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ABSTRACT

Point cloud representation is becoming increasingly popular due to its low mem-
ory footprint, ease of creation, collection and modification. As the size of the point
cloud increases, we need to incorporate a down-sampling operation to meet the
computational demands of the tasks. Classical approaches such as farthest point
sampling perform exceedingly well over downstream tasks. The major drawback
is that farthest point sampling is a mere heuristic and does not take geometric pri-
ors such as curvature into consideration. We propose a novel sampling procedure
that conditions the output of farthest point sampling with curvature information.
We create a joint rank by multiplying the soft furthest point rank with correspond-
ing curvature scores obtained via a deep neural network and exchange a percent-
age of low-ranking points in the furthest set with the high-ranking points in the
left-out set. Previous differentiable sampling approaches have failed to conform
to the end-to-end learning paradigm due to instability while training. We demon-
strate that our algorithm is compatible with end-to-end learning. Our sampling
scheme consistently outperforms previous baselines on various downstream ge-
ometry processing tasks. Finally, we show detailed ablation studies regarding the
qualitative and quantitative analysis of the role of different features used in the
proposed algorithm.

1 INTRODUCTION

Applications making use of 3D data are becoming increasingly popular over the recent years. These
applications usually accept data in the form of a point cloud. A point cloud representation represents
the visual scene via colored points in 3D space. For reducing the computational burden that is
presented by large scale point clouds we need to reduce the size of the point cloud. The reduction in
the size of the point cloud is generally done via sampling. The sampling operation tends to preserve
local shape details and overall shape structure of the point cloud.

The main question is, how to select the data points that preserve local shape details and overall
shape structure of the point clouds? A simple and effective approach would be to sample k farthest
points within the point cloud, (where k is the number of points required in the downsampled point
cloud). This traditional approach is called farthest point sampling (FPS). FPS is used widely by the
community due to its robustness and effectiveness over different types of downstream tasks.

A major drawback of the FPS approach is that the algorithm is task agnostic. Therefore, FPS al-
gorithm would not be able to prioritize sampling points that are highly relevant to the downstream
tasks. For example, points with high curvature and low density may be highly relevant for down-
stream tasks such as reconstruction. We can compare our subsampling task of points in 3D space
to the 2D image space. In 2D space max pooling selects the most activated pixel feature from a
local spatial grid. In 3D space we need an algorithm that performs the same task. The local spatial
grid is defined by the K-nearest neighbor point features. We cannot select the farthest point features
directly because the point features belong to a lifted higher-dimension space. Therefore, FPS cannot
work directly in the feature space.

A simple formulation would model the subset creation problem of point clouds via MLP layers.
The main issue with the simple formulation is that end-to-end learning becomes highly unstable for
downstream tasks, since we may lose the entire structure of the object while creating a random subset
of points. Therefore, recent approaches have followed a two step approach. The first step involves
learning a model with farthest point sampling as an intermediate point cloud subset creation layer.
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The second step involves freezing all the layers of the trained model and adding new MLP layers to
replace the farthest point sampling layer. In this step, the aim is to train the sampling layers only.
The two step procedure is useful in practice and outperforms the traditional farthest point sampling
approach. The drawback of the 2 step approach is the overhead that comes along with re-training
the model. The drawback hinders the mass adoption of such 2-step approaches.

In our proposed algorithm, we propose a layer called conditional farthest point sampling (CFPS)
that is robust enough to allow for end-to-end learning over downstream tasks while outperforming
all previous traditional and differentiable formulations of the point cloud subsampling problem. Our
initial step begins with creating a soft rank out of furthest point feature based on when a point entered
the furthest point set. We then create a joint rank J by multiplying the soft furthest point rank with
corresponding curvature scores obtained via PCPNet Guerrero et al. (2018). Finally, we replace x%
the points in the furthest point having the lowest joint rank with the points that could not make it
to the furthest point set ,yet, still had high joint rank. Curvature along with the FPS feature ensure
that the point subsets selected during the initial phases of training truly characterize the shape’s
local and global geometry. The clear benefit for the algorithm is that it can show out of the box
better performance that Furthest Point Sampling by selecting the right x% value. We summarize our
contributions as follows :

• We propose a subsampling layer that is compatible with the end-to-end learning paradigm.

• We extend the farthest point sampling algorithm with traditional and layer specific features
for stable task-specific subset selection.

• W.

Note that works such as SampleNet Lang et al. (2020), Learning to Sample Dovrat et al. (2019) do
not conform to our paradigm for comparison. Our method and the baselines are proposed for an end-
to-end learning model wherein down-sampling will happen multiple times throughout the network.
The approaches Lang et al. (2020)Dovrat et al. (2019) are proposed for a 2 step training approach
where sampling only happens once. i.e before sending the input point cloud to the network.

2 RELATED WORK

2.1 DEEP LEARNING ON POINT CLOUDS

Automated analysis of 3D data using deep learning has led to huge improvements on multiple tasks
such as object detection Lang et al. (2019)Yang et al. (2018), object segmentationQi et al. (2017a)
, registration Yang et al. (2020) etc. Directly using the raw point cloud offers numerous advantage.
Namely,

• Ease of capture - Point cloud data of 3D world can easily captured via 3D scanners or
photogrammetry based methods Liu et al. (2019).

• Low-memory footprint.

• High fidelity Representation - 3D shape reconstruction modules relying on point cloud
representation tend to produce higher fidelity shapes over other popular representation such
voxels Pan et al. (2021a).

• Diverse Applications - Point Cloud representation is used by multiple vision and robotics
tasks such as robot navigation and perception, depth estimation Wang et al. (2021b).

A lot of research has been on learning different kinds of convolution operations Atrous Convolu-
tionPan et al. (2020) KP ConvThomas et al. (2019) GATVelickovic et al. (2017) for point clouds.
These convolution operations generally work on point clouds of fixed sizes. To cope with ever in-
creasing sizes of point clouds data volumes such as scenes, we need to down-sample point cloud
features after each convolution. The down sampling operation’s job is to subsample point cloud fea-
tures that are relevant to the downstream task. The research on down-sampling tasks has seen little
to no progress in the recent years. The de-facto algorithm for downsampling in most point libraries
is - Furthest Point Sampling.
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2.2 FURTHEST POINT SAMPLING (FPS)

In the FPS Eldar et al. (1997) algorithm, we start with a point in the set, and then select the point to
be added to the set which is furthest from all the points in the set. The whole process keeps repeating
till we get the required number of points in the set. The aim of the algorithm is to achieve maximum
coverage of the shape. FPS is a task-agnostic algorithm Qi et al. (2017b) Yu et al. (2018) Li et al.
(2018). Nevertheless, the algorithm works very well in practice. The main drawbacks of the farthest
point sampling algorithm are as follows -

• FPS is non-differentiable (task-adaptive)
• FPS is designed for low-dimensional euclidean space as opposed to high dimension feature

space.
• FPS is sensitive to outliers.

2.3 CRITICAL POINTS LAYER

The Critical Points Layer (CPL) Nezhadarya et al. (2020) is a differentiable down-sampling modules
that work directly with the high-dimension point level features. The critical points layer passes the
most active features to the next layer.

The down-side of directly working in the feature space is that during initial few epochs of the training
stage the down-sampling layer would take decision based solely on features that themselves have
not yet generalized to the downstream task. This observation suggests that the network would have
to take larger number of epochs to converge, as highlighted in the paper.

3 PROPOSED SOLUTION

In this section, we propose a down-sampling algorithm that builds upon farthest point sampling. In
the algorithm, we use farthest point sampling algorithm to create a binary feature which classifies
a point as belong to the farthest point or not. Point Cloud Sampling methods such as Metzer et al.
(2021) rely on an estimate of proxies for sparseness and sharpness of local regions to decide if a
point is worthy of sampling or not. Intuitively, sparsely located points in a planar region can easily
describe the planar shape whereas local regions with high density and curvature such as arm rest of
a sofa need more points to retain the shape. The network learns to create the right trade-off between
shape coverage, curvature based on the requirement of the down-stream task. We calculate robust
point level features such as curvature and density as follows -

3.1 ROBUST POINT LEVEL FEATURES

3.1.1 CURVATURE

Curvature is a simple and effective heuristic for sharp features Smith et al. (2019). Local curvature
of each point is estimated, which is used as a proxy for sharpness. If normal information is not
provided then we first estimate normal for each point via simple plane fitting technique Klasing
et al. (2009). Then the difference in normal angles for each point and its k-nearest neighbors is
calculated. The estimated curvature of a point is given by summing all of the angle differences with
each of its neighbors.

4 APPLICATIONS

4.1 SINGLE-VIEW PARTIAL POINT CLOUD COMPLETION

Scanned 3D point clouds are usually incomplete due to occlusions, noise and viewpoint of the 3D
scanner which hampers the usability of the acquired 3D point cloud data. One of the drawbacks of
using point cloud representation for Generative tasks such as shape completion is that, it is hard to
represent rich topological shape details on the generated shape Wang et al. (2021a). We show in our
experiments that the sampling procedure plays a fundamental role in improving the fidelity of the
completed shape.
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Figure 1: Architecture of Conditional Farthest Point Sampling Block

4.1.1 DATASET

We compare our results on the MVP datasetPan et al. (2021b) which was proposed in CVPR
2021.The MVP dataset is a large scale multi-view partial point cloud dataset having more than
100,000 high-quality scans. For each 3D CAD model, the dataset contains rendered partial 3D
shapes from 26 uniformly distributed camera poses. The training set contains 62,400 partial-
complete point cloud pairs and the Test set has 41,800 pairs. Each partial, complete point cloud
has 2,048 points.

4.1.2 ARCHITECTURE

We use the VRCNet architecture baseline Pan et al. (2021a) for its proven high performance on the
MVP dataset. The VRCNet model consists of 2 encoder-decoder sub-networks that aim to serve
the “probabilistic modeling” (PMNet) and “relational enhancement” (RENet) tasks. The PMNet is
responsible for producing a coarse down-sampled shape skeleton given an input partial point cloud.
The shape skeleton gives cues about the global shape to the RENet module. The RENet module is
responsible for enhancing the structural relations (local shape features) by learning multi-scale point
features and reconstruct high quality point clouds from shape skeletons.
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Figure 2: VRCNet Architecture for Shape Completion

Different relational structures can have different scales. Therefore, the R-PSK module learns to
encode multi-scale feature information. For more information about the Unpooling and Feature
Expansion modules refer, Pan et al. (2020) and Pan (2020) respectively. The feature expansion
module is used to expand point features to produce high quality point cloud while keeping geometric
consistency.

4.1.3 TRAINING - TASK SPECIFIC LOSS

Given a partial shape, our model must be able to accurately reconstruct the ground truth shape by
completing the missing point cloud. We use VRCNet baseline’s loss function to improve the shape
reconstruction capabilities of our task.

Our proposed algorithm CFPS, requires normal information. Refer Figure 1. Therefore, we also
include a normal estimation loss as part of our task loss. The normal reconstruction loss is adapted
from Sharma et al. (2021). Note that we do not include the Chamfer distance (CD) loss given in
the original normal estimation loss in Sharma et al. (2021) as the Chamfer distance loss is already
included in the VRCNet Shape reconstruction loss.

Ltask = LShape Reconstruction + LNormal Estimation

4.1.4 EVALUATION - LOSS

For encouraging accurate reconstruction bi-directional Chamfer distance (CD) Fan et al. (2017)
metric is generally used for calculating the overall pairwise difference between the nearest points in
the source and target shape. Previously, it has been shown that CD can be misleading due to outliers
Tatarchenko et al. (2019). the benchmark suggests to evaluate using the F-score Knapitsch et al.
(2017) to evaluate the distance between source and target surfaces. The F-score is the harmonic
mean between precision and recall.

4.1.5 IMPLEMENTATION DETAILS

We used the default training parameters as given in the official Pytorch Implementation of VRCNet
in the MVP Benchmark repository. We directly used CFPS on the VRCNet model without any
changes. We did minor ablation on the sampling ratio hyperparameter. Refer 3. Comparison against
different methods on the dataset is presented in table 1

5 CONCLUSION

We show the improvements made by our proposed algorithm on the Shape Completion Task. The
next steps would be to automatically detect the sampling ratio parameter from the input shape via
few-shot learning.

5



Under review as a conference paper at ICLR 2023

Figure 3: Result of changing sampling ratio on different classes in MVP dataset

Method CD F1-Score@1%
PCNYuan et al. (2018) 9.77 0.32
TopNetTchapmi et al. (2019) 10.11 0.308
CRNWang et al. (2020) 7.25 0.434
ECGPan (2020) 6.64 0.476
VRCNet + FPS 5.96 0.499
VRCNet-mod + FPS 5.96 0.48
VRCNet-mod + CFPS 5.8 0.50

Table 1: Comparisons of performance with existing methods on the MVP validation set. Both the
input and output contain 2048 points. VRCNet-mod is VRCNet with Normal Estimation. CD loss
multiplied by 104
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