iyer, Asli Celikyilmaz, Ves Stoyanov, Greg Durrett, and Ramakanth Pasunuru.
Complementary explanations for effective in-context learning. arXiv preprint arXiv:2211.13892,
2022. 8

Kösaku Yosida. Functional analysis. Springer Science & Business Media, 2012. 2, 15

Weizhe Yuan, Graham Neubig, and Pengfei Liu. Bartscore: Evaluating generated text as text
generation. Advances in Neural Information Processing Systems, 34:27263–27277, 2021. 16

Yury Zemlyanskiy, Michiel de Jong, Joshua Ainslie, Panupong Pasupat, Peter Shaw, Linlu Qiu, Sumit
Sanghai, and Fei Sha. Generate-and-retrieve: use your predictions to improve retrieval for semantic
parsing. arXiv preprint arXiv:2209.14899, 2022. 3

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024. 3

Han Zhou, Xingchen Wan, Ivan Vulić, and Anna Korhonen. Survival of the most influential prompts:
Efficient black-box prompt search via clustering and pruning. arXiv preprint arXiv:2310.12774,
2023. 1, 8, 25

Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. arXiv preprint
arXiv:2211.01910, 2022. 3

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A1 CONNECTIONS TO EXISTING APPROACHES

A1.1 CONNECTIONS TO CAUSALITY

The concepts of sufficiency and necessity have a broad application scope, especially in causality
(Pearl, 1980; 2009), where sufficiency and necessity are proposed to define the causal relationship
between two binary variables. Let X and Y denote a pair of variables. Then, the probability of
sufficiency measures the capacity of setting X = true to produce Y = true, while the probability
of necessity measures the changing the value of X from X = true to X = false would cause the
value of Y changing from Y = true to Y = false

In this paper, we adopt the concepts of sufficiency and necessity in the context of demonstration
selection, where we investigate whether prompting certain data points is sufficient or necessary for
the given LLM to generate correct answers for input questions. For this purpose, we introduce the
plugging-in operation, denoted as plug(·), to examine sufficiency, and the unplugging operation,
denoted as unplug(·), to examine necessity. Both of these operations are analogous to the do
operation in causality, denoted as do(·), which indicates that the system operates under the condition
that certain variables are controlled by external forces. To be more specific, in our setting, the external
force can be explained as follows. We have the choice to either plug in or unplug certain data points,
thereby altering what is already plugged into the LLM. Our approach shares similarities with the
counterfactual idea in causality, which explores hypothetical scenarios by considering what might
happen if certain variables are set with different values. In our case, we investigate the impact of
plugged-in data that includes data points differing from the historical (i.e., factual) setting. Notably, a
significant distinction between our approach and the counterfactual setting in causality lies in the
fact that we do not need to estimate “counterfactual” situations; instead, we can directly conduct
evaluations.

A1.2 CONNECTIONS TO DEMONSTRATION SELECTION

In the context of few-shot inference, a central challenge lies in selecting the appropriate training
samples as extra input during inference. These samples are often referred to as demonstrations or
prompts (Levy et al., 2022; Liu et al., 2021; Dong et al., 2022). The underlying assumption is that the
training dataset serves as a support set (Yosida, 2012) for test samples. Previous studies (Wang et al.,
2022; Rubin et al., 2021) have demonstrated that introducing similar training samples can enhance the
performance of LLMs on test instances. (Gao et al., 2023) enhances these approaches by retrieving
candidates whose ground label lies in top-2 zero-shot predictions. However, as pointed out in (Levy
et al., 2022), existing methods often treat each data point in isolation, neglecting the collective impact
of multiple data points. For instance, retrievers based on similarity metrics may select redundant
data points together. To address this limitation, (Levy et al., 2022) proposes to consider the diversity
among the data points, to avoid the case where too “similar” data points are selected together. Further,
(Rubin et al., 2021) trains an LLM as a contrastive scorer as well as a demonstration referrer, and (Li
et al., 2023) advances this framework through unified training across various datasets.

In this paper, we present a novel perspective, asserting that the quality of demonstrations is contingent
on the specific LLM in use. Namely, a high-quality demonstration for one LLM might be deemed
low-quality for another. Leveraging this insight, we introduce sufficiency and necessity as new set-
level metrics. Our approach offers several advantages: Firstly, sufficiency and necessity measure the
quality of data points based on the specific LLM, in contrast to generic similarity and diversity metrics.
Secondly, our proposed sufficiency and necessity extend to the set level, enabling the consideration
of data points as a cohesive whole. In our framework, “similarity” is akin to “sufficiency” signifying
that plugging in data points can enhance LLM performance, while “diversity” is akin to “necessity”
suggesting that each data point should play an indispensable role.

Recent studies (Xia et al., 2024; Marion et al., 2023) focus on mining training examples for fine-tuning
on specific tasks, while (Wang et al., 2024) extends this idea to in-context learning. Unlike these
approaches, which use LLMs to select demonstrations tailored to specific test datasets, our work
leverages LLMs as demonstration pre-selectors, identifying a core subset of the training data that
remains independent of the test datasets, thus eliminating the need for re-computation across different
test datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A1.3 CONNECTIONS TO CORE SET SELECTION

Core-set selection (Feldman, 2020; Guo et al., 2022), a longstanding problem in machine learning,
focuses on identifying a subset of the most informative training samples. Previous research (Dor
et al., 2020) has surveyed and evaluated state-of-the-art approaches for models like BERT (Devlin
et al., 2018), encompassing strategies such as random sampling, uncertainty-sampling (using entropy
metric) (Lewis, 1995; Gal & Ghahramani, 2016) and diversity sampling (using diversity metric)
(Gissin & Shalev-Shwartz, 2019).

FEEDER, in contrast to these prior papers mainly using active learning, is designed to select core
sets, which can serve as additional input contexts (i.e., in-context learning setting) or be used for
fine-tuning LLMs (i.e., fine-tuning setting). FEEDER defines “informative training samples” as those
samples that specifically enhance the LLM’s performance on a given task.

A1.4 CONNECTIONS TO PROMPT OPTIMIZATION

Prompting provides a natural way for humans to interact with; and due to its flexibility, prompting
has been widely used as a genre method for various natural language processing tasks (Schick &
Schütze, 2020; Brown et al., 2020; Sanh et al., 2021). However, using prompting effectively with
LLMs requires careful design, either done manually (Reynolds & McDonell, 2021) or automatically
(Gao, 2021; Shin et al., 2020), as LLMs do not interpret prompts in the same way humans do (Webson
& Pavlick, 2021; Lu et al., 2021). While numerous successful methods (Liu et al., 2021; Lester
et al., 2021; Qin & Eisner, 2021) for prompt tuning rely on optimizing a continuous space through
gradient-based techniques, this approach becomes impractical as many powerful LLMs are only
accessible through APIs that may not offer gradient access.

Our FEEDER approach can be seen as a discrete pre-search method for prompts, distinct from existing
methods for prompt generation (Gao, 2021; Ben-David et al., 2021), prompt scoring (Davison et al.,
2019), and prompt paraphrasing (Jiang et al., 2020; Yuan et al., 2021), which aim to optimize
instructions by directly searching the natural language hypothesis space. Instead, our approach
leverages the causal dependencies among candidate demonstrations, focusing on searching for the
most informative demonstrations as prompts, in terms of sufficiency and necessity.

A2 A FAMILY OF ANALYSIS ON DATA RELATIONSHIPS

We begin by introducing some key notations used in the paper.

Let X,C denote variables for the input and the context (i.e., previously plugged-in demonstrations).
We use Y , a boolean variable, to denote whether the output to the input is correct. Concretely, we
use Yx = 1 to denote Y = 1|X = x, meaning that the LLM generates the correct output to the
input x. Similarly, Yx = 0, equivalent to Y = 0|X = x, indicates that the LLM produces the
incorrect output to x. For clarity, we introduce S, a variable to record the original status of the
LLM before new plug-in and unplug operations (denoted as plug(·) and unplug(·) respectively),
e.g., C = ((x,y)), S = (Yx = 1) means that without plugging-in any new data or unplugging any
plugged-in data, the plugged-in data is (x,y) and the LLM’s performance is Yx = 1.

A2.1 DATA RELATIONSHIPS ON INSTANCE LEVEL

Here, two instances are considered, represented as (xn,yn) and (xm,ym).

Sufficiency relationship is introduce to assess whether plugging in one data point is sufficient to
enable the LLM to generate the correct output for the other one. Formally, the sufficiency relationship
is defined as follows:

Definition 4 (Instance-level Sufficiency). Given tuple (X,Y,C, S), data point (xn,yn) is sufficient
for (xm,ym), if the following equation holds:

Yxm = 1|plug((xn,yn));C = ∅, S = (Yxm = 0). (9)

It means that when plugging in (xn,yn), it would correct the LLM’s answer to xm.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Example A1. Let xm,xn be Which country does Sherlock Holmes live? and Which city does
Sherlock Holmes live? Then, after informing the LLM of the correct answer of xn (e.g., yn is
Sherlock Holmes lives in London), the LLM can deduce the correct answer of xm (e.g., ym is
Sherlock Holmes lives in the United Kingdom). In this case, the LLM is using the city where Sherlock
Holmes lives to infer the country in which he lives.

Necessity relationship is introduced to assess whether the presence of one plugged-in data point is
necessary for preserving the correct output in relation to another. Formally, this is expressed as:
Definition 5 (Instance-level Necessity). Given tuple (X,Y,C, S), we say that data point (xn,yn) is
necessary for (xm,ym), if the following equation holds:

Yxm
= 0|unplug((xn,yn));C = ((xn,yn)), S = (Yxm

= 1). (10)

It means that before unplugging (xn,yn), the LLM’s answer to xm is correct. However, when we do
unplug (xn,yn), it causes the LLM to offer an incorrect output to xm.

Example A2. Consider xm as Which city does Sherlock Holmes live? and xn as What is the detailed
address of Sherlock Holmes lives?. Assume the LLM has no prior knowledge about Sherlock Holmes
until the introduction of the plugged-in data (xn,yn), where yn is 221B Baker Street, London. After
plugging in (xn,yn), the LLM is capable of generating the correct output ym (e.g., Sherlock Holmes
lives in London) in response to xm. If we were to unplug (xn,yn), the LLM would provide an
incorrect output for xm, such as Sherlock Holmes lives in New York.

In an ideal scenario, ensuring optimal LLM performance entails the extraction of data points that are
both sufficient and necessary.
Definition 6 (Instance-level Sufficiency and Necessity). Given tuple (X,Y,C), we say that data
point (xn,yn) is both sufficient and necessary for (xm,ym), if the following equation holds:(

Yxm = 1|plug((xn,yn));C = ∅
)

∧
(
Yxm = 0|unplug((xn,yn));C = ((xn,yn))

)
,

(11)

which indicates that plugging in data point (xn,yn) can respond to the LLM’s answering xm in
both ways. We omit S here, because we can derive the original status of the necessary instance based
on the condition of the sufficiency instance.

We further demonstrate that neither of the aforementioned quantities (i.e., sufficiency and necessity)
is adequate for determining the other, indicating that they are not entirely independent. This is
illustrated in the following lemma.
Lemma 1 (Connection between Sufficiency and Necessity). Supposing that we only consider using
the data point (xn,yn) as the plug in data, and only care about the LLM’s performance regarding the
input question xm, then overall there are only two situations here: (i) (xn,yn) is plugged-in, and (ii)
(xn,yn) is not plugged-in. Based on the above assumption, we re-write (i) as plugging-in (xn,yn)
when there is no plugged-in data (i.e., plug((xn,yn));C = ∅, and re-write (ii) as unplugging
(xn,yn) when there is plugged-in data (xn,yn) (i.e., unplug((xn,yn));C = ((xn,yn))). For
convenience, we use E∗ and E to denote (i) and (ii) respectively; and we use Y ∗ and Y to denote
Yx1

= 1 and Yx1
= 0. Then, we have: E∗ ∨ E = true, E∗ ∧ E = false, Y ∗ ∨ Y = true,

Y ∗ ∧ Y = false.

We define PS as the probability of being sufficient as:

PS :=Pr
(
Yxm = 1|plug((xn,yn));C = ∅

)
=Pr(Y ∗|E∗).

(12)

We define PN as the probability of being necessary as:

PN :=Pr
(
Yxm

= 0|unplug((xn,yn));C = ((xn,yn))
)

=Pr(Y |E).
(13)

We further define PNS as the probability of being sufficient and necessary as:

PNS := Pr(Y ∗|E∗, Y |E). (14)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Then, PS, PN, PSN satisfy the following relationship:

PSN = Pr(Y,E) · PS+ Pr(Y ∗, E∗) · PN. (15)

Proof. Based on the earlier delineation of Y ∗, Y , E∗, and E, we can express:

Y ∗|E∗ ∧ Y |E = (Y ∗|E∗ ∧ Y |E) ∧ (E ∨ C∗)

=(Y ∗|E∗ ∧ Y ∧ E) ∨ (Y |E ∧ Y ∗ ∧ E∗).
(16)

Taking probabilities on both sides and using the disjointedness of E∗ and E, we have:

PSN =Pr(Y ∗|E∗, Y |E)

=Pr(Y |E, Y ∗, E∗) + Pr(Y ∗|E∗, Y, E)

=Pr(Y,E) · PS+ Pr(Y ∗, E∗) · PN.
(17)

A2.2 DATA RELATIONSHIPS ON SET LEVEL

We extend Definitions 4 and 5 to the set level as:
Definition 7 (Set-level Sufficiency). Given tuple (X,Y, C, S), the input set DIN is sufficient for
output set DOUT, if the following equation holds:

Y({xn|xn∈DOUT}) = 1|DOUT||plug(DIN);C = ∅, S = (Y({xn|xn∈DOUT}) ̸= 1|DOUT|). (18)

1|DOUT| denotes 1|DOUT|-dimensional vectors whose elements are all 1s. It indicates that when plugging
in DIN, it guarantees that the LLM’s output to any input question in DOUT is correct.
Definition 8 (Set-level Necessity). Given tuple (X,Y, C, S), the input set DIN is necessary for output
set DOUT, if the following equation holds:

Y({xn|xn∈DOUT}) ̸= 1|DOUT||unplug(D
′
IN);C = DIN, S = (Y({xn|xn∈DOUT}) = 1|DOUT|), (19)

where D′
IN can be any subset of DIN. 1|DOUT| denotes 1|DOUT|-dimensional vectors whose elements

are all 1s. It means that before unplugging any subset of DIN, there is plugged-in data DIN and the
LLM’s output to any input in DOUT is correct. When we unplug any subset of DIN, then it would cause
the LLM’s output to at least one input in DOUT to be incorrect.

From the above description, when we refer to a set as a sufficient set, we are stating that the collective
set of data points is sufficient. On the other hand, when we characterize a set as a necessary set, we
mean that each individual data point within the set is necessary.

Example A3. Let DOUT = {(xm,ym)} and DIN = {(xi, yi), (xj ,yj)}. We assign xm and ym as
Which country does Sherlock Holmes live? and Sherlock Holmes lives in the United Kingdom. Let
xi and yi denote Which street does Sherlock Holmes live? and Baker street. We assign xj and yj

as Where is Baker street? and Bake street is located in London. Supposing that the LLM does not
know that Bake Street is located in the United Kingdom, then solely plugging in either (xi,yi) or
(xj ,yj) is not sufficient for the LLM to get the right answer to the input question xm. In this regard,
it is easy to derive that DIN is both a sufficient and necessary set for DOUT when both (i) plugging in
DIN is sufficient to maintain the right answer for DOUT; and (ii) unplugging any subset of DIN can not
maintain the right answer for DOUT, are satisfied.

A2.3 FEEDER SET

Next, we explore the problem of defining a subset within the given dataset DTRAIN that is both sufficient
and necessary to represent DTRAIN. This subset is termed FEEDER (FEw yet Essential DEmonstRations).
Definition 9 (FEEDER Set). Given tuple (X,Y,C, S) and DTRAIN, a subset of DTRAIN, is considered
as a FEEDER set (denoted as DFEEDER), if the following conditions are satisfied:

(i) Y(x1...,xN) = 1N |plug(DFEEDER);C = ∅, S = (Y(x1...,xN) ̸= 1N) holds.

(ii) Y(x1...,xN) ̸= 1N |unplug(D′
FEEDER);C = DTRAIN, S = (Y(x1...,xN) = 1N) holds for any subset

of DFEEDER (denoted as D′
FEEDER).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Round 1

Round 2

(a) An Example of Algorithm for Searching Exact FEEDER

Check Whether is Unnecessary for

, Extract Unnecessary Parts

Check Whether is Unnecessary for

, Extract Unnecessary Parts

(b) An Example of Alternative Algorithm for Searching Exact FEEDER

Check Whether is Unnecessary for

, Extract Unnecessary Parts

Figure 5: An illustrated example of our algorithm for deriving an exact FEEDER set. As shown in (a), we check
the necessity of the conjunction of each pair of nodes, and we do not remove them from H·; instead, we assign
MAINTAIN signals to newly generated nodes and the node with the maximum size, and those nodes without
MAINTAIN signals, circled with dashed lines, would be removed from H·. In (b), we propose an alternative
algorithm by removing nodes after checking the necessity, and we repeat the above process for multiple rounds,
at the beginning of each round, we unplug all the previously selected data points. The repeat should stop until
there is no or only one node in H0 (i.e., H4), and therefore, the result in (b) is H1 ∪H2 ∪H4, same as the result
in (a).

1N denotes N -dimensional vectors whose elements are all 1s. (i) and (ii) respectively imply that
plugging in DFEEDER is sufficient and necessary to maintain the LLM generating correct output.

Example A4. If we merge DIN and DOUT exemplified in Example A3 into one set D, namely let
D = DIN ∪ DOUT, then in this case, it is easy to derive that DIN is a FEEDER set (denoted as DFEEDER)
for D.

Algorithm 2: Approximation Algorithm for FEEDER
Input: Training dataset DTRAIN.
Output: An approximated FEEDER set D̃FEEDER.
Initialize k = 1.
Initialize W0 = {Wn = {(xn,yn)}|(xn,yn) ∈ DTRAIN}.
repeat

for each pair (Wi,Wj) where Wi,Wj ∈ Wk−1 do
Check Y({xn|xn∈Wj}) = 1|Wj ||plug(Wi);C, S (a), where C = ∅ and S can be any
value.

Check Y({xn|xn∈Wi}) = 1|Wi||plug(Wj);C, S (b), where C = ∅ and S can be any
value.

Case I (Both (a) and (b) hold), if |Wi| ≥ |Wj |, append Wj to Wk; otherwise, append Wi

to Wk.
Case II (Either one of (a) and (b) holds), if (a) holds, append Wi to Wk; otherwise,

append Wj to Wk.
Case III (Neither (a) nor (b) holds), append Wi ∪Wj to Wk.
Remove Wi,Wj from Wk−1, i.e., Wk−1 = Wk−1 − {Wi,Wj}.

end
if |Wk−1| = 1 then

Append only element in Wk−1 to Wk.
end
Grow tree from bottom to top via k = k + 1.

until |Wk| = 1, and we assume the current iteration is K;
Let WSUFFICIENT denote only one element (i.e. the root node) in WK .
Assign D̃FEEDER as WSUFFICIENT, i.e., DOUT = WSUFFICIENT.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 3: Exact Algorithm for FEEDER
Input: Training dataset DTRAIN.
Output: An exact FEEDER set D̃FEEDER.
Initialize k = 1.
Initialize H0 = ∅.
for each instance (xn,yn) ∈ DTRAIN do

Check Y({xn′ |xn′∈DTRAIN}) = 1|DTRAIN||unplug((xn,yn)); C, S (a), C = DTRAIN,
S = (Y({xn′ |xn′∈DTRAIN}) = 1|DTRAIN|).

If (a) holds, let Hn = {(xn,yn)} and append Hn to H0.
end
repeat

for each pair (Hi,Hj) where Hi,Hj ∈ Hk−1 do
Check Y({xn|xn∈DTRAIN}) = 1|DTRAIN||unplug(Hi ∪Hj);C, S (b), where C = DTRAIN and
S = (Y({xn′ |xn′∈DTRAIN}) = 1|DTRAIN|).

If (b) holds, generate a new node Hi ∪Hj , append it to Hk, and assign Hi ∪Hj with
MAINTAIN signals; otherwise, append Hi and Hj to Hk.

end
Assign HMAX = argmaxH·∈Hk

|H·| with MAINTAIN signal.
Remove the nodes without MAINTAIN signals in Hk.
Grow tree from bottom to top via k = k + 1.

until |Hk| = 1 where we assume the iteration is K;
Let HUNNCESSARY denote only one element (i.e. the root node) in HK .
Assign D̃FEEDER as removing HUNNCESSARY from DTRAIN, i.e., D̃FEEDER = DTRAIN −HUNNECESSARY.

A3 APPROXIMATED EXTRACTION OF FEEDER

Definition 10 (Transitivity Inference). Noted by (Jang & Lukasiewicz, 2023) that LLMs excel at
transitive inference. We assume that sufficiency is transitive among sets. Formally, for any three sets,
denoted as DA, DB, and DC, if DA is a sufficient set of DB and DB is a sufficient set of DC, then we
can conclude that DA is a sufficient set of DC.

We also establish case studies in Appendix A11.1 to verify the feasibility of the above assumption.

For convenience, we use DIN = {(xn,yn)}NIN

n=1 to denote the input set for our tree algorithm, and we
use DOUT to denote the corresponding output. The tree expands from the bottom to the top. We use
the variable K to represent the depth of these trees, which corresponds to the number of iterations.
To be more specific, we use k = 1, 2, . . . ,K to refer to each k-th iteration, and during each k-th
iteration, we generate the (k + 1)-th layer of the tree.

Concretely, we leverage the transitivity of sufficiency to build the tree, where each node is a set of
samples. Formally, we denote Wk as the set of nodes after the k-th iteration. We initialize W0 by
assigning all the candidate samples in DIN as the bottom nodes:

W0 := {Wn := {(xn,yn)}|(xn,yn) ∈ DIN}. (20)

During each k-th iteration, we generate Wk by examining the sufficiency relationship between every
pair of nodes, denoted as Wi,Wj ∈ Wk−1. In this evaluation, we assess whether the following
equation holds true by assigning Wi and Wj as WIN and WOUT, or vice versa.

Y({xn|xn∈WOUT}) = 1|WOUT||plug(WIN);C = ∅, S, (21)

where S is loosened to allow for any value. 1|WOUT| is 1|WOUT|-dimensional vectors whose elements
are all 1s. It signifies that plugging in WIN is sufficient for the LLM to generate the correct output
to any input in WOUT. In other words, once we have WIN included in the plugged-in context, it is
unnecessary to further include WOUT. Formally, we can derive the following equation from Eq. (21):

Y({xn|xn∈WOUT}) = 1|WOUT||unplug(WOUT);C = (WIN ∪WOUT), S, (22)

where S is loosened to be any value. Concretely, there are three possible scenarios by examining
each pair of nodes in Wk−1: (i) If both Wi and Wj are sufficient sets for each other, then we select

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

the one with fewer elements to append to Wk. (ii) If only one of Wi and Wj is a sufficient set for
the other, then we append the sufficient set to Wk. (iii) If neither Wi nor Wj is a sufficient set, we
append Wi ∪Wj to Wk. After performing the above calculations for each pair of nodes, we remove
them from Wk−1. When there is only one element left in Wk−1, it is directly appended to Wk. This
process continues until W· contains only one element, which is denoted as WSUFFICIENT ∈ WK . We
then assign DOUT as DOUT = WSUFFICIENT.

The time complexity of running the above tree algorithm for one round is O(log
|DIN|
2).

To effectively remove the unnecessary part, we can repeat the above process for multiple rounds by
using the output of the previous round (i.e., DOUT) as the input for the subsequent round (i.e., DIN).
Our tree algorithm can also maintain the remaining set to be sufficient to represent the entire DTRAIN,
as verified in the following proposition.

Proposition 2 (D̃FEEDER obtained by Algorithm 2 is an Approximation of DFEEDER). If we successively
apply Algorithm 2 on DTRAIN for multiple rounds to obtain a subset (denoted as D̃FEEDER), then D̃FEEDER

is sufficient to represent DTRAIN.

Proof. In the tree generation process, each parent node is established as a sufficient set for every leaf
node within the tree. More precisely, as shown in Case I, Case II and Case III of Algorithm 2, three
scenarios exist for creating a parent node for each pair of leaf nodes. In cases (i) and (ii), the parent
node corresponds to the leaf node which serves as a sufficient set for the other node. In case (iii),
the parent node results from the conjunction of two leaf nodes, inherently forming a sufficient set
capable of representing either of the two leaf nodes.

According to our assumption of the sufficiency transitivity, for each data point in DTRAIN, the root
node of the tree is a sufficient set for each leaf node in the tree. Formally, we have:

Y{xn|xn∈DTRAIN} = 1|DTRAIN||plug(D̃FEEDER);C = ∅, S, (23)

where S can be any value. This means that the resulting set D̃FEEDER is a sufficient set of DTRAIN.

A4 EXACT EXTRACTION OF FEEDER

To extract an exact FEEDER set DFEEDER from DTRAIN, we need to explicitly check the necessity among
all the candidate samples, and remove those unnecessary parts. We do not directly apply this algorithm
in practice, due to its high computation costs. We provide a solution for integrating the algorithm into
our FEEDER and report the corresponding results in Appendix A7.

A4.1 EXACT EXTRACTION OF FEEDER VIA NECESSITY CHECKS

Our intuition behind constructing a tree for checking necessity is grounded in the inherent transitivity
property of necessity. Formally, it can be expressed as: If unplugging DA could cause the outputs to
at least one input in DC from correct to incorrect, then unplugging DA ∪ DB also can not maintain the
outputs to all the input in DC correct. Namely, if unplugging a subset would degrade the performance,
then unplugging the whole set would also degrade the performance.

Similar to the tree for explicitly checking sufficiency introduced in Appendix A3, each node in
the tree for checking necessity also represents a set of samples. For convenience, we also use
DIN = {(xn,yn)}NIN

n=1 to denote the input set and DOUT for the corresponding output. We use Hk to
denote a set of nodes after the k-th iteration.

We initialize H0 by identifying all samples in DIN for which unplugging them individually does not
affect the LLM’s performance. Formally, we construct H0 as H0 := {Hn := {(xn,yn)}} where
(xn,yn) ∈ DIN satisfies:

Y({xn′ |xn′∈DIN}) = 1|DIN||unplug((xn,yn));C = DIN, S, (24)

where S is loosened to allow for any value. During each k-th iteration, we generate Hk by examining
the necessity relationship between each pair of nodes (denoted as Hi,Hj ∈ Hk−1). Here, we further

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

verify whether solely unplugging Hi ∪Hj does not impact the LLM’s performance. Formally, we
check whether the following equation holds:

Y({xn′ |xn′∈DIN}) = 1|DIN||unplug(Hi ∪Hj);C = DIN, S, (25)

where S is loosened to allow for any value. This determines whether plugging Hi∪Hj is unnecessary
for maintaining the correct outputs to all inputs in DIN. If the above equation holds, we create a new
node Hi ∪ Hj and add it to Hk, labeling it with a MAINTAIN signal. Otherwise, we add both Hi

and Hj to Hk. After this computation, we identify HMAX = argmaxH·∈Hk
|H·| and label it with

a MAINTAIN signal. Subsequently, we remove the nodes in Hk that lack MAINTAIN signals. This
process continues until H· contains only one element, denoted as HUNNECESSARY ∈ HK . Finally, we
calculate DOUT as DOUT = DIN −HUNNECESSARY.

A4.2 EXACT EXTRACTION OF FEEDER VIA ITERATIVE SUFFICIENCY CHECKS

Consider that at each iteration, we need to check the necessity for O(C2NIN
) times (where C·· denotes a

combination operator), this becomes impractical. To this end, we develop an alternative algorithm.
Specifically, at each k-th iteration, we remove all the checked nodes (i.e., Hi and Hj from Hk,
similar to our approximation algorithm in Appendix A3). Then, it requires O(log

|DIN|
2) computations

to finish one round. To obtain an exact FEEDER, we need to keep repeating the above process until
there is no or only one left in H0. While practical, we also can set a maximum number of rounds to
approximate.

Proposition 3 (D̃FEEDER obtained by either Algorithm 3 or Algorithm 4 is an Exact DFEEDER). If we
successively apply either Algorithm 3 or Algorithm 4 on DTRAIN for multiple rounds to obtain a subset
(denoted as D̃FEEDER), then D̃FEEDER is sufficient and necessary to represent DTRAIN.

Proof. According to Definition 3, it is straightforward to see that to prove the above proposition is
equivalent to proving that D̃FEEDER is a sufficient set of DTRAIN and a necessary set of DTRAIN.

We begin by proving sufficiency. Either Algorithm 3 or 4 preserves the sufficiency during checking
the necessity, as we are always guaranteeing Y({xn|xn∈DTRAIN}) = 1|DTRAIN|, when removing the
unnecessary parts.

In other words, we have:

Y({xn|xn∈DTRAIN}) = 1|DTRAIN||unplug(DTRAIN −HUNNECESSARY);C = DTRAIN, S, (26)

where S can be any value. It can be rewritten as:

Y({xn|xn∈DTRAIN}) = 1|DTRAIN||plug(D̃FEEDER);C = ∅, S, (27)

where S can be any value. It shows that plugging in D̃FEEDER is sufficient for representing DTRAIN.

Next, we investigate necessity. Our goal is to prove unplugging any data point in D̃FEEDER would lead
to a degradation of the LLM’s performance. For convenience, we use (xn,yn) ∈ DTRAIN to denote
an arbitrary data point. If we applying Algorithm 3 to execute the search for an exact DFEEDER, then
(xn,yn) must be in H0, or out of H0.

If (xn,yn) is not an element in H0, then according to the computing process of H0 (i.e., lines 3 to 3
in Algorithm 3), unplugging (xn,yn) it would definitively cause the LLM’s performance on DTRAIN

from Y({xn|xn∈DTRAIN}) = 1|DTRAIN| to Y({xn|xn∈DTRAIN}) ̸= 1|DTRAIN|.

If (xn,yn) is an element in H0, then (xn,yn) must be in HUNNECESSARY; otherwise, according to
lines 3 to 3 in Algorithm 3, HUNNECESSARY ∪ {(xn,yn)} should be HMAX and always stay in H· until
becoming the root node (i.e., HUNNECESSARY should be updated to be HUNNECESSARY ∪{(xn,yn)}). Thus,
(xn,yn) must be in HUNNECESSARY. However, all the data points in HUNNECESSARY are removed from
DTRAIN, causing a contradiction. Hence, unplugging (xn,yn) would change the LLM’s performance,
namely necessity holds.

Then, we consider applying Algorithm 4 for searching an exact DFEEDER. Similarly, if (xn,yn)
is not selected when checking the necessity, then unplugging (xn,yn) would definitively cause a
degradation of the LLM’s performance.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 5: Performance comparisons on text classification datasets are conducted in the in-context learning setting.
We report both the mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots.
This table is extended from Table 1.

ΨLLM(·) D n
FPB SST-5 TREC

RAN SIM DIV RAN SIM DIV RAN SIM DIV

SMA (0.3B)

DTRAIN

1 27.2 (6.1) 25.3 (0.1) 25.3 (0.1) 14.5 (6.1) 22.7 (0.2) 22.7 (0.2) 19.4 (6.4) 42.8 (0.1) 42.8 (0.1)

2 27.4 (6.2) 45.8 (0.2) 40.4 (0.1) 18.0 (5.8) 25.6 (0.1) 23.7 (0.2) 21.4 (4.7) 57.2 (0.2) 51.4 (0.1)

5 26.3 (4.5) 55.9 (0.1) 44.7 (0.2) 26.5 (5.3) 32.3 (0.2) 27.8 (0.1) 37.6 (5.1) 66.0 (0.3) 61.4 (0.3)

10 27.8 (5.1) 63.1 (0.1) 50.7 (0.1) 14.9 (3.9) 35.3 (0.1) 30.4 (0.2) 53.0 (5.2) 71.4 (0.2) 65.8 (0.3)

DFEEDER

1 28.4 (3.4) 28.8 (2.1) 28.8 (2.1) 15.4 (5.2) 23.7 (1.7) 23.7 (1.7) 37.4 (3.6) 48.4 (1.6) 48.4 (1.6)

2 35.5 (4.3) 47.4 (2.6) 37.9 (1.9) 20.9 (4.7) 27.9 (1.1) 25.8 (1.3) 27.6 (3.2) 58.8 (2.2) 52.1 (1.9)

5 28.3 (3.0) 54.6 (1.7) 47.9 (1.0) 28.6 (3.4) 33.2 (1.8) 27.4 (1.7) 40.8 (3.0) 67.4 (1.2) 61.8 (1.3)

10 39.6 (3.4) 66.5 (2.3) 51.8 (1.2) 17.6 (2.2) 36.9 (1.9) 29.8 (1.7) 44.6 (2.8) 74.6 (1.4) 67.6 (1.9)

MED (0.8B)

DTRAIN

1 33.8 (5.2) 29.9 (0.1) 29.9 (0.1) 14.2 (4.9) 25.2 (0.1) 25.2 (0.1) 21.0 (4.6) 53.2 (0.2) 53.2 (0.2)

2 27.0 (6.1) 55.4 (0.2) 49.9 (0.3) 18.1 (5.1) 29.7 (0.1) 24.4 (0.2) 28.2 (4.4) 62.6 (0.2) 60.6 (0.2)

5 27.2 (4.8) 64.3 (0.1) 45.1 (0.3) 25.6 (4.8) 34.1 (0.1) 30.8 (0.1) 35.4 (5.7) 63.4 (0.1) 64.6 (0.1)

10 47.0 (5.5) 65.5 (0.2) 52.9 (0.1) 28.7 (4.2) 38.7 (0.1) 36.6 (0.1) 43.2 (4.8) 66.0 (0.1) 68.8 (0.1)

DFEEDER

1 33.8 (4.4) 32.6 (0.7) 32.6 (0.7) 18.7 (3.0) 25.5 (2.2) 25.5 (2.2) 22.4 (3.8) 52.6 (2.1) 52.6 (2.1)

2 37.5 (4.7) 54.8 (1.1) 47.6 (1.3) 25.2 (3.8) 29.7 (1.9) 24.1 (2.1) 34.6 (3.5) 64.2 (1.8) 59.4 (2.0)

5 38.9 (3.3) 64.5 (1.3) 48.0 (2.7) 39.3 (2.9) 35.2 (1.1) 31.0 (1.2) 45.4 (3.3) 65.5 (1.5) 64.9 (1.7)

10 63.5 (2.8) 66.7 (1.6) 53.1 (1.5) 39.6 (3.0) 39.8 (1.8) 37.8 (1.6) 55.8 (3.8) 70.4 (2.0) 68.6 (1.7)

NEO (1.3B)

DTRAIN

1 54.9 (3.9) 61.6 (0.1) 61.6 (0.1) 12.8 (2.7) 20.2 (0.1) 20.2 (0.1) 11.0 (3.2) 57.2 (0.2) 57.2 (0.2)

2 53.6 (4.0) 66.8 (0.2) 60.0 (0.1) 17.9 (3.6) 26.9 (0.1) 22.7 (0.1) 17.6 (3.1) 52.6 (0.2) 42.2 (0.2)

5 28.2 (4.0) 68.2 (0.1) 60.4 (0.1) 19.0 (3.9) 29.2 (0.1) 25.1 (0.1) 25.2 (3.8) 66.4 (0.1) 61.8 (0.1)

10 49.0 (4.8) 75.8 (0.1) 71.1 (0.2) 12.7 (2.8) 33.7 (0.2) 31.9 (0.1) 41.6 (4.4) 70.6 (0.1) 69.0 (0.1)

DFEEDER

1 58.1 (4.7) 61.8 (1.4) 61.8 (1.4) 18.5 (2.1) 20.6 (1.8) 20.6 (1.4) 18.2 (2.4) 56.4 (1.3) 56.4 (1.3)

2 61.4 (3.3) 64.1 (1.5) 58.8 (1.1) 19.7 (2.7) 27.4 (2.1) 22.8 (1.8) 27.8 (2.7) 54.0 (1.4) 44.5 (1.6)

5 43.2 (2.6) 68.8 (1.8) 62.7 (1.3) 19.2 (3.2) 30.2 (2.7) 26.4 (2.4) 50.4 (3.2) 68.0 (1.4) 62.6 (1.9)

10 61.4 (2.3) 74.8 (1.9) 71.9 (1.8) 15.4 (2.4) 37.0 (1.5) 34.5 (1.9) 45.2 (2.9) 72.8 (1.4) 69.8 (1.5)

GEM (2B)

DTRAIN

1 58.2 (5.7) 62.5 (0.1) 62.5 (0.1) 21.5 (3.9) 22.5 (0.1) 22.5 (0.1) 21.9 (3.4) 52.3 (0.1) 52.3 (0.1)

2 59.2 (5.9) 66.2 (0.4) 65.8 (0.3) 26.5 (3.6) 42.5 (0.6) 42.2 (0.6) 35.6 (4.4) 60.0 (0.2) 59.1 (0.1)

5 48.6 (3.6) 76.6 (0.4) 78.8 (0.6) 26.6 (2.5) 48.8 (0.3) 41.2 (0.4) 55.8 (2.9) 82.2 (0.2) 71.1 (0.6)

10 35.2 (6.5) 79.5 (0.4) 78.8 (0.2) 36.6 (4.4) 50.2 (0.8) 43.3 (0.4) 51.1 (3.3) 84.3 (0.5) 75.0 (0.4)

DFEEDER

1 59.9 (4.4) 64.6 (0.6) 64.6 (0.6) 22.6 (4.3) 25.8 (1.3) 25.8 (1.3) 26.2 (1.8) 55.1 (1.8) 55.1 (1.8)

2 55.4 (2.4) 67.8 (1.8) 67.0 (1.1) 28.7 (2.3) 45.4 (1.0) 46.8 (1.1) 40.8 (1.5) 63.6 (1.3) 62.8 (1.6)

5 52.2 (3.4) 88.0 (4.6) 80.1 (3.2) 30.5 (2.0) 52.6 (1.9) 54.4 (1.4) 60.4 (2.5) 87.8 (1.6) 73.0 (1.2)

10 39.1 (5.1) 81.3 (3.3) 83.8 (2.4) 36.8 (2.2) 62.5 (1.5) 54.9 (1.3) 58.1 (5.2) 88.9 (1.8) 83.4 (1.4)

LAR (6B)

DTRAIN

1 30.7 (5.5) 55.3 (0.1) 55.3 (0.1) 19.6 (3.6) 20.5 (0.1) 20.5 (0.1) 21.4 (4.4) 50.7 (0.1) 50.7 (0.1)

2 33.4 (4.9) 64.9 (0.4) 65.5 (0.3) 24.1 (3.0) 30.5 (0.4) 31.6 (0.3) 34.4 (4.0) 58.8 (0.2) 60.7 (0.1)

5 40.6 (3.0) 75.0 (0.4) 74.9 (0.1) 24.1 (2.5) 32.5 (0.3) 35.6 (0.2) 51.8 (2.9) 71.2 (0.2) 70.6 (0.4)

10 25.9 (6.5) 78.5 (0.4) 79.5 (0.2) 35.5 (4.2) 38.9 (0.1) 40.5 (0.3) 49.5 (3.6) 72.5 (0.1) 73.0 (0.2)

DFEEDER

1 31.2 (4.8) 54.8 (0.8) 54.8 (0.8) 20.6 (3.1) 27.8 (1.3) 27.8 (1.3) 32.2 (1.8) 52.1 (1.8) 52.1 (1.8)

2 35.4 (2.4) 65.8 (1.8) 67.1 (0.9) 28.7 (2.3) 33.4 (1.4) 33.0 (1.1) 44.8 (2.5) 60.1 (1.5) 61.8 (1.4)

5 42.2 (3.4) 77.9 (3.6) 78.4 (3.2) 28.5 (2.0) 35.6 (1.3) 37.4 (1.4) 53.4 (2.7) 75.8 (1.6) 72.2 (1.2)

10 39.1 (5.1) 80.3 (3.3) 82.8 (2.4) 36.8 (2.2) 41.5 (1.5) 40.9 (1.3) 54.1 (5.2) 76.9 (1.8) 80.4 (1.4)

LLA (7B)

DTRAIN

1 29.0 (4.7) 47.1 (0.1) 47.1 (0.1) 28.6 (2.9) 29.7 (0.1) 29.7 (0.1) 35.2 (3.7) 54.2 (0.1) 54.2 (0.1)

2 27.4 (3.4) 68.4 (0.2) 67.1 (0.3) 35.9 (3.1) 33.9 (0.1) 33.5 (0.3) 45.0 (4.0) 69.4 (0.1) 63.6 (0.1)

5 39.7 (3.2) 80.3 (0.2) 78.9 (0.1) 37.9 (2.3) 38.3 (0.2) 37.0 (0.1) 53.0 (3.6) 79.0 (0.2) 70.4 (0.3)

10 37.9 (2.6) 87.4 (0.3) 86.5 (0.2) 38.4 (3.8) 37.5 (0.1) 40.0 (0.2) 58.0 (2.3) 83.4 (0.1) 79.2 (0.1)

DFEEDER

1 33.7 (5.3) 51.7 (0.8) 51.7 (0.8) 27.6 (2.4) 32.3 (1.5) 32.3 (1.3) 41.2 (2.1) 56.8 (1.8) 56.8 (1.8)

2 39.6 (5.0) 68.7 (1.5) 69.8 (0.7) 39.5 (2.5) 32.6 (1.2) 32.7 (1.1) 53.8 (2.3) 68.6 (1.7) 63.5 (1.3)

5 45.6 (4.8) 87.9 (4.8) 79.5 (3.5) 39.2 (2.0) 38.7 (1.3) 39.4 (1.0) 58.2 (2.8) 82.8 (1.6) 71.8 (1.4)

10 37.8 (6.4) 87.1 (3.9) 87.8 (2.2) 39.7 (2.8) 39.0 (1.0) 41.6 (1.3) 59.8 (3.1) 86.0 (1.9) 83.4 (2.0)

Table 6: A complementary table to Table 5 presents the corresponding results for the demonstration selectors
UNC, CLU, LVM.

ΨLLM(·) D n
FPB SST-5 TREC

UNC CLU LVM UNC CLU LVM UNC CLU LVM

LAR (6B)

DTRAIN

1 55.8 (6.3) 56.3 (4.0) 58.0 (2.5) 29.0 (2.9) 27.5 (1.5) 25.8 (1.1) 52.0 (6.5) 49.8 (1.5) 50.2 (1.2)

2 67.8 (3.7) 66.5 (4.1) 66.3 (3.5) 35.6 (4.2) 36.1 (2.2) 34.0 (2.4) 59.6 (4.0) 60.8 (5.0) 58.5 (3.3)

5 76.7 (4.5) 78.2 (4.4) 79.4 (4.2) 41.8 (3.3) 42.2 (3.3) 40.7 (4.4) 65.4 (3.5) 66.4 (4.3) 65.8 (3.3)

10 78.3 (4.8) 80.7 (3.8) 81.3 (4.1) 40.5 (3.8) 38.8 (3.9) 36.8 (4.1) 78.4 (4.2) 72.1 (3.6) 71.5 (4.5)

DFEEDER

1 56.3 (4.2) 57.9 (4.4) 58.2 (3.2) 32.3 (2.4) 29.4 (3.4) 28.3 (2.6) 53.8 (2.1) 50.8 (3.5) 52.5 (5.1)

2 69.8 (3.0) 69.7 (3.5) 69.5 (2.5) 37.1 (2.5) 42.5 (3.5) 38.2 (3.2) 60.1 (2.1) 57.8 (4.8) 59.1 (3.5)

5 82.3 (3.8) 82.0 (2.4) 81.8 (2.9) 44.2 (4.0) 45.8 (3.8) 44.4 (2.9) 68.4 (2.7) 66.6 (3.7) 67.3 (2.4)

10 80.8 (3.4) 83.0 (2.4) 83.8 (2.9) 42.2 (2.8) 40.8 (3.8) 40.4 (2.9) 82.4 (3.0) 74.7 (3.1) 73.5 (2.5)

LLA (7B)

DTRAIN

1 49.0 (6.6) 47.5 (5.6) 47.5 (5.1) 36.2 (2.4) 37.2 (3.7) 38.7 (4.1) 55.1 (6.1) 54.1 (4.0) 54.0 (3.3)

2 68.2 (4.8) 67.8 (3.5) 68.7 (4.1) 35.1 (4.2) 32.5 (2.0) 34.7 (4.2) 67.5 (4.5) 68.2 (4.0) 66.4 (1.3)

5 80.9 (3.2) 81.6 (2.2) 83.8 (1.2) 36.7 (3.8) 38.5 (3.0) 39.2 (1.2) 68.2 (3.7) 69.2 (2.5) 67.3 (2.2)

10 86.2 (4.6) 85.1 (4.4) 87.3 (2.1) 36.4 (3.1) 35.2 (3.7) 39.8 (4.1) 86.5 (4.3) 85.6 (4.0) 87.3 (2.2)

DFEEDER

1 51.2 (4.8) 48.9 (4.3) 48.7 (5.1) 41.8 (2.4) 44.4 (3.5) 43.3 (2.7) 58.0 (2.1) 62.2 (2.5) 62.8 (1.8)

2 71.8 (3.0) 72.8 (3.4) 73.5 (2.4) 45.1 (3.1) 45.3 (3.1) 46.5 (4.0) 69.5 (2.3) 70.8 (2.3) 70.6 (2.7)

5 88.5 (3.8) 85.7 (4.8) 86.9 (2.8) 42.1 (4.6) 42.3 (4.5) 40.8 (4.1) 72.8 (2.8) 75.8 (3.8) 69.3 (2.6)

10 88.8 (3.4) 91.1 (4.4) 89.8 (2.9) 46.9 (2.2) 50.1 (2.0) 53.0 (2.2) 87.4 (3.1) 88.5 (3.4) 89.0 (2.7)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 7: Performance comparisons on text classification datasets are conducted in the fine-tuning setting, where
we tune the LLMs and evaluate their few-shot inference performance. We report both the mean and variance of
accuracy using 8 different seeds and 5 different permutations of n-shots. This table is extended from Table 4.

ΨLLM(·) D n
FPB SST-5 TREC

RAN SIM DIV RAN SIM DIV RAN SIM DIV

SMA (0.3B)

DTRAIN

1 58.3 (5.7) 68.4 (0.1) 67.4 (0.1) 55.5 (4.8) 60.2 (0.4) 58.4 (0.2) 59.2 (5.2) 70.0 (0.1) 68.0 (0.1)

2 58.5 (5.2) 72.3 (0.4) 70.1 (0.2) 58.5 (4.2) 60.4 (0.6) 61.2 (0.4) 57.7 (5.2) 70.1 (0.2) 70.3 (0.4)

5 67.8 (5.1) 66.2 (0.4) 65.7 (0.3) 58.6 (5.2) 60.4 (0.7) 61.8 (0.5) 66.3 (4.5) 72.8 (0.4) 70.2 (0.5)

10 58.2 (4.4) 63.3 (0.6) 65.6 (0.3) 61.4 (4.3) 60.4 (0.4) 61.8 (0.2) 60.9 (3.8) 71.3 (0.5) 72.5 (0.9)

DFEEDER

1 65.0 (5.5) 77.3 (1.3) 73.3 (1.3) 61.7 (4.2) 74.8 (1.8) 74.4 (0.8) 63.9 (4.0) 74.3 (0.7) 75.3 (0.7)

2 62.2 (3.4) 75.0 (1.1) 74.3 (1.5) 62.3 (3.4) 63.4 (1.8) 62.6 (1.2) 60.1 (3.5) 76.1 (1.7) 74.4 (0.9)

5 70.4 (3.2) 78.8 (1.6) 76.4 (1.0) 62.4 (4.2) 62.2 (1.4) 66.4 (1.3) 68.8 (3.2) 77.2 (3.3) 76.6 (2.9)

10 62.3 (3.3) 80.6 (1.3) 78.6 (1.9) 63.9 (4.5) 78.6 (1.9) 71.0 (1.2) 68.7 (2.7) 72.2 (1.7) 75.7 (1.9)

MED (0.8B)

DTRAIN

1 60.3 (4.7) 73.4 (0.1) 73.4 (0.1) 57.5 (5.1) 64.3 (0.2) 64.3 (0.2) 61.1 (5.2) 77.3 (0.1) 77.3 (0.1)

2 62.5 (5.2) 75.3 (0.4) 75.1 (0.3) 62.5 (4.2) 65.4 (0.6) 66.2 (0.4) 62.7 (5.2) 78.1 (0.2) 79.3 (0.4)

5 71.8 (5.1) 72.2 (0.4) 70.1 (0.3) 63.6 (5.2) 67.4 (0.7) 68.6 (0.6) 64.3 (4.5) 76.8 (0.4) 74.2 (0.5)

10 63.2 (4.4) 67.3 (0.6) 68.6 (0.3) 66.4 (4.3) 68.4 (0.4) 67.8 (0.2) 66.9 (3.8) 78.3 (0.5) 75.5 (0.9)

DFEEDER

1 69.0 (5.3) 81.3 (1.3) 81.3 (1.3) 59.8 (4.2) 72.8 (0.8) 72.8 (0.8) 65.9 (4.0) 83.3 (0.7) 83.3 (0.7)

2 73.2 (3.4) 82.0 (1.1) 83.3 (1.5) 65.3 (3.4) 73.4 (1.8) 72.6 (1.2) 62.1 (3.5) 80.1 (1.7) 82.2 (0.9)

5 74.4 (3.4) 84.8 (1.6) 86.4 (1.4) 67.4 (3.9) 77.5 (1.0) 76.7 (1.4) 69.8 (3.2) 83.2 (3.3) 84.6 (2.9)

10 75.3 (3.3) 85.6 (1.3) 87.6 (1.9) 58.9 (3.5) 78.6 (1.7) 79.0 (1.2) 69.7 (2.7) 86.2 (1.7) 85.7 (1.9)

NEO (1.3B)

DTRAIN

1 62.7 (5.7) 78.4 (0.1) 78.4 (0.1) 60.3 (4.1) 66.6 (1.4) 66.6 (1.4) 63.3 (5.2) 79.5 (0.4) 79.5 (0.4)

2 63.1 (4.6) 74.2 (0.3) 73.1 (0.2) 64.5 (3.2) 66.8 (0.8) 68.4 (0.7) 63.5 (5.7) 81.2 (0.4) 81.4 (0.6)

5 70.8 (5.1) 73.3 (0.1) 72.7 (0.2) 63.6 (4.1) 70.8 (0.4) 70.8 (0.4) 67.8 (4.7) 80.6 (0.5) 82.0 (0.4)

10 62.2 (4.4) 63.0 (0.6) 69.6 (0.5) 65.8 (2.9) 69.5 (0.3) 68.8 (0.6) 68.1 (3.8) 78.8 (0.4) 82.4 (0.5)

DFEEDER

1 73.0 (4.4) 83.5 (1.5) 83.5 (1.5) 63.3 (3.1) 72.7 (1.3) 72.7 (1.3) 64.6 (3.2) 84.6 (0.8) 84.6 (0.8)

2 76.1 (3.8) 84.1 (1.4) 82.5 (1.7) 65.6 (2.7) 76.4 (0.7) 78.6 (0.8) 64.2 (3.7) 85.5 (0.7) 86.3 (0.9)

5 75.7 (3.5) 90.7 (1.5) 88.1 (1.9) 67.4 (2.9) 79.5 (1.8) 79.7 (1.5) 70.8 (3.2) 88.2 (2.3) 89.6 (1.9)

10 77.5 (3.3) 92.6 (1.3) 90.6 (1.8) 68.9 (2.0) 82.6 (1.7) 80.0 (1.6) 73.7 (2.7) 91.2 (1.7) 86.7 (1.9)

If (xn,yn) is selected during checking the necessity, then (xn,yn) must be included in Dr; otherwise,
Dr would continue to update, since the condition of stopping iteration is that there is no or only one
unnecessary node. However, all the data points are removed from DTRAIN, causing a contradiction.
Hence, unplugging (xn,yn) would change the LLM’s performance, namely necessity holds.

Combining the above analysis of sufficiency and necessity, we can conclude that DFEEDER is an exact
FEEDER for DTRAIN.

A5 FEEDER IN IN-CONTEXT LEARNING SETTING

A5.1 DEMONSTRATION SELECTORS

As described in Section 5.1, when applied in the in-context learning setting, our DFEEDER is assessed
by serving as the retrieval pool, replacing DTRAIN for existing demonstration selectors.

The first one is a random selector, denoted as RAN, which randomly selects samples from the retrieval
pool.

The second one is a similarity-based selector, denoted as SIM, which selects samples similar to the
test samples. Formally, let DRETRIEVE denote the retrieval pool. Then, for each test sample xm, the
metric of SIM can be written as:

SIM(xm,xn) = COS(TRANSFORMER(xm), TRANSFORMER(xn)), (28)

where xn ∈ DRETRIEVE, COS(·) is a cosine similarity metric, and TRANSFORMER(·) denotes a sentence
transformer (Reimers & Gurevych, 2019). Here, we directly use the Sentence Transformers library2

from Hugging Face in our implementation. Then, we are able to select Nshot samples with maximum
SIM values from DRETRIEVE.

The third one is a diversity based selector, denoted as DIV, where we adopt the maximal marginal
relevance method (Carbonell & Goldstein, 1998) as the metric of DIV. Formally, we have:

DIV(xm,xn) = SIM(xm,xn)− η · max
xn′∈D′

RETRIEVE

SIM(xm,xn′), (29)

where xn ∈ DRETRIEVE − D′
RETRIEVE, and D′

RETRIEVE denotes the set of previously selected instances.
We can see that DIV prefers the instance that is both similar to the test samples meanwhile distant to

2https://huggingface.co/sentence-transformers

24

https://huggingface.co/sentence-transformers

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 4: Alternative Exact Algorithm for FEEDER
Input: Training dataset DTRAIN.
Output: Exact FEEDER D̃FEEDER.
Initialize the number of rounds r = 0.
Initialize the set of unnecessary data Dr = ∅.
repeat

Initialize k = 1.
Initialize H0 = ∅.
Update input data by removing the unnecessary part DIN = DTRAIN −Dr.
for each instance (xn,yn) ∈ DIN do

Check Y({xn′ |xn′∈DIN}) = 1|DIN||unplug((xn,yn)); C, S (a), C = DIN,
S = (Y({xn′ |xn′∈DIN}) = 1|DIN|).

If (a) holds, let Hn = {(xn,yn)} and append Hn to H0.
end
repeat

for each pair (Hi,Hj) where Hi,Hj ∈ Hk−1 do
Check Y({xn|xn∈DIN}) = 1|DIN||unplug(Hi ∪Hj);C, S (b), where C = DIN and
S = (Y({xn′ |xn′∈DIN}) = 1|DIN|).

If (b) holds, generate a new node Hi ∪Hj , append it to Hk, and assign Hi ∪Hj ;
otherwise, append Hi and Hj to Hk.

Remove Hi,Hj from Hk−1, i.e., Hk−1 = Hk−1 − {Hi,Hj}.
end
Grow tree from bottom to top via k = k + 1.

until |Hk| = 1 where we assume the iteration is K;
Let HUNNCESSARY denote only one element (i.e. the root node) in HK .
Update the number of rounds, i.e., r = r + 1.
Update Dr to include the unnecessary part HUNNCESSARY, i.e., Dr = Dr ∪HUNNCESSARY.

until |HUNNCESSARY| ≤ 1;
Assign D̃FEEDER as removing Dr from DTRAIN, i.e., D̃FEEDER = DTRAIN −Dr.

previously selected instances. η is a hyper-parameter to balance the above two parts. We set η = 1 in
our experiment.

The fourth one is an uncertainty-based selector (Köksal et al., 2022), denoted as UNC, which conducts
selections according to their uncertainty metric;

The fifth one is a clustering-based selector (Zhou et al., 2023), denoted as CLU, which searches
demonstrations by clustering.

The sixth one uses LLMs as latent variable models (Wang et al., 2024), denoted as LVM, which learns
latent variables for down-streaming in-context learning.

In our experiment, we run our approximation algorithm for 1 run to get DFEEDER, and then treat
DFEEDER as the retrieval pool for the above demonstration selectors. In our results, we report both the
mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots.

We also want to emphasize that since our pre-selector and pre-selection process are novel, we evaluate
the performance of FEEDER in an ablation fashion. Specifically, our results (denoted as DFEEDER in
the D column) can be interpreted as FEEDER + X (where X represents any demonstration retriever
described above), meaning that FEEDER is used for pre-selection of input demonstrations, and X is
used to select specific demonstrations considering the target inputs. Our baseline (denoted as DTRAIN

in the D column) can be formulated as X + X, meaning X is used for both pre-selection of input
demonstrations and for selecting specific demonstrations with regard to the target inputs.

A5.2 ADDITIONAL RESULTS WITH DIVERSE DATASETS

We report performance comparison results on text classification datasets SUBJ, SST-2, and COLA
datasets in Table 1. We include the results of FPB, SST-5, and TREC datasets in Table 5, whose trend

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 8: Performance comparisons on reasoning GSM8K dataset and semantic-parsing SMCALFlow dataset are
conducted in the in-context learning setting. We report both the mean and variance of accuracy using 8 different
seeds and 5 different permutations of n-shots. This table is extended from Table 3.

ΨLLM(·) D n
GSM8K SMCALFlow

CLU LVM CLU LVM

GEM (2B)

DTRAIN

1 16.17 (0.18) 16.20 (0.19) 20.02 (0.21) 19.54 (0.14)

2 19.89 (0.96) 20.52 (0.15) 22.58 (0.45) 23.05 (0.36)

5 21.31 (0.84) 23.56 (0.66) 29.30 (0.90) 28.65 (0.95)

10 22.52 (0.49) 23.85 (0.65) 30.12 (1.11) 31.11 (0.91)

DFEEDER

1 17.25 (0.21) 16.68 (0.24) 21.12 (1.78) 20.89 (1.21)

2 20.68 (0.83) 21.01 (0.85) 22.85 (2.65) 25.03 (0.18)

5 22.55 (0.75) 23.05 (0.77) 31.20 (1.15) 29.54 (4.58)

10 22.75 (0.85) 24.02 (2.20) 32.10 (2.01) 32.48 (1.52)

LAR (6B)

DTRAIN

1 2.95 (0.12) 2.87 (0.25) 9.95 (0.79) 9.21(0.85)

2 4.78 (0.33) 4.21 (0.25) 10.12 (0.46) 10.14 (0.88)

5 7.21 (0.78) 8.00 (1.05) 12.31 (1.11) 12.15 (1.30)

10 8.05 (1.20) 7.44 (1.25) 14.14 (1.57) 13.99 (1.54)

DFEEDER

1 4.10 (0.22) 3.25 (0.24) 12.52 (1.13) 11.42 (1.02)

2 4.26 (0.64) 4.55 (0.82) 11.73 (0.54) 12.05 (0.80)

5 8.85 (1.28) 8.14 (0.87) 13.58 (1.44) 12.44 (1.69)

10 9.52 (1.88) 8.50 (1.21) 15.08 (1.91) 16.50 (1.25)

LLA (7B)

DTRAIN

1 3.68 (0.89) 3.98 (0.88) 10.12 (0.95) 9.25 (0.85)

2 5.20 (0.38) 5.55 (0.85) 11.05 (1.36) 12.52 (1.45)

5 7.58 (0.89) 7.52 (0.96) 15.18 (1.15) 15.30 (1.20)

10 9.85 (0.85) 9.21 (0.98) 17.95 (1.25) 18.55 (2.01)

DFEEDER

1 4.25 (0.21) 4.17 (0.89) 11.89 (0.51) 12.05 (0.63)

2 5.88 (0.63) 6.02 (0.58) 13.03 (0.16) 14.13 (1.10)

5 8.22 (1.01) 9.17 (0.98) 18.20 (3.66) 19.66 (5.20)

10 10.17 (1.22) 9.65 (0.83) 22.11 (1.22) 21.25 (1.26)

Table 9: Performance comparisons among using different LLMs MED, LAR, NEO as the base for acquiring a
FEEDER set and using NEO for inference on COLA dataset are conducted in the in-context learning setting. We
report both the mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots.

ΨLLM(·) D n
MED (0.8B) LAR (6B) NEO (1.3B)

RAN SIM DIV RAN SIM DIV RAN SIM DIV

NEO (1.3B) DFEEDER

1 23.7 (5.7) 31.0 (1.3) 31.0 (1.3) 25.3 (4.1) 34.6 (1.8) 34.6 (1.8) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

2 45.1 (5.6) 49.7 (1.4) 46.1 (0.8) 58.5 (3.2) 57.8 (1.2) 56.4 (1.0) 69.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 49.4 (4.6) 58.1 (2.5) 59.1 (1.9) 54.6 (3.8) 64.5 (1.1) 61.7 (2.4) 68.7 (3.2) 67.2 (2.4) 65.8 (1.8)

10 59.4 (4.6) 62.4 (1.5) 65.8 (1.5) 60.6 (3.8) 64.7 (1.8) 66.0 (1.4) 69.8 (2.8) 68.8 (1.4) 68.9 (1.3)

is consistent with our results in Table 1. These results further verify the superiority of our FEEDER in
the in-context learning setting.

Besides three basic demonstration selectors, denoted as RAN, SIM, and DIV, we also examine the
performance of FEEDER with some recently proposed demonstration selectors, denoted as UNC, CLU,
VLM. We summarize the corresponding results in Table 6, whose trend is consistent with our results
in Table 2. Overall, compared to using the entire training dataset DTRAIN as the retrieval pool, treating
its core set DFEEDER as the retrieval pool can improve the LLM performance at most cases. These
results are consistent with the analysis reported in Section 5.1, which together verify that our FEEDER
collaborating with various demonstration selectors works well in the in-context learning setting.

A5.3 ADDITIONAL RESULTS WITH DIVERSE DEMONSTRATION SELECTORS

We report performance comparison results on the reasoning dataset GSM8K and the semantic parsing
dataset SMCALFlow in Table 3. The corresponding results for additional demonstration selectors,
CLU and LVM, are provided in Table 8, showing a similar trend. Together, these results further
demonstrate the superiority of our FEEDER framework in the in-context learning setting.

A6 SCALING UP FEEDER INTO REAL-WORLD APPLICATIONS

A6.1 SCALING UP FEEDER TO LARGER LLMS.

As the LLM scales up in size (e.g., scaling up to Llama-65B (Touvron et al., 2023) and Gemma-70B
(Team et al., 2024)), the execution of our approximation algorithm for searching DFEEDER can become
exceedingly time-consuming. In response to this challenge, we propose a strategy wherein a smaller

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 10: Performance comparisons among using different LLMs MED, LAR, NEO as the base for acquiring a
FEEDER set and using NEO for inference on COLA dataset are conducted in the in-context learning setting. We
report both the mean and variance of accuracy using 8 different seeds and 5 different permutations of n-shots.

ΨLLM(·) D n
MED (0.8B) LAR (6B) NEO (1.3B)

RAN SIM DIV RAN SIM DIV RAN SIM DIV

NEO (1.3B)

DTRAIN
2 23.7 (5.7) 31.0 (1.3) 31.0 (1.3) 25.3 (4.1) 34.6 (1.8) 34.6 (1.8) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

5 49.4 (4.6) 58.1 (2.5) 59.1 (1.9) 54.6 (3.8) 64.5 (1.1) 61.7 (2.4) 68.7 (3.2) 67.2 (2.4) 65.8 (1.8)

DFEEDER
2 23.7 (5.7) 31.0 (1.3) 31.0 (1.3) 25.3 (4.1) 34.6 (1.8) 34.6 (1.8) 28.3 (5.4) 34.8 (1.3) 34.8 (1.3)

5 49.4 (4.6) 58.1 (2.5) 59.1 (1.9) 54.6 (3.8) 64.5 (1.1) 61.7 (2.4) 68.7 (3.2) 67.2 (2.4) 65.8 (1.8)

Integrating Exact Extractor of FEEDER into FEEDER

FEEDER Input
and Output

Training
Dataset

Frozen
Large Language Model

Test
Input Data

Output to Test
Input

conditioned

Demonstration
Retriever

Exact FEEDER
Extractor

Figure 6: Integrating our extraction algorithm for FEEDER (i.e., Algorithm 4) into our in-context learning
framework (as introduced in Figure 1(a)).

LLM is employed to generate a FEEDER set, which is then stored and utilized by the larger LLM.
To assess the viability of this approach, we conducted an experiment comparing the performance
of using SMA, MED, and NEO as the LLMs for obtaining a FEEDER set, and then we use this set as
the retrieval pool to acquire demonstrations for NEO. Results summarized in Table 10 demonstrate
that even when DFEEDER is pre-selected by a small LLM, it contributes to improved performance,
compared to using DTRAIN, as reported in Table 1. This observation suggests the potential feasibility
of employing a more compact LLM for pre-selecting DFEEDER to enhance the performance of a larger
LLM.

A6.2 SCALING UP FEEDER BY INCREMENTAL UPDATE.

Notice that numerous real-world datasets are temporal and require frequent updates. Re-running the
tree based approximation algorithm for FEEDER over all samples can be excessively time-consuming.
To address this, we design an incremental approach, treating the unchanged portion as a plug-and-play
FEEDER set and the LLM as a whole, forming a new “LLM”. Therefore, we can apply FEEDER solely
to compute incremental data for the modified part, encompassing newly added and modified data
points. Also, a significant challenge of FEEDER arises from the temporal nature of many real-world
datasets, some of which require frequent updates, potentially on a daily basis. The conventional
approach of recalculating a FEEDER over all unchanged and changed samples can be time-consuming
in such dynamic scenarios. To address this challenge, we introduce an incremental update algorithm
for FEEDER, enabling the efficient re-computation of only the changed portions, including newly
added and modified samples.

As depicted in Figure 7, once a FEEDER set for the original dataset is generated, we treat the unchanged
part of plug-and-play plugged data and the LLM as a whole (depicted by the dashed box) as a new
“LLM”. Subsequently, we apply FEEDER exclusively to compute incremental data for the changed
part, covering newly added and modified data points. This strategy aims to enhance the efficiency
and responsiveness of FEEDER in the context of evolving and temporal datasets.

A7 INTEGRATING ALGORITHM 4 IN FEEDER

One limitation to directly applying Algorithm 3 or 4 is that DTRAIN is too large to be directly used as
input demonstrations. For this purpose, we incorporate running Algorithm 4 for one round into our
FEEDER as follows. As shown in Figure 6, we place Algorithm 4 after the demonstration retriever to
filter out the unnecessary parts from the retrieved data. Concretely, we first retrieve n samples from
our FEEDER set (i.e., DFEEDER), then filter retrieved samples by running Algorithm 4 for one round
(treating the set of retrieved samples as DIN). Then, re-retrieve n− |DOUT| where DOUT indicates the
output of Algorithm 4.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

A8 FEEDER IN FINE-TUNING SETTING

A8.1 IMPLEMENTATION DETAILS

As summarized in Algorithm 1 in Section 2, we can integrate our FEEDER selection and LLM fine-
tuning into a bi-level optimization problem. To evaluate the performance of our bi-level optimization,
we first run Algorithm 1 for one run to get a pre-selected FEEDER set (i.e., DFEEDER) and a tuned LLM.
Then, we update our FEEDER set with the tuned LLM and evaluate the performance of LLM in the
in-context learning setting (i.e., few-shot inference), where we allow the LLM to retrieve relevant
information from the pre-selected FEEDER set or the training dataset.

Concretely, our baseline is to first tune the LLM on the entire training dataset (i.e., DTRAIN) and then
do few-shot inference on the test dataset (i.e., DTEST) with DTRAIN as the retrieval pool. In contrast,
ours is to first pre-select a FEEDER set (i.e., DFEEDER) from DTRAIN and then tune the LLM on DFEEDER.
Our FEEDER set is updated according to the tuned LLM using Algorithm 2 for 1 run, and our approach
is evaluated on DTEST with the updated DFEEDER as the retrieval pool.

We conduct the fine-tuning pipeline in this manner to not only verify the superiority of our FEEDER
but also to validate our bi-level optimization framework, which is able to tune both the FEEDER set
and the LLMs in each loop.

We list some key hyper-parameters for fine-tuning as follows. The batch size is set as 32, the warm
steps is set as 100, the learning rate is set as 5× 10−5, and the weight decay is set as 0.01. All our
experiments are conducted with NVIDIA A100s3.

A8.2 ADDITIONAL RESULTS WITH DIVERSE DATASETS

We report performance comparison results on text classification datasets SUBJ, SST-2, and COLA
datasets in Table 4. We include the results of FPB, SST-5, and TREC datasets in Table 7, whose
trend is consistent with our analysis in Section 5.2. These results further verify the superiority of our
FEEDER in the fine-tuning setting.

Frozen Large
Language Model

Scaling Up FEEDER by Incremental Update

Updated FEEDER

conditioned

conditioned

Training
Dataset

Incremental
Training Dataset

FEEDER for
Training Dataset

FEEDER
Extractor

FEEDER
Extractor

FEEDER for
Incremental

Dataset

Figure 7: In order to scale up FEEDER for real-world applications dealing with dynamic data, we introduce an
incremental update algorithm. This algorithm is designed to efficiently handle changes in training examples,
avoiding the need to recompute over unchanged training examples.

A9 IN-DEPTH ANALYSIS OF FEEDER

A9.1 PERFORMANCE GAP BETWEEN USING FEEDER AND RAN AS PRE-SELECTOR

As our paper introduces a new pre-selection stage before the demonstration selection process,
we also include an ablation study that randomly selects the same number of samples to form a

3https://www.nvidia.com/en-us/data-center/a100/

28

https://www.nvidia.com/en-us/data-center/a100/

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 11: Performance comparisons between using randomly-selected D∗
TRAIN (where |D∗

TRAIN| = |DTRAIN|) as the
base for acquiring a FEEDER set and using NEO for inference on SST-2, SST-5, and COLA datasets are conducted
in the in-context learning setting. We report both the mean and variance of accuracy using 8 different seeds and
5 different permutations of n-shots.

ΨLLM(·) D n
SST-2 SST-5 COLA

RAN SIM DIV RAN SIM DIV RAN SIM DIV

NEO (1.3B)

DTRAIN
2 76.8 (3.5) 81.5 (0.1) 76.3 (0.4) 17.9 (3.6) 26.9 (0.1) 22.7 (0.1) 30.7 (3.1) 55.5 (0.2) 56.5 (0.4)

5 65.1 (3.5) 80.8 (0.2) 66.1 (0.3) 19.0 (3.9) 29.2 (0.1) 25.1 (0.1) 40.0 (3.6) 55.9 (0.1) 52.5 (0.2)

D∗
TRAIN

2 73.2 (3.6) 77.8 (2.3) 72.4 (2.4) 14.5 (3.8) 23.3 (3.6) 20.0 (1.0) 28.3 (5.4) 48.8 (3.3) 49.7 (3.1)

5 62.4 (3.5) 77.6 (3.3) 62.2 (2.2) 16.6 (2.8) 25.5 (2.1) 27.7 (2.8) 33.8 (4.4) 50.2 (3.4) 48.7 (2.8)

DFEEDER
2 75.1 (2.8) 82.6 (2.1) 78.5 (1.9) 19.7 (2.7) 27.4 (2.1) 22.8 (1.8) 59.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 73.2 (4.2) 82.9 (2.7) 71.6 (2.4) 19.2 (3.2) 30.2 (1.1) 26.4 (2.4) 58.7 (3.2) 67.2 (2.4) 65.8 (1.8)

randomly selected training dataset, denoted as D∗
TRAIN, which matches the sample size of DFEEDER. The

corresponding results are reported in Table 11. A comparison of Table 11 with Tables 1 and 5 indicates
that replacing the entire training dataset with randomly selected samples significantly degrades LLM
performance. In contrast, the FEEDER-selected samples act as a core set that summarizes the key
information of the entire training dataset. By focusing on high-value samples, our approach enables
LLMs to achieve better performance, effectively leveraging the essential knowledge within the
dataset.

A9.2 PERFORMANCE GAP AMONG USING DIFFERENT DEPTH OF TREE

Figure 8: Performance comparisons on fine-tuning
NEO with running our approximation algorithm to
pre-select DFEEDER with different iteration K. Our
evaluation operates on COLA dataset in the zero-
shot setting after fine-tuning on 1000 and 2000
batches.

As described in Section 4.2, we set the tree depth to
2 (corresponding to K = 1), utilizing the one-shot
inference capability of LLMs as the sufficiency filter
to eliminate unnecessary samples. To further explore
the performance impact of varying tree depths, we
investigate the performance gap associated with dif-
ferent depths of the tree. Similarly to the analysis in
Section 5.2, Figure 8 visualizes the impact of employ-
ing different numbers of runs of our approximation al-
gorithm (as outlined in Section 4.2) to derive DFEEDER

for fine-tuning NEO. For ease of comparison, the re-
sults of fine-tuning NEO on DTRAIN are also presented
as a baseline (depicted by the blue line). The results
suggest that fine-tuning with a smaller, high-quality
dataset can significantly enhance performance. How-
ever, when comparing to Figure 3, we observe that
increasing the tree depth leads to more “smoothing”
changes in the LLM performance. There are two po-
tential explanations for this phenomenon: (i) The hyper-parameter K, which controls the tree depth,
typically changes within a relatively small scope compared to R due to its high computational cost and
diminishing returns. While increasing K initially enhances the filtering process by leveraging deeper
evaluations of sufficiency, the marginal improvements in the quality or size of the resulting FEEDER
set decreases as K grows. (ii) Increasing the tree depth corresponds to performing n-shot inference to
satisfy the sufficiency condition described in Eq. (7). This is significantly more challenging than a
one-shot inference check and results in a much smaller reduction in the number of samples in the
training dataset. (iii) Leveraging the n-shot inference capability of LLMs may yield more robust
results. Specifically, the unnecessary samples filtered out by an n-shot sufficiency check are more
likely to be genuinely unnecessary, thereby ensuring a higher-quality training set for fine-tuning.

A9.3 PERFORMANCE GAP BETWEEN OUR APPROXIMATELY COMPUTED FEEDER SET AND
EXACT FEEDER SET

As described in Section 4.2, our approximation algorithm ensures the sufficiency of the resulting
FEEDER set but does not guarantee the necessity of each sample within it. To address this, we employ
the integration method outlined in Appendix A7, which ensures that the selected demonstrations are
both sufficient and necessary. We denote this refined set as D∗

FEEDER. We compare the performance

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 12: Results of performance difference between using D∗
FEEDER (derived by using FEEDER version introduced

in Appendix A7), we also evaluate the performance of our variants of FEEDER with duplicated training dataset.
We evaluate NEO’s performance on the n-shot settings.

ΨLLM(·) D n
SST-2 SST-5 COLA

RAN SIM DIV RAN SIM DIV RAN SIM DIV

NEO (1.3B)

DTRAIN
2 76.8 (3.5) 81.5 (0.1) 76.3 (0.4) 17.9 (3.6) 26.9 (0.1) 22.7 (0.1) 30.7 (3.1) 55.5 (0.2) 56.5 (0.4)

5 65.1 (3.5) 80.8 (0.2) 66.1 (0.3) 19.0 (3.9) 29.2 (0.1) 25.1 (0.1) 40.0 (3.6) 55.9 (0.1) 52.5 (0.2)

D′
TRAIN

2 73.4 (6.6) 78.4 (0.3) 75.4 (2.4) 14.9 (3.8) 22.7 (2.9) 21.7 (1.0) 29.3 (5.4) 49.8 (1.3) 52.7 (3.3)

5 59.4 (3.5) 75.3 (1.3) 64.1 (3.5) 17.5 (2.8) 23.5 (2.1) 22.7 (2.8) 37.8 (4.2) 51.2 (1.4) 51.0 (2.3)

DFEEDER
2 75.1 (2.8) 82.6 (2.1) 78.5 (1.9) 19.7 (2.7) 27.4 (2.1) 22.8 (1.8) 59.3 (3.7) 64.7 (1.4) 64.7 (1.6)

5 73.2 (4.2) 82.9 (2.7) 71.6 (2.4) 19.2 (3.2) 30.2 (1.1) 26.4 (2.4) 58.7 (3.2) 67.2 (2.4) 65.8 (1.8)

D′
FEEDER

2 74.3 (2.9) 81.3 (1.1) 76.4 (1.8) 18.2 (2.2) 26.1 (2.1) 21.0 (1.8) 58.3 (2.7) 62.5 (1.4) 63.5 (1.1)

5 71.1 (3.2) 80.0 (2.4) 69.8 (2.1) 19.0 (2.0) 29.4 (1.3) 25.3 (2.1) 57.5 (3.0) 65.0 (2.4) 64.1 (1.8)

D∗
FEEDER

2 75.6 (1.8) 83.1 (1.0) 79.0 (1.1) 20.1 (2.0) 27.8 (2.3) 23.1 (1.2) 60.2 (3.2) 64.9 (1.4) 65.0 (1.1)

5 73.7 (4.1) 82.8 (2.2) 71.8 (2.1) 19.0 (3.0) 31.2 (1.0) 26.3 (2.1) 59.2 (2.7) 67.3 (2.1) 65.4 (2.2)

D∗′

FEEDER

2 75.2 (2.0) 82.8 (2.0) 78.4 (1.3) 19.9 (2.2) 27.0 (2.1) 22.7 (1.8) 59.4 (1.7) 64.9 (1.2) 64.5 (1.2)

5 73.5 (4.2) 82.4 (2.2) 71.3 (2.2) 18.9 (2.2) 29.9 (1.0) 26.2 (1.2) 56.5 (2.2) 65.5 (2.2) 64.7 (1.4)

of few-shot preference using DFEEDER, D∗
FEEDER, and DTRAIN, with the results summarized in Table 12.

The results indicates that D∗
FEEDER achieves a slight improvement in LLM performance compared

to DFEEDER, further validating the effectiveness of integrating sufficiency and necessity in the pre-
selection process.

We further evaluate the robustness of our D∗
FEEDER and DFEEDER by duplicating the training dataset

DTRAIN. The duplicated dataset is denoted as D′
TRAIN, and the corresponding resulting sets derived

using our approximation and integration methods are denoted as D′
FEEDER and D∗′

FEEDER respectively.
The results of this evaluation are summarized in Table 12. From the table, we observe that both
random and similarity-based demonstration retrievers are significantly impacted by the duplicated
dataset. This is because the retrieved demonstrations can include duplicates, particularly when using
a similarity-based retriever, as similarity scores are calculated independently for each sample. In
contrast, our D′

FEEDER and D∗′

FEEDER act as “weak” and “strong” filters, respectively, by effectively
removing redundant or unnecessary samples from the input. The “weak” filter provided by D′

FEEDER

ensures sufficiency by eliminating a significant portion of redundant data while maintaining the
core information needed for the task. On other hand, the “strong” filter represented by D∗′

FEEDER not
only ensures sufficiency but also guarantees necessity, leading to an even more refined dataset that
further enhances model robustness and performance. This differentiation highlights the flexibility
and effectiveness of our filtering mechanisms in handling noisy or duplicated datasets.

A10 COMPLEXITY ANALYSIS OF FEEDER

A10.1 TIME COMPLEXITY FOR ALGORITHM 2

���� ����

�������

�

�

��

��

��

��

	�

	�

�
��

�
��
�
�
�
�
�
�
�

�

�

	

�

�

�

�

��

��� ���

�����������

�

�

��

��

��

��

	�

	�

�
��

�
��
�
�
�
�
�
�
�

�

�

	

�

Figure 9: Time complexity of searching FEEDER using our approximation algorithm for different runs on COLA
and TREC datasets using varying the number of rounds R and varying the number of iterations K.

As summarized in Algorithm 2 and discussed in Section 4.2, there are two key hyperparameter
settings for reducing the time cost of Algorithm 2: the number of iterations (i.e., K) and the number
of rounds (i.e., R). In our main experiment, we set K = 1 and R = 1, meaning that we perform only

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

� 	
 �

�/(!#,�*$���������.#, .&*)-

�

	���

���

����

����

���

����

����

����

�
&1
#

� �����������	

���	

���

����

����

���

����

����

����

�
�
�

� 	
 �

�/(!#,�*$��*/)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���(''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+

0
�

�'&+ 0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+

0
�

� 	
 �

�/(!#,�*$���������.#, .&*)-

�

	���

���

����

����

���

����

����

����

�
&1
#

�!�����������

�����

����

�����

����

�����

����

���	�

���	

���
�

�
�
�

� 	
 �

�/(!#,�*$��*/)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���(''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+

0
�

�'&+ 0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+

0
�

� 	
 �

�0)!$-�+%���������/$- /'+*.

�

	���

���

����

����

���

����

����

����

�
'2
$

�"�����������

����

����

���

��

���

���

���

����

���

�
�
�

� 	
 �

�0)!$-�+%��+0*#.

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���) ((

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
('
,

1
�

�(', 1

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
+
&
(+
.
.
�
�
('
,

1
�

� 	
 �

�/(!#,�*$���������.#, .&*)-

�

	���

���

����

����

���

����

����

����

�
&1
#

�"�����������	�

����

���

���

��

����

���

�
�
�

� 	
 �

�/(!#,�*$��*/)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���(''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+

0
�

�'&+ 0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+

0
�

� 	
 �

�.' "+�)#���������-"+�-%)(,

�

	���

���

����

����

���

�
%0
"

�"�����������	

��	�

��	

��	�

��	�

��	�

��
�

�
�
�

� 	
 �

�.' "+�)#��).(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
/
�

�&%*�/

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
/
�

� 	
 �

�.' "+�)#���������-"+�-%)(,

�

	���

���

����

����

���

�
%0
"

�#�����������

��	�

��	�

��
�

��

��
�

��
�

��
�

����

�
�
�

� 	
 �

�.' "+�)#��).(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
/
�

�&%*�/

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
/
�

� 	
 �

�.' "+�)#���������-"+�-%)(,

�

	���

���

����

����

���

�
%0
"

�$�����������

��
�

��

����

���

����

���

���

��

����

�
�
�

� 	
 �

�.' "+�)#��).(!,

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���'�&&

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
&%
*
�
/
�

�&%*�/

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
)
$
&)
,
,
�
�
&%
*
�
/
�

� 	
 �

�/(",�*#���������.",�.&*)-

�

	���

���

����

����

���

�
&1
"

�%�����������	�

����

���	

���

����

����

���

����

����

����

�
�
�

� 	
 �

�/(",�*#��*/)!-

��
�

��
�

��
�

����

���	

���

�
�
�
�

� ���(�''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+
�
0
�

�'&+�0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
$
'*
-
-
�
�
'&
+
�
0
�

� 	
 �

�/(!#,�*$���������.#, .&*)-

�

	���

���

����

����

���

����

����

����

�
&1
#

�!�����������

�����

����

�����

����

�����

����

���	�

���	

���
�

�
�
�

� 	
 �

�/(!#,�*$��*/)"-

��
�

��
�

��
�

����

���	

���

�
�
�
�

�!���(''

��	

��	�

��	�

��	�

��	�

��
�

��
	

��

�
�
�
�

� 	
 �

����

����

���

����

����

����

�
�
�
�
�
'&
+

0
�

�'&+ 0

��	�

��	�

��
�

��
	

��

��
�

��
�

��

�
*
%
'*
-
-
�
�
'&
+

0
�

Figure 10: Performance comparisons for running our approximation algorithm to pre-select FEEDER with
different iterations K are evaluated in terms of accuracy (denoted as ACC) with RAN as the retriever and the size
of the resulting FEEDER set (denoted as Size). Each sub-figure is entitled with Dataset+LLM base+n shots.

one-shot inference for sufficiency checks in each round of Algorithm 2 and execute the algorithm
for a single round. We investigate the performance differences arising from varying K and R in
Appendix A9.2 and Section 5.2 respectively. Additionally, we report the time complexity associated
with different values of K and R on COLA and TREC datasets in Figure 9. From the figure, we
observe that as the number of samples decreases, the time consumption of Algorithm 2 also decreases.
Furthermore, we note that increasing the number of rounds has a great impact on reducing the time
complexity. This may be attributed to the fact that two-shot inference for sufficiency-satisfying
Eq. (7)-is significantly more challenging than a one-shot inference check. By further combining
Figure 9 and Figure 4 in Section 5.1, we observe that the time consumption is nearly linear with
respect to the size of the data samples.

A10.2 CORRELATIONS BETWEEN TIME COMPLEXITY AND ACCURACY

Consider two hyper-parameter settings in our approximation algorithm: the number of rounds R
and the number of iterations K, both designed to balance performance and computational efficiency.
As detailed in Appendix A10.1, the time complexity of our method scales almost linearly with the
number of samples, making these parameters critical for practical applications. Figure 4 illustrates the
performance changes across different values of R, while Figure 10 explores the impact of varying K.
Interestingly, Figure 10 reveals a similar but more robust trend compared to Figure 4. This robustness
could be attributed to the inherent strength of the two-shot inference process for sufficiency, as
defined in Eq. (7). The two-shot inference introduces a more rigorous evaluation mechanism than the
one-shot inference check, enabling a stronger filtering of unnecessary samples.

Combining all the above results, we observe that both increasing the tree depth (i.e., the number of
iterations K) in each round and increasing the number of rounds R contribute to reducing the size
of the resulting FEEDER set. However, there are notable trade-offs between these two approaches.
Increasing the tree depth is computationally more expensive but offers greater robustness, as it
minimizes the risk of mistakenly filtering out useful samples. On the other hand, increasing the
number of rounds is relatively inexpensive but carries a higher likelihood of discarding valuable
data points due to less rigorous evaluations. In practice, we deploy our approximation algorithm
with K = 1 and R = 1, which provides an optimal trade-off between computational efficiency and
model performance. This configuration ensures that the pre-selection process remains practical while
maintaining competitive accuracy.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

A11 CASE STUDY WITH ARTIFICIAL DATA POINTS GENERATED BY LLMS

A11.1 CASE STUDY FOR TRANSITIVITY OF LLMS

To illustrate the transitivity of LLMs, we conducted a simple experiment using gpt-3.5-turbo. We
prompted the model with the question which place does Jerry lives in? LLM responses with I’m
sorry, but I don’t have access to personal information about individuals, including your friend Jerry.
Then, let DA, DB, DC denote the city, the country, and the continent he lives in. Then, we can observe
that if we tell the LLM about the city (e.g., London), then the LLM can tell about the country (e.g.,
United Kingdom); if we tell the LLM about the country (e.g., United Kingdom), then the LLM can
tell about the continent (e.g., Europe). Also, if we tell the LLM about the city (e.g., London), then we
ask about the continent, and the LLM also can tell (e.g., Europe). This observation is one case to
demonstrate the transitivity of sufficiency.

A11.2 CASE STUDY FOR DEMONSTRATIONS SELECTION SHOULD BE AWARE OF LLMS IN
USE

Subsequently, we conduct a case study to substantiate the central proposition of this paper: Whether
the assessment of the quality of a demonstration should depend on the specific LLM in use.

We consider the factual error made by Google Bard in the first demo4. Bard said The James Webb
Space Telescope took the very first pictures of a planet outside of our own solar system. However,
the fact is The Very Large Telescope took the very first pictures of a planet outside of our own solar
system. Based on the above statements, we produce the question What took the very first pictures of a
planet outside of our own solar system?

We ask the question to gpt-3.5-turbo. The corresponding answer is:

The first pictures of a planet outside of our own solar system were taken by the Hubble Space
Telescope in 2008. The planet, named Fomalhaut b, orbits the star Fomalhaut, which is located about
25 light-years away from Earth in the constellation Piscis Austrinus.

We can see that the above answer is incorrect. We prompt the fact into the LLM, then the answer is:

The Very Large Telescope took the very first pictures of a planet outside of our own solar system.

This indicates that prompting the fact works. We further ask gpt-3.5-turbo to generate some
sufficient statements for the fact. The following is its output:

1. The Very Large Telescope made history by capturing the first-ever images of a planet beyond our
solar system.

2. Thanks to the advanced technology of the Very Large Telescope, scientists were able to capture the
first-ever photographs of an exoplanet.

3. The groundbreaking images captured by the Very Large Telescope marked a major milestone in the
study of exoplanets.

4. The discovery of a planet outside of our solar system was made possible by the cutting-edge
capabilities of the Very Large Telescope.

5. The Very Large Telescope’s ability to capture images of distant celestial bodies allowed scientists
to observe an exoplanet for the first time in history.

We also evaluate separately using the above statements as a prompt to gpt-3.5-turbo, and either one
of them can lead to the correct answer. We provide detailed answers as follows.

1. The Very Large Telescope took the very first pictures of a planet outside of our own solar system.

2. The Very Large Telescope took the very first pictures of a planet outside of our own solar system.

3. The Very Large Telescope took the very first pictures of a planet outside of our own solar system.

4https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

32

https://www.theverge.com/2023/2/8/23590864/google-ai-chatbot-bard-mistake
-error-exoplanet-demo

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

4. The Very Large Telescope took the very first pictures of a planet outside of our own solar system.

5. The Very Large Telescope took the very first pictures of a planet outside of our own solar system.

We can see, in this case, that either one of the statements generated by gpt-3.5-turbo, is a sufficient
and necessary instance to answer What took the very first pictures of a planet outside of our own
solar system?

We further evaluate the performance of gpt-j-6b. Without any prompt (i.e., in the zero-shot setting),
its answer is:

The Hubble Space Telescope.

We then prompt the above 5 statements provided by gpt-3.5-turbo into gpt-j-6b, then the answer
is:

1. The first-ever images of a planet beyond our solar system have been captured by the Very Large
Telescope in Chile.

2. The Hubble Space Telescope.

3. A team of astronomers led by the University of Arizona’s Michael Liu.

4. The Hubble Space Telescope.

5. The Very Large Telescope.

We can see that only the 1-st statement or the 5-th statement is a sufficient and necessary instance.
Combining the results of gpt-j-6b and the results of gpt-3.5-turbo can verify the core insight of
our paper: the measurement over prompting a demonstration should consider what LLM is in use.

Furthermore, we also evaluate the performance of 3 GPT variants used in the paper. We begin by
evaluating the zero-shot performance of gpt-neo-1.3B (denoted as NEO in the experiment), and its
result is:

The first pictures of a planet outside of our own solar system were taken by the Voyager 1 spacecraft
in 1977.

We then prompt the above 5 statements into gpt-neo-1.3B, then the answer is:

1. The very large telescope was built in the early 1990s by the European Southern Observatory (ESO)
in Chile. The Very Large Telescope.

2. The Very Large Telescope in Chile.

3. The Very Large Telescope (VLT) in Chile.

4. The Very Large Telescope.

5. The Very Large Telescope in Chile.

The above results show that either one of the latter 4 statements is a sufficient instance. The results of
gpt2-large (denoted as LAR in the experiment) show that neither of the 5 statements is a sufficient
and necessary instance:

1. The very large telescope was built in the early 1990s by the European Southern Observatory (ESO)
in Chile. The Very Large Telescope.

2. The Hubble Space Telescope.

3. The first pictures of a planet outside of our own solar system were taken by the Hubble Space
Telescope in 1990.

4. The Hubble Space Telescope.

5. The very first pictures of a planet outside of our own solar system were taken by the Hubble Space
Telescope.

The results of gpt2-medium (denoted as MED in the experiment) show that only the 4-th statement is
not a sufficient and necessary instance:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

1. The Very Large Telescope.

2. The Very Large Telescope.

3. The Very Large Telescope.

4. The Hubble Space Telescope.

5. The Very Large Telescope.

All the above results verify that quality of one demonstration should be LLM-specific, which is the
key idea of our paper.

A12 LIMITATION AND IMPACT STATEMENTS

Notice that our FEEDER serves as a general demonstration pre-selector capable of enhancing the
performance of various LLMs while simultaneously reducing computation costs. Due to budget
limitations, our paper presents results only for LLMs with up to 10B parameters for in-context
learning evaluation and up to 2B parameters for the fine-tuning setting. It would be worthwhile to
investigate the performance of our FEEDER with larger LLMs and employing a greater number of
shots. Due to computation limitations and budget constraints, we leave this exploration for future
work.

The objective of this paper is to develop a pre-selection method over the training dataset as an inter-
mediary process to enhance the accuracy of factual knowledge in the model’s outputs. Consequently,
our method is designed to enhance the faithfulness of LLM systems. It is essential to note that
our FEEDER, selected from the training dataset without external trustworthy corpora, relies on the
capability of the given LLM itself. This characteristic may potentially amplify existing biases in the
model weights of LLMs.

34

