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Abstract

By learning a sequence of tasks continually, an agent in continual learning (CL) can
improve the learning performance of both a new task and ‘old’ tasks by leveraging
the forward knowledge transfer and the backward knowledge transfer, respectively.
However, most existing CL methods focus on addressing catastrophic forgetting in
neural networks by minimizing the modification of the learnt model for old tasks.
This inevitably limits the backward knowledge transfer from the new task to the
old tasks, because judicious model updates could possibly improve the learning
performance of the old tasks as well. To tackle this problem, we first theoretically
analyze the conditions under which updating the learnt model of old tasks could
be beneficial for CL and also lead to backward knowledge transfer, based on the
gradient projection onto the input subspaces of old tasks. Building on the theoretical
analysis, we next develop a ContinUal learning method with Backward knowlEdge
tRansfer (CUBER), for a fixed capacity neural network without data replay. In
particular, CUBER first characterizes the task correlation to identify the positively
correlated old tasks in a layer-wise manner, and then selectively modifies the learnt
model of the old tasks when learning the new task. Experimental studies show that
CUBER can even achieve positive backward knowledge transfer on several existing
CL benchmarks for the first time without data replay, where the related baselines
still suffer from catastrophic forgetting (negative backward knowledge transfer).
The superior performance of CUBER on the backward knowledge transfer also
leads to higher accuracy accordingly.

1 Introduction

One ultimate goal of artificial intelligence is to build an agent that can continually learn a sequence
of different tasks, so as to echo the remarkable learning capability of human beings during their
lifespan. With more tasks being learnt, the agent is expected to be able to learn a new task more
easily by leveraging the accumulated knowledge from old tasks (forward knowledge transfer), and
also further improve the learning performance of old tasks based on the gained knowledge of related
new tasks (backward knowledge transfer). Such a learning paradigm is known as continual learning
(CL) [5, 23], which has recently attracted much attention.

Most existing CL methods focus on addressing the catastrophic forgetting problem [20], i.e., the
neural network may easily forget the knowledge of old tasks when learning a new task. The main
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strategy therein is to avoid the model change of old tasks when learning the new task. For example,
regularization-based methods (e.g., [12, 1, 18]) penalize the modification of important weights of
old tasks; parameter-isolation based methods (e.g., [7, 26, 31, 9]) fix the model learnt for old tasks;
and memory-based methods (e.g., [3, 6, 25]) aim to update the model with minimal interference
introduced to old tasks. While effectively mitigating catastrophic forgetting, such a model-freezing
strategy inevitably limits the backward knowledge transfer, by implicitly and conservatively treating
the model update of the new task as interference to old tasks. Intuitively, careful modifications of the
learnt model of old tasks may further improve the learning performance especially when the new task
shares similar knowledge to the old tasks.

This work seeks to explore CL from a new perspective by going beyond merely addressing forgetting:
When and how could we improve the learnt model of old tasks to facilitate backward knowledge
transfer? In particular, we consider a fixed neural network and the scenario where the data of old
tasks is not accessible when learning a new task, which naturally rules out the expansion-based
methods (e.g., [31, 9]) and the experience-replay methods (e.g., [22, 4]). Clearly, achieving backward
knowledge transfer is very challenging in this case as mitigating forgetting herein is already nontrivial.
To tackle this challenge, note that the orthogonal-projection based CL methods (e.g., [25, 17]), which
update the model with gradients orthogonal to the input subspaces of old tasks, have demonstrated the
state-of-the-art performance under the setting above. Thus motivated, we propose a new orthogonal-
projection based CL method to carefully modify the learnt model of old tasks for better backward
knowledge transfer.

The main contributions of this work include 1) the quantification of the conditions under which
modifying the learnt model of old tasks is beneficial and 2) a new CL method inspired by the analysis,
so as to answer the question above. More specifically, we first introduce notions of ‘sufficient
projection’ and ‘positive correlation’ based on the gradient projection onto the subspaces of old
tasks to characterize the task correlation. We theoretically show that when the task gradients are
sufficiently aligned in the old task subspace, appropriately updating the learnt model of old tasks
when learning the new task could improve the learning performance and possibly lead to a better
model for the old tasks. Based on this analysis, we next propose an orthogonal-projection based
ContinUal learning method with Backward knowlEdge tRansfer (CUBER), which 1) first identifies
the positively correlated old tasks for the new task and 2) carefully updates the learnt model of selected
old tasks along with the model learning for the new task. The experimental results on standard CL
benchmarks show that CUBER can achieve the best backward knowledge transfer compared to all
the considered baseline CL methods, which consequently improves the overall learning performance.
In particular, to the best of our knowledge, CUBER is the first to demonstrate positive backward
knowledge transfer on these benchmarks using a fixed capacity network without experience replay,
whereas all the compared baselines still suffer from catastrophic forgetting with negative backward
knowledge transfer.

2 Related work

Continual learning. Existing CL methods can be generally divided into three categories: 1)
Regularization-based methods (e.g., [12, 1, 15, 18]) add additional regularization in the loss function
to penalize the model change of the old tasks when learning the new task. For example, Elastic Weight
Consolidation (EWC) [12] regularizes the update on the important weights that are evaluated using the
Fisher Information matrix; a recursive gradient optimization method is proposed in [18] to modify the
gradient direction for the objective function regularized by the model change during CL. 2) Parameter-
isolation based methods (e.g., [24, 16, 31, 30, 26, 29]) allocate different model parameters to different
tasks, fix the parameters for old tasks by masking them out during the new task learning and expand
the network when needed. For example, Additive Parameter Decomposition (APD) [30] proposes a
hierarchical knowledge consolidation method to separate task-specific parameters and task-shared
parameters, where the task-specific parameters are kept intact to address forgetting. 3) Memory-based
methods can be further divided into experience-replay methods and orthogonal-projection based
methods depending on if the data of old tasks is available for the new task. Experience-replay methods
(e.g., [3, 22, 8]) store and replay the old tasks data when learning the new task, while orthogonal-
projection based methods (e.g., [32, 6, 25, 17]) update the model in the orthogonal direction of
old tasks without storing the raw data of old tasks. In particular, [10] proposes natural continual
learning based on Bayesian learning to unify weight regularization and orthogonal gradient projection.
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However, [10] leverages the knowledge of the current task in an implicit way to improve on the
old tasks, whereas our method attempts more explicitly to update the model of old tasks whenever
relevant new information is available.

Knowledge transfer. Most of CL methods focus on the catastrophic forgetting problem, and little
attention has been put on the knowledge transfer across tasks in CL with neural networks. Progressive
Network [24] considers the forward knowledge transfer but learns one model for each task. [17]
proposes trust region gradient projection (TRGP) to facilitate forward knowledge transfer from
correlated old tasks to the new task through a scaling matrix, but the model is still updated along
the direction orthogonal to the input subspaces of old tasks to mitigate forgetting. [11] studies the
knowledge transfer in a mixed sequence of similar and dissimilar tasks, but employs a complicated
task similarity detection mechanism where two additional networks need to be trained first for each
task before learning the new task.

3 When could we improve the learnt model of old tasks?

In continual learning, a sequence of tasks T = {t}Tt=1 arrives sequentially. For each task t, there is a
dataset Dt = {(xt

i,y
t
i)}N

t

i=1 with N t sample pairs, which is sampled from some unknown distribution
Pt. In this work, we consider a fixed capacity neural network with weights w. When learning a new
task t, we only have access to the dataset Dt and no datapoints of old tasks are available. We further
denote L(w,Dt) = Lt(w) as the loss function for training, e.g., mean squared and cross-entropy
loss, and wt as the model after learning task t.

Intuitively, if the new task t has strong similarity with some old tasks, appropriate model update of
the new task would not introduce forgetting of the similar old tasks, but can lead to a better model for
these old tasks due to the backward knowledge transfer. To formally characterize this task similarity,
we introduce the following conditions on the task gradients.
Definition 1 (Sufficient Projection). For any new task t ∈ [1, T ], we say it has sufficient gradient
projection on the input subspace of old task j ∈ [0, t− 1] if for some ϵ1 ∈ (0, 1)

∥ProjSj (∇Lt(w
t−1))∥2 ≥ ϵ1∥∇Lt(w

t−1)∥2.

Here ProjSj defines the projection on the input subspace Sj of task j: ProjSj (A) = ABj(Bj)′ for
some matrix A and Bj is the bases for Sj . This definition of sufficient projection follows the same
line of the trust region defined in [17], which implies that task t and j may have sufficient common
bases between their input subspaces and hence are strongly correlated, because the gradient lies in
the span of the input [33].
Definition 2 (Positive Correlation). For any new task t ∈ [1, T ], we say it has positive correlation
with old task j ∈ [0, t− 1] if for some ϵ2 ∈ (0, 1)

⟨∇Lj(w
j),∇Lt(w

t−1)⟩ ≥ ϵ2∥∇Lj(w
j)∥2∥∇Lt(w

t−1)∥2.

While sufficient projection suggests the possibly strong correlation between two tasks t and j,
Definition 2 goes one step further by introducing the positive correlation between tasks, in the sense
that the initial model gradient of task t is not conflicting with the model gradient when learning task
j. In fact, it can be shown that the positive correlation implies the sufficient projection in Definition 1
for some ϵ1 ≥ ϵ2. Note that both Definition 1 and 2 characterize the correlation based on the initial
model wt−1, which allows the task correlation detection before learning the new task t.

For ease of exposition, consider the scenario with a sequence of two tasks 1 and 2. Let F(w) =
L(w,D1)+L(w,D2), g1(w) = ∇wL(w,D1) and g2(w) = ∇wL(w,D2). Given the model learnt
for task 1 as w1, we consider the following two model update rules for learning task 2, where only
the data of task 2 is available:

• (Rule #1): wk+1 = wk − α[g2(wk)− ProjS1(g2(wk))],

• (Rule #2): wk+1 = wk − αg2(wk).

Here w0 = w1 and k ∈ [0,K − 1]. Rule #1 characterizes the model update of the orthogonal-
projection based methods, where no interference is introduced to task 1 as the model change is
orthogonal to the input subspace S1 of task 1 [17] (and hence the learnt model of task 1 will not
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be updated). In contrast, the vanilla gradient descent Rule #2 for learning task 2 will inevitably
modify the learnt model w1 for task 1 unless ProjS1(g2(wk)) = 0, i.e., the extreme case where both
forgetting and knowledge transfer do not occur. In what follows, we evaluate the performance of
these update rules.

Theorem 1. Suppose that the loss L is B-Lipschitz and H
2 -smooth. Let α < min

{
1
H , γ∥g1(w0)∥

HBK

}
and ϵ2 ≥ (2+γ2)∥g1(w0)∥

4∥g2(w0)∥ for some γ ∈ (0, 1). We have the following results:

(1) If L is convex, Rule #2 for task 2 converges to the optimal model w∗ = argmin F(w);

(2) If L is nonconvex, Rule #2 for task 2 converges to the first order stationary point, i.e.,

min
k
∥∇F(wk)∥2 <

2

αK
[F(w0)−F(w∗)] +

4 + γ2

2
∥g1(w0)∥2.

Theorem 1 indicates that updating the model with Rule #2 will lead to the convergence to the
minimizer of the joint objective function F(w) in the convex case, and the convergence to the first
order stationary point in the nonconvex case, when task 1 and 2 satisfy the positive correlation with
ϵ2 ≥ (2+γ2)∥g1(w0)∥

4∥g2(w0)∥ . That is to say, Rule #2 not only results in a good model for task 2, but can also
be beneficial for the joint learning of task 1 and 2. Note that since w0 is the learnt model of task 1, in
general we have ∥g1(w0)∥ < ∥g2(w0)∥. Proof of Theorem 1 can be found in Appendix A.

Theorem 2. Suppose that the loss L is B-Lipschitz and H
2 -smooth. We have the following results:

(1) Let wc and wr be the model parameters after applying one update to some initial model w by

using Rule #1 and Rule #2, respectively. Suppose α < min
{

1
H , γ∥g1(w0)∥

HBK

}
, ϵ1 ≥

√
1+2αH
2+αH and

ϵ2 ≥ (2+γ2)∥g1(w0)∥
4∥g2(w0)∥ for some γ ∈ (0, 1). It follows that F(wr) ≤ F(wc);

(2) Let wk be the k-th iterate for task 2 with Rule #2. Suppose that ⟨g1(w0), g2(wi)⟩ ≥
ϵ2∥g1(w0)∥∥g2(wi)∥ for i ∈ [0, k − 1] and α ≤ 4ϵ2∥g1(w0)∥

HBk1.5 . It follows that L1(wk) ≤ L1(w
1).

Intuitively, the first part of Theorem 2 shows that updating with Rule #2 can achieve lower loss
value compared to Rule #1 after one step gradient update when task 1 and 2 satisfy the sufficient

projection with ϵ1 ≥
√

1+2αH
2+αH and the positive correlation with ϵ2 ≥ (2+γ2)∥g1(w0)∥

4∥g2(w0)∥ . If the positive
correlation condition also holds for iterates of Rule #2 when learning the task 2, the second part of
Theorem 2 indicates that updating the model indeed leads to a better model for task 1 with respect to
L1. In a nutshell, when 1) the task 2 has sufficient gradient projection onto the subspace of task 1 and
2) the projected gradient is also aligned well with the gradient of task 1 in the subspace of task 1,
updating the model along g2 will modify the learnt model w1 towards a favorable direction for CL
and enable the backward knowledge transfer to task 1. Proof of Theorem 2 is in Appendix B.

It is worth noting that the conditions for Theorem 1 and 2 depend only on the initial model gradient
g2(w

1) before learning task 2 and the gradient g1(w1) when learning task 1, which are both easily
accessible and calculated. Particularly, the positive correlation can be evaluated by only storing
the gradient g1(w1) instead of the data of task 1. In stark contrast, the task gradient correlation
characterization in [3, 22] involves the gradient evaluation of old tasks with respect to the current
model weight, and hence requires the data of old tasks when learning the new task.

4 Continual learning with backward knowledge transfer

Based on the theoretical analysis above, we next propose a continual learning method with backward
knowledge transfer (CUBER), by selectively updating the learnt model of old tasks when learning
the new task. In particular, CUBER works in a layer-wise manner: Given a L-layer network, CUBER
first characterizes the task correlation for each layer, and then employs different strategies to learn the
new task depending on the task correlation.

More specifically, denote the set of weights as w = {wl}Ll=1, where wl is the layer-wise weight
for layer l. Given the data input xt

i for task t, let xt
l,i be the input of layer l and xt

1,i = xt
i. Denote

f as the operation of the network layer. The output xt
l+1,i for layer l can be then computed as
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Figure 1: A simple illustration of the layer-wise task correlation detection. Given the new task t,
an old task j belongs to (1) Regime 1 if the initial model gradient ∇Lt(w

t−1
l ) of task t has small

projection onto the subspace Sj
l of task j; (2) Regime 2 if the strong projection condition is satisfied

while the projection of∇Lt(w
t−1
l ) onto Sj

l is not aligned well with the gradient of task j; (3) Regime
3 if both the strong projection condition and the positive correlation condition are satisfied.

xt
l+1,i = f(wl,x

t
l,i). Here we denote xt

l,i as the representations of the input xt
i at layer l. Given a

new task t ≥ 2, we characterize its task correlation with some old task j ∈ [1, t− 1] for layer l into
three different regimes based on Definition 1 and 2.

Regime 1 (no forgetting): We say that task j ∈ Regtl,1 for layer l if the following holds:

∥Proj
S
j
l
(∇Lt(w

t−1
l ))∥ ≤ ϵ1∥∇Lt(w

t−1
l ))∥.

In this case, the layer-wise input subspace Sj
l for task j and St

l for task t are treated as nearly
orthogonal ((a) in Fig. 1). As a result, there is little knowledge transfer between these two tasks, and
updating the model along with∇Lt(wl) would not introduce much interference to task j. To reinforce
the knowledge protection for task j, the model will be updated based on orthogonal projection:

∇Lt(wl)←− ∇Lt(wl)− Proj
S
j
l
(∇Lt(wl)).

Regime 2 (forward knowledge transfer): We say that task j ∈ Regtl,2 for layer l if the following holds:

∥Proj
S
j
l
(∇Lt(w

t−1
l ))∥ ≥ ϵ1∥∇Lt(w

t−1
l ))∥,

⟨∇Lj(w
j
l ),∇Lt(w

t−1
l )⟩ ≤ ϵ2∥∇Lj(w

j
l )∥∥∇Lt(w

t−1
l )∥.

In this case, task j and task t can be strongly correlated for layer l but possibly with ‘negative’ corre-
lation ((b) in Fig. 1), in the sense that updating the model along with∇Lt(wl) would substantially
modify the learnt model ProjSj

l
(wt−1) for task j in an unfavorable way and lead to the forgetting

of task j. As there will be better forward knowledge transfer from the old task j to the new task
t for layer l, we leverage the scaled weight projection in [17] to facilitate the forward knowledge
transfer through a scaling matrix Qj,t

l , whereas the model is still updated using orthogonal projection
to protect the knowledge of old tasks:

∇Lt(wl)←− ∇Lt(wl)− Proj
S
j
l
(∇Lt(wl)),

Qj,t
l ←− Qj,t

l − β∇QLt(wl − Proj
S
j
l
(wl) +wlB

j
l Q

j,t
l (Bj

l )
′). (1)

Here Bj
l is the bases matrix for subspace Sj

l . Intuitively, the scaled weight projection wlB
j
l Q

j,t
l (Bj

l )
′

replaces the weight projection ProjSj
l
(wl) of task j by a scaled version, which transforms the

knowledge of task j to the appropriate model of the new task t through the optimization of Qj,t
l .

Regime 3 (backward knowledge transfer): We say task j ∈ Regtl,3 for layer l if the following holds:

∥Proj
S
j
l
(∇Lt(w

t−1
l ))∥ ≥ ϵ1∥∇Lt(w

t−1
l ))∥,

⟨∇Lj(w
j
l ),∇Lt(w

t−1
l )⟩ ≥ ϵ2∥∇Lj(w

j
l )∥∥∇Lt(w

t−1
l )∥.

5



With the sufficient projection and the positive correlation, updating the model along with ∇Lt(wl)
could possibly lead to a better model for continual learning and also improve the learning performance
of the old task j ((c) in Fig. 1). To avoid overly-optimistic modification on the learnt model of task
j, we further regularize the projection of the model change on the subspace Sj

l , given that the
model projection is indeed frozen for task j to address forgetting with orthogonal projection, i.e.,
ProjSj

l
(wt−1

l ) = ProjSj
l
(wj

l ). This gives the following model update:

wl ←− wl − α∇[Lt(wl) + λ∥ProjSj
l
(wl −wt−1

l )∥].
Note that the gradient projection on the subspaces of old tasks in Regime 1 and 2 is removed from the
gradient in the model update above. Besides, we also learn a scaling matrix Qj,t

l for better forward
knowledge transfer from the old task j ∈ Regtl,3 to the new task t as in Eq. (1).

Figure 2: A simple illustration
of the case where updating the
model with ∇Lt benefits the
old task j ∈ Regtl,3 at the be-
ginning but eventually conflicts
with∇Lj .

However, continuous model update with task t gradient ∇Lt(wl)
will eventually lead to the task specific model for task t, which
usually differs from the model of task j in Regime 3 (Fig. 2).
To address this problem, note that the second part of Theorem
2 characterizes the condition under which updating the model
with∇Lt(wl) will result in backward knowledge transfer. Thus
motivated, for a model update iterate wl,k at k-th iteration when
learning the new task t, we evaluate the following condition for
task j ∈ Regtl,3:

⟨∇Lj(w
j
l ),∇Lt(wl,k)⟩ ≥ ϵ2∥∇Lj(w

j
l )∥∥∇Lt(wl,k)∥ (2)

and degenerate task j to Regime 2, i.e., remove the gradient projec-
tion on the subspace Sj

l from the task t gradient and stop modifying
the model for task j, if the condition (2) does not hold.

Bases extraction: After learning the model wt for task t, we construct the input subspace for each
layer l by extracting bases from its representation xt

l,i based on singular value decomposition (SVD)
[17]. More specifically, given a batch of n samples and the learnt model wt, the representation matrix
for layer l is denoted as Rt

l = [xt
l,1,x

t
l,2, ...,x

t
l,n]. Since the bases of the old tasks may include

important bases for the new task t, we determine the bases for task t from the union of the bases of
the old tasks and the newly generated bases. Towards this end, we first concatenate the bases Bj

l for
j ∈ [0, t− 1] together in a matrix Ot

l and remove the common bases. Then SVD is applied on the
residual representation matrix R̃t

l = Rt
l − Rt

lO
t
l (O

t
l )

′, i.e., R̃t
l = U t

lΣ
t
l(V

t
l )

′, where U t
l is the left

singular matrix. We construct Bt
l by selecting the most important bases from the pool of bases in Ot

l
and U t

l depending on their eigenvalues, which yields a low rank matrix approximation of Rt
l .

To conclude, the optimization problem for learning the new task t can be summarized as follows:

min
w,{Qj,t

l
}
l,j∈Regt

l,2

⋃
Regt

l,3

Lt({w̃l}l) + λ
∑
l

∑
j∈Regt

l,3

∥Proj
S
j
l
(wl −wt−1

l )∥, (3)

s.t. w̃l = wl +
∑

j∈Regt
l,2

⋃
Regt

l,3

[wlB
j
l Q

j,t
l (Bj

l )
′ − Proj

S
j
l
(wl)],

∇Lt(wl) = ∇Lt(wl)−
∑

j∈Regt
l,1

⋃
Regt

l,2

Proj
S
j
l
(∇Lt(wl)).

The key idea is that we conservatively update the model for old tasks in Regime 3 while using
orthogonal projection to preserve the knowledge of other old tasks; in the meanwhile, we leverage
the scaled weight projection to reuse the model knowledge of old tasks in both Regime 2 and 3 to
facilitate forward knowledge transfer. It is worth to note that the task correlation is determined before
learning the new task t, as both the strong projection condition and the positive correlation condition
only depend on the initial model gradient for the new task. And this can be achieved by a simple
forward-backward pass through the initial model with a batch of new task data. The overview of
CUBER can be found in Algorithm 1.
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Algorithm 1 Continual learning with backward knowledge transfer (CUBER)

1: Input: task sequence T = {t}Tt=1;
2: Learn the first task using vanilla stochastic gradient descent;
3: Extract the bases {B1

l } based on SVD using the learnt model w1;
4: for each task t do
5: Calculate gradient∇Lt(wt−1);
6: Evaluate the strong projection and the positive correlation conditions for layer-wise task correlation

detection to determine Regtl,1, Regtl,2 and Regtl,3;
7: for k=1, 2,... do
8: Update the model and scaling matrices by solving Eq. (3);
9: for task j < t and j ∈ Regtl,3 do

10: if ⟨∇Lj(w
j
l ),∇Lt(wl,k)⟩ < ϵ2∥∇Lj(w

j
l )∥∥∇Lt(wl,k)∥ then

11: Degenerate task j to Regtl,2;
12: end if
13: end for
14: end for
15: Store the gradient∇Lt(w

t) in the task memory;
16: Extract the bases {Bt

l } based on SVD using the learnt model wt;
17: end for

5 Experiments

Datasets. We evaluate the performance of CUBER on four standard CL benchmarks. (1) Permuted
MNIST: a variant of the MNIST dataset [14] where random permutations are applied to the input
pixels. Following [19, 25], we divide the dataset into 10 tasks with different permutations and each
task includes 10 classes. (2) Split CIFAR-100: we divide the CIFAR-100 dataset [13] into 10 different
tasks, where each task is a 10-way multi-class classification problem. (3) 5-Datasets: we consider a
sequence of 5 datasets, i.e., CIFAR-10, MNIST, SVHN [21], not-MNIST[2], Fashion MNIST[28],
and the classification problem on each dataset is a task. (4) Split MiniImageNet: we divide the
MiniImageNet dataset [27] into 20 tasks, where each task includes 5 classes.

Baselines. In this work, we compare CUBER with the following baselines on the benchmarks
mentioned above. (1) EWC [12]: a regularization-based method that leverages Fisher Information
matrix for weights importance evaluation; (2) HAT [26]: learns a hard attention mask to preserve the
knowledge of old task; (3) Orthogonal Weight Modulation (OWM) [32]: learns a projector matrix to
project the gradient of the new task to the orthogonal direction of input subspace of old tasks; (4)
Gradient Projection Memory (GPM) [25]: stores the bases of the input subspace of old tasks and then
updates the model with the gradient projection orthogonal to the subspace spanned by these bases;
(5) TRGP [17]: proposes a scaled weight projection to facilitate the forward knowledge transfer from
related old tasks to the new task while updating the model based on orthogonal gradient projection,
which demonstrates the state-of-the-art performance for a fixed capacity network; (6) Averaged GEM
(A-GEM) [3]: constrains the new task learning with the gradient calculated using the stored data of
old tasks; (7) Experience Replay with Reservior sample (ER_Res) [4]: uses a small episodic memory
to store old task samples for addressing forgetting; (8) Multitask: jointly learns all tasks once with a
single network using all datasets, which usually serves as a performance upper bound in CL [25].

Network and training details. For a given dataset, we study all CL methods using the same network
architecture. More specifically, for Permuted MNIST, we consider a 3-layer fully-connected network
including 2 hidden layers with 100 units. And we train the network for 5 epochs with a batch
size of 10 for every task. For Split CIFAR-100, we use a version of 5-layer AlexNet by following
[25, 17]. When learning each task, we train the network for a maximum of 200 epochs with early
termination based on the validation loss, and use a batch size of 64. For 5-Datasets, we use a reduced
ResNet-18 [19] and follow the same training strategy as in Split CIFAR-100. For Split MiniImageNet,
a reduced ResNet-18 is also used, and we train the network for a maximum of 100 epoches with early
termination. The batch size is 64. Similar to [17], we select at most two tasks to be in Regime 2 and
3 for each layer with the largest gradient projection norm, to reduce the performance sensitivity on
the choice of ϵ1. In the experiments, we set ϵ1 = 0.5.

To evaluate the learning performance, we consider the following two metrics, i.e., accuracy (ACC)
which measures the final accuracy averaged over all tasks, and backward transfer (BWT) which
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measures the average accuracy change of each task after learning new tasks:

ACC =
1

T

∑T

i=1
AT,i, BWT =

1

T − 1

∑T−1

i=1
(AT,i −Ai,i)

where Ai,j represents the testing accuracy of task j after learning task i.

5.1 Main results

As shown in Table 1, CUBER demonstrates the best performance of BWT on all datasets compared
to the baselines. In particular, positive BWT can be obtained by CUBER on Split CIFAR-100 and
Split MiniImageNet, which has not been achieved by previous works in a fixed capacity network
without data-replay. For 5-Dataset, since the tasks therein are less related to each other as in GPM
[25], we do not expect much knowledge transfer across tasks (but knowledge transfer still exists in
terms of the layer-wise features), and there is no forgetting in CUBER. Achieving zero-forgetting is
very difficult for Permuted MNIST, because all the tasks share one output layer and there is no task
identifier during testing (domain-incremental) [25]. However, even in this case CUBER still achieves
the best BWT, i.e, nearly non-forgetting, among all methods. Clearly, the strong performance on
BWT indicates that CUBER can effectively facilitate the backward knowledge transfer by wisely
modifying the learnt model of old tasks.

Benefiting from the superior performance on the backward knowledge transfer, CUBER also achieves
the best or comparable performance on the averaged accuracy. More specifically, CUBER improves
around 1% in ACC over the best prior results on Split CIFAR-100, Split MiniImageNet and Permuted
MNIST, while showing the comparable performance with the state-of-the-art method TRGP even
on 5-datasets where tasks are less correlated. Moreover, CUBER performs better than Multitask on
both 5-Dataset and Permuted MNIST, which implies the importance of studying knowledge transfer
in CL: Both TRGP and CUBER outperform Multitask on 5-Dataset because of the scaled weight
projection to facilitate forward knowledge transfer, whereas by facilitating backward knowledge
CUBER becomes the only method that outperforms Multitask on Permuted MNIST.

Table 1: The ACC and BWT with the standard deviation values over 5 different runs on different
datasets. Here for Split CIFAR-100, Split MiniImageNet and 5-Dataset we use a multi-head network,
while a single-head network is used for Permuted MNIST. Moreover, ϵ2 = 0.0.

Method
Multi-head Domain-incremental

Split CIFAR-100 Split MiniImageNet 5-Dataset Permuted MNIST

ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%)

Multitask 79.58 ± 0.54 - 69.46 ± 0.62 - 91.54 ± 0.28 - 96.70 ± 0.02 -

OWM 50.94 ± 0.60 −30 ± 1 - - - - 90.71 ± 0.11 −1 ± 0
EWC 68.80 ± 0.88 −2 ± 1 52.01 ± 2.53 −12 ± 3 88.64 ± 0.26 −4 ± 1 89.97 ± 0.57 −4 ± 1
HAT 72.06 ± 0.50 0 ± 0 59.78 ± 0.57 −3 ± 0 91.32 ± 0.18 −1 ± 0 - -

A-GEM 63.98 ± 1.22 −15 ± 2 57.24 ± 0.72 −12 ± 1 84.04 ± 0.33 −12 ± 1 83.56 ± 0.16 −14 ± 1
ER_Res 71.73 ± 0.63 −6 ± 1 58.94 ± 0.85 −7 ± 1 88.31 ± 0.22 −4 ± 0 87.24 ± 0.53 −11 ± 1

GPM 72.48 ± 0.40 −0.9 ± 0 60.41 ± 0.61 −0.7 ± 0.4 91.22 ± 0.20 −1 ± 0 93.91 ± 0.16 −3 ± 0
TRGP 74.46 ± 0.32 −0.9 ± 0.01 61.78 ± 0.60 −0.5 ± 0.6 93.5693.5693.56 ± 0.10 −0.04 ± 0.01 96.34 ± 0.11 −0.8 ± 0.1

CUBER (ours) 75.5475.5475.54 ± 0.22 0.130.130.13 ± 0.08 62.6762.6762.67 ± 0.74 0.230.230.23 ± 0.15 93.4893.4893.48 ± 0.10 0.000.000.00 ± 0.02 97.2597.2597.25 ± 0.00 −0.02−0.02−0.02 ± 0.00

5.2 Ablation studies

Table 2: The comparison between CUBER and TRGP in OL-CIFAR100. The selected old task (*) in
(b) represents the old task with the largest number of layers in Regime 3 of the new task.

(a) The comparison of ACC and BWT.

Method ACC(%) BWT(%)

CUBER 74.94 0.28

TRGP 74.33 -0.18

(b) BWT-S of the selected old tasks.

Task 1 Task 2 Task 4 Task 5 Average

selected old task* Task 0 Task 1 Task 3 Task 0 -

BWT-S (CUBER) 0.50 0.71 0.03 0.07 0.33

BWT-S (TRGP) -0.20 0.10 -0.60 -0.20 -0.23

Backward knowledge transfer. The value of backward knowledge transfer indicates the average
accuracy improvement for each old task after learning all tasks, which implies that the new task
learning provides additional useful information for learning features of similar old tasks. Intuitively,
this value should depend on the task similarity in CL. To better understand the advantage of CUBER
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in terms of backward knowledge transfer, we further consider a special setup which includes a
sequence of similar and dissimilar tasks. Specifically, different with Split-CIFAR100 where no tasks
have overlapping classes, we split the first 50 classes in CIFAR100 into 7 tasks (OL-CIFAR100):
Task 0-6 contain classes 0-9, 5-14, 10-19, 20-29, 25-34, 30-39, 40-49, respectively. We compare the
performance of CUBER with TRGP in Table 2. As shown in Table 2a, CUBER clearly outperforms
TRGP in both ACC and BWT. In particular, CUBER has a positive BWT of 0.28%, where TRGP
suffers from forgetting. We further analyze the task selections in Table 2b, where “selected old task”
refers to the task that has the largest number of layers in Regime 3 of the new task. For example,
according to the setup of OL-CIFAR100, the selected old task for Task 4 should be Task 3 with a
high probability as they have overlapping classes. And we denote a new metric, namely BWT-S, to
evaluate the backward knowledge transfer of the selected old task after learning the new task, i.e.,
BWT-S=At,j − At−1,j where j is the “selected old task” of the new task t. As shown in Table 2b,
CUBER correctly identifies the correlated tasks for most new tasks except Task 5. This is a reasonable
result because the task correlation detection is based on the initial model gradient which is noisy
in general, and hence only serves as an estimation of underlying true correlation. However, such
an estimated task correlation characterization is indeed sufficient to effectively facilitate backward
knowledge transfer, as corroborated by the positive BWT-S and the superior performance of CUBER.

Forward knowledge transfer. We also evaluate the forward knowledge transfer (FWT) in CUBER,
compared to the best two baseline methods GPM and TRGP. Here the FWT measures the gap between
Ai,i and the accuracy of learning task i only from scratch. For simplicity, we use the FWT of GPM as
a baseline and evaluate the improvements of TRGP and CUBER over GPM. It can be seen from Table
3 that CUBER performs even better than TRGP although CUBER follows the same strategy, i.e., the
scaled weight projection, to facilitate the forward knowledge transfer, and achieves the best FWT
among the three methods in most cases. The reason behind is that the characterization of Regime 3 in
CUBER not only allows the modification of the learnt model of the old tasks to prompt the backward
knowledge transfer, but also relaxes the constraint on the gradient update for the new task, i.e., the
model can be now updated in the subspace of the selected old tasks for learning the new task. This
gradient constraint relaxation consequently leads to better model learning of the new task.

Table 3: Comparison of FWT among GPM, TRGP and CUBER. The value for GPM is zero because
we treat GPM as the baseline and consider the relative FWT improvement over GPM.

Method Split CIFAR-100 Split MiniImageNet 5-Dataset Permuted MNIST

GPM 0 0 0 0

TRGP 2.01 2.36 1.98 0.18

CUBER 2.79 3.13 1.96 0.8

Impact of ϵ2. It is clear that the selection of layer-wise Regime 3 depends on the value of the
threshold ϵ2. To show the impact of ϵ2, we evaluate the learning performance under different values
of ϵ2 in Split CIFAR-100. As shown in Table 4, the performance on ACC is comparable for all
three cases and the BWT decreases as the value of ϵ2 increases. Intuitively, ϵ2 characterizes the
conservatism in selecting tasks to Regime 3 and modifying the model of selected tasks. Specifically,
with a larger ϵ2, we just consider the backward knowledge transfer to the old tasks that are strongly
correlated with the new task, and only slightly modify the learnt model of these selected tasks,
because the condition Eq. (2) can be quickly violated with the model update and CUBER will stop
changing the learnt model of the selected tasks.

Table 4: The impact of ϵ2 on the performance in Split CIFAR-100.
ϵ2 = 0.0 ϵ2 = 0.2 ϵ2 = 0.5

ACC(%) BWT(%) ACC(%) BWT(%) ACC(%) BWT(%)

75.54 0.22 75.73 0.03 75.55 0.01

6 Conclusion

In this work, we study the problem of backward knowledge transfer in CL. Different from most
existing methods that generally freeze the learnt model of the old tasks so as to mitigate catastrophic
forgetting, this study seeks to carefully modify the learnt model to facilitate backward knowledge
transfer from the new task to the old tasks. To this end, we first introduce notions of strong projection
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and positive correlation to characterize the task correlation, and show that when the task gradients
are sufficiently aligned in the old task subspace, appropriate model change for the old tasks could be
beneficial for CL and result in better backward knowledge transfer. Based on the theoretical analysis,
we next propose CUBER to carefully learn the model for the new task, which would carefully update
the learnt model of the old tasks that are positively correlated with the new task. As shown in the
experimental results, CUBER can successfully improve the backward knowledge transfer on the
standard CL benchmarks in contrast to related baselines.

Impact and limitations. The mainstream strategy nowadays to address forgetting is to minimize the
interference to old tasks and avoid the learnt model change, which may however conflict with the
goal of CL, in the sense that the backward knowledge transfer from the new task to old tasks can be
restricted without modifying the learnt model. In this work, we go beyond this strategy and shed light
on the relationship between backward knowledge transfer and model modification, by characterizing
the task correlations with gradient projection. We hope that this work will serve as initial steps and
motivate further research in CL community on the important while less explored problem, i.e., how
to design algorithms that can provide targeted treatments to achieve backward knowledge transfer.
However, CUBER also comes with several limitations. As in recent orthogonal-projection based
CL methods, CUBER extracts the bases of the task subspaces based on SVD, which may lead to
high computational cost for large dimensional data. How to reduce the complexity is an interesting
direction. Another limitation is that we assume that clear task boundaries exist between different
tasks. In future work, it is of great interests to extend CUBER to more general CL settings.
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