Under review as a conference paper at ICLR 2025

MEMORY-PRUNING ALGORITHM
FOR BAYESIAN OPTIMIZATION
WITH STRICT COMPUTATIONAL COST GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian Optimization (BO) is a powerful tool for optimizing noisy and
expensive-to-evaluate black-box functions, widely used in fields such as machine
learning and various branches of engineering. However, BO faces significant chal-
lenges when applied to large datasets or when it requires numerous optimization
iterations. The computational and memory demands of updating Gaussian Process
(GP) models can result in unmanageable computation times. To address these lim-
itations, we propose a new Bayesian Optimization algorithm with memory prun-
ing (MP-BO), which restricts the maximum training data size by acquiring new
queries while concurrently removing data points from the training set. This ap-
proach guarantees a maximum algorithmic complexity of O(m?), where m < n
is a fixed value and n represent the size of the full training set. The pruning strat-
egy ensures reduced and constant memory usage and computation time, without
significantly degrading performance. We evaluate MP-BO on synthetic bench-
marks and a real neurostimulation dataset, demonstrating its robustness and ef-
ficiency in scenarios where traditional BO would fail under strict computational
constraints. Our results suggest that MP-BO is a promising solution for applica-
tions that require efficient optimization with limited computing resources.

1 INTRODUCTION

Bayesian optimization (BO) is used in a variety of applications to optimize costly to evaluate and
noisy black-box functions. It has been widely applied in numerous fields, such as machine learning
(Snoek et al.l |2012)) and several branches of engineering (Lam et al., [2018)) due to its effectiveness
in dealing with complex optimization problems with a small amount of data.

One of the most significant challenges of BO is its application to large volumes of training data. BO
relies on constructing a model, called surrogate, to approximate an objective function and using an
acquisition strategy to guide the search over a parameter space. The most commonly used surro-
gate models are Gaussian Processes (GPs) (MacKay, |1998)). However, updating a GP with newly
collected data points is computationally and memory-intensive. The algorithmic complexity of BO
with GPs grows cubically with n, the number of past queries or collected data points. As a result,
the usability of this method suffers as the amount of training data increases, leading to excessive
computational times that are incompatible with time-sensitive problems. Furthermore, the mem-
ory requirements for data storage and processing grow quadratically with n, imposing significant
constraints on the available memory resources (Kunjir, [2019).

These limitations are particularly challenging in closed-loop settings, where optimization must run
on devices with constrained resources, such as embedded systems or small autonomous platforms.
Many engineering fields rely heavily on autonomous decision-making to manage system dynamics
and real-time operations. In many cases, strict requirements in decision-making time are imposed,
which are incompatible with VANILLA BO increase in execution time, and a fixed limit is requred.
These fields include autonomous robotics, where BO has compelling applications for learning and
adaptation (Cully et al., 2015)). Learning actuation patterns in real time, as the robot moves, requires
performing optimization tasks within strict execution time limits and under constrained computa-
tional resources. In other domains, such as real-time financial trading systems, large computing

Under review as a conference paper at ICLR 2025

resources may be available, but rapid decision-making is essential, thus strict execution times must
be enforced for algorithms to continuously trade on markets. Continuous increases in computing
time for each action would make long-term continual optimization unfeasible.

Another field facing similar challenges is the development of intelligent medical devices. In this
context, autonomous optimization and adaptation are desirable not only for robustness across envi-
ronments of user’s daily living, but also for ensuring patient data security. Implanted medical devices
often must rely on low computational resources. One compelling application of BO in the realm of
intelligent or adaptive (Beudel & Brown, [2016)) medical devices is neurostimulation programming.
In this context, a pacemaker-like device delivers stimuli to the brain or nervous system to evoke a
desired physiological response, such as pain relief or improvement of motor control. The key chal-
lenge in neurostimulation is to efficiently identify the stimulation patterns and parameters, such as
position, frequency, and intensity, that optimally evoke the targeted response. For example, BO can
be used with deep brain stimulation to help treat Parkinson’s disease (Sarikhani et al., 2022]), to tune
vagus nerve stimulation (Wernisch et al., [2024} Mao et al., [2024) and brain or spinal stimulation
to recover walking after spinal cord injury (Wenger et al.,[2014). BO is particularly advantageous
in this context, often producing superior results compared to other search methods, even when ex-
ploring only a small subset of possible parameter combinations (Bonizzato et al., 2023} [Laferriere
et al.}2020). Minimizing computation time and memory usage is essential, as it directly influences
the feasibility of system miniaturization. Compact, portable systems capable of being used out-
side the laboratory are critical for advancing clinical applications, and this development necessitates
algorithms that are both highly performant and resource efficient.

To address these challenges, we propose a BO algorithm with a Memory-Pruning method (MP-
BO). Our approach iteratively deletes training data points as new queries are acquired, keeping the
algorithmic complexity constant at O(m?) for some chosen m < n. This pruning strategy not only
alleviates memory constraints, but also drastically reduces the optimization time as n increases. With
MP-BO, we do not claim to outperform the classic BO algorithm, although, as we later demonstrate,
there are cases where this is possible. Rather, our focus is on enforcing strict limits on computational
time and memory usage while minimizing performance loss relative to full-capacity BO. Thus, MP-
BO works by randomized eviction of training points, an effective choice that is agnostic to the
problem structure and outperforms simple deterministic strategies.

Formally, we make the following contributions:

* We develop MP-BO, an algorithm that provides strict guarantees on memory usage and
computational time by iteratively removing data from the training set at any time a new
data point is acquired.

* We benchmarked our algorithm across various optimization problems, demonstrating its
potential and assessing its robustness to noise level and increasing input size.

* We applied MP-BO to a real-world neurostimulation dataset, showcasing its effectiveness
in a practical, real-world application.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, we formally define the BO framework.

2.1 PROBLEM SETUP

We consider the problem of optimizing an unknown, or black-box function f as follows:

x* = argmax f(x) (L

xeX
such that f : X — R and X C R?. Here, the objective function f is expensive to evaluate.

We define the training dataset with Dy, := (X,y), where X = (x1, ..., xn)T is the dataset of the
points sampled in X, and'y = (y1,...,4,)" their corresponding observation. We deal with noisy
observations, which means that we cannot directly access the objective function: y; = f(x;) +
e; Vi€ {l,..,n}, with ¢ ~jq N(0, aioi). We only consider homoskedastic noise, where ¢; and
x; are independent, even if heteroskedastic noise can also be treated (Guzman et al., 2020).

Under review as a conference paper at ICLR 2025

2.2 BAYESIAN OPTIMIZATION

BO uses a surrogate model as a probability distribution for the objective function. Since the ana-
Iytical form of the objective function is unknown, it is treated as a random function and assigned
a belief prior. As the objective function is evaluated, BO calculates the new distribution posterior,
using the likelihood of the observations and updating the prior using Bayes’ theorem:

Likelihood Prior

—N—
P(f|D1:7L) X P(Y|X7 f) P(f‘X) : (2)
——

Posterior

The optimization is based on a sampling strategy which guides the algorithm in collecting the next
point at each iteration. The sampling strategy is determined by maximizing an acquisition function,
which provides a measure of utility for each possible next point to be sampled. In the beginning,
if we have no prior knowledge about the objective function (Souza et all [2021), the algorithm
chooses random initial points to start the optimization. The surrogate model is key in BO because
it encapsulates the beliefs about the objective function’s shape. The most popular surrogate model
is the GP, but others can be used, like Student-t Processes (Shah et al [2014), or Bayesian Neural
Networks (Li et al., 2024). The choice of the surrogate model is extremely problem dependent. In
this study, we employ GP, but most derivations can easily be extended.

Gaussian Process. A GP (Rasmussen & Williams| [2006; |Garnett, 2023)) is a stochastic process,
defined by an infinite collection of random variables, where any finite subset follows a multivariate
normal distribution. GPs are particularly important in BO due to their compatibility with the Gaus-
sian likelihood function. Consequently, after sampling points, the posterior distribution, as computed
with Equation 2] remains a GP. A GP is fully characterized by its mean function, o : X — R, and
positive semidefinite covariance function or kernel, k : X x X — R. A GP can then be expressed as
f ~ GP(u, k). At initialization, the mean and kernel functions are specified to model a particular
class of functions. Often, a non-informative mean function, such as p = 0, is used. The choice of
kernel is especially important, as it determines the spatial properties of the surrogate model, directly
influencing its capacity to capture patterns in the data.

Kernels. Different kernels can be used to fit a GP on f (Roman et al.,[2019). In this study, we use
the popular 5/2-Matérn kernel (Chen et al.,|2018;|Rasmussen & Williams, [2006) defined as follows:

k(r) = (1 + @ + ;ﬁ) exp (_x/fnﬂ) (3)

where r is the distance between two points of X, [is the positive lengthscale parameter.

Posterior. The posterior distribution refers to the updated probability distribution over f after in-
corporating newly observed data. Considering Gaussian likelihood and noise in the observations, we
have a closed form for the posterior distribution. As we collect samples and add them to the training
dataset, the prior is updated to form the posterior distribution to improve the model’s approximation
of the objective function. Conjugated with the likelihood function - see Equation [2| - the posterior
distribution f|D;.,, is a GP of mean j and covariance k (Kanagawa et al.,|2018):

fi(x) = p(x) + kg < (Kx + 070, 1) 7 (y — px) “)
k(x,x') = k(x,X) — ky ((Kx + 02,,]) 'kxx (5)

not

~—~
Kol
w4

In the above expression, kx x = (k(x1,X'), k(x2,X), ..., k(x,, X)) 7.

Acquisition Function. The acquisition function is very important in BO. This determines which
new point will be collected. It provides a measure of utility for each new point to be sampled. The
next point x* is selected as the one which maximizes the acquisition function AF":

Under review as a conference paper at ICLR 2025

X" = argmax, . vy AF (X|D1.¢) (6)

There are several acquisition functions available (Wang et al.l |2022), the earliest being Probability
of Improvement (Kushner, [1964). A common choice is Expected Improvement (Bull, 2011), which
is numerically stable. The one we use in this study is the popular Upper Confidence Bound (UCB):

AF(x|D1.t) = p(x) + ko (x) 7
In the above expression, k > 0 is a fixed exploration-exploitation trade-off hyperparameter and

o(x) = y/k(x,x). The algorithm tends to exploit areas where the potential reward is high (great
values of 1), or explore areas where the uncertainty of f is high (great values of o). This tradeoff is
monitored by x which optimal value is problem-dependent.

2.3 RELATED WORK

Several studies have attempted to improve BO precision and computation time as the amount of data
increases, but none fas addressed the issue by intervening in the query history, nor has offered strict
guarantees of fixed computation time and a limit in memory usage.

BO in High Dimension. BO faces problems such as the curse of dimensionality, which leads to
excessive computation time and memory usage as the number of training data points increases. An
approach using Principal Component Analysis has been explored to improve scalability of BO in
high-dimensional search spaces (Raponi et al.|[2020), reducing CPU time by up to 10x, although the
time still scaled with data complexity. Other hierarchical approaches have been proposed to address
this issue, including specific applications like neurostimulation (Laferriere et al., [2020). However,
while these methods reduce the number of full-dimensional queries by pre-training the GP in lower
dimensions, they still require several iterations in the full-dimensional space.

Domain Shrinking. Numerous studies have attempted to improve BO by progressively reducing
the search space to a confidence region. For example, TuRBO (Eriksson et al., 2020) is a method
that optimizes GPs locally within multiple confidence regions, retaining only the best-performing
regions in order to reduce the search space. By alternating local and global optimization phases,
TREGO (Diouane et al.l 2022) improves the efficiency of BO with Expected Improvement. We
can also mention ZoMBT (Siemenn et al., 2023), an algorithm which limits the search space to the
regions between the best points found, greatly reducing the optimization time. This algorithm works
particularly well for ’needle-in-a-haystack” problems where pruning of the input space is necessary.

Sparse Gaussian Processes. Another important approach to improve BO involves sparse Gaus-
sian processes (SpGPs), an approximate version of standard GPs that uses a limited set of synthetic
inducing points as a support set. This method relies on a fixed number of pseudo-entries to approx-
imate the full GP (Snelson & Ghahramanil |2005), reducing computational costs while preserving
accuracy. By optimizing these pseudo-entries, SpGPs capture relevant information from the dataset.
Variational formulations further enhance this approach by optimizing the inducing inputs through
maximizing a lower bound on the logarithmic marginal likelihood, allowing the inducing points to
be optimized alongside the kernel parameters of the SpGP (Titsias| [2009). SpGPs have also been
adapted to BO (MclIntire et al.,2016), although their iterative training cost still scales with n, specif-
ically at O(nm?).

Online Paging Algorithm. The online paging problem is a classic memory management chal-
lenge, where memory is organized into a two-level structure: a fast memory cache of size k, and an
unlimited slow memory. An adversary defines a sequence of requests to be processed by the paging
algorithm. If a requested item is already in the cache, there is no associated cost. However, if the
item resides in slow memory, it must be loaded into the cache at a fixed cost, requiring the eviction
of one existing cache item to maintain the limit of k£ elements. The eviction rule determines which
item is removed from the cache in each round. Notably, it has been shown that employing a uniform
random eviction rule can lead to a lower overall cost than any deterministic algorithm (Motwani
& Raghavan| [1995). This holds even when the adversary is malicious and adapts the sequence of
requests to exploit the paging algorithm’s eviction strategy (Pruhs & Manber, [1991)). These studies
guided our research toward exploring random pruning strategies in BO.

Under review as a conference paper at ICLR 2025

3 MEMORY-PRUNING FOR BAYESIAN OPTIMIZATION (MP-BO)

Computing the exact posterior distribution (Equation [5)) requires inverting and storing an (n X n)
matrix, resulting in a computational complexity of O(n?) and a storage requirement of O(n?). In
embedded systems, memory resources are often highly constrained, particularly when the goal is
to minimize system size. By fixing the maximum number of data points m < n to be retained
throughout iterations, we can provide strict guarantees on computational and memory usage. This
approach reduces the time complexity to O(m?) and the storage requirements to O(m?), where m
is fixed by design.

The approach adopted in this study is as follows: once the designed resource limit is reached, we
continue to perform BO optimization, updating a full GP distribution, i.e., with no domain shrinking.
However, at each query, collected points from the training set are removed iteratively, thereby strictly
limiting the dimension of the matrix to be inverted. This size limit provides precise guarantees
of computational cost, both in time and in memory, for each future iteration. Consequently, the
optimization is performed on a subset of all collected samples rather than on the entire dataset.
The challenge lies in selecting which points to prune while maintaining a model that accurately
captures the desired f-optimum. Algorithm [TJoutlines our approach, MP-BO, where ¢* represents
the iteration at which we begin to remove training points.

Algorithm 1 Bayesian Optimization with Memory Pruning (MP-BO)
1: Init: Randomly sample a point x; and its response y;.
2: Dra = {(x1,91)}
3: Setu(.) =0,0(.) = VE(,.)

4:
5: forn=1,2,... do
6: Xn+1 = arg maxx AF (x|D1:n) > Find new X,,+1 to sample
T Ynt1 = f(Xng1) + Eng1 > Sample the objective function
8: ifn > ¢" then
9: (%,9) = u(D1:n) > Find a query to delete and remove it from training set
100 Diw=Dra\{(%9)}
11: end if
12: Dimt1 = Din U{(Xn+1, Yn+1)} > Augment the data set and update the surrogate model

13: Compute p and & of the GP
14: forallx € X do

15: o(x) = min(o(x), 5(x)) > Keep the minimal uncertainty o (x) for each x € X
16: end for
17: end for

When removing a data point, the GP uncertainty o(x) will be raised. This might mislead the ac-
quisition function UCB, which usually depends on o(x), to sample again the pruned data point. To
avoid this phenomenon, we have established the rule o(x) = min(o(x),&(x)), which forces the
GP uncertainty to follow the minimum between o (x), calculated at the previous query, and &(x)),
calculated after pruning and adding a new data point.

3.1 MEMORY PRUNING STRATEGY

We are looking for an efficient strategy to select a past data point and then remove it from the training
set at each iteration. Figure [T|shows that our strategy described in Algorithm [I]largely reduces, and
maintains constant, the computation time per each future query.

This algorithm is not designed to achieve better performance than VANILLA BO. Rather, our aim is
to minimize performance loss while providing strict guarantees on a limit in computation cost for
any given query. In this context, a theoretical idea would be to select the query which minimizes
the difference between the updated posterior distribution containing this point and the updated dis-
tribution without this point (Titsias, 2009). One could use the Kullback-Leibler Divergence (Belov
& Armstrongl [2011) to get an idea of which query to delete. However, calculating the posterior dis-
tribution can be particularly costly. For this reason, we explore different strategies to only compute
the posterior distribution once, but with the best collected points. We observed that this strategy is
performant for GP-BO, even in large search spaces. At each iteration, we remove a random already

Under review as a conference paper at ICLR 2025

Acquisition (BO) Query history S n
—=-Vanilla BO :
(" Mean UCBformula Query Response 30 _\}‘;{]3"0 E /I/
we) +k t(2) ; J/
—_ R . - 7
- Mean Uncertainty New query in z J1
>
Uncertainty ~ UCB acquisition L 3 ,’l
) Gz |z g /
Query iy /
A v |G- X & i
| Model (P G |t Out : /
i < (MP) = :
Fits old <
\‘ est out P
query =< (FFO) e
history o 01, : . .
) Limited budget memory 0 Number of queries 3000

Figure 1: Schema of MP-BO iteration and computing time. In the schema, two possible pruning
choices are depicted: the first-in-first-out (FiFo) approach, and our MP-BO algorithm. On the right,
the evolution of computing time required for one iteration (time spent in the optimization part and
in the update part, where the mean and kernel functions of the GP are updated) is plotted against
the number of queries. We see that the computational time becomes constant after applying MP-
BO. Data are presented as mean + standard error of mean (SEM). ¢* = 1000 in this experiment,
indicated by the vertical dashed line.

sampled point from the training set, with the exception of the latest acquisition and the current best
point, in order to protect continual learning and optimization. We also explored alternative strate-
gies, inspired by the online paging problem and by studies on the impact of outliers (Liu et al.,2020;
Siemenn et al.| 2023} Martinez-Cantin et al., 2017), but these alternatives did not perform better than
random drop. Insights and results can be found in Appendix B}

While MP-BO provides strict guarantees on computation time and randomized eviction proves to
be more robust than other deterministic methods, there is no guarantee that this pruning approach
is optimal. Depending on the problem, it may benefit from design-specific tuning. For instance,
in highly time-varying optimization problems, a designer may prefer to bias randomized eviction
toward older data points to better follow temporal changes. In this work, we focus on stationary
problems and demonstrate the versatility of MP-BO with randomized eviction exclusively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To assess the performance of our algorithm, we evaluate it on three different bench-
marks of classic optimization problems: Ackley, Michalewicz and Hartmann (Surjanovic & Bing-
ham| 2013), see Appendix [A.T] We consider our datasets as discretized because it is relevant for
real world applications, especially in embedded systems. Then, we applie our algorithm on a neu-
rostimulation dataset obtained on non-human primates (Bonizzato et al., [2021; [2023), involving
electromyographic (muscle) responses measured when an electrical microstimulation is applied in
the brain motor cortex. The bi-dimensional location of the stimulation is optimized to find the
strongest evoked movement.

Baseline and Evaluation Metrics. In this study, we compare our algorithm with the VANILLA
BO algorithm. We use a measure of regret to assess the performance of both algorithms. We
also compare our results with different pruning strategies like FiFo or different types of centrality
estimators, with results in Appendix

Regret: Let x* be a maximizer of f,i.e. xX* = argmax, , f(x) and suppose that at iteration n € N
in the algorithm, we predict x,, as the best point. Then, the instantaneous regret r,, is defined by
rn = f(x*) — f(x,,). The instantaneous regret shows if the algorithm converges and if so, how
fast does it converge. Our objective is to minimize its value. Theoretical bounds for the cumulative
regret with the UCB acquisition function already exist (Srinivas et al., [2012)).

Under review as a conference paper at ICLR 2025

Implementation Details and Hyperparameters. In our experiments, we perform our tests on
30 independent repetitions. We consider discretized datasets, where the discretization steps are
described in Appendix [A.T] We preprocess our data with a min-max normalization such that all the
observations are between 0 and 1. Moreover, we use the gpytorch framework (Gardner et al.
2018]), which allows us to optimize the lengthscale and noise parameters of the GP using maximum
a posteriori estimation (MAP). As we use the UCB acquisition function, we need to determine the
exploration-exploitation trade-off hyperparameter «. To do so, we run the algorithm with several
values for the hyperparameter and then use the one which gives the best regret. We perform the x
optimization on the VANILLA BO algorithm and use the same value for MP-BO. Thus, we obtain a
conservative setting, where « is ideal for VANILLA BO, but has not been tuned for MP-BO. We set
the observation noise hyperparameter to 0.025.

Moreover, we update dynamically the GP’s variance o(x) = /k(x, x) by only keeping the minimal
value between o (x);_; and o(x); for each x € X. This is a very important step in our algorithm, as
doing so helps the algorithm to converge and avoids to overly revisit the points that have just been
dropped from memory.

Finally, we define ¢*, the iteration at which we start to apply the memory-pruning strategy. Most of
this study uses a value of ¢* = 20, unless indicated otherwise.

Hardware Configuration. The experiments are conducted on a MacBook Pro with an Apple M1
chip, featuring 8 cores (4 performance cores and 4 efficiency cores) and 8 GB of unified memory,
running macOS. This setup represents a conservative choice when compared to use cases involving
more compact and embedded systems, where stricter limits on computational power exacerbate the
issue of unrestrained growth in execution time.

4.2 EXPERIMENTAL RESULTS ON SYNTHETIC DATASETS

Ackley Michalewicz 2D Michalewicz 4D

,_.
—
—

MP-BO

Vanilla BO

Regret

o
n

0 Teration 150

Figure 2: Regret on different optimization benchmarks. Data: mean + SEM over all the repeti-
tions.

First, we evaluate MP-BO performance on the following synthetic datasets: Ackley, Michalewicz
and Hartmann (Surjanovic & Bingham, 2013), see Appendix In this study, we compare MP-
BO and VANILLA BO with a fixed value for ¢* = 20. Results are displayed on Figure2]

We can see that MP-BO achieves robust performance, even if it is slower to converge. Importantly,
it always displays continued learning after ¢*. Performance is highly dependent on the number of
training data we allow the algorithm to store, thus on the hyperparameter ¢*. There is a clear trade-
off between the number of observations to maintain and the time and memory complexity. Setting
a very low ¢* will surely reduce the computational cost of the algorithm, but will need a lot of
iterations to converge.

Hyperparameter ¢*. We ask how much we can reduce the memory usage in MP-BO without
significantly compromising performance. Specifically, we seek to understand whether MP-BO can
continue learning the representation of the objective function after fixing the amount of query his-
tory used for training. To evaluate this, we compare the final performance of MP-BO with that of
VANILLA BO at iteration ¢*. The difference in performance indicates whether MP-BO continues
to learn effectively acquiring the new qy;nq — ¢* training points. The results of this experiment are
presented in Figure3] Applying our strategy does not prevent MP-BO from learning the represen-

Under review as a conference paper at ICLR 2025

Ackley Michalewicz 2D Michalewicz 4D Hartmann
1 1 1 1
N \ A oo
2 A \ \ W 4 Vanilla BO
1 . AN 1 *
80 \ \ A LR at q
& \\ (S WA, A N
\ AAS S WA
~ \\ - A N X N\ Ry —
01 04 = 0 01 MP-BO after
0 q* 60 0 a* 60 0 a* 60 0 q* 60 150 iterations

Figure 3: Final Regret after 150 iterations compared to VANILLA BO’s regret at ¢*. In this
figure the impact of ¢* on MP-GPBO is shown. In most cases, a too low value for ¢* prevents our
algorithm to converge as it needs a minimal number of training points for optimization. MP-BO
continues to learn after ¢*. Data: mean + SEM.

tation of the objective function. Although MP-BO exhibits the highest learning delta at lower ¢*
values, these values are also associated with incomplete learning, meaning that the final performance
of MP-BO differs from what would be achieved with a larger ¢*. In many cases, intermediate ¢*
values strike a balance, delivering both robust final performance and significant learning gains.

Robustness and Consistency. We study the robustness of MP-BO in noisy datasets or large input
spaces. Indeed, since we do not use continuous input spaces but discretized ones, the performance
can be impacted by the grid size we choose. We thus compare the performance on the 2-dimensional
Ackley function and increasing the number of available discrete input points. Knowing that BO
can suffer from the curse of dimensionality (Papenmeier et al.l [2022) and have trouble converging
in higher-dimensional datasets, we also increase the dimension of the Ackley function and assess
the performance of VANILLA BO and MP-BO. Results are shown in Figure [d The experiment
shows that MP-BO does not particularly suffer from an increasing input dimension, provided that a
reasonable amount of learning has already occurred at gx.

Input Size

— 32 pts 14 1

64 pts — dim 2
— 128 pts g 3 dim 4
—_— 80| 5 .

256 pts 8 & — dim 6

512 pts — dim 8
— 1024 pts : N

0 Itelail;ion 150 0 Bemﬁon 150
—---- Vanilla BO — MP-BO

Figure 4: MP-BO performance for diverse problem dimensions. On the left, we use the 2-
dimensional Ackley function, with a varying number of available discrete input points. On the right,
we used a fixed number of discrete input points with a varying number of dimensions. VANILLA BO
performance is represented by the dashed lines, while MP-BO is represented by the solid lines. We
do not display standard errors for visibility purposes. The vertical dotted line represents ¢* = 20.

We then turn our attention to the observation noise. Since we do not have direct access to the
objective function, we only observe values corrupted by noise: y; = f(x;)+e;, with e; ~ N(0,02).
We evaluate the performance of MP-BO under varying levels of noise, ranging from 0% to 50% of
the optimal value. Figure [3| presents representative results for noise levels of 0%, 2.5%, and 20%,
for brevity. The figure shows that for small datasets like Ackley and Michalewicz 2D, the noise
level has little impact. However, for larger datasets, optimization becomes more challenging with
VANILLA BO, and the effect of noise on MP-BO becomes more pronounced.

Under review as a conference paper at ICLR 2025

Noise AcKley Michalewicz 2D Michalewicz 4D Fhrtmann —_—
level (ov) : : : . MP-BO
104 : 1t 1t -
Vanilla BO
0%
q =20
2.5%
20% i
0.0

0 feration 150 0 Remmtion 150 0 Rermtion 150 0 Rermtion 150

Figure 5: Influence of the noise level on the performance of MP-BO. Data: mean + SEM.

Time Reduction. As seen in the previous results, MP-B O manages to continue learning the objec-
tive function representation after ¢*. Setting a too low value for ¢* makes it very slow to converge,
but since it is faster than VANILLA BO, we can afford to perform more iterations. In Figure 6] we
compare VANILLA BO and MP-BO, for the same duration, to determine the regret each algorithm
can achieve when considering, more meaningfully, the total execution time, as opposed to the num-
ber of queries. MP-BO being faster, it can perform more iterations and thus reach a smaller value
of regret in the same amount of time. Thus, MP-BO can have very interesting applications when
onboarded in systems with limited computing power, where the computation time at each iteration
would otherwise rapidly rise beyond the constraints of the optimization problem.

Ackley Michalewicz 2D Michalewicz 4D Hartmann

MP-BO

Vanilla BO

Regret

1
LTSI PR Y S Y NP

0 Vstmmssstotas

00 25 50 75 00 25 50 750 5 10 0 5 10
Time (s) Time (s) Time (s) Time (s)

Figure 6: Regret with respect to the time spent in the optimization. The x-axis represents the
total time spent in optimization through iterations. The value of ¢* is 20 and we use a noise of 10%.
VANILLA BO is run on 300 queries, while MP-BO can perform approximately 550 queries in the
same timeframe. Both are repeated 10 times. Data: mean + SEM.

4.3 RESULTS ON REAL WORLD DATASETS

Multiple domains can benefit from a faster optimization process with guarantees of execution time,
and here we present a real-world example on neurostimulation optimization. We utilize a dataset
collected in non-human primates (Bonizzato et al.,[2021}; [2023), with the goal of selecting the opti-
mal brain stimulation pattern that maximizes muscle responses in a 2-dimensional input space. The
responses are noisy, so each stimulation option is sampled multiple times to estimate the average
response, which is then considered the ground truth (Figure 7).

Under review as a conference paper at ICLR 2025

In this problem, muscle responses are collected within 100 ms of stimulation, theoretically allowing
a high rate of optimization query iterations. However, the execution time per query for BO would
increase rapidly and continuously over time, ultimately limiting the achievable repetition rate.

— MP-BO —— Extensive Search
-==-Vanilla BO - q* =32
08 Neurostimulation Dataset

FlexorCarpiUlnaris . Ext(‘us(n’Digitm'\un(fommuni# ExtensorCarpiRadialis
[T 10 1.0

OpponensPollicis

FlexorPollicisBrevis AdductorPollicis

]
Regret

00 0 Iteration 96

0.0

Figure 7: MP-BO performance on a neurostimulation dataset. On the left, average muscle re-
sponses to cortical stimulation are displayed for each input option. This is the ground truth of the
function to optimize. The input space is a (10 x 10) grid. On the right, the average result of BO on
4 non-human primates. Our experiment is done on 20 repetitions per subject. Data: mean 4+ SEM.

In Figure[7] we show the result of optimization on twenty-two EMGs from four non-human primates.
Here, we show another benchmark optimization method, called Extensive Search. This is the base
method used by human operators to determine the optimal input in neuroscience research practice
(Bonizzato et al.| 2023) and corresponds to sampling all input points in random order. We compare
MP-BO with applying Extensive Search after gx. This benchmark is relevant due to its minimal

computational cost; however, it suffers from more significant performance degradation compared to
MP-BO.

This experiment provides an empirical demonstration of MP-BO in solving an engineering problem
where practical solutions are scarce (Bonizzato et al} [2023). Given that the neural interface is
implanted, its optimization must rely on limited computational resources, making MP-BO well
suited for such scenarios.

5 CONCLUSION

We developed a new method to adapt BO to a context where memory and/or time are limited. Our
Memory-Pruning algorithm is capable of learning and predicting the objective function’s maximum.
Furthermore, it has strict guarantees on capping execution time to a desired value.

One limitation is that although MP-BO seems to be able to find the maximum of the objective
function, the number of iterations required may be large, and there is currently no guarantee that the
algorithm will converge. Further developments are needed to demonstrate convergence, if indeed
convergence occurs. We believe that our technique can have a real impact on the performance of
embedded BO systems, particularly in embedded systems for autonomous neurostimulation.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Dmitry Belov and Ronald Armstrong. Distributions of the kullback-leibler divergence with applica-
tions. The British journal of mathematical and statistical psychology, 64:291-309, 05 2011. doi:
10.1348/000711010X522227.

M Beudel and P Brown. Adaptive deep brain stimulation in parkinson’s disease. Parkinsonism &
related disorders, 22:S123-S126, 2016.

Marco Bonizzato, Elena Massai, Sandrine Co6té, Stephan Quessy, Marina Martinez, and Numa Dan-
cause. Optimizeneurostim. Retrieved Sep 1st, 2024, from https://osf.io/54vhx, 2021.

Marco Bonizzato, Rose Guay Hottin, Sandrine L. C6té, Elena Massai, Léo Choiniere, Uzay Macar,
Samuel Laferriere, Parikshat Sirpal, Stephan Quessy, Guillaume Lajoie, Marina Martinez, and
Numa Dancause. Autonomous optimization of neuroprosthetic stimulation parameters that drive
the motor cortex and spinal cord outputs in rats and monkeys. Cell Reports Medicine, 4(4):
101008, 2023. ISSN 2666-3791. doi: https://doi.org/10.1016/j.xcrm.2023.101008. URLhttps:
//www.sciencedirect.com/science/article/pii/S2666379123001180.

Adam D. Bull. Convergence rates of efficient global optimization algorithms, 2011.

Zhaozhong Chen, Christoffer Heckman, Simon Julier, and Nisar Ahmed. Weak in the nees?: Auto-
tuning kalman filters with bayesian optimization. In 2018 21st International Conference on In-
formation Fusion (FUSION), pp. 1072-1079. IEEE, 2018.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503-507, 2015.

Youssef Diouane, Victor Picheny, Rodolphe Le Riche, and Alexandre Scotto Di Perrotolo. Trego:
a trust-region framework for efficient global optimization. Journal of Global Optimization, 86:
1-23, 10 2022. doi: 10.1007/s10898-022-01245-w.

David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization, 2020.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances
in Neural Information Processing Systems, 2018.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Rel Guzman, Rafael Oliveira, and Fabio Ramos. Heteroscedastic bayesian optimisation for stochas-
tic model predictive control, 2020.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration, 2019.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaussian
processes and kernel methods: A review on connections and equivalences, 2018.

Mayuresh Kunjir. Guided bayesian optimization to autotune memory-based analytics. In 2019
IEEE 35th International Conference on Data Engineering Workshops (ICDEW), pp. 125-132,
2019. doi: 10.1109/ICDEW.2019.00-22.

Harold J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise, 1964.

Samuel Laferriere, Marco Bonizzato, Sandrine L. C6té, Numa Dancause, and Guillaume Lajoie. Hi-
erarchical bayesian optimization of spatiotemporal neurostimulations for targeted motor outputs.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(6):1452-1460, 2020.
doi: 10.1109/TNSRE.2020.2987001.

Remi Lam, Matthias Poloczek, Peter Frazier, and Karen Willcox. Advances in bayesian optimization
with applications in aerospace engineering. 01 2018. doi: 10.2514/6.2018-1656.

11

https://osf.io/54vhx
https://www.sciencedirect.com/science/article/pii/S2666379123001180
https://www.sciencedirect.com/science/article/pii/S2666379123001180

Under review as a conference paper at ICLR 2025

Yucen Lily Li, Tim G. J. Rudner, and Andrew Gordon Wilson. A study of bayesian neural network
surrogates for bayesian optimization, 2024.

Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. Pruning algorithms to accelerate
convolutional neural networks for edge applications: A survey, 2020.

David John Cameron MacKay. Introduction to gaussian processes. 1998. URL https://api.
semanticscholar.org/CorpusID:116281095.

Ximeng Mao, Yao-Chuan Chang, Stavros Zanos, and Guillaume Lajoie. Personalized inference for
neurostimulation with meta-learning: a case study of vagus nerve stimulation. Journal of Neural
Engineering, 21(1):016004, 2024.

Ruben Martinez-Cantin, Kevin Tee, and Michael McCourt. Practical bayesian optimization in the
presence of outliers, 2017.

Mitchell Mclntire, Daniel Ratner, and Stefano Ermon. Sparse gaussian processes for bayesian
optimization. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, UAI’16, pp. 517-526, Arlington, Virginia, USA, 2016. AUAI Press. ISBN
9780996643115.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
New York, NY, USA, 1995.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adap-
tive bayesian optimization in nested subspaces. Advances in Neural Information Processing Sys-
tems, 35:11586-11601, 2022.

Kirk Pruhs and Udi Manber. The complexity of controlled selection. Information
and Computation, 91(1):103-127, 1991. ISSN 0890-5401. doi: https://doi.org/10.
1016/0890-5401(91)90076-E. URL https://www.sciencedirect.com/science/
article/pii/089054019190076E.

Elena Raponi, Hao Wang, Mariusz Bujny, Simonetta Boria, and Carola Doerr. High dimensional
bayesian optimization assisted by principal component analysis. CoRR, abs/2007.00925, 2020.
URLhttps://arxiv.org/abs/2007.00925.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, 2006. ISBN 026218253X.

Ibai Roman, Roberto Santana, Alexander Mendiburu, and Jose A. Lozano. An experimental study
in adaptive kernel selection for bayesian optimization. IEEE Access, 7:184294-184302, 2019.
doi: 10.1109/ACCESS.2019.2960498.

Parisa Sarikhani, Benjamin Ferleger, Kyle Mitchell, Jill Ostrem, Jeffrey Herron, Babak Mahmoudi,
and Svjetlana Miocinovic. Automated deep brain stimulation programming with safety con-
straints for tremor suppression in patients with parkinson’s disease and essential tremor. Journal
of neural engineering, 19(4):046042, 2022.

Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t processes as alternatives
to gaussian processes, 2014.

Alexander E. Siemenn, Zekun Ren, Qianxiao Li, and Tonio Buonassisi. Fast bayesian optimiza-
tion of needle-in-a-haystack problems using zooming memory-based initialization (zombi). npj
Computational Materials, 9(1), May 2023. ISSN 2057-3960. doi: 10.1038/s41524-023-01048-x.
URL http://dx.doi.org/10.1038/s41524-023-01048-x.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Y. Weiss, B. Scholkopf, and J. Platt (eds.), Advances in Neural Information Processing Sys-
tems, volume 18. MIT Press, 2005. URL https://proceedings.neurips.cc/paper_
files/paper/2005/file/4491777blaa8b5b32c2e8666dbelad95-Paper.pdf.

12

https://api.semanticscholar.org/CorpusID:116281095
https://api.semanticscholar.org/CorpusID:116281095
https://www.sciencedirect.com/science/article/pii/089054019190076E
https://www.sciencedirect.com/science/article/pii/089054019190076E
https://arxiv.org/abs/2007.00925
http://dx.doi.org/10.1038/s41524-023-01048-x
https://proceedings.neurips.cc/paper_files/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf

Under review as a conference paper at ICLR 2025

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/05311655a15b75fab86956663e1819cd-Paper.pdfl

Artur Souza, Luigi Nardi, Leonardo B. Oliveira, Kunle Olukotun, Marius Lindauer, and Frank Hut-
ter. Bayesian optimization with a prior for the optimum, 2021. URL https://arxiv.org/
abs/2006.14608.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-
theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Transactions
on Information Theory, 58(5):3250-3265, May 2012. ISSN 1557-9654. doi: 10.1109/tit.2011.
2182033. URL http://dx.doi.org/10.1109/TIT.2011.2182033.

Sonja Surjanovic and Derek Bingham. Virtual library of simulation experiments: Test functions and
datasets. Retrieved May 30, 2024, from http://www.sfu.ca/~ssurjano, 2013.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In David
van Dyk and Max Welling (eds.), Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 567-574,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16-18 Apr 2009. PMLR. URL
https://proceedings.mlr.press/v5/titsias09%a.html.

Charlie Vanaret, Jean-Baptiste Gotteland, Nicolas Durand, and Jean-Marc Alliot. Certified global
minima for a benchmark of difficult optimization problems, 2020. URL https://arxiv.
org/abs/2003.09867.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization, 2022.

Nikolaus Wenger, Eduardo Martin Moraud, Stanisa Raspopovic, Marco Bonizzato, Jack DiGio-
vanna, Pavel Musienko, Manfred Morari, Silvestro Micera, and Grégoire Courtine. Closed-
loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after com-
plete spinal cord injury. Science Translational Medicine, 6(255):255ral133-255ral133, 2014.
doi: 10.1126/scitranslmed.3008325. URL https://www.science.org/doi/abs/10.
1126/scitranslmed.3008325.

Lorenz Wernisch, Tristan Edwards, Antonin Berthon, Olivier Tessier-Lariviere, Elvijs Sarkans,
Myrta Stoukidi, Pascal Fortier-Poisson, Max Pinkney, Michael Thornton, Catherine Hanley, et al.
Online bayesian optimization of vagus nerve stimulation. Journal of Neural Engineering, 21(2):
026019, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://arxiv.org/abs/2006.14608
https://arxiv.org/abs/2006.14608
http://dx.doi.org/10.1109/TIT.2011.2182033
http://www.sfu.ca/~ssurjano
https://proceedings.mlr.press/v5/titsias09a.html
https://arxiv.org/abs/2003.09867
https://arxiv.org/abs/2003.09867
https://www.science.org/doi/abs/10.1126/scitranslmed.3008325
https://www.science.org/doi/abs/10.1126/scitranslmed.3008325

Under review as a conference paper at ICLR 2025

A DATASETS USED

A.1 BENCHMARK DATASETS

All test functions are sourced from a library of optimization functions (Surjanovic & Bingham,
2013)), and the evaluations of the true optimum values are drawn from (Vanaret et al |[2020). We
discretize the input space and apply our strategy to these datasets.

Table 1: Test function and their domain.

Function name Dimension Size Test region
Ackley 2 64 x 64 [—32,32)2
Hartmann 6 50 [0,1]6
Michalewicz 2,4 64 x 64,10* [0,7]?, [0,]*

A.1.1 ACKLEY

d
— exp ((11 Z cos(cxi)> + a+ exp(1) (8)
i=1

Where a = 20, b = 0.2, ¢ = 27 are the usual parameters values and d is the dimension of the input
space.

Ackley (2D)

14
12
i

[FCRS—Y

Figure 8: Ackley function in two dimensions. Since our problem involves maximization, we opti-
mize the negative of the function.

A.1.2 MICHALEWICZ

d -
flx)=- Z sin(z;) sin®™ (in >)
i=1

™

Where m = 10 is the usual value and d is the dimension.

14

Under review as a conference paper at ICLR 2025

Michalewicz (2D)

Figure 9: Michalewicz function in 2 dimensions. Since our problem involves maximization, we

optimize the negative of the function.

A.1.3 HARTMANN

4

fo) ==Y ciexp [=D Aija; — Py)?
i=1

i= j=1

Where:

10 3 17 3.5
0.06 10 17 0.1
3 35 17 10
17 8 0.05 10

c=11.0,1.2,3.0,3.2] A=

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

15

(10)

1.7 8
8§ 14
17 8
0.1 14

Under review as a conference paper at ICLR 2025

B STRATEGIES

In addition to our tests with MP-BO, we evaluate multiple other non-random, deterministic strate-
gies for removing a sampled training point. These include a FiFo approach, which eliminates the
oldest query; an approach that removes the query with the worst response; and two approaches that
target intermediate queries, selected by the arithmetic and geometric mean responses, respectively.
These are reported in Table 2] In Figure [I0} we show that the optimization performance achieved
for other strategies does not exceed that of MP-BO.

Table 2: Alternative pruning strategies.

Strategy Index in D, .; selected
MP-BO U(1,t) \ argmax,;{y; }
FiFo 1
Worst arg min; {y; }
Mean arg min, {|1 25:1 vj — vil}

GeoMean (He et al., 2019) argmin,;{|*, /H§:1 vj —vil}

-------- q* =20 — MP-BO Mean -+ - Worst
=-==- Vanilla BO —-— FiFo ——— GeoMean

Ackley Michalewicz 2D Michalewicz 4D Hartmann

) I
LI f.’."l",""" J.,'._"_l‘!l'
| WA

sohens, AN
Moo, A Pyua
o A (e H === —y
0l BN | | - .
0 150 0 150 0 150 0 150

Iteration Iteration Iteration Iteration

Figure 10: Regret comparison of differents pruning strategies with VANILLA BO.

16

	Introduction
	Background and Problem Statement
	Problem Setup
	Bayesian Optimization
	Related Work

	Memory-Pruning for Bayesian Optimization (MP-BO)
	Memory Pruning Strategy

	Experiments
	Experimental Setup
	Experimental Results on Synthetic Datasets
	Results on Real World Datasets

	Conclusion
	Datasets used
	Benchmark datasets
	Ackley
	Michalewicz
	Hartmann

	Strategies

