
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MEMORY-PRUNING ALGORITHM
FOR BAYESIAN OPTIMIZATION
WITH STRICT COMPUTATIONAL COST GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Bayesian Optimization (BO) is a powerful tool for optimizing noisy and
expensive-to-evaluate black-box functions, widely used in fields such as machine
learning and various branches of engineering. However, BO faces significant chal-
lenges when applied to large datasets or when it requires numerous optimization
iterations. The computational and memory demands of updating Gaussian Process
(GP) models can result in unmanageable computation times. To address these lim-
itations, we propose a new Bayesian Optimization algorithm with memory prun-
ing (MP-BO), which restricts the maximum training data size by acquiring new
queries while concurrently removing data points from the training set. This ap-
proach guarantees a maximum algorithmic complexity of O(m3), where m ≪ n
is a fixed value and n represent the size of the full training set. The pruning strat-
egy ensures reduced and constant memory usage and computation time, without
significantly degrading performance. We evaluate MP-BO on synthetic bench-
marks and a real neurostimulation dataset, demonstrating its robustness and ef-
ficiency in scenarios where traditional BO would fail under strict computational
constraints. Our results suggest that MP-BO is a promising solution for applica-
tions that require efficient optimization with limited computing resources.

1 INTRODUCTION

Bayesian optimization (BO) is used in a variety of applications to optimize costly to evaluate and
noisy black-box functions. It has been widely applied in numerous fields, such as machine learning
(Snoek et al., 2012) and several branches of engineering (Lam et al., 2018) due to its effectiveness
in dealing with complex optimization problems with a small amount of data.

One of the most significant challenges of BO is its application to large volumes of training data. BO
relies on constructing a model, called surrogate, to approximate an objective function and using an
acquisition strategy to guide the search over a parameter space. The most commonly used surro-
gate models are Gaussian Processes (GPs) (MacKay, 1998). However, updating a GP with newly
collected data points is computationally and memory-intensive. The algorithmic complexity of BO
with GPs grows cubically with n, the number of past queries or collected data points. As a result,
the usability of this method suffers as the amount of training data increases, leading to excessive
computational times that are incompatible with time-sensitive problems. Furthermore, the mem-
ory requirements for data storage and processing grow quadratically with n, imposing significant
constraints on the available memory resources (Kunjir, 2019).

These limitations are particularly challenging in closed-loop settings, where optimization must run
on devices with constrained resources, such as embedded systems or small autonomous platforms.
Many engineering fields rely heavily on autonomous decision-making to manage system dynamics
and real-time operations. In many cases, strict requirements in decision-making time are imposed,
which are incompatible with VANILLA BO increase in execution time, and a fixed limit is requred.
These fields include autonomous robotics, where BO has compelling applications for learning and
adaptation (Cully et al., 2015). Learning actuation patterns in real time, as the robot moves, requires
performing optimization tasks within strict execution time limits and under constrained computa-
tional resources. In other domains, such as real-time financial trading systems, large computing

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

resources may be available, but rapid decision-making is essential, thus strict execution times must
be enforced for algorithms to continuously trade on markets. Continuous increases in computing
time for each action would make long-term continual optimization unfeasible.

Another field facing similar challenges is the development of intelligent medical devices. In this
context, autonomous optimization and adaptation are desirable not only for robustness across envi-
ronments of user’s daily living, but also for ensuring patient data security. Implanted medical devices
often must rely on low computational resources. One compelling application of BO in the realm of
intelligent or adaptive (Beudel & Brown, 2016) medical devices is neurostimulation programming.
In this context, a pacemaker-like device delivers stimuli to the brain or nervous system to evoke a
desired physiological response, such as pain relief or improvement of motor control. The key chal-
lenge in neurostimulation is to efficiently identify the stimulation patterns and parameters, such as
position, frequency, and intensity, that optimally evoke the targeted response. For example, BO can
be used with deep brain stimulation to help treat Parkinson’s disease (Sarikhani et al., 2022), to tune
vagus nerve stimulation (Wernisch et al., 2024; Mao et al., 2024) and brain or spinal stimulation
to recover walking after spinal cord injury (Wenger et al., 2014). BO is particularly advantageous
in this context, often producing superior results compared to other search methods, even when ex-
ploring only a small subset of possible parameter combinations (Bonizzato et al., 2023; Laferrière
et al., 2020). Minimizing computation time and memory usage is essential, as it directly influences
the feasibility of system miniaturization. Compact, portable systems capable of being used out-
side the laboratory are critical for advancing clinical applications, and this development necessitates
algorithms that are both highly performant and resource efficient.

To address these challenges, we propose a BO algorithm with a Memory-Pruning method (MP-
BO). Our approach iteratively deletes training data points as new queries are acquired, keeping the
algorithmic complexity constant at O(m3) for some chosen m ≪ n. This pruning strategy not only
alleviates memory constraints, but also drastically reduces the optimization time as n increases. With
MP-BO, we do not claim to outperform the classic BO algorithm, although, as we later demonstrate,
there are cases where this is possible. Rather, our focus is on enforcing strict limits on computational
time and memory usage while minimizing performance loss relative to full-capacity BO. Thus, MP-
BO works by randomized eviction of training points, an effective choice that is agnostic to the
problem structure and outperforms simple deterministic strategies.

Formally, we make the following contributions:

• We develop MP-BO, an algorithm that provides strict guarantees on memory usage and
computational time by iteratively removing data from the training set at any time a new
data point is acquired.

• We benchmarked our algorithm across various optimization problems, demonstrating its
potential and assessing its robustness to noise level and increasing input size.

• We applied MP-BO to a real-world neurostimulation dataset, showcasing its effectiveness
in a practical, real-world application.

2 BACKGROUND AND PROBLEM STATEMENT

In this section, we formally define the BO framework.

2.1 PROBLEM SETUP

We consider the problem of optimizing an unknown, or black-box function f as follows:

x∗ = argmax
x∈X

f(x) (1)

such that f : X → R and X ⊂ Rd. Here, the objective function f is expensive to evaluate.

We define the training dataset with D1:n := (X, y), where X = (x1, ..., xn)
T is the dataset of the

points sampled in X , and y = (y1, ..., yn)
T their corresponding observation. We deal with noisy

observations, which means that we cannot directly access the objective function: yi = f(xi) +
ϵi ∀i ∈ {1, ..., n}, with ϵi ∼iid N (0, σ2

noi). We only consider homoskedastic noise, where ϵi and
xi are independent, even if heteroskedastic noise can also be treated (Guzman et al., 2020).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 BAYESIAN OPTIMIZATION

BO uses a surrogate model as a probability distribution for the objective function. Since the ana-
lytical form of the objective function is unknown, it is treated as a random function and assigned
a belief prior. As the objective function is evaluated, BO calculates the new distribution posterior,
using the likelihood of the observations and updating the prior using Bayes’ theorem:

P (f |D1:n)︸ ︷︷ ︸
Posterior

∝
Likelihood︷ ︸︸ ︷

P (y|X, f)

Prior︷ ︸︸ ︷
P (f |X) . (2)

The optimization is based on a sampling strategy which guides the algorithm in collecting the next
point at each iteration. The sampling strategy is determined by maximizing an acquisition function,
which provides a measure of utility for each possible next point to be sampled. In the beginning,
if we have no prior knowledge about the objective function (Souza et al., 2021), the algorithm
chooses random initial points to start the optimization. The surrogate model is key in BO because
it encapsulates the beliefs about the objective function’s shape. The most popular surrogate model
is the GP, but others can be used, like Student-t Processes (Shah et al., 2014), or Bayesian Neural
Networks (Li et al., 2024). The choice of the surrogate model is extremely problem dependent. In
this study, we employ GP, but most derivations can easily be extended.

Gaussian Process. A GP (Rasmussen & Williams, 2006; Garnett, 2023) is a stochastic process,
defined by an infinite collection of random variables, where any finite subset follows a multivariate
normal distribution. GPs are particularly important in BO due to their compatibility with the Gaus-
sian likelihood function. Consequently, after sampling points, the posterior distribution, as computed
with Equation 2 remains a GP. A GP is fully characterized by its mean function, µ : X → R, and
positive semidefinite covariance function or kernel, k : X ×X → R. A GP can then be expressed as
f ∼ GP(µ, k). At initialization, the mean and kernel functions are specified to model a particular
class of functions. Often, a non-informative mean function, such as µ ≡ 0, is used. The choice of
kernel is especially important, as it determines the spatial properties of the surrogate model, directly
influencing its capacity to capture patterns in the data.

Kernels. Different kernels can be used to fit a GP on f (Roman et al., 2019). In this study, we use
the popular 5/2-Matérn kernel (Chen et al., 2018; Rasmussen & Williams, 2006) defined as follows:

k(r) =

(
1 +

√
5r

l
+

5r2

3l2

)
exp

(
−
√
5r

l

)
(3)

where r is the distance between two points of X , l is the positive lengthscale parameter.

Posterior. The posterior distribution refers to the updated probability distribution over f after in-
corporating newly observed data. Considering Gaussian likelihood and noise in the observations, we
have a closed form for the posterior distribution. As we collect samples and add them to the training
dataset, the prior is updated to form the posterior distribution to improve the model’s approximation
of the objective function. Conjugated with the likelihood function - see Equation 2 - the posterior
distribution f |D1:n is a GP of mean µ̃ and covariance k̃ (Kanagawa et al., 2018):

µ̃(x) = µ(x) + kTX,x(KX + σ2
noiI)

−1(y − µX) (4)

k̃(x, x′) = k(x, x′)− kTX,x(KX + σ2
noiI)

−1kX,x′ (5)

In the above expression, kX,x′ = (k(x1, x′), k(x2, x′), ..., k(xn, x′))T .

Acquisition Function. The acquisition function is very important in BO. This determines which
new point will be collected. It provides a measure of utility for each new point to be sampled. The
next point x∗ is selected as the one which maximizes the acquisition function AF :

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

x∗ = argmaxx∈XAF (x|D1:t) (6)

There are several acquisition functions available (Wang et al., 2022), the earliest being Probability
of Improvement (Kushner, 1964). A common choice is Expected Improvement (Bull, 2011), which
is numerically stable. The one we use in this study is the popular Upper Confidence Bound (UCB):

AF (x|D1:t) = µ(x) + κσ(x) (7)

In the above expression, κ > 0 is a fixed exploration-exploitation trade-off hyperparameter and
σ(x) =

√
k(x, x). The algorithm tends to exploit areas where the potential reward is high (great

values of µ), or explore areas where the uncertainty of f is high (great values of σ). This tradeoff is
monitored by κ which optimal value is problem-dependent.

2.3 RELATED WORK

Several studies have attempted to improve BO precision and computation time as the amount of data
increases, but none fas addressed the issue by intervening in the query history, nor has offered strict
guarantees of fixed computation time and a limit in memory usage.

BO in High Dimension. BO faces problems such as the curse of dimensionality, which leads to
excessive computation time and memory usage as the number of training data points increases. An
approach using Principal Component Analysis has been explored to improve scalability of BO in
high-dimensional search spaces (Raponi et al., 2020), reducing CPU time by up to 10x, although the
time still scaled with data complexity. Other hierarchical approaches have been proposed to address
this issue, including specific applications like neurostimulation (Laferrière et al., 2020). However,
while these methods reduce the number of full-dimensional queries by pre-training the GP in lower
dimensions, they still require several iterations in the full-dimensional space.

Domain Shrinking. Numerous studies have attempted to improve BO by progressively reducing
the search space to a confidence region. For example, TuRBO (Eriksson et al., 2020) is a method
that optimizes GPs locally within multiple confidence regions, retaining only the best-performing
regions in order to reduce the search space. By alternating local and global optimization phases,
TREGO (Diouane et al., 2022) improves the efficiency of BO with Expected Improvement. We
can also mention ZoMBI (Siemenn et al., 2023), an algorithm which limits the search space to the
regions between the best points found, greatly reducing the optimization time. This algorithm works
particularly well for ”needle-in-a-haystack” problems where pruning of the input space is necessary.

Sparse Gaussian Processes. Another important approach to improve BO involves sparse Gaus-
sian processes (SpGPs), an approximate version of standard GPs that uses a limited set of synthetic
inducing points as a support set. This method relies on a fixed number of pseudo-entries to approx-
imate the full GP (Snelson & Ghahramani, 2005), reducing computational costs while preserving
accuracy. By optimizing these pseudo-entries, SpGPs capture relevant information from the dataset.
Variational formulations further enhance this approach by optimizing the inducing inputs through
maximizing a lower bound on the logarithmic marginal likelihood, allowing the inducing points to
be optimized alongside the kernel parameters of the SpGP (Titsias, 2009). SpGPs have also been
adapted to BO (McIntire et al., 2016), although their iterative training cost still scales with n, specif-
ically at O(nm2).

Online Paging Algorithm. The online paging problem is a classic memory management chal-
lenge, where memory is organized into a two-level structure: a fast memory cache of size k, and an
unlimited slow memory. An adversary defines a sequence of requests to be processed by the paging
algorithm. If a requested item is already in the cache, there is no associated cost. However, if the
item resides in slow memory, it must be loaded into the cache at a fixed cost, requiring the eviction
of one existing cache item to maintain the limit of k elements. The eviction rule determines which
item is removed from the cache in each round. Notably, it has been shown that employing a uniform
random eviction rule can lead to a lower overall cost than any deterministic algorithm (Motwani
& Raghavan, 1995). This holds even when the adversary is malicious and adapts the sequence of
requests to exploit the paging algorithm’s eviction strategy (Pruhs & Manber, 1991). These studies
guided our research toward exploring random pruning strategies in BO.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3 MEMORY-PRUNING FOR BAYESIAN OPTIMIZATION (MP-BO)

Computing the exact posterior distribution (Equation 5) requires inverting and storing an (n × n)
matrix, resulting in a computational complexity of O(n3) and a storage requirement of O(n2). In
embedded systems, memory resources are often highly constrained, particularly when the goal is
to minimize system size. By fixing the maximum number of data points m ≪ n to be retained
throughout iterations, we can provide strict guarantees on computational and memory usage. This
approach reduces the time complexity to O(m3) and the storage requirements to O(m2), where m
is fixed by design.

The approach adopted in this study is as follows: once the designed resource limit is reached, we
continue to perform BO optimization, updating a full GP distribution, i.e., with no domain shrinking.
However, at each query, collected points from the training set are removed iteratively, thereby strictly
limiting the dimension of the matrix to be inverted. This size limit provides precise guarantees
of computational cost, both in time and in memory, for each future iteration. Consequently, the
optimization is performed on a subset of all collected samples rather than on the entire dataset.
The challenge lies in selecting which points to prune while maintaining a model that accurately
captures the desired f -optimum. Algorithm 1 outlines our approach, MP-BO, where q∗ represents
the iteration at which we begin to remove training points.

Algorithm 1 Bayesian Optimization with Memory Pruning (MP-BO)
1: Init: Randomly sample a point x1 and its response y1.
2: D1:1 := {(x1, y1)}
3: Set µ(.) = 0, σ(.) =

√
k(., .)

4:
5: for n = 1, 2, . . . do
6: xn+1 = argmaxx AF (x|D1:n) ▷ Find new xn+1 to sample
7: yn+1 = f(xn+1) + εn+1 ▷ Sample the objective function
8: if n ≥ q∗ then
9: (x̃, ỹ) = u(D1:n) ▷ Find a query to delete and remove it from training set

10: D1:n = D1:n \ {(x̃, ỹ)}
11: end if
12: D1:n+1 = D1:n ∪ {(xn+1, yn+1)} ▷ Augment the data set and update the surrogate model
13: Compute µ and σ̃ of the GP
14: for all x ∈ X do
15: σ(x) = min(σ(x), σ̃(x)) ▷ Keep the minimal uncertainty σ(x) for each x ∈ X
16: end for
17: end for

When removing a data point, the GP uncertainty σ(x) will be raised. This might mislead the ac-
quisition function UCB, which usually depends on σ(x), to sample again the pruned data point. To
avoid this phenomenon, we have established the rule σ(x) = min(σ(x), σ̃(x)), which forces the
GP uncertainty to follow the minimum between σ(x), calculated at the previous query, and σ̃(x)),
calculated after pruning and adding a new data point.

3.1 MEMORY PRUNING STRATEGY

We are looking for an efficient strategy to select a past data point and then remove it from the training
set at each iteration. Figure 1 shows that our strategy described in Algorithm 1 largely reduces, and
maintains constant, the computation time per each future query.

This algorithm is not designed to achieve better performance than VANILLA BO. Rather, our aim is
to minimize performance loss while providing strict guarantees on a limit in computation cost for
any given query. In this context, a theoretical idea would be to select the query which minimizes
the difference between the updated posterior distribution containing this point and the updated dis-
tribution without this point (Titsias, 2009). One could use the Kullback-Leibler Divergence (Belov
& Armstrong, 2011) to get an idea of which query to delete. However, calculating the posterior dis-
tribution can be particularly costly. For this reason, we explore different strategies to only compute
the posterior distribution once, but with the best collected points. We observed that this strategy is
performant for GP-BO, even in large search spaces. At each iteration, we remove a random already

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 1: Schema of MP-BO iteration and computing time. In the schema, two possible pruning
choices are depicted: the first-in-first-out (FiFo) approach, and our MP-BO algorithm. On the right,
the evolution of computing time required for one iteration (time spent in the optimization part and
in the update part, where the mean and kernel functions of the GP are updated) is plotted against
the number of queries. We see that the computational time becomes constant after applying MP-
BO. Data are presented as mean ± standard error of mean (SEM). q∗ = 1000 in this experiment,
indicated by the vertical dashed line.

sampled point from the training set, with the exception of the latest acquisition and the current best
point, in order to protect continual learning and optimization. We also explored alternative strate-
gies, inspired by the online paging problem and by studies on the impact of outliers (Liu et al., 2020;
Siemenn et al., 2023; Martinez-Cantin et al., 2017), but these alternatives did not perform better than
random drop. Insights and results can be found in Appendix B.

While MP-BO provides strict guarantees on computation time and randomized eviction proves to
be more robust than other deterministic methods, there is no guarantee that this pruning approach
is optimal. Depending on the problem, it may benefit from design-specific tuning. For instance,
in highly time-varying optimization problems, a designer may prefer to bias randomized eviction
toward older data points to better follow temporal changes. In this work, we focus on stationary
problems and demonstrate the versatility of MP-BO with randomized eviction exclusively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To assess the performance of our algorithm, we evaluate it on three different bench-
marks of classic optimization problems: Ackley, Michalewicz and Hartmann (Surjanovic & Bing-
ham, 2013), see Appendix A.1. We consider our datasets as discretized because it is relevant for
real world applications, especially in embedded systems. Then, we applie our algorithm on a neu-
rostimulation dataset obtained on non-human primates (Bonizzato et al., 2021; 2023), involving
electromyographic (muscle) responses measured when an electrical microstimulation is applied in
the brain motor cortex. The bi-dimensional location of the stimulation is optimized to find the
strongest evoked movement.

Baseline and Evaluation Metrics. In this study, we compare our algorithm with the VANILLA
BO algorithm. We use a measure of regret to assess the performance of both algorithms. We
also compare our results with different pruning strategies like FiFo or different types of centrality
estimators, with results in Appendix B.

Regret: Let x∗ be a maximizer of f , i.e. x∗ = argmaxx∈X f(x) and suppose that at iteration n ∈ N
in the algorithm, we predict xn as the best point. Then, the instantaneous regret rn is defined by
rn := f(x∗) − f(xn). The instantaneous regret shows if the algorithm converges and if so, how
fast does it converge. Our objective is to minimize its value. Theoretical bounds for the cumulative
regret with the UCB acquisition function already exist (Srinivas et al., 2012).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Implementation Details and Hyperparameters. In our experiments, we perform our tests on
30 independent repetitions. We consider discretized datasets, where the discretization steps are
described in Appendix A.1. We preprocess our data with a min-max normalization such that all the
observations are between 0 and 1. Moreover, we use the gpytorch framework (Gardner et al.,
2018), which allows us to optimize the lengthscale and noise parameters of the GP using maximum
a posteriori estimation (MAP). As we use the UCB acquisition function, we need to determine the
exploration-exploitation trade-off hyperparameter κ. To do so, we run the algorithm with several
values for the hyperparameter and then use the one which gives the best regret. We perform the κ
optimization on the VANILLA BO algorithm and use the same value for MP-BO. Thus, we obtain a
conservative setting, where κ is ideal for VANILLA BO, but has not been tuned for MP-BO. We set
the observation noise hyperparameter to 0.025.

Moreover, we update dynamically the GP’s variance σ(x) =
√

k(x, x) by only keeping the minimal
value between σ(x)t−1 and σ(x)t for each x ∈ X . This is a very important step in our algorithm, as
doing so helps the algorithm to converge and avoids to overly revisit the points that have just been
dropped from memory.

Finally, we define q∗, the iteration at which we start to apply the memory-pruning strategy. Most of
this study uses a value of q∗ = 20, unless indicated otherwise.

Hardware Configuration. The experiments are conducted on a MacBook Pro with an Apple M1
chip, featuring 8 cores (4 performance cores and 4 efficiency cores) and 8 GB of unified memory,
running macOS. This setup represents a conservative choice when compared to use cases involving
more compact and embedded systems, where stricter limits on computational power exacerbate the
issue of unrestrained growth in execution time.

4.2 EXPERIMENTAL RESULTS ON SYNTHETIC DATASETS

0 150Iteration

0

1

R
e
g
re

t

Ackley

0 150Iteration

0

1

Michalewicz 2D

0 150Iteration

0

1

Michalewicz 4D

0 150Iteration

0

1

Hartmann

q* = 20

Vanilla BO

MP-BO

Figure 2: Regret on different optimization benchmarks. Data: mean ± SEM over all the repeti-
tions.

First, we evaluate MP-BO performance on the following synthetic datasets: Ackley, Michalewicz
and Hartmann (Surjanovic & Bingham, 2013), see Appendix A.1. In this study, we compare MP-
BO and VANILLA BO with a fixed value for q∗ = 20. Results are displayed on Figure 2.

We can see that MP-BO achieves robust performance, even if it is slower to converge. Importantly,
it always displays continued learning after q∗. Performance is highly dependent on the number of
training data we allow the algorithm to store, thus on the hyperparameter q∗. There is a clear trade-
off between the number of observations to maintain and the time and memory complexity. Setting
a very low q∗ will surely reduce the computational cost of the algorithm, but will need a lot of
iterations to converge.

Hyperparameter q∗. We ask how much we can reduce the memory usage in MP-BO without
significantly compromising performance. Specifically, we seek to understand whether MP-BO can
continue learning the representation of the objective function after fixing the amount of query his-
tory used for training. To evaluate this, we compare the final performance of MP-BO with that of
VANILLA BO at iteration q∗. The difference in performance indicates whether MP-BO continues
to learn effectively acquiring the new qfinal − q∗ training points. The results of this experiment are
presented in Figure3. Applying our strategy does not prevent MP-BO from learning the represen-

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 60q*

0

1

R
e
g
re

t

Ackley

0 60q*

0

1

Michalewicz 2D

0 60q*

0

1

Michalewicz 4D

0 60q*

0

1

Hartmann

Vanilla BO
at q*

MP-BO after
150 iterations

Figure 3: Final Regret after 150 iterations compared to VANILLA BO’s regret at q∗. In this
figure the impact of q∗ on MP-GPBO is shown. In most cases, a too low value for q∗ prevents our
algorithm to converge as it needs a minimal number of training points for optimization. MP-BO
continues to learn after q∗. Data: mean ± SEM.

tation of the objective function. Although MP-BO exhibits the highest learning delta at lower q∗
values, these values are also associated with incomplete learning, meaning that the final performance
of MP-BO differs from what would be achieved with a larger q∗. In many cases, intermediate q∗

values strike a balance, delivering both robust final performance and significant learning gains.

Robustness and Consistency. We study the robustness of MP-BO in noisy datasets or large input
spaces. Indeed, since we do not use continuous input spaces but discretized ones, the performance
can be impacted by the grid size we choose. We thus compare the performance on the 2-dimensional
Ackley function and increasing the number of available discrete input points. Knowing that BO
can suffer from the curse of dimensionality (Papenmeier et al., 2022) and have trouble converging
in higher-dimensional datasets, we also increase the dimension of the Ackley function and assess
the performance of VANILLA BO and MP-BO. Results are shown in Figure 4. The experiment
shows that MP-BO does not particularly suffer from an increasing input dimension, provided that a
reasonable amount of learning has already occurred at q∗.

0 150Iteration

0

1

R
e
g
re

t

Input Size

0 150Iteration

0

1

R
e
g
re

t

Dimension

Vanilla BO MP-BO

dim 2

dim 4

dim 6

dim 8

32 pts

64 pts

128 pts

256 pts

512 pts

1024 pts

Figure 4: MP-BO performance for diverse problem dimensions. On the left, we use the 2-
dimensional Ackley function, with a varying number of available discrete input points. On the right,
we used a fixed number of discrete input points with a varying number of dimensions. VANILLA BO
performance is represented by the dashed lines, while MP-BO is represented by the solid lines. We
do not display standard errors for visibility purposes. The vertical dotted line represents q∗ = 20.

We then turn our attention to the observation noise. Since we do not have direct access to the
objective function, we only observe values corrupted by noise: yi = f(xi)+ϵi, with ϵi ∼ N (0, σ2

n).
We evaluate the performance of MP-BO under varying levels of noise, ranging from 0% to 50% of
the optimal value. Figure 5 presents representative results for noise levels of 0%, 2.5%, and 20%,
for brevity. The figure shows that for small datasets like Ackley and Michalewicz 2D, the noise
level has little impact. However, for larger datasets, optimization becomes more challenging with
VANILLA BO, and the effect of noise on MP-BO becomes more pronounced.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0.0

1.0

R
e
g
re

t

Noise
level (σn )

0%

Noise
level (σn )

Noise
level (σn )

Ackley Michalewicz 2D Michalewicz 4D Hartmann

0.0

1.0

R
e
g
re

t

2.5%

0 150Iteration

0.0

1.0

R
e
g
re

t

20%

0 150Iteration 0 150Iteration 0 150Iteration

Vanilla BO

q = 20

Vanilla BO

MP-BO

q = 20*

Figure 5: Influence of the noise level on the performance of MP-BO. Data: mean ± SEM.

Time Reduction. As seen in the previous results, MP-BO manages to continue learning the objec-
tive function representation after q∗. Setting a too low value for q∗ makes it very slow to converge,
but since it is faster than VANILLA BO, we can afford to perform more iterations. In Figure 6, we
compare VANILLA BO and MP-BO, for the same duration, to determine the regret each algorithm
can achieve when considering, more meaningfully, the total execution time, as opposed to the num-
ber of queries. MP-BO being faster, it can perform more iterations and thus reach a smaller value
of regret in the same amount of time. Thus, MP-BO can have very interesting applications when
onboarded in systems with limited computing power, where the computation time at each iteration
would otherwise rapidly rise beyond the constraints of the optimization problem.

0.0 2.5 5.0 7.5
Time (s)

0

1

R
e
g
re

t

Ackley

0.0 2.5 5.0 7.5
Time (s)

Michalewicz 2D

0 5 10
Time (s)

Michalewicz 4D

0 5 10
Time (s)

Hartmann

MP-BO

Vanilla BO

Figure 6: Regret with respect to the time spent in the optimization. The x-axis represents the
total time spent in optimization through iterations. The value of q∗ is 20 and we use a noise of 10%.
VANILLA BO is run on 300 queries, while MP-BO can perform approximately 550 queries in the
same timeframe. Both are repeated 10 times. Data: mean ± SEM.

4.3 RESULTS ON REAL WORLD DATASETS

Multiple domains can benefit from a faster optimization process with guarantees of execution time,
and here we present a real-world example on neurostimulation optimization. We utilize a dataset
collected in non-human primates (Bonizzato et al., 2021; 2023), with the goal of selecting the opti-
mal brain stimulation pattern that maximizes muscle responses in a 2-dimensional input space. The
responses are noisy, so each stimulation option is sampled multiple times to estimate the average
response, which is then considered the ground truth (Figure 7).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

In this problem, muscle responses are collected within 100 ms of stimulation, theoretically allowing
a high rate of optimization query iterations. However, the execution time per query for BO would
increase rapidly and continuously over time, ultimately limiting the achievable repetition rate.

Figure 7: MP-BO performance on a neurostimulation dataset. On the left, average muscle re-
sponses to cortical stimulation are displayed for each input option. This is the ground truth of the
function to optimize. The input space is a (10× 10) grid. On the right, the average result of BO on
4 non-human primates. Our experiment is done on 20 repetitions per subject. Data: mean ± SEM.

In Figure 7, we show the result of optimization on twenty-two EMGs from four non-human primates.
Here, we show another benchmark optimization method, called Extensive Search. This is the base
method used by human operators to determine the optimal input in neuroscience research practice
(Bonizzato et al., 2023) and corresponds to sampling all input points in random order. We compare
MP-BO with applying Extensive Search after q∗. This benchmark is relevant due to its minimal
computational cost; however, it suffers from more significant performance degradation compared to
MP-BO.

This experiment provides an empirical demonstration of MP-BO in solving an engineering problem
where practical solutions are scarce (Bonizzato et al., 2023). Given that the neural interface is
implanted, its optimization must rely on limited computational resources, making MP-BO well
suited for such scenarios.

5 CONCLUSION

We developed a new method to adapt BO to a context where memory and/or time are limited. Our
Memory-Pruning algorithm is capable of learning and predicting the objective function’s maximum.
Furthermore, it has strict guarantees on capping execution time to a desired value.

One limitation is that although MP-BO seems to be able to find the maximum of the objective
function, the number of iterations required may be large, and there is currently no guarantee that the
algorithm will converge. Further developments are needed to demonstrate convergence, if indeed
convergence occurs. We believe that our technique can have a real impact on the performance of
embedded BO systems, particularly in embedded systems for autonomous neurostimulation.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dmitry Belov and Ronald Armstrong. Distributions of the kullback-leibler divergence with applica-
tions. The British journal of mathematical and statistical psychology, 64:291–309, 05 2011. doi:
10.1348/000711010X522227.

M Beudel and P Brown. Adaptive deep brain stimulation in parkinson’s disease. Parkinsonism &
related disorders, 22:S123–S126, 2016.

Marco Bonizzato, Elena Massai, Sandrine Côté, Stephan Quessy, Marina Martinez, and Numa Dan-
cause. Optimizeneurostim. Retrieved Sep 1st, 2024, from https://osf.io/54vhx, 2021.

Marco Bonizzato, Rose Guay Hottin, Sandrine L. Côté, Elena Massai, Léo Choinière, Uzay Macar,
Samuel Laferrière, Parikshat Sirpal, Stephan Quessy, Guillaume Lajoie, Marina Martinez, and
Numa Dancause. Autonomous optimization of neuroprosthetic stimulation parameters that drive
the motor cortex and spinal cord outputs in rats and monkeys. Cell Reports Medicine, 4(4):
101008, 2023. ISSN 2666-3791. doi: https://doi.org/10.1016/j.xcrm.2023.101008. URL https:
//www.sciencedirect.com/science/article/pii/S2666379123001180.

Adam D. Bull. Convergence rates of efficient global optimization algorithms, 2011.

Zhaozhong Chen, Christoffer Heckman, Simon Julier, and Nisar Ahmed. Weak in the nees?: Auto-
tuning kalman filters with bayesian optimization. In 2018 21st International Conference on In-
formation Fusion (FUSION), pp. 1072–1079. IEEE, 2018.

Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret. Robots that can adapt like
animals. Nature, 521(7553):503–507, 2015.

Youssef Diouane, Victor Picheny, Rodolphe Le Riche, and Alexandre Scotto Di Perrotolo. Trego:
a trust-region framework for efficient global optimization. Journal of Global Optimization, 86:
1–23, 10 2022. doi: 10.1007/s10898-022-01245-w.

David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization, 2020.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.
Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu acceleration. In Advances
in Neural Information Processing Systems, 2018.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2023.

Rel Guzman, Rafael Oliveira, and Fabio Ramos. Heteroscedastic bayesian optimisation for stochas-
tic model predictive control, 2020.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Filter pruning via geometric median for
deep convolutional neural networks acceleration, 2019.

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaussian
processes and kernel methods: A review on connections and equivalences, 2018.

Mayuresh Kunjir. Guided bayesian optimization to autotune memory-based analytics. In 2019
IEEE 35th International Conference on Data Engineering Workshops (ICDEW), pp. 125–132,
2019. doi: 10.1109/ICDEW.2019.00-22.

Harold J. Kushner. A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise, 1964.

Samuel Laferrière, Marco Bonizzato, Sandrine L. Côté, Numa Dancause, and Guillaume Lajoie. Hi-
erarchical bayesian optimization of spatiotemporal neurostimulations for targeted motor outputs.
IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(6):1452–1460, 2020.
doi: 10.1109/TNSRE.2020.2987001.

Remi Lam, Matthias Poloczek, Peter Frazier, and Karen Willcox. Advances in bayesian optimization
with applications in aerospace engineering. 01 2018. doi: 10.2514/6.2018-1656.

11

https://osf.io/54vhx
https://www.sciencedirect.com/science/article/pii/S2666379123001180
https://www.sciencedirect.com/science/article/pii/S2666379123001180


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yucen Lily Li, Tim G. J. Rudner, and Andrew Gordon Wilson. A study of bayesian neural network
surrogates for bayesian optimization, 2024.

Jiayi Liu, Samarth Tripathi, Unmesh Kurup, and Mohak Shah. Pruning algorithms to accelerate
convolutional neural networks for edge applications: A survey, 2020.

David John Cameron MacKay. Introduction to gaussian processes. 1998. URL https://api.
semanticscholar.org/CorpusID:116281095.

Ximeng Mao, Yao-Chuan Chang, Stavros Zanos, and Guillaume Lajoie. Personalized inference for
neurostimulation with meta-learning: a case study of vagus nerve stimulation. Journal of Neural
Engineering, 21(1):016004, 2024.

Ruben Martinez-Cantin, Kevin Tee, and Michael McCourt. Practical bayesian optimization in the
presence of outliers, 2017.

Mitchell McIntire, Daniel Ratner, and Stefano Ermon. Sparse gaussian processes for bayesian
optimization. In Proceedings of the Thirty-Second Conference on Uncertainty in Artificial
Intelligence, UAI’16, pp. 517–526, Arlington, Virginia, USA, 2016. AUAI Press. ISBN
9780996643115.

Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University Press,
New York, NY, USA, 1995.

Leonard Papenmeier, Luigi Nardi, and Matthias Poloczek. Increasing the scope as you learn: Adap-
tive bayesian optimization in nested subspaces. Advances in Neural Information Processing Sys-
tems, 35:11586–11601, 2022.

Kirk Pruhs and Udi Manber. The complexity of controlled selection. Information
and Computation, 91(1):103–127, 1991. ISSN 0890-5401. doi: https://doi.org/10.
1016/0890-5401(91)90076-E. URL https://www.sciencedirect.com/science/
article/pii/089054019190076E.

Elena Raponi, Hao Wang, Mariusz Bujny, Simonetta Boria, and Carola Doerr. High dimensional
bayesian optimization assisted by principal component analysis. CoRR, abs/2007.00925, 2020.
URL https://arxiv.org/abs/2007.00925.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian processes for machine learning.
Adaptive computation and machine learning. MIT Press, 2006. ISBN 026218253X.

Ibai Roman, Roberto Santana, Alexander Mendiburu, and Jose A. Lozano. An experimental study
in adaptive kernel selection for bayesian optimization. IEEE Access, 7:184294–184302, 2019.
doi: 10.1109/ACCESS.2019.2960498.

Parisa Sarikhani, Benjamin Ferleger, Kyle Mitchell, Jill Ostrem, Jeffrey Herron, Babak Mahmoudi,
and Svjetlana Miocinovic. Automated deep brain stimulation programming with safety con-
straints for tremor suppression in patients with parkinson’s disease and essential tremor. Journal
of neural engineering, 19(4):046042, 2022.

Amar Shah, Andrew Gordon Wilson, and Zoubin Ghahramani. Student-t processes as alternatives
to gaussian processes, 2014.

Alexander E. Siemenn, Zekun Ren, Qianxiao Li, and Tonio Buonassisi. Fast bayesian optimiza-
tion of needle-in-a-haystack problems using zooming memory-based initialization (zombi). npj
Computational Materials, 9(1), May 2023. ISSN 2057-3960. doi: 10.1038/s41524-023-01048-x.
URL http://dx.doi.org/10.1038/s41524-023-01048-x.

Edward Snelson and Zoubin Ghahramani. Sparse gaussian processes using pseudo-inputs. In
Y. Weiss, B. Schölkopf, and J. Platt (eds.), Advances in Neural Information Processing Sys-
tems, volume 18. MIT Press, 2005. URL https://proceedings.neurips.cc/paper_
files/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf.

12

https://api.semanticscholar.org/CorpusID:116281095
https://api.semanticscholar.org/CorpusID:116281095
https://www.sciencedirect.com/science/article/pii/089054019190076E
https://www.sciencedirect.com/science/article/pii/089054019190076E
https://arxiv.org/abs/2007.00925
http://dx.doi.org/10.1038/s41524-023-01048-x
https://proceedings.neurips.cc/paper_files/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2005/file/4491777b1aa8b5b32c2e8666dbe1a495-Paper.pdf


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of ma-
chine learning algorithms. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.),
Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/05311655a15b75fab86956663e1819cd-Paper.pdf.

Artur Souza, Luigi Nardi, Leonardo B. Oliveira, Kunle Olukotun, Marius Lindauer, and Frank Hut-
ter. Bayesian optimization with a prior for the optimum, 2021. URL https://arxiv.org/
abs/2006.14608.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Information-
theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Transactions
on Information Theory, 58(5):3250–3265, May 2012. ISSN 1557-9654. doi: 10.1109/tit.2011.
2182033. URL http://dx.doi.org/10.1109/TIT.2011.2182033.

Sonja Surjanovic and Derek Bingham. Virtual library of simulation experiments: Test functions and
datasets. Retrieved May 30, 2024, from http://www.sfu.ca/˜ssurjano, 2013.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes. In David
van Dyk and Max Welling (eds.), Proceedings of the Twelth International Conference on Artificial
Intelligence and Statistics, volume 5 of Proceedings of Machine Learning Research, pp. 567–574,
Hilton Clearwater Beach Resort, Clearwater Beach, Florida USA, 16–18 Apr 2009. PMLR. URL
https://proceedings.mlr.press/v5/titsias09a.html.

Charlie Vanaret, Jean-Baptiste Gotteland, Nicolas Durand, and Jean-Marc Alliot. Certified global
minima for a benchmark of difficult optimization problems, 2020. URL https://arxiv.
org/abs/2003.09867.

Xilu Wang, Yaochu Jin, Sebastian Schmitt, and Markus Olhofer. Recent advances in bayesian
optimization, 2022.

Nikolaus Wenger, Eduardo Martin Moraud, Stanisa Raspopovic, Marco Bonizzato, Jack DiGio-
vanna, Pavel Musienko, Manfred Morari, Silvestro Micera, and Grégoire Courtine. Closed-
loop neuromodulation of spinal sensorimotor circuits controls refined locomotion after com-
plete spinal cord injury. Science Translational Medicine, 6(255):255ra133–255ra133, 2014.
doi: 10.1126/scitranslmed.3008325. URL https://www.science.org/doi/abs/10.
1126/scitranslmed.3008325.

Lorenz Wernisch, Tristan Edwards, Antonin Berthon, Olivier Tessier-Lariviere, Elvijs Sarkans,
Myrta Stoukidi, Pascal Fortier-Poisson, Max Pinkney, Michael Thornton, Catherine Hanley, et al.
Online bayesian optimization of vagus nerve stimulation. Journal of Neural Engineering, 21(2):
026019, 2024.

13

https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/05311655a15b75fab86956663e1819cd-Paper.pdf
https://arxiv.org/abs/2006.14608
https://arxiv.org/abs/2006.14608
http://dx.doi.org/10.1109/TIT.2011.2182033
http://www.sfu.ca/~ssurjano
https://proceedings.mlr.press/v5/titsias09a.html
https://arxiv.org/abs/2003.09867
https://arxiv.org/abs/2003.09867
https://www.science.org/doi/abs/10.1126/scitranslmed.3008325
https://www.science.org/doi/abs/10.1126/scitranslmed.3008325


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DATASETS USED

A.1 BENCHMARK DATASETS

All test functions are sourced from a library of optimization functions (Surjanovic & Bingham,
2013), and the evaluations of the true optimum values are drawn from (Vanaret et al., 2020). We
discretize the input space and apply our strategy to these datasets.

Table 1: Test function and their domain.
Function name Dimension Size Test region

Ackley 2 64× 64 [−32, 32]2

Hartmann 6 56 [0, 1]6

Michalewicz 2, 4 64× 64, 104 [0, π]2, [0, π]4

A.1.1 ACKLEY

f(x) = −a exp

−b

√√√√1

d

d∑
i=1

x2
i

− exp

(
1

d

d∑
i=1

cos(cxi)

)
+ a+ exp(1) (8)

Where a = 20, b = 0.2, c = 2π are the usual parameters values and d is the dimension of the input
space.

Figure 8: Ackley function in two dimensions. Since our problem involves maximization, we opti-
mize the negative of the function.

A.1.2 MICHALEWICZ

f(x) = −
d∑

i=1

sin(xi) sin
2m

(
ix2

i

π

)
(9)

Where m = 10 is the usual value and d is the dimension.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 9: Michalewicz function in 2 dimensions. Since our problem involves maximization, we
optimize the negative of the function.

A.1.3 HARTMANN

f(x) = −
4∑

i=1

ci exp

−
6∑

j=1

Aij(xj − Pij)
2

 (10)

Where:

c = [1.0, 1.2, 3.0, 3.2] A =

 10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14



P =

0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381



15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B STRATEGIES

In addition to our tests with MP-BO, we evaluate multiple other non-random, deterministic strate-
gies for removing a sampled training point. These include a FiFo approach, which eliminates the
oldest query; an approach that removes the query with the worst response; and two approaches that
target intermediate queries, selected by the arithmetic and geometric mean responses, respectively.
These are reported in Table 2. In Figure 10, we show that the optimization performance achieved
for other strategies does not exceed that of MP-BO.

Table 2: Alternative pruning strategies.
Strategy Index in D1:t selected

MP-BO U(1, t) \ argmaxi{yi}
FiFo 1
Worst argmini{yi}
Mean argmini{| 1t

∑t
j=1 yj − yi|}

GeoMean (He et al., 2019) argmini{|t
√∏t

j=1 yj − yi|}

0 150Iteration

0

1

R
e
g
re

t

Ackley

0 150Iteration

0

1

Michalewicz 2D

0 150Iteration

0

1

Michalewicz 4D

0 150Iteration

0

1

Hartmann

q* = 20

Vanilla BO

MP-BO

FiFo

Mean

GeoMean

Worst

Figure 10: Regret comparison of differents pruning strategies with VANILLA BO.

16


	Introduction
	Background and Problem Statement
	Problem Setup
	Bayesian Optimization
	Related Work

	Memory-Pruning for Bayesian Optimization (MP-BO)
	Memory Pruning Strategy

	Experiments
	Experimental Setup
	Experimental Results on Synthetic Datasets
	Results on Real World Datasets

	Conclusion
	Datasets used
	Benchmark datasets
	Ackley
	Michalewicz
	Hartmann


	Strategies

