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ABSTRACT

Large Language Models (LLMs) have demonstrated outstanding capabilities in
various code-related tasks, including code completion, translation, or summariza-
tion. However, these pretrained models are static, posing a challenge to incorporate
new knowledge into an LLM to correct erroneous behavior. Approaches such as
retraining or fine-tuning demand extensive labeled datasets and might be computa-
tionally expensive, while prompt engineering fails to change models permanently.
Knowledge Editing (KE) techniques (Wang et al., 2024) offer a more efficient
alternative, enabling model updates with minimal data, even just a single example.
Nevertheless, existing KE methods often manipulate parameters within the Trans-
former’s multi-layer perceptrons (MLPs), where neuronal polysemanticity hinders
both the precision and interpretability of the edits. To address these limitations,
we exploit TransCoder (Dunefsky et al., 2024), an MLP-like model component
with a wide and sparsely activated hidden feature vector. Specifically, we introduce
TransCoder-based Precise Editing (TCPE), a novel method that leverages the
sparsity and monosemanticity of the TransCoder’s neurons for highly localized
knowledge editing. TCPE exhibits neuron-level mechanistic interpretability charac-
teristics, revealing the correspondence between the edited neurons and the specific
code-related knowledge. Furthermore, we present KECode, a new evaluation
benchmark for code-to-code translation based on functional equivalence (Wei
et al., 2025). Using KECode, we conduct a systematic evaluation of representative
KE methods in the context of code-to-code translation. Our experimental results
demonstrate that TCPE outperforms existing KE methods, achieving a substantial
improvement of translation accuracy of CodeLlama-7b-Instruct from 57.5% to
64.0% in a low-resource scenario of Java-to-D translation.

1 INTRODUCTION

Large Language Models (LLMs) have proved highly impactful in a multitude of fields within
Software Engineering, including code summarization, code completion, code translation, software
testing, program repair, and others (Hou et al., 2024; Jiang et al., 2024; Li et al., 2022; Sun et al.,
2024). For code-related tasks, these models frequently need to be updated with new knowledge
to correct erroneous behavior, accommodate changes in APIs or libraries, or align with developer
preferences. However, this process is challenging due to the large volumes of training data required,
high computational costs, and risks such as catastrophic forgetting, or loss of model consistency.
Setting aside retraining or full-model finetuning (Li et al., 2024a; Zhu et al., 2024; GLM et al.,
2024), even lightweight fine-tuning techniques such as LoRA still demand thousands of labeled
training samples (Hu et al., 2022). Prompt engineering or external memory augmentation can provide
superficial improvements but fail to fundamentally alter model behavior at the parameter level (Wang
et al., 2025b; Wang & Zhu, 2024; Zhang et al., 2025).

In contrast, Knowledge Editing (KE) techniques (Wang et al., 2024) offer updating model knowl-
edge with a small amount of data, typically single training examples, and promise precise model
modifications, without impacting unrelated knowledge. To leverage this precision, we focus here on
groundtruth-based local modification methods (classification from (Wang et al., 2024)), such as the
popular approaches ROME (Meng et al., 2022) and MEMIT (Meng et al., 2023) proposed in context
of Natural Language Processing (NLP).
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Figure 1: Overview of TransCoder-Based Precise Editing. The approach consists of: (1) Replacing
the standard MLP module a TransCoder in a selected layer, yielding a Transformer variant, (2) An
editing method which updates a minuscule fraction of TransCoder neurons relevant to the target
knowledge, (3) Interpretation of neuron-level activations in TransCoder to reveal the link between the
edited locations and the injected knowledge.

ROME, MEMIT and related methods (e.g. PMET (Li et al., 2024b), FiNE (Pan et al., 2025)) perform
updates within particular components of the Transformer architecture, the multi-layer perceptron
(MLP) by conceptualizing it as a key-value store. However, these methods frequently face challenges
in real-world scenarios due to model collapse (Yang et al., 2024a;b). They also might suffer from
limited specificity and poor interpretability, which can be attributed to the polysemantic nature of
MLP neurons (Scherlis et al., 2022).

To address the latter challenges, we propose a modified Transformer architecture that replaces the
standard MLP layer with a TransCoder module (Dunefsky et al., 2024; Kissane et al., 2024a). A
TransCoder is essentially a pair of an encoder and decoder matrices where the hidden feature vector
is wider as in MLP and trained to be sparsely activated (e.g., via L1 regularization). Figure 1 gives
an overview of our approach, which we refer to as TransCoder-based Precise Editing (TCPE).
The key idea is to leverage the sparsity and monosemanticity of the TransCoder’s activation space
to automatically locate and edit neurons associated with target knowledge. This allows for precise
updates while also enhancing interpretability, as the TransCoder’s sparse activations can be directly
linked to specific knowledge components.

Our second major contribution is KECode, a benchmark specifically designed for evaluating knowl-
edge editing in context of code-to-code translation. Existing benchmarks for knowledge editing
predominantly focus on on natural language-centric metrics such as efficacy, specificity, and reli-
ability (Husein et al., 2025; Wang et al., 2024). These metrics may not be directly applicable or
even meaningful in code-to-code translation, as here the primary success indicator is the functional
equivalence (Glucksberg, 1984; Wei et al., 2025) of the original and translated code.

To bridge this gap, we propose a benchmark tailored for evaluating knowledge editing capabilities
in the code domain (Chen et al., 2021) based on verifying functional equivalence. To this end we
have collected a dataset of 600 Java-to-D code translation tasks. We have selected D as the target
language due to its relative rarity, which allows us to create a low-resource setting for our experiments.
Our benchmark comprises a translation step before knowledge edits, where a Transformer model
is deployed to translate Java functions into corresponding D-language code. We then leverage
unit tests provided for each example to check functional equivalence. Potential mistranslations
(likely frequent due to the low-resource scenario) are clustered based on semantic similarity of the
error messages (Islam & Inkpen, 2008). Subsequently, we inject for each error cluster the suitable
correction knowledge into the model using the KE technique to be evaluated. Finally, the testing and
clustering process is repeated to assess the effectiveness of the knowledge editing method according
to multiple metrics described in Section 3.2. Overall, our contributions are as follows:

• We introduce TransCoder-based Precise Editing (TCPE), a neuron-level intervention method
that leverages the sparsity and mono-semantic property of the TransCoder’s activation space
to precisely identify and update active neurons responsible for target knowledge.

• We develop KECode, a novel functional equivalence-based benchmark specifically designed
to evaluate knowledge editing capabilities in a low-resource Java-D translation task.

• We demonstrate a neuron-level interpretability mechanism which effectively indicates the
connection between the edited neurons and the inserted knowledge.
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• We evaluate a collection of established knowledge editing methods, including ROME (Meng
et al., 2022), MEMIT (Meng et al., 2023), PMET (Li et al., 2024b), AGRACE (Li et al.,
2025), LoRA (Hu et al., 2022), among others, on the code-related task.

• We conduct extensive experiments which show that TCPE outperforms existing knowledge
editing methods, significantly improving the translation accuracy of CodeLlama-7b-Instruct
from 57.5% to 64.0% in a low-resource setting of Java-to-D translation.

The remainder paper is organized as follows. Section 2 introduces fundamental concepts and terms
of the domain. We describe the approach in Section 3 and the experimental evaluation in Section 4.
Lastly, we conclude this work in Section 5. Appendix comprises related work, additional experimental
results, examples of interpretability experiments, and training details.

2 PRELIMINARIES

Transformer and MLP Layer. In general terms, an autoregressive Transformer model (Vaswani et al.,
2017) can be described as a mapping G : X → Y of an input sequence x = [x1, . . . , xT ] ∈ X over a
vocabulary V to a next-token probability distribution y ∈ Y ⊂ ∆|V |. This mapping is operationalized
as an iterative transformation of a hidden state h. First, the hidden state is initialized as the sum of a
token embedding and possibly a positional embedding1: h(0)

i = emb(xi) + pos(i) ∈ Rdmodel , where i
denotes the token index and dmodel denotes the model dimensionality. Then the hidden state is passed
through L consecutive layers. At each layer l ∈ 1, . . . , L, the hidden state h

(l)
i for the i-th token is

computed as:

h
(l)
i = h̄

(l)
i + MLP(l)(h̄

(l)
i ), h̄

(l)
i = h

(l-1)
i +

∑
head n

attn(l,n)(h
(l−1)
i ;h

(l−1)
1:i ), (1)

where attn(l,n)(h(l-1)
i ;h

(l-1)
1:i ) denotes the output of the n-th attention head at layer l, given destination

token h
(l-1)
i and all preceding source tokens h(l-1)

1:i . The function MLP(l)(·) denotes the token-wise
feed-forward transformation at layer l, defined as2:

MLP(l)(h̄
(l)
i ) = W(l)

out · σ
(

W(l)
in · γ

(
h̄
(l)
i

))
, (2)

where W(l)
in ∈ Rdmlp×dmodel and W(l)

out ∈ Rdmodel×dmlp are the weight matrices of the two fully connected
layers in the MLP. W(l)

in transforms the input from the model’s hidden dimension dmodel to the
internal feature dimension dmlp, and W(l)

out projects it back to the original dimension dmodel. Here, γ(·)
denotes the layer normalization function, and σ(·) is the non-linear activation function. Finally, an
unembedding matrix is applied and the resulting logits are projected onto the probability simplex
using a softmax function.

Transformer Variant and TransCoder Module. As shown in Figure 1, TCPE extends the Trans-
former model G by replacing the MLP at layer l∗ with a TransCoder module. We call this modified
model variant A. Dunefsky et al. (2024) introduce TransCoder as a sparse approximation of the MLP
layer:

z
(l)
TC(h̄

(l)
i ) = ReLU

(
W(l)

enc · h̄
(l)
i

)
, (3)

TC(l)(h̄
(l)
i ) = W(l)

dec · z
(l)
TC(h̄

(l)
i ), (4)

where W(l)
enc ∈ Rdtc×dmodel and W(l)

dec ∈ Rdmodel×dtc are the encoder and decoder weight matrices.
However, unlike traditional MLPs the TransCoder module is trained to minimize the approximation
error alongside a sparsity loss (see Appendix L). Consequently, for a given input h̄ only very few
elements of z(l)TC(h̄) are non-zero. We refer to these features as active neurons.

3 APPROACH

In this section, we introduce the TCPE method and describe the benchmark KECode.
1Some variants (e.g. RoPE (Su et al., 2024)) place the positional embeddings inside the attention module.
2Throughout the paper all biases are omitted for brevity.
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3.1 TCPE: TRANSCODER-BASED PRECISE EDITING IN THE CODE DOMAIN

Specifying Correction Knowledge in the Code Domain. In code translation tasks, code LLMs
map a source code snippet to a functionally equivalent target snippet (Galasso et al., 2022; Wei
et al., 2025). To support knowledge editing applications, we represent each translation instance as a
four-tuple (r(1), s, r(2), o), where s is the source code snippet (the subject) and o is the functionally
equivalent target snippet (the object). The prefix context r(1) includes the code preceding s, such as
imports, comments, and prior definitions, and the suffix context r(2) contains the code following s
and may include the initial portion of o.

Specifically, we define the prompt as p(r(1), s, r(2)) = r(1) ⊕ s ⊕ r(2), where ⊕ denotes string
concatenation (Meng et al., 2023). If the predicted o contains syntax errors or violates functional
equivalence, we manually correct it to o∗. The resulting tuple (r(1), s, r(2), o∗) is referred to as
correction knowledge. An example is provided in Appendix I. (Complementarily, building on the
causal intervention method (Meng et al., 2022), we introduce a fine-grained causal intervention
method to further examine the role of the subject s in the four-tuple (r(1), s, r(2), o) across different
programming languages (see Appendix H).)

Neuron-Level Sparse Update Mechanism. Building on ROME (Meng et al., 2022), we model
the TransCoder decoder weight W(l)

dec ∈ Rdmodel×dtc as a linear associative memory that maps a key
k ∈ Rdtc to a value v ∈ Rdmodel via W(l)

deck = v. To precisely inject correction knowledge, we propose
to only target the active neurons in the Transformer variant A. Given T new key-value pairs

{(k∗j , v∗j , Sj)}Tj=1, k∗j ∈ Rdtc , v∗j ∈ Rdmodel ,

where (k∗j , v
∗
j ) encodes the j-th correction knowledge (r

(1)
j , sj , r

(2)
j , o∗j ). The set Sj = {a ∈ [dtc] |

(k∗j )a > τ} contains the indices of activation values in k∗j that exceed the threshold τ , where (k∗j )a
denotes the activation at position a. ( Appendix G analyzes the overlap of Sj across different error
types under both MLP and TransCoder modules, where TransCoder exhibits low cross-error overlap,
indicating specialized neuron activation for distinct error types.)

Following ROME (Meng et al., 2022), for each key-value pair (k∗j , v
∗
j , Sj), we compute the update

matrix ∆W(l,j) =
(v∗

j−W(l)
dec k

∗
j )

(C−1k∗
j )

⊤k∗
j
· (C−1k∗j )

⊤. We estimate the covariance matrix C ∈ Rdtc×dtc using

samples from the "bigcode/the-stack3" dataset. Different to standard ROME, we restrict updates to
the active neurons indexed by Sj , enabling precise modifications at the neuron level:

W(l)′

dec [:,m] = W(l)
dec[:,m] + ∆W(l,j)[:,m], ∀m ∈ Sj , (5)

where each ∆W(l,j) is a rank-one update matrix, sparsified via the active neuron index set Sj ,
ensuring that only relevant neurons are updated, thereby enhancing specificity and minimizing
interference with unrelated knowledge.

Encoding Correction Knowledge. Unlike knowledge editing in natural language (Meng et al.,
2022; 2023), the generation of (k∗j , v

∗
j ) in the code domain relies on the knowledge four-tuple

(r(1), s, r(2), o∗). For each error type, we encode the correction knowledge (r
(1)
j , sj , r

(2)
j , o∗j ) into a

key-value pair (k∗j , v
∗
j ) through the following two steps.

Step 1: Generating k∗j . We define k∗j as the mean post-activation output from the TransCoder

encoder at the final token position i of the prompt p(r(1)j , sj). Specifically, we construct N input

sequences by prepending randomly sampled prefixes {anj }Nn=1 to the prompt p(r(1)j , sj), where

p(r
(1)
j , sj) = r

(1)
j ⊕sj . For each composite input anj ⊕p(r

(1)
j , sj), we process it through Transformer

architecture A, and extract the non-linear activation z
(l)
TC(·) from TransCoder encoder at the final token

position i of p(r(1)j , sj). Finally, we compute k∗j as the average activation across all N sequences.
Formally, the k∗j is computed as:

k∗j =
1

N

∑N

n=1
z
(l)
TC

(
h̄
(l)
i (anj ⊕ p(r

(1)
j , sj))

)
. (6)

3https://huggingface.co/datasets/bigcode/the-stack-v2-dedup
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Here, h̄(l)
i (anj ⊕ p(r

(1)
j , sj)) denotes the attention output (with residual) at layer l for the final token

of the input sequence anj ⊕ p(r1j , sj).

Step 2: Generating v∗j . We seek to construct a value vector v∗j that encodes the new relation (r
(2)
j , o∗j )

as an attribute of the prompt (r(1)j , sj). To implement this, we introduce a minimal perturbation δ_j
to the TransCoder’s output. Specifically, the perturbation δj is added to the output of the TransCoder
decoder W(l)

dec, at the final token position of the input sequence anj ⊕ p(r
(1)
j , sj , r

(2)
j ), guiding the

model to predict the new target object o∗j . Formally, this process is expressed as:

v∗j = TC(l) + argmin
δj

(
1

N

∑N

n=1
− logPA(TC(l)+=δj)[o

∗
j | anj ⊕ p(r1j , sj , r

2
j )]

)
. (7)

where A(TC(l) + δj) denotes the addition of the perturbation δj to the TransCoder output TC(l)

within the Transformer architecture A. Once the corrected knowledge {(r(1)j , sj , r
(2)
j , o∗j )}Tj=1 is

encoded as {(k∗j , v∗j , Sj)}Tj=1, we apply Equation (5) to selectively update the active neurons in the

TransCoder decoder layer W(l)
dec.

3.2 KECODE: KNOWLEDGE EDITING BENCHMARK IN LOW-RESOURCE CODE TRANSLATION

Unlike natural language, programming languages require strict syntactic and semantic correctness.
Even with successful knowledge injection, generated code may still fail to compile or exhibit
functional errors. Therefore, in the code domain, knowledge editing should be evaluated based on
functional equivalence rather than superficial textual similarity (Wei et al., 2025).

Dataset Construction: G4GD. Following the principle of functional equivalence, we construct the
G4GD dataset for the low-resource Java-to-D translation task. We adopt the GeeksforGeeks4 dataset
provided by CodeGen as our foundation, which contains hundreds of Java functions. To support
automated evaluation, we collect 10 representative input-output pairs from each Java function and
develop corresponding unit tests in the D language. The final G4GD dataset comprises 600 Java
functions, each paired with 10 independent D unit tests. (In Appendix J.2, we provide a detailed
comparison between the G4GD dataset and widely used benchmarks such as HumanEval (Chen et al.,
2021) and MBPP (Austin et al., 2021). Appendix J.6 includes the prompt formulation that guides the
model in translating the source code into functionally equivalent functions in the target language.)

Functional Error Clustering Mechanism. We categorize the generated D functions based on the
textual similarity of the compilation messages. Specifically, in the Java-to-D translation task, we use
each Java function xs from the G4GD dataset to generate a corresponding D function ys via a Code
LLM, yielding 600 translation pairs (xs, ys), s ∈ [1, 600]. We then execute unit tests to assess the
correctness of each generated D function ys, and collect the compilation messages, including runtime
error messages (if compilation fails) or success indicators (if compilation succeeds). For failed cases,
we extract the first six tokens of the error message, denoted as gs. Each message is paired with its
corresponding translation pair (xs, ys), resulting in a dataset Dfull = {(xs, ys, gs)}600s=1.

Based on the compilation logs gs, we partition Dfull into three subsets: Csucc (compiles and passes
all tests), CFailPass (compiles but fails some tests), and Cincomp (fails to compile). Then, we encode
the error messages gs using the “gte-base-en-v1.55” model and cluster them via cosine similarity
(threshold 0.9), yielding A error clusters Ci ⊆ Cincomp, i ∈ [1, A]. (Appendix J provides detailed
error cluster statistics, intra-cluster examples, and the error message list for CodeLlama-7b-Instruct.)

Evaluation Protocol. To evaluate the performance of knowledge editing in the code domain, we
designed a functional equivalence-based evaluation framework focusing on three key metrics: Efficacy,
Specificity, and Reliability. In particular, using Java functions from the G4GD dataset as inputs,
we construct pre-edit and post-edit datasets, Dfull = {(xs, ys, gs)}600s=1and D′

full = {(xs, y
′
s, g

′
s)}600s=1.

The pre-edit dataset Dfull is partitioned into three subsets: Csucc, CFailPass, and a collection of error
clusters Cincomp = {Ci}Ai=1. Similarly, the post-edit dataset D′

full is divided into C ′
succ, C

′
FailPass, and

C ′
incomp = {C ′

j}Bj=1, where A and B represent the numbers of distinct error clusters before and after

4https://github.com/yakuhzi/c2c-translation/tree/main/data
5https://huggingface.co/Alibaba-NLP/gte-base-en-v1.5
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editing, respectively. If i = j, then Ci and C ′
j correspond to the same error type. Furthermore, based

on the target error type(s) of the edit, we define their union as the pre-edit target group Ctarget, and its
complement within Dfull as the pre-edit non-target group, Cnon-target = Dfull \ Ctarget. The post-edit
target group6 C ′

target and post-edit non-target group C ′
non-target correspond to the same error types as

Ctarget and Cnon-target, respectively. Based on this, we define the following evaluation metrics.

Efficacy: It measures how effectively the edit corrects targeted errors and comprises two metrics:
(1) Generalization (GN), defined as the proportion of samples in the pre-edit target group Ctarget
that are correctly translated post-editing: Exs∼πX(Ctarget)I {(xs, y

′
s, g

′
s) ∈ C ′

succ}, where πX(·) is the
projection operator (Codd, 1970) extracting xs from triplets (xs, y

′
s, g

′
s), and I(·) is the indicator

function. (2) Cluster Drift (CD), which measures the relative change in the cardinality of the target
error group after editing, computed as |C ′

target|/|Ctarget|.
Specificity: It quantifies the extent to which the edit avoids unintended changes and is measured by
two complementary metrics: (1) Locality (LoC), which evaluates the consistency of error categories
within Cnon-target pre- and post-edit: Exs∼πX(Cnon-target)I{(xs, y

′
s, g

′
s) ∈ C ′

non-target}. (2) Destructiveness
(DT) is defined as the proportion of originally correct samples that become incorrect after editing:
Exs∼πX(Csucc)I{(xs, y

′
s, g

′
s) ̸∈ C ′

succ}.

Reliability (RE): It measures the global impact of the edit on the model’s overall accu-
racy, defined as the ratio of post-edit accuracy (ACpost) to the pre-edit accuracy (ACpre):
Exs∼πX(D′

full)
I{(xs, y

′
s, g

′
s) ∈ C ′

succ}/Exs∼πX(Dfull)I{(xs, ys, gs) ∈ Csucc}.

4 EXPERIMENTS

In our study, we (i) investigate TCPE’s interpretability (Section 4.2 and Appendix F), (ii) extend
mainstream knowledge editing methods to the code domain for comparative evaluation (Section 4.3
and Appendix E.1), (iii) examine the information-carrying capacity of active neurons to substantiate
precise editing (Section 4.3 and Appendix E.2), and (iv) broaden our study to general NLP tasks to
further probe the origins of low specificity in ROME-based approaches (Appendix E.3). Furthermore,
we analyze the effects of TransCoder size and layer positions, as well as overlaps of active neurons,
with detailed results provided in Section 4.3 and Appendix G.

4.1 EXPERIMENTAL DETAILS

Base Models and TransCoder Variants. In our work, we adopt CodeLlama-7b-Instruct and
Llama-2-7b (hereafter CodeLlama and Llama2) as base models, and construct a series of Transformer
variants with varying TransCoder widths for systematic analysis. We utilize the “TransformerLens7”
framework to build four CodeLlama variants with varying TransCoder intermediate dimensions
(dtc): LTCmlp (dtc = dmlp = 11, 008), LTC4 (dtc = 4, 096 ∗ 4), LTC8 (dtc = 4, 096 ∗ 8), and
LTC16 (dtc = 4, 096 ∗ 16), as well as two Llama2 variants: MTC4 (dtc = 4, 096 ∗ 4) and MTC8
(dtc = 4, 096∗8). Here, each variant is constructed by replacing a single MLP layer at l ∈ {10, 19, 23}
with the TransCoder. Notably, we designed the TransCoder Adapter to enable fast integration of
TransCoder for the above variants in just a few seconds. (See Appendices L.3 and L.2 for details.)

Datasets and Evaluation Metrics. We evaluate knowledge editing performance on the KECode
benchmark (including the G4GD dataset), HumanEval (Chen et al., 2021), zsRE (Levy et al., 2017),
and CounterFact (Meng et al., 2022). For the G4GD dataset, we observe that the dominant error
types remain consistent across CodeLlama, LTC4, and LTC8, with clusters C0, C8, C4, and C6

together accounting for 57.68% ∼ 58.51% of Cincomp. Accordingly, our editing evaluation focuses on
these clusters, assessing performance in both single-error and multi-error scenarios, using a functional
equivalence-based framework with three key metrics: Efficacy, Specificity, and Reliability. For
HumanEval, we leverage it to examine the broader impact of knowledge injection after G4GD-based
edits, using the Reliability metric to measure overall model performance (see Section 3.2). For
CounterFact and zsRE, we follow the experimental protocols of Pan et al. (2025), focusing on three
key metrics: Efficacy, Specificity, and Generalization (see Appendix D for details).

6Knowledge editing may cause certain target error types to be absent in the post-edit (non-)target group. This
is considered in our evaluation design and does not affect metric validity.

7https://github.com/TransformerLensOrg/TransformerLens
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Baselines. Meng et al. (2022) demonstrate that factual knowledge is primarily stored in the middle
MLP layers of Transformers. Using a fine-grained causal intervention scanning all layers and
token positions, we confirm that code knowledge is similarly localized in these middle layers (see
Appendix H). Furthermore, we observe that TransCoder modules with the same width exhibit
consistent sparsity patterns (i.e., the average number of activated neurons per token) and achieve
comparable performance when replacing MLP layers at different positions (see Section 4.3 and
Figures 10(c) and 10(f) in the Appendix). Accordingly, our subsequent TCPE editing experiments
primarily target the middle TransCoder modules at layer 19.

To assess the effectiveness of TCPE, we compare it against representative knowledge editing baselines:
ROME (Meng et al., 2022), MEMIT (Meng et al., 2023), PMET (Li et al., 2024b), FiNE (Pan et al.,
2025), Fine-Tuning (FT) (Zhu et al., 2020b), AGRACE (Li et al., 2025), Few-shot (Parnami &
Lee, 2022), WISE (Wang et al., 2025a), and LoRA (Hu et al., 2022). (Method descriptions and
hyperparameters for TCPE and baselines are provided in Appendices D.3 and K.)

4.2 INTERPRETABILITY ASSESSMENT OF TCPE

In this section, we first use TCPE to analyze the relationship between injected knowledge and neurons
with varying activation levels, and then compare the interpretability of TransCoder and MLP neurons.

Neuron-Level Interpretability in Knowledge Editing. We employ TCPE on LTC4 within the
G4GD dataset to explore whether active features during knowledge editing align with specific error

Figure 2: Top-Activating Exam-
ples for Active Neurons.

types, providing insights into neuron-level interpretability. Fo-
cusing on a typical D-type conversion error “Error: cannot
implicitly convert expression ‘str.length’ of type ‘ulong’ to

‘int’”, we analyze the interpretability differences between ac-
tive and inactive features in the activation k∗j from the LTC4
TransCoder module. Notably, only 57 features are active, rep-
resenting 0.348% of the intermediate dimension dtc. Specif-
ically, we first record the indices of the top-10 most active
features and 10 randomly selected inactive features in k∗j dur-
ing the injection of correction knowledge for this error type.
Then, using all Java samples and D samples in C8 as input, we
capture and analyze the patterns of the top-activating examples
for both the top-10 active features and 10 inactive features.
Figure 2 shows a representative example from the top-10 ac-
tive features, which consistently respond to key tokens such as
‘str’, ‘string’, or ‘=.length’, directly related to the target
error. (More results can be found in Appendix F.2). In contrast,
Appendix F.3 presents examples from 10 randomly inactivated
features, which respond to structural or control-flow tokens
like ‘if’, ‘N’, ‘ps’, and ‘;’. Although these inactive features
also exhibit stable activation patterns, their captured knowl-
edge is largely unrelated to the target error. This comparison highlights that the highly active features
exhibit semantic specificity and show direct correlation with the target error, providing interpretability
for knowledge editing.

Blind Interpretability Comparison of TransCoders and MLPs. Following the methodology
of Dunefsky et al. (2024), we evaluate the interpretability of TransCoder features compared to

Table 1: Interpretability Analysis of MLP
and TransCoder (LTC4) Features.

Type TransCoder MLP
Interpretable 33 4
Possibly-Interpretable 8 5
Uninterpretable 9 41

the MLP features. Here, a feature is considered inter-
pretable if it exhibits clear and consistent patterns (e.g.,
syntactic or semantic) across the input examples that
activate it (Kissane et al., 2024b; Bloom, 2024). We
randomly selected 50 features from the TransCoder
module (W(19)

enc ) of LTC4 and 50 features from the
MLP layer (W(19)

in ) of CodeLlama. For each feature, we precomputed the top-activating exam-
ples from a pool of 37,055 Java and D code samples sourced from the “semeru/code-text-java8” and

8https://huggingface.co/datasets/semeru/code-text-java

7

https://huggingface.co/datasets/semeru/code-text-java


378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Comparative Performance of Knowledge Editing Methods in a Multi-Error Editing
Scenario. Score quantifies overall knowledge editing performance and is calculated as Score =
(GN − CD) + (LoC − DT) + RE.

Method Score↑ Efficacy Specificity Reliability

GN↑ CD ↓ LoC↑ DT ↓ RE↑ ACpost ACpre

FT 86.40 7.09 100.00 87.36 6.38 97.97 56.33 57.50
Few-shot 120.20 12.06 87.23 90.20 2.61 107.78 61.33 57.50
WISE 99.74 3.55 98.58 96.51 1.74 100.00 57.50 57.50
AGRACE 99.85 0.71 100.71 99.56 0.00 100.29 57.67 57.50
FiNE 144.50 29.08 54.61 81.92 13.62 101.74 58.50 57.50
LoRA 147.27 29.08 58.87 82.57 10.44 104.93 60.33 57.50
ROME 109.60 29.79 80.14 76.47 16.23 99.71 57.33 57.50
MEMIT 14.96 7.09 124.82 72.99 22.32 82.03 47.17 57.50
PMET -4.70 12.77 104.26 55.77 38.55 69.57 40.00 57.50
TCPE (LTCmlp) 171.59 30.61 44.90 83.00 6.05 108.93 63.00 57.83
TCPE (LTC4) 171.45 32.86 46.43 82.17 6.86 109.71 64.00 58.33
TCPE (LTC8) 174.82 31.66 49.64 88.50 5.73 110.03 64.00 58.17

“UKPLab/SLTrans9” corpora. To avoid bias, features were randomly shuffled prior to analysis. Then,
we performed a blind manual evaluation to determine whether the top-activating examples exhibited
interpretable patterns, categorized as “uninterpretable”, “possibly-interpretable”, or “interpretable”
(including a subset labeled “context-free”, triggered by individual tokens). Examples of each category
are shown in Appendix F.1. After all annotations were completed, the feature source (TransCoder
or MLP) was revealed. As shown in Table 1, features from the TransCoder module demonstrate
higher interpretability compared to those from the MLP layer, aligned with prior findings on model
interpretability by Dunefsky et al. (2024). Furthermore, in Appendix G, we evaluate the overlap of
high-activation neurons across distinct error clusters, revealing that TransCoder neurons exhibit more
independent activation patterns than the MLP, thereby providing further support for the above results.

4.3 EDITING PERFORMANCE OF TCPE

Analysis of TCPE and Baselines in a Multi-Error Editing Scenario. Table 2 presents a compari-
son of TCPE and baseline methods in the multi-error editing scenario on the G4GD dataset. TCPE
outperforms all baselines across key metrics, including efficacy, specificity, and reliability. Due to the
inherently strict syntactic and semantic constraints of programming languages, knowledge editing in
the code domain is highly sensitive to the granularity of interventions. Compared to broader inter-
ventions like MEMIT and PMET, single-layer approaches (e.g., ROME) tend to yield more reliable
outcomes. In this work, TCPE builds upon these approaches by combining TransCoder’s sparse
representations with precise neuron-level interventions. This method enables strong generalization
while minimizing unintended side effects, as reflected in its high specificity (in terms of locality and
destructiveness). Crucially, TCPE surpasses baselines in reliability, achieving significant performance
gains through effective knowledge insertion. It demonstrating TCPE’s ability to perform effective
knowledge edits while preserving model integrity.

Information-Carrying Role of Active Neurons in Supporting Precise Editing. This study investi-
gates the information-carrying roles of highly and lowly active neurons during knowledge injection to
evaluate the feasibility of precise model editing. We apply TCPE to conduct conventional experiments
on high-activation neurons and perform ablation studies on low-activation neurons on G4GD dataset.

(1) Active TransCoder Neurons. In the multi-error editing scenario, less than 1% of neurons in
the TransCoder decoder are active. To further investigate the information-carrying capacity of
active neurons during knowledge editing, we experimented with different activity thresholds τ ∈
{0, 0.001, 0.01, 0.05, 0.08, 0.1, 0.15, 0.2}. As shown in Table 3, the overall score remains relatively
stable across a range of activation thresholds τ , demonstrating the robustness of active neurons in
supporting knowledge editing. Notably, even when only a small subset of highly active neurons
(acv > 0.2) is updated, the performance remains competitive. This suggests that highly active
neurons tend to carry more essential information during knowledge injection. Moreover, as the
threshold is relaxed, the number of neurons participating in the update (∪) increases, while the

9https://huggingface.co/datasets/UKPLab/SLTrans
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Table 3: Role of Active TransCoder Neurons in Multi-Error Editing. Neurons are updated
if activations acv exceed thresholds τ ∈ {0, 0.001, 0.01, 0.05, 0.08, 0.1, 0.15, 0.2}. “∪” and “∩”
denote the union and intersection of updated neurons across multiple error types.

Method Efficacy Specificity Reliability Neurons

GN↑ CD↓ LoC↑ DT↓ RE↑ ACpost ACpre ∪ ∩
LTC4
acv>0.2 24.29 59.29 82.39 7.43 105.43 61.50 58.33 34 3
acv>0.15 27.86 61.43 82.61 7.14 107.14 62.50 58.33 42 3
acv>0.1 32.86 46.43 82.17 6.86 109.71 64.00 58.33 69 3
acv>0.08 34.29 52.86 81.96 9.43 106.57 62.17 58.33 78 4
acv>0.05 35.00 48.57 82.39 8.57 106.86 62.33 58.33 98 4
acv>0.01 33.57 50.00 83.04 8.29 106.29 62.00 58.33 135 4
acv>0.001 32.86 50.71 83.04 8.29 106.00 61.83 58.33 147 5
acv>0 32.86 50.71 83.04 8.29 106.00 61.83 58.33 147 5
LTC8
acv>0.2 29.50 51.80 88.29 6.59 108.31 63.00 58.17 39 1
acv>0.15 30.22 49.64 87.85 6.59 108.88 63.33 58.17 51 2
acv>0.1 32.37 46.76 87.42 6.59 109.74 63.83 58.17 70 3
acv>0.08 31.66 49.64 88.50 5.73 110.03 64.00 58.17 92 3
acv>0.05 32.37 51.08 82.86 9.74 106.59 62.00 58.17 122 4
acv>0.01 31.66 51.08 82.65 10.32 105.73 61.50 58.17 181 5
acv>0.001 31.66 51.08 82.65 10.32 105.73 61.50 58.17 195 5
acv>0 31.66 51.08 82.65 10.32 105.73 61.50 58.17 197 5

Table 4: Ablation on Active TransCoder Neurons in Multi-Error Editing. Neurons are updated
if activations acv below thresholds τ ∈ {0, 0.001, 0.01, 0.05, 0.08, 0.1}. Here, “Updated Neurons”
denotes the number of neurons that meet each threshold.

Method Efficacy Specificity Reliability Updated

GN↑ CD↓ LoC↑ DT↓ RE↑ ACpost ACpre
Neurons

LTC4
acv =0 1.43 101.43 98.48 0.57 100.29 58.5 58.33 16,237
acv ≤0.001 1.43 101.43 98.48 0.57 100.29 58.5 58.33 16,237
acv ≤0.01 1.43 101.43 98.26 0.57 100.29 58.5 58.33 16,249
acv ≤0.05 1.43 101.43 98.04 0.86 100 58.33 58.33 16,286
acv ≤0.08 1.43 101.43 98.04 0.86 100 58.33 58.33 16,306
acv ≤0.1 7.14 92.86 96.09 1.71 102 59.5 58.33 16,315
LTC8
acv =0 1.44 100 99.13 0.29 100.57 58.5 58.17 32,571
acv ≤0.001 1.44 100 99.13 0.29 100.57 58.5 58.17 32,573
acv ≤0.01 1.44 100 99.13 0.29 100.57 58.5 58.17 32,587
acv ≤0.05 1.44 100 99.13 0.29 100.57 58.5 58.17 32,646
acv ≤0.08 1.44 99.28 99.13 0.29 100.86 58.67 58.17 32,676
acv ≤0.1 1.44 99.28 98.92 0.57 100.57 58.5 58.17 32,698

intersection of activated neurons across different error types (∩) remains small. This highlights the
specificity of TransCoder’s neurons, as each neuron tends to respond to a specific error type, with
minimal overlap between neurons involved in correcting different errors.

(2) Ablation Study of Active TransCoder Neurons. Based on the ablation experiments presented in
Table 4, we provide a more comprehensive analysis of the relationship between neuron activation
levels and the effectiveness of knowledge injection. As the activation threshold increases from 0 to
0.1, a larger number of low-activation and inactive neurons are included in the update process. Despite
broadening the update scope, we observe no tangible gains in generalization. In LTC4, the number
of updated neurons increases from 16,237 to 16,306 while the score remains 1.43. In LTC8, the
updated neuron count reaches 32,698, yet the score remains unchanged at 1.44. Meanwhile, although
specificity metrics (including locality and destructiveness) and reliability remain numerically high,
this outcome primarily results from the model’s inability to execute effective edits. Even when all low-
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activation and inactive neurons are updated, the model still fails to perform meaningful knowledge
injection. These results suggest that, in the process of knowledge injection, a few high-activation
neurons carry most of the relevant information, whereas the vast majority of low-activation neurons
contribute little, providing support for precise knowledge editing.

Effect of TransCoder Size and Layer Position. We evaluate the functional fidelity of TransCoder
by examining whether replacing the MLP layer with a TransCoder module across different layers
affects model performance. As shown in Table 5, model performance remains stable across different

Table 5: Comparison of Overall Accuracy
Between CodeLlama and its Variants

Layer MLP LTC4 LTC8 LTC16
layer 10 57.50% 56.83% 58.33% 57.83%
layer 19 57.50% 58.33% 58.17% 58.17%
layer 23 57.50% 57.67% 57.33% 56.12%
AVE 57.50% 57.61% 57.94% 57.37%

TransCoder widths and positions on the G4GD dataset.
The accuracy changes are marginal, with some config-
urations even slightly outperforming the original MLP,
indicating that TransCoder integration does not degrade
model capabilities. In addition to performance metrics,
we also analyze the error patterns across different model
variants. As shown in Appendix Table 14, the distri-
bution of top error clusters remains largely unchanged
after replacing the MLP with TransCoder modules. This indicates that the core behavioral char-
acteristics of the model are preserved. These results demonstrate the functional compatibility of
the TransCoder module with standard MLP layers. It not only preserves predictive performance
but also retains error-specific activation patterns, making it a reliable substitute for evaluating and
manipulating the model’s internal knowledge.

5 CONCLUSION

Existing locate-and-then methods are built upon the ROME approach. Although these methods
improve performance, they still lack sufficient interpretability, making it difficult to understand how
knowledge is injected into the MLP layers. Building on this, we propose TCPE, which combines
ROME with TransCoder, revealing a clear correspondence between the edited neurons and the injected
knowledge, thereby laying the groundwork for interpreting ROME-based methods such as MEMIT
and PMET. On one hand, TCPE reveals a clear correspondence between the edited neurons and the
injected knowledge. Through intuitive visualization, TCPE enables developers to transparently track
the location of knowledge injection. On the other hand, TCPE’s performance gains on TransCoder
suggest that ROME-based methods’ limited specificity stems from the polysemanticity of MLP
neurons, as these edits can induce unintended interference beyond the target scope. This suggests a
potential direction for future work: identifying and isolating sub-representations within polysemantic
neurons that correspond to specific facts may be crucial for enhancing editing specificity.
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A LIMITATIONS AND BROADER IMPACT

Limitations. First, TCPE requires architectural modification of the LLM by replacing an MLP layer
with a TransCoder. This may not be feasible in closed-source or production models and may introduce
subtle behavioral changes. Second, the purpose of TCPE is to serve as a tool for understanding
the underlying principles of knowledge editing: it focuses on interpreting the relationship between
limited injected knowledge and its corresponding edits, and is not intended as a practical method for
large-scale knowledge updating. Furthermore, training TransCoders introduces additional memory
and compute overhead, and the required sparse autoencoder training does not trivially scale. This
limits its direct applicability to large production LLMs. Moreover, although TCPE demonstrates
consistent improvements in low-resource Java-to-D translation, future work should extend evaluations
to other pairs of programming languages and a broader set of code scenarios in order to assess the
generalizability and robustness of our results. Such studies would provide a deeper understanding of
the method’s applicability in various scenarios. Finally, TCPE’s reliance on unit-test–based functional
equivalence introduces dependencies on the quality of the test suits, and its behavior under repeated
or large-scale edits remains unexamined. Future work should evaluate multi-edit accumulation, and
sensitivity to the used set of unit tests.
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Broader Impact. From a broader perspective, this work aims to advance safe and transparent
knowledge editing for code-oriented large language models. The proposed neuron-level intervention
mechanism facilitates the correction of model behaviors and the integration of new programming
knowledge without exhaustive retraining, contributing to both open-source research and to practical
deployment scenarios. Moreover, by minimizing interference with unrelated knowledge, TCPE
provides a more interpretable and reliable model editing approach. To ensure ethical and responsible
deployment, future work should establish auditing protocols, verification pipelines, and safeguard
mechanisms to prevent unintended consequences of fine-grained model interventions.

B LLM USAGE STATEMENT

A large language model (LLM) was used solely to aid in polishing the text, improving phrasing,
clarity, and readability. All scientific content, including ideas, experimental design, analysis, and
conclusions, was developed entirely by the authors.

C RELATED WORK

Code Large Language Models. Recent advancements in Code LLMs have yielded substantial
progress along four key dimensions: data quality, model architecture, training methodology, post-
training refinement, and retrieval-augmented generation. On the data-centric side, efforts such as
StarCoder (Li et al., 2023) introduced “The Stack v1.2”, a high-quality, deduplicated, and permissively
licensed code dataset, while Magicoder (Wei et al., 2024) proposed OSS-Instruct to synthesize diverse
programming tasks from open-source repositories. Phi-1 (Gunasekar et al., 2023) demonstrated that
compact yet high-quality synthetic corpora, such as “textbook-style” data, can yield strong model
performance. Furthermore, MistralHermes-Code enhanced the capabilities of Mistral-7B (Jiang
et al., 2023) through comprehensive multilingual fine-tuning on over 200,000 diverse code exam-
ples. With respect to architectural and training innovations, TransCoder (Rozière et al., 2020)
integrated denoising auto-encoding and back-translation, marking the first successful application of
unsupervised program translation in the code domain. Code Llama (Rozière et al., 2024) incorporated
infilling-aware tokenizers and extends context length through RoPE scaling (Su et al., 2024), while
LongCoder(Guo et al., 2023) addressed long-range dependencies via a sliding window attention
mechanism (Clement et al., 2021).

In terms of post-training optimization, approaches like WizardCoder (Luo et al., 2024) employed
Evol-Instruct for iterative instruction tuning, and OctoPack (Muennighoff et al., 2024) generated
realistic development tasks based on GitHub commit histories. Reinforcement learning has also
proven effective, CodeRL (Le et al., 2022) utilized unit tests and critic scores as reward signals,
whereas RLTF fine-tuned models based on test pass rates (Liu et al., 2023). Gemma (Mesnard et al.,
2024) combined Supervised Fine-Tuning (SFT) with Reinforcement Learning from Human Feedback
(RLHF), enhancing its capability in natural language understanding for code-related tasks. Finally,
retrieval-augmented generation techniques have emerged as a powerful paradigm. In this context,
RepoCoder (Zhang et al., 2023) and CodeT5+ (Wang et al., 2023) combine retrieval mechanisms
with pre-trained code language models to enhance diverse programming tasks.

However, Code LLMs are inherently static, and updating their internal knowledge to correct er-
roneous behavior remains a fundamental challenge. Conventional methods such as full retraining
or fine-tuning are computationally intensive and prone to catastrophic forgetting (Luo et al., 2025;
Li et al., 2024a; Zhu et al., 2024; GLM et al., 2024). Alternatives like prompt engineering or
memory-based augmentation offer only superficial fixes, as they do not alter the model’s internal
representations (Wang et al., 2025b; Wang & Zhu, 2024; Zhang et al., 2025).

Knowledge Editing Technology in NLP. Knowledge editing aims to modify specific factual as-
sociations in pre-trained language models without retraining from scratch or degrading unrelated
knowledge. Early works, such as MEND (Mitchell et al., 2022a), introduced a collection of small
auxiliary editing networks for fast localized editing. Similarly, SERAC (Mitchell et al., 2022b)
formulated editing as constrained generation and stored edits in an external memory, though it
suffered from generalization issues as the memory size grew. Later, ROME (Meng et al., 2022)
proposed directly intervening in the Transformer’s feed-forward network (FFN) weights by com-
puting rank-one updates, achieving strong editing performance with minimal side effects. Building
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on this, MEMIT (Meng et al., 2023) extended the idea to batched multi-edit settings by applying a
series of localized updates to multiple layers, scaling the editing process while maintaining precision.
Complementary to these editing-based approaches, LoRA (Hu et al., 2022) proposed a low-rank
adaptation method for fine-tuning LLMs using low-rank matrices. While LoRA is not specifically
designed for knowledge editing, it serves as a parameter-efficient fine-tuning baseline and has inspired
hybrid approaches that blend fine-tuning and editing (Guo et al., 2025).

Recent work emphasized fine-grained localization and interpretability. PMET (Li et al., 2024b) built
on this idea by analyzing the information flow within transformer layers, distinguishing between
contributions from Multi-Head Self-Attention (MHSA), FFN, and residual paths (Miller et al., 2024).
PMET found that MHSA primarily encoded general-purpose extraction behaviors and thus did not
require modification. As a result, it restricted updates to FFN weights and used their corresponding
hidden states for targeted editing. FiNE (Pan et al., 2025) proposed a neuron-level editing framework,
locating and updating only a small number of FFN neurons, which improved the locality and precision
of edits. Overall, recent trends in knowledge editing move from coarse-grained layer-wise updates to
fine-grained neuron-level interventions.

However, most existing editing methods focus on manipulating FFN weights, where individual
neurons often entangle multiple concepts or functions. This polysemantic nature (Scherlis et al.,
2022) makes it difficult to interpret the effect of edits and to control them with high specificity (Elhage
et al., 2021). As a result, even fine-grained interventions at the neuron level may inadvertently affect
unrelated knowledge, limiting both interpretability and specificity. Such limitations highlight the
importance of structured and interpretable representations as a foundation for precise and controllable
model editing.

D BENCHMARKS AND BASELINES FOR KNOWLEDGE EDITING EVALUATION

D.1 DATASETS

In this section, we provide detailed descriptions of the benchmarks used in our experiments: KECode
(including the G4GD dataset), HumanEval, CounterFact, and zsRE.

• G4GD dataset is designed to evaluate knowledge editing in the context of low-resource code
translation, with functional equivalence as the primary evaluation criterion. Many existing
code benchmarks, such as MBPP (Austin et al., 2021), are less suitable for knowledge
editing due to their small sample sizes and diverse task types. For example, tasks like "Write
a function to zip the two given tuples." are clearly irrelevant to knowledge editing. In contrast,
we focus on code translation tasks because they are both a common benchmark in the code
domain and provide a clear input–output mapping, which enables more direct observation
of how knowledge edits affect model behavior. In this paper, the Java → D translation task
was selected as an initial test case since D is a low-resource language, making the impact of
knowledge edits on model performance more pronounced. This setup enables us to clearly
observe how knowledge editing impacts both the targeted error clusters and the overall
model accuracy.

• HumanEval (Chen et al., 2021) is a benchmark for code generation introduced by OpenAI.
It consists of 164 hand-written programming problems, each paired with a natural language
prompt and a hidden unit test. The dataset is specifically designed to measure functional
correctness rather than superficial similarity, as solutions are automatically evaluated by
executing the generated code against the ground-truth tests. HumanEval has become a
standard benchmark for assessing the ability of LLMs to synthesize correct and executable
programs from natural language descriptions. In our study, HumanEval is used to assess the
overall impact of knowledge edits introduced in G4GD on model performance.

• CounterFact (Meng et al., 2022) is a large-scale dataset created to test factual knowledge
editing in language models. Each instance in CounterFact contains a subject–relation–object
triple, along with alternative target facts, paraphrased prompts, and counterfactual contexts.
The dataset is particularly useful for assessing whether a model can not only incorpo-
rate newly injected knowledge but also remain consistent when queried in diverse forms.
Moreover, CounterFact provides auxiliary contexts that test whether the model can sup-
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press its original memorized facts in favor of the new edits, making it a challenging and
comprehensive benchmark for evaluating editing specificity and generalization.

• zsRE (Levy et al., 2017) is a question-answering dataset commonly used to evaluate the zero-
shot generalization abilities of models. Each sample includes a question, an original answer,
and a revised target answer, making it suitable for evaluating whether editing methods can
effectively modify factual associations in LLMs. Compared with CounterFact, zsRE focuses
more on the ability of a model to adapt to factual corrections in a question-answering setting,
where robustness to paraphrasing and generalization across different query formulations are
key evaluation aspects.

D.2 EVALUATION METRICS FOR KNOWLEDGE EDITING IN NLP BENCHMARKS

For CounterFact and zsRE, we follow the experimental protocols of Pan et al. (2025), focusing on
three key metrics: Efficacy, Specificity, and Generalization. Let sj denote the subject of a factual
triple, rj the corresponding relation, and o∗j the target object. Furthermore, p(sj , rj) represents the
model’s prompt constructed from (sj , rj), G denotes the original model, and G′ the post-edited model.
Each metric is formally defined as follows.

• Efficacy quantifies whether the post-edited model produces the expected output and is
formally defined as:

Efficacy = E(sj ,rj ,o∗j )∼Deff I{argmax
y

PG′ [y | p(sj , rj)] = o∗j}.

• Generalization assesses the model’s ability to propagate the edited knowledge to related
real-world contexts:

Generalization = E(sj ,rj ,o∗j )∼Dgen I{argmax
y

PG′ [y | p(sj , rj)] = o∗j}.

• Specificity examines whether the edit affects only the targeted knowledge without influenc-
ing unrelated information. It can be quantified as:

Specificity = E(sj ,rj)∼Dspe I{argmax
y

PG′ [y | p(sj , rj)] = argmax
y

PG [y | p(sj , rj)]}.

D.3 BASELINES

We compare our method against a set of representative knowledge-editing baselines:

• ROME (Meng et al., 2022) directly intervenes in the Transformer’s feed-forward network
weights via rank-one updates. By targeting specific neurons, it enables precise modifica-
tion of factual knowledge with minimal side effects, particularly effective in single-edit
scenarios. However, its specificity can be limited when multiple edits are required due to the
polysemantic nature of neurons.

• MEMIT (Meng et al., 2023) extends ROME to multi-edit scenarios by applying localized
updates across multiple layers. This enables the model to edit several factual associations in
a single pass while maintaining high editing effectiveness, making it suitable for large-scale
knowledge updates.

• PMET (Li et al., 2024b) improves precision in model editing by separating FFN-specific
hidden states from those of MHSA, using only the FFN-relevant component to update FFN
weights.

• Fine-Tuning (FT) (Zhu et al., 2020b) is a standard approach where part or all of the model
weights are updated on new data. While FT can successfully inject new knowledge, it
is parameter-intensive, computationally costly, and prone to unintentional degradation of
unrelated knowledge, making it less targeted than specialized editing methods.

• AGRACE (Li et al., 2025) is a model editing method designed for code LLMs, which
leverages an external memory and a contrastive learning mechanism to correct erroneous
knowledge across multiple editing instances. However, its evaluation relies on text-based
validation metrics, which do not align with the conventional evaluation principle for code
LLMs, namely the functional equivalence principle.
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• Few-shot (Parnami & Lee, 2022) methods rely on in-context learning, providing the model
with a small set of demonstration examples at inference time to modify its output behavior.
While these methods are lightweight and flexible, they do not permanently modify model
weights and thus offer limited long-term effectiveness and precision.

• FiNE (Pan et al., 2025) targets neuron-level interventions across multiple MLP layers with
high granularity, focusing on specific subspaces of active neurons, thereby achieving precise
edits while minimizing cross-interference.

• WISE (Wang et al., 2025a) introduces a dual-memory framework, where the main memory
preserves pretrained knowledge while a side memory stores edits. A router dynamically
selects between the two, and a knowledge-sharding mechanism is employed to avoid conflicts
during continual editing.

• LoRA (Hu et al., 2022) introduces trainable low-rank matrices to adapt pre-trained models
efficiently. By freezing the original weights and updating only the lightweight adapters,
LoRA achieves substantial reductions in computational and memory costs while preserving
model performance. Although not originally designed for knowledge editing, it is widely
adopted as a parameter-efficient fine-tuning baseline.

E TCPE PERFORMANCE RESULTS

E.1 IMPACT OF KNOWLEDGE EDITING METHODS ON OVERALL MODEL PERFORMANCE

Following the injection of Java-D correction knowledge (Section 4.3), ROME-based methods modify
the internal parameters of code LLMs. Table 6 shows how these edits affect the models’ over-
all performance via HumanEval. The RE reflects the global impact of the edit on the model’s

Table 6: Effects of Knowledge Editing
on Code LLMs via HumanEval.

Method RE↑ ACpost ACpre Neurons
ROME 93.61 26.83 28.66 11,008
MEMIT 76.45 21.91 28.66 55,040
PMET 53.18 15.24 28.66 55,040

TCPE (LTC4) 100.00 29.27 29.27 69

max_new_tokens=2000, pass@1.

overall accuracy, while ACpost and ACpre denote the
model’s post- and pre-edit functional accuracy, respec-
tively. In Table 6, TCPE maintains the original func-
tional accuracy (ACpost = ACpre), indicating minimal
disruption to the model’s overall code generation capa-
bilities. In contrast, other ROME-based methods, such
as ROME, MEMIT, and PMET, update thousands of neu-
rons (11,008–55,040) and exhibit lower reliability with
noticeable reductions in post-edit accuracy. These results
underscore the advantages of TCPE’s neuron-level approach. By performing highly selective updates
on specific neurons, TCPE enables precise knowledge injection while minimizing unintended side
effects on the model’s broader behavior.

E.2 INFORMATION-CARRYING CAPACITY OF ACTIVE NEURONS IN SINGLE-ERROR EDITING
SCENARIO

In the single-error editing scenario, we further investigate the information-carrying role of neurons
in knowledge editing to support precise modifications, employing TCPE to conduct conventional
experiments on high-activation neurons alongside ablation studies targeting low-activation neurons
on the G4GD dataset.

Role of Active TransCoder Neurons in Single-Error Editing Scenario. Based on the results in
Table 7, we examine the performance of single error types C0 and C8 under different activation
thresholds (acv). For both C0 and C8, updating only a small number of highly activated neurons (i.e.,
acv > 0.1) results in noticeable improvements in generalization and reliability. As the threshold is
lowered to acv > 0.05 to include more neurons, the improvement in generalization and reliability
becomes limited. Moreover, when more low-activation neurons (i.e., acv > 0) are introduced, both
generalization, specificity, and reliability experience varying degrees of decline. This emphasizes
the importance of focusing updates on neurons with high activation to achieve effective knowledge
injection. Consequently, precise targeting of these highly activated neurons is critical for achieving
effective and reliable knowledge injection.
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Table 7: Role of Active TransCoder Neurons in Single-Error Editing Scenarios: Error Clusters
C0 and C8. In LTC4, only neurons with activation values (acv) exceeding the specified thresholds
τ ∈ {0, 0.01, 0.05, 0.08, 0.1} are updated. The term “Updated Neurons” refers to the count of
neurons that surpass each threshold.

Method Efficacy Specificity Reliability Updated

GN↑ CD↓ LoC↑ DT↓ RE↑ ACpost ACpre
Neurons

LTC4 (C0)
acv > 0.1 38.46 51.28 83.24 6.29 103.71 60.50 58.33 29
acv > 0.08 43.59 41.03 82.35 6.86 103.71 60.50 58.33 32
acv > 0.05 43.59 41.03 82.17 6.86 103.71 60.50 58.33 41
acv > 0.01 41.03 46.15 82.71 6.86 103.43 60.33 58.33 54
acv > 0 41.03 46.15 82.71 6.86 103.43 60.33 58.33 57
LTC4 (C8)
acv > 0.1 28.85 28.85 97.45 0.86 104.00 60.67 58.33 14
acv > 0.08 34.62 15.38 95.62 1.43 106.00 61.83 58.33 17
acv > 0.05 34.62 13.46 95.62 1.43 106.00 61.83 58.33 21
acv > 0.01 28.85 13.46 95.07 1.71 105.14 61.33 58.33 29
acv > 0 28.85 11.54 95.07 1.71 105.14 61.33 58.33 30

Ablation Study of Active TransCoder Neurons in Single-Error Editing Scenario. In this section,
we conduct an ablation study to examine the role of active TransCoder neurons in the context of
single-error editing. In Table 8, we observe that as highly activated neurons are excluded from the
update set, the model’s generalization ability completely collapses (GN = 0 across all thresholds).
Even when a large number of neurons are updated (e.g., up to 16,370 in C8), the model fails to
exhibit any effective generalization. Although specificity and reliability metrics remain high, this
is due to the lack of real intervention. These stable values suggest that the model has not made
meaningful modifications and has failed to successfully perform the intended edits. Further analysis
reveals that even when the number of updated low-activation and inactive neurons increases (e.g.,
from 16,327 to 16,355 in C0, or from 16,354 to 16,370 in C8), no improvement in generalization
occurs. This suggests these neurons play a negligible role in the learning process. This highlights
that error-correction knowledge is primarily carried by highly active neurons, while a large number
of low-activation and inactive neurons carry little to no knowledge.

Table 8: Ablation Study on the Role of Active TransCoder Neurons in Single-Error Editing
Scenarios: Error Clusters C0 and C8. In LTC4, only neurons with activation values (acv) below
specified thresholds τ ∈ {0, 0.01, 0.05, 0.08, 0.1} are updated. Here, “Updated Neurons” represents
the number of neurons that meet each threshold.

Method Efficacy Specificity Reliability Updated

GN↑ CD↓ LoC↑ DT↓ RE↑ ACpost ACpre
Neurons

LTC4 (C0)
acv ≤ 0.1 0.00 100.00 99.64 0.00 100.00 58.33 58.33 16,355
acv ≤ 0.08 0.00 96.30 99.48 0.29 100.00 58.50 58.33 16,352
acv ≤ 0.05 0.00 100.00 98.95 0.29 100.86 58.33 58.33 16,343
acv ≤ 0.01 0.00 100.00 99.65 0.29 100.00 58.33 58.33 16,330
acv = 0 0.00 100.00 98.54 0.86 99.71 58.50 58.33 16,327
LTC4 (C8)
acv ≤ 0.1 0.00 100.00 99.64 0.29 99.71 58.83 58.33 16,370
acv ≤ 0.08 0.00 100.00 98.54 0.86 99.71 58.17 58.33 16,367
acv ≤ 0.05 0.00 100.00 99.64 0.00 100.00 58.17 58.33 16,363
acv ≤ 0.01 0.00 96.30 99.48 0.29 100.00 58.17 58.33 16,355
acv = 0 0.00 100.00 99.64 0.29 100.00 58.17 58.33 16,354
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E.3 UNDERSTANDING LOW SPECIFICITY IN ROME-BASED KNOWLEDGE EDITING

Most existing locate-and-then editing methods are built upon ROME, yet they are hindered by
ROME’s limited specificity (Li et al., 2024b). To systematically investigate the underlying causes
of this low specificity in ROME-based approaches, we conduct a comparative study of TCPE and
other ROME-based methods, including ROME, MEMIT, and PMET, on the NLP benchmarks ZsRE
and CounterFact. Since generalization and specificity are inherently trade-offs, in this study we
primarily focus on the behavior of specificity under the premise of effective knowledge injection,
rather than on generalization. As shown in Table 9, TCPE achieves significantly enhanced editing

Table 9: Quantitative Evaluation of TCPE and
ROME-based Methods on NLP Benchmarks.

Dataset Metric TCPE PMET MEMIT ROME

zsRE

Eff. ↑ 97.8±0.4 96.9±0.2 97.2±0.2 97.7±0.2

Gen. ↑ 50.1±1.9 57.3±0.9 55.9±0.9 56.5±0.8

Spe. ↑ 70.9±2.0 64.6±1.0 46.1±0.9 49.7±0.9

Neurons 30∼50 55,040 55,040 11,008

CounterFact

Eff. ↑ 99.5±0.1 99.1±0.1 99.2±0.1 99.5±0.1

Gen. ↑ 49.1±1.2 51.8±1.1 63.1±1.1 59.7±1.0

Spe. ↑ 62.5±1.1 58.7±0.7 43.3±0.7 46.9±0.6

Neurons 30∼50 55,040 55,040 11,008

TCPE: It leverages MTC4 with acv > 1 ∗ 10−4 .

specificity, updating only approximately 0.2%
of all neurons. Moreover, PMET demonstrates
superior performance compared to ROME and
MEMIT because, during knowledge injection,
it discards irrelevant or redundant information,
thereby reducing interference and improving
editing precision. This indicates that updating
MLP neurons may cause different concepts or
knowledge fragments encoded within the same
polysemantic neurons to interfere with each
other, resulting in unintended side effects. In
contrast, TCPE selectively identifies neurons
most relevant to the target knowledge and modifies only these neurons, thereby minimizing inter-
ference and achieving higher specificity. In summary, the low specificity of ROME-based methods
primarily arises from the polysemantic nature of neurons, which encode excessive information unre-
lated to the target knowledge injection. This suggests a potential direction for future improvement:
identifying and isolating sub-representations within polysemantic neurons that correspond to specific
facts may be key to further enhancing editing specificity.
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F TCPE INTERPRETABILITY RESULTS

F.1 INTERPRETABLE, POTENTIALLY INTERPRETABLE, UNINTERPRETABLE, CONTEXT-FREE
EXAMPLES

In this section, we provide some examples to support the analysis in Section 4.2.

(a) High-activation examples of a feature labeled as in-
terpretable: This feature was annotated as a local con-
text feature that activates when describing the closing
part of paired symbols. For instance, tokens such as “}”,
“)”, or “]” tend to trigger this feature.

(b) High-activation examples of a feature labeled as
Possibly-Interpretable: This feature was annotated as
a potential local context feature related to the semantic
concept of “max”. While it shows some consistent ac-
tivation patterns, it remains unclear whether it reliably
represents this concept.

(c) High-activation examples of a feature labeled as un-
interpretable: This feature was deemed uninterpretable
because the text fragments that trigger it show no ap-
parent semantic or structural consistency, making its
meaning difficult to infer.

(d) High-activation examples of a feature labeled as
context-free: This feature was annotated as a single-
token feature, specifically activating on the occurrence
of “th” in the middle of a word. It appears to fire inde-
pendently of the broader linguistic context.

Figure 3: Examples of “feature-dashboards” used in the feature interpretation experiments.
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F.2 DETAILED RESULTS OF INTERPRETABILITY EXPERIMENTS ON ACTIVE NEURONS

In this section, we present detailed results that expand upon Section 4.2. In Figure 4, using all Java
and D samples in C8, we show some results from the top-10 most active features by examining their
top-activating examples. These features consistently respond to key tokens such as ‘str’, ‘string’,
or ‘=.length’, which are directly associated with the corresponding error. (Additional results are
given in the supplementary material.)

(a) Feature Index: 1787. (b) Feature Index: 13321.

(c) Feature Index: 8370. (d) Feature Index: 5579.

Figure 4: Top-Activating Examples for Active Neurons.
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F.3 DETAILED RESULTS OF INTERPRETABILITY EXPERIMENTS ON INACTIVE NEURONS

This section presents detailed results that complement the analysis Section 4.2. Using all Java samples
and D samples in C8 as input, we capture and analyze the patterns of 10 randomly selected inactive
features. As shown in Figure 5, although these features exhibit interpretability due to the sparsity
induced by the TransCoder, they primarily attend to irrelevant tokens such as ‘if’, ‘N’, ‘;’, and
‘ps’, indicating limited relevance to the target error cluster C8. (Additional results are given in the
supplementary material. As some inactive neurons fail to respond to relevant examples, only 8 results
are included.)

(a) Feature Index: 3990. (b) Feature Index: 51.

(c) Feature Index: 8772. (d) Feature Index: 9831.

Figure 5: Top-Activating Examples for Inactive Neurons.
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G ACTIVE NEURON OVERLAP ANALYSIS

To evaluate the overlap of active neurons (acv > 0) across different error clusters, we select multiple
clusters Ci, where i ∈ {0, 1, 2, 4, 6, 8, 9, 15}. For each cluster Ci, we construct five correction
knowledge four-tuple (r

(1)
(j,i), s(j,i), r

(2)
(j,i), o

∗
(j,i)), where j ∈ [1, 5], and compute the corresponding

representation vectors k∗(j,i) (see Equation 6). Each k∗(j,i) is associated with a prefix set {an(j,i) | n ∈
[1, 20]}, which includes ten prefixes of length 5 and ten of length 10. Based on this, we analyze the
overlap of active neurons at layer 19 for the MLP of CodeLlama and the TransCoder modules of
LTC4, LTC8, and LTC16.

G.1 METRICS FOR NEURON ACTIVATION OVERLAP ACROSS ERROR CLUSTERS

In this section, we quantify the overlap of neuron activation patterns across different error clusters.
We define two metrics: (1) Absolute Overlap (AO): The ratio between the union of all activated
neurons across clusters and the sum of neuron unions within each individual cluster. A higher value
indicates greater independence between clusters. (2) Relative Overlap (RO): The ratio between the
total union of activated neurons and the average number of activated neurons per cluster, reflecting
the degree to which active neurons are shared across clusters. Formally, these metrics are defined as:

AO =

∣∣∣⋃N
i=1

⋃k
j=1 Si,j

∣∣∣∑N
i=1

∣∣∣⋃k
j=1 Si,j

∣∣∣ , RO =

∣∣∣⋃N
i=1

⋃k
j=1 Si,j

∣∣∣
1

Nk

∑N
i=1

∑k
j=1 |Si,j |

Here, Si,j denotes the set of activated neuron indices for the j-th prompt in cluster Ci. In addition,
we denote the average number of activated neurons across clusters as A1, and within clusters as A2.
Their corresponding union sets are U1 (cross-cluster) and U2 (intra-cluster). The intersection of active
neurons within a cluster is defined as I2.

G.2 ANALYSIS OF ACTIVE NEURON OVERLAP BETWEEN MLP AND TRANSCODER

In Table 11, we show the overlap of active neurons in the k∗(j,i) generated by multiple correction

knowledge (r(1)(j,i), s(j,i), r
(2)
(j,i), o

∗
(j,i)) within the same cluster Ci. Obviously, the active neurons in the

TransCoder module are more concentrated compared to those in the MLP for the same error type.
As shown in Table 10, in the MLP layer, the RO value is 1.97 and the AO value is 0.16, indicating a
concentrated distribution of active neurons with substantial overlap across error clusters. In contrast,
the TransCoder neurons exhibit stronger independence across clusters, suggesting more distinct
representations of different errors. The AO and RO values for the TransCoder module consistently
remain high, with AO ranging from 0.41 to 0.47 and RO from 6.67 to 8.02. This consistency reflects
a more structured and sparse organization of active TransCoder neurons, demonstrating the potential
for fine-grained knowledge editing.

Table 10: Comparison of Cross-Cluster Active Neuron Overlap between MLP and TransCoder
Modules. In the MLP layer, lower Absolute Overlap (AO) and Relative Overlap (RO) values indicate
a more distributed set of active neurons with substantial overlap across error clusters. In contrast,
the TransCoder layer consistently exhibits higher AO and RO values, reflecting more distinct and
functionally independent active neurons across clusters.

layer A1 U1 RO AO
MLP 5514 10836 1.97 0.16
LTC4 117 848 7.25 0.44
LTC8 132 1059 8.02 0.47
LTC16 448 2987 6.67 0.41
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Table 11: Intra-Cluster Active Neuron Counts and Overlaps for MLP and TransCoder Modules.
Obviously, the TransCoder modules (LTC4, LTC8, LTC16) exhibit significantly more localized and
concentrated active neurons (see A2 and U2) compared to the MLP in CodeLlama.

Stats C0 C1 C2 C4 C6 C8 C9 C15 AVE
A2 6455 7502 9144 9279 9305 7548 8214 7413 8108

CodeLlama I2 4543 3538 1841 1822 1715 3449 2807 3646 2920
U2 5495 5520 5470 5521 5500 5532 5533 5538 5514
A2 138 111 108 116 124 113 109 115 117

LTC4 I2 95 51 20 20 25 51 34 64 45
U2 191 185 270 306 339 200 236 202 241
A2 147 131 127 134 138 126 122 131 132

LTC8 I2 91 67 25 29 29 61 43 63 51
U2 223 214 328 369 389 232 284 233 284
A2 551 452 427 440 430 424 396 454 447

LTC16 I2 386 236 73 92 76 198 123 263 181
U2 759 736 1068 1172 1208 746 885 754 916

H FINE-GRAINED CAUSAL INTERVENTION

Based on the causal intervention technique proposed in ROME (Meng et al., 2022), we introduce a
fine-grained causal intervention method for token-by-token analysis. Specifically, we first pass a input
x into the model G and collect all clean activations {h(l)

i |i ∈ [1, T ], l ∈ [1, L]} across layers. Then,
we sequentially corrupt a single token i∗ by adding noise at the embedding layer h(0)

i := h
(0)
i + ε.

This yields a set of corrupted activations {h(l)
i∗ |i ∈ [1, T ], l ∈ [1, L]} throughout the network. Next,

at each layer, we restore the clean hidden activation h
(l)
i for the selected token, while leaving the rest

of the activations corrupted. We measure the difference in model outputs between the restored and
non-restored cases, producing a table of size T × L, where each cell quantifies the causal effect of
restoring the hidden state of a specific token at a specific layer.

Building on this procedure, we leverage the fine-grained causal intervention method to systematically
assess the contribution of each token in the four-tuple (r(1), s, r(2), o) across various programming
language scenarios. As illustrated in Figure 6, our analysis reveals that the subject token s exerts a
substantial causal influence on the prediction of the object token o.
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(a) Case 1.1: Impact of restoring state after corrupted
input

(b) Case 2.1:Impact of restoring state after corrupted
input

(c) Case 1.2: Impact of restoring MLP after corrupted
input

(d) Case 2.2: Impact of restoring MLP after corrupted
input

(e) Case 1.3: Impact of restoring Attn after corrupted
input

(f) Case 2.3: Impact of restoring Attn after corrupted
input

Figure 6: Analyzing Each Token Behavior via Fine-grained Causal Intervention in CodeLlama.
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I CONSTRUCTING CORRECTION KNOWLEDGE FOUR-TUPLES

In this section, we introduce the process of constructing correction knowledge four-tuples
(r(1), s, r(2), o) for fixing specific error types in Java-to-D programming language translation. More
specifically, the process begins by identifying translation failures in the Java-to-D task. For ex-
ample, when translating Java functions to D, the translation fails the unit test. Leveraging the
associated error messages, we locate the incorrect code snippet o and construct the initial four-tuples
(r(1), s, r(2), o), where o is the prediction generated by the model based on the prompt p(r(1), s, r(2)).
We then manually correct o to the correct object o∗, forming the correction knowledge four-tuple
(r(1), s, r(2), o∗).

In Figure 7, we provide an example. In the Java-to-D translation, we consider a prompt p(r(1), s, r(2)),
where the source Java code snippet is s = “str.length”, and the model generates the D code snippet
o = “str.length()”. Here, the generated o is incorrect and does not conform to D language rules.
We refine o into the properly formatted D code snippet o∗ = “cast(int)str.length()”, thereby
constructing the correction knowledge four-tuple (r(1), s, r(2), o∗).

Figure 7: Construction of Correction Knowledge Four-Tuple (r(1), s, r(2), o∗) in Java-to-D Code
Translation.

J G4GD DATASET DETAILS

In this section, we provide a comprehensive overview of the G4GD dataset, including its structure,
evaluation with standard benchmarks (MBPP and HumanEval), and representative examples. In
addition, we present a detailed error analysis of CodeLlama in the Java-D translation task, covering a
complete list of error categories, clustering statistics, intra-cluster examples, and comparisons across
model variants.

J.1 RATIONALE FOR LOW-RESOURCE TRANSLATION IN KNOWLEDGE EDITING EVALUATION

Popular existing datasets, such as HumanEval (Chen et al., 2021) and MBPP (Austin et al., 2021),
have been widely used to evaluate the performance of code generation models. However, due to the
small sample size and the diversity of task types, these datasets are not well suited for knowledge
editing. For example, a task such as "Write a python function to identify non-prime numbers." are
clearly irrelevant to knowledge editing.

In this paper, we instead focus on code translation tasks, which are widely used benchmarks in the
code domain and provide explicit input–output mappings, enabling a direct analysis of the effects of
knowledge editing. As an initial case study, we adopt the Java → D translation task. Since D is a
low-resource language, knowledge edits are more likely to produce observable changes, allowing
us to precisely assess their influence on both specific error clusters and the overall model accuracy.
We develop a specialized benchmark dataset, G4GD, designed to evaluate low-resource Java-to-D
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language translation. The G4GD dataset comprises 600 Java functions, each paired with a suite of
D unit tests. Every test suite includes 10 independent test cases designed to assess the functional
correctness of the translated D code (see Table 16 for an example).

J.2 EVALUATION OF G4GD DATASET WITH MBPP AND HUMANEVAL

To comprehensively evaluate the G4GD dataset, we compared it with existing standard benchmarks,
HumanEval and MBPP. In terms of sample size, the HumanEval dataset contains only 164 examples
(each accompanied by 7.7 automated test cases (Chen et al., 2021)), while the MBPP dataset includes
974 examples (each with 3 automated test cases (Austin et al., 2021)). In contrast, the G4GD dataset
includes 600 examples, with a richer and more comprehensive set of unit test cases, offering a more
robust and diverse resource for model training and evaluation. Furthermore, as shown in Figure 8, the
code snippets in the G4GD dataset are generally longer, which presents a greater challenge in testing
knowledge editing methods for handling complex functions. This design enables the dataset to more
effectively assess the model’s knowledge editing capabilities in more complex scenarios, particularly
in the translation of long code snippets and complex functions, highlighting the model’s robustness
and adaptability.

Length G4GD
(ours)

MBPP HumanEval

len ≥ 20 97.67% 88.5 % 92.07 %
len ≥ 30 91.83 % 62.83 % 82.32 %
len ≥ 40 84.67 % 44.56 % 64.02 %
len ≥ 50 78.17 % 31.83 % 48.78 %
len ≥ 60 69.17 % 23.20 % 41.46 %
len ≥ 70 61.83 % 17.76 % 35.98 %
len ≥ 80 51.33 % 13.66 % 26.83 %
len ≥ 90 44.00 % 10.88 % 19.51 %
len ≥ 100 38.50 % 8.52 % 15.24 %

Figure 8: Comparison of Input Sequence Length Distributions in G4GD, HumanEval, and
MBPP. We compare the input code length distributions of G4GD with widely used benchmarks
HumanEval and MBPP. Obviously, G4GD contains significantly longer sequences, making it better
suited for evaluating knowledge editing on more complex functions. Here, the x-axis denotes
sequence length ranges, and the y-axis indicates the proportion of samples.
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J.3 COMPLETE LIST OF ERROR MESSAGES BY CLUSTER IN CODELLAMA

To characterize failure patterns, we first present a complete error message list, as summarized in
Table 12, where each error cluster Ci corresponds to a distinct type of compilation failure. This
systematic categorization serves as the basis for subsequent error clustering, wherein all failed
translation outputs are grouped according to their respective error types.

Table 12: Complete List of Error Categories for Codellama in Java-to-D Translation
Cluster Error Message
C0 Error: instead of C-style syntax, use D-style ‘int[][] mat’
C1 Error: ‘std.math.algebraic.sqrt’ called with argument types ‘(int)’ matches both:
C2 Error: found ‘>’ when expecting ‘;’ following statement ‘Set < (int)’
C4 Error: C style cast illegal, use ‘cast(int)x’
C5 Error: ‘1 == 0’ must be surrounded by parentheses when next to operator ‘&’
C6 Error: undefined identifier
C7 Error: none of the overloads of template ‘std.algorithm.sorting.sort’
C8 Error: cannot implicitly convert expression ‘s.length’ of type ‘ulong’ to ‘int’
C9 Error: identifier expected following comma
C10 Error: semicolon expected following auto declaration, not ‘>’
C11 Error: can only ‘*’ a pointer, not a ‘int’
C12 Error: expression expected, not ‘)’
C13 Error: incompatible types for ‘(startIndex) + ("to")’: ‘int’ and ‘string’
C14 Error: no property ‘substring’ for ‘first’ of type ‘string’
C15 Error: variable ‘n’ cannot be read at compile time
C16 Error: template instance ‘HashSet!int’ template ‘HashSet’ is not defined
C17 TestRuntimeError
C18 Error: invalid array operation
C19 Error: ‘switch’ statement without a ‘default’
C20 Error: no identifier for declarator ‘char’
C21 Error: missing closing ‘)’
C22 Error: slice ‘s‘ is not mutable
C23 Error: unterminated character constant
C24 Error: function is not callable
C25 Error: template argument expected following ‘!’
C26 Error: integer overflow
C27 Error: ‘10.0’ is not of integral type, it is a ‘double’

J.4 ERROR CLUSTER STATISTICS AND INTRA-CLUSTER EXAMPLES IN CODELLAMA

In this section, we analyze the distribution and characteristics of compilation failures produced
by CodeLlama in Java-to-D translation. We cluster all failed translation outputs based on their
corresponding error types. The resulting distribution, shown in Figure 9, reveals a highly concentrated
pattern: the top four clusters (C0, C8, C4, C6) account for 58.51% of all compilation failures.
Table 13 provides representative examples from two of the most prominent clusters: C0 and C4. Here,
cluster C0 contains violations of D-style array declaration conventions, and C4 captures illegal uses
of C-style casts.

Table 13: Examples of Error Clusters "C0" and "C4" in Java-to-D Translation for CodeLlama

Cluster Error Message D Translation File
Error: instead of C-style syntax, use D-style ‘int[][] mat’ COUNT_SORTED_ROWS_MATRIX.d

Error: instead of C-style syntax, use D-style ‘int[n + 1] dp’ FRIENDS_PAIRING_PROBLEM.d

C0 Error: instead of C-style syntax, use D-style ‘int[n + 1] dp’ LEONARDO_NUMBER_1.d

Error: instead of C-style syntax, use D-style ‘int[][] mat’ MAXIMUM_XOR_VALUE_MATRIX.d

Error: instead of C-style syntax, use D-style ‘int[][] LCStuff’ LONGEST_COMMON_SUBSTRING.d

Error: instead of C-style syntax, use D-style ‘int[n] ugly’ UGLY_NUMBERS.d

Error: C style cast illegal, use ‘cast(int)floor(digits)’ COUNT_DIGITS_FACTORIAL_SET_1.d

Error: C style cast illegal, use ‘cast(int)Math.sqrt(n)’ MINIMUM_PERIMETER_N_BLOCKS.d

C4 Error: C style cast illegal, use ‘cast(int)Math.sqrt(ySquare)’ CIRCLE_LATTICE_POINTS.d

Error: C style cast illegal, use ‘cast(int)str1[i]’ SUM_TWO_LARGE_NUMBERS.d

Error: C style cast illegal, use ‘cast(int)sum’ EVEN_FIBONACCI_NUMBERS_SUM.d

Error: C style cast illegal, use ‘cast(int)str[i]’ LEXICOGRAPHICALLY_NEXT_STRING.d
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Cluster Count Cluster Count
C0 50 C5 2
C8 47 C3 2
C4 26 C20 2
C6 18 C18 2
C9 17 C17 2
C1 15 C13 1
C2 14 C11 1
C15 10 C21 1
C14 7 C19 1
C16 6 C24 1
C10 4 C22 1
C12 3 C27 1
C23 2 C26 1
C25 2 Csucc 345
C7 2 CFailPass 14

Figure 9: Error Clusters of Codellama on Java-to-D Translation Tasks. By applying error
clustering to these compilation failure samples, we found that a significant portion of errors is
concentrated in specific clusters. A notable concentration of errors is observed, with the top four
clusters C0, C8, C4, and C6 together accounting for 58.50% of all compilation failures.

J.5 COMPARISON OF TOP-8 ERROR CLUSTERS IN CODELLAMA, LTC4, AND LTC8

In this section, we compare the top-8 error clusters generated by CodeLlama and its two TransCoder
variants, LTC4 and LTC8, which replace the 19th MLP layer with TransCoder modules of varying
widths. As shown in Table 14, the distribution of the predominant error clusters remains largely
consistent across all models. This stability suggests that the TransCoder effectively approximates the
activation patterns of the original MLP layer, preserving the model’s behavior despite architectural
modifications.

Table 14: Top-8 Error Clusters for Pure CodeLlama and CodeLlama Variants. Here, each Ci

denotes a specific error type, with the frequency indicated in parentheses. LTC4 and LTC8 refer to
CodeLlama variants where MLP layer 19 is replaced by a TransCoder module with 4, 096 ∗ 4 and
4, 096 ∗ 8, respectively.

No MLP LTC4 LTC8
1 C0 (50) C8 (52) C8 (52)
2 C8 (47) C0 (39) C0 (39)
3 C4 (26) C4 (27) C4 (27)
4 C6 (18) C6 (22) C6 (21)
5 C9 (17) C9 (18) C9 (21)
6 C1 (15) C10 (12) C10 (13)
7 C2 (14) C1 (11) C1 (12)
8 C15 (10) C2 (10) C2 (7)
9 CFailPass (14) CFailPass (10) CFailPass (10)

10 Csucc (345) Csucc (350) Csucc (349)
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J.6 EXAMPLES OF PROMPT AND OUTPUT

We provide a prompt that guides the model to translate code into an equivalent function in a target
language. Table 15 illustrates a specific example where the model is prompted to translate a Java
function into its equivalent implementation in the D programming language. The input prompt,
enclosed in an “ [INST]. . . [/INST] ” block, specifies the task (i.e., translation from Java to D),
followed by the source code. The model’s output is the corresponding translation in the target
language.

Table 15: Example Prompt and Corresponding Output: Translating a Java Function to the D
Language.

Type Details

Prompt
&

Output

<s> [INST] Translate the following Java function to its equivalent
function in the D programming language (dlang). Only provide the
completed function.

```int solution (String s) {
int result = 0;
int n = s.length ();
for (int i = 0; i < n; i++)

for (int j = i; j < n; j++)
if (s.charAt (i) == s.charAt (j))

result++;
return result;

}
``` [/INST] ```d
int solution(string s) {

int result = 0;
int n = cast(int) s.length;
for (int i = 0; i < n; i++) {

for (int j = i; j < n; j++) {
if (s[i] == s[j])

result++;
}

}
return result;

}
``` </s>
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J.7 EXAMPLE FROM THE G4GD DATASET

To illustrate the structure of our dataset, Table 16 presents a representative example from the G4GD
benchmark. Each entry in G4GD consists of a Java function paired with 10 independently constructed
D unit tests. These tests are designed to evaluate the correctness of translated code across diverse
inputs.

Table 16: Example from the G4GD dataset: The final G4GD dataset comprises 600 Java functions,
each paired with 10 independent D unit tests.

Type Details

Java function

def f_gold ( n ) :
if ( n == 0 or n == 1 ) :

return n
f1 , f2 , f3 = 0 , 1 , 1
while ( f3 <= n ) :

f1 = f2
f2 = f3
f3 = f1 + f2

return f2

D unit tests

import std.stdio;
import std.math;
import std.conv;
import std.algorithm;

//TOFILL//

void main(){
int [] results = [34, 55, 55, 55, 89, 34, 55, 89, 89, 55];
int [] param0 = [54, 71, 64, 71, 96, 43, 70, 94, 95, 69];

int n_success = 0;

for (int i = 0; i < param0.length; i++) {
if (results[i] == f_filled(param0[i])) {

n_success += 1;
}}

writefln("#Results:%d,%d", n_success, param0.length);
}

K TRAINING DETAILS FOR KNOWLEDGE EDITING METHODS

K.1 HYPERPARAMETER SETTINGS FOR CODE TASK

ROME The ROME configuration follows the original configuration proposed in the ROME10, with
a learning rate of 0.5, mom2_n_samples of 100,000, and a clamp_norm_factor of 4, and a prefix
distribution of [[5, 10], [10, 10]]. Here, a total of 20 text segments were sampled, with 10 having a
prefix length of 5 and the other 10 a prefix length of 10. The covariance matrix is estimated from
samples drawn from the “bigcode/the-stack11” dataset. The intervention is applied at MLP layer 19
of CodeLlama.

MEMIT, PMET Following PMET (Li et al., 2024b) and MEMIT (Meng et al., 2023),
we perform a grid search over key hyperparameters to identify the configuration for code-
related knowledge editing tasks. The hyperparameter sweep included: learning rates
{0.5, 0.1, 0.05, 0.01, 0.005, 0.001}, mom2_update_weight {100, 500, 800, 10000, 15000, 20000},
v_weight_decay {0.5, 0.1, 0.05, 0.01, 0.005}, and clamp_norm_factor {0.5, 0.75, 1, 2, 5, 10, 15}.
In addition, the covariance matrices are estimated from the “bigcode/the-stack” dataset, with
mom2_n_samples of 100,000. Following the hyperparameter sweep, both PMET and MEMIT
adopt the same final configuration: a learning rate of 0.01, a mom2_update_weight of 500, a
v_weight_decay of 0.05, and a clamp_norm_factor of 2. (The experimental setup for PMET, as
reported by Li et al. (2024b), closely follows the configurations employed for MEMIT.)

10https://github.com/kmeng01/rome/tree/main/hparams/ROME
11https://huggingface.co/datasets/bigcode/the-stack-v2-dedup
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Few-shot Few-shot (Parnami & Lee, 2022) constructs prompts by directly providing the error message
along with the Java-corrected D function, enabling the model to perform targeted code correction
with minimal additional context.

FiNE Following defalt experimental setup (Pan et al., 2025), we freeze the final three layers and
update the preceding layers. A learning rate of 0.001, determined via hyperparameter sweep, is
applied, while all other hyperparameters remain consistent with the original FiNE configuration.

LoRA We target the q_proj and v_proj modules with a rank of 8 and a learning rate of 0.0001,
restricting edits to a Transformer layer 19. All other model parameters remain frozen during training,
following the default experimental setup as described in the baseline configuration.

WISE We follow the default experimental setup for WISE (Parnami & Lee, 2022), restricting updates
to the designated inner parameters. Training is performed with a learning rate of 1.0 under an
L∞-norm constraint of 1.0, while all other hyperparameters remain consistent with the original
configuration12.

AGRACE We follow the default experimental setup of AGRACE under CodeLlama (Li et al., 2025),
restricting updates to the designated inner parameters and maintaining all other hyperparameters as in
the original configuration.

FT We restrict parameter updates to MLP layer 19, which enables efficient knowledge modification
while preserving the model’s overall behavior. We train with a learning rate of 0.005 and impose an
L∞ norm constraint (Zhu et al., 2020a) of 0.1, applying early stopping once the loss falls below 0.01
to prevent overfitting.

TCPE In the TCPE method, the hyperparameters for LTC4 and LTC8 are configured as follows:
learning rate {0.05, 0.005}, mom2_n_samples of 500,000, clamp_norm_factor {13, 18}, and neuron
activation thresholds τ ∈ {0, 0.001, 0.01, 0.05, 0.08, 0.1, 0.15, 0.2}. Knowledge injection is applied
at layer 19 of the TransCoder module. In this process, the covariance matrix samples from the
“bigcode/the-stack” dataset. In addition, to construct the random prefix distribution, we use a single
prefix of length 10. To prevent overfitting, an early stopping mechanism is employed during training.
If the negative log-likelihood loss shows no significant improvement over three consecutive steps,
training is halted. The tolerance is set to 0.001.

K.2 HYPERPARAMETER SETTINGS FOR NLP TASK

For experiments on knowledge editing in natural language tasks using Llama2, the baseline methods
ROME, MEMIT, and PMET adhere to the hyperparameter settings reported by Pan et al. (2025). In
the TCPE method, the hyperparameters for the LTC4 variant are set as follows: a learning rate of
0.5, mom2_n_samples of 500,000, clamp_norm_factor of 35, and neuron activation thresholds of
1 ∗ 10−4. Knowledge injection is applied at layer 19 of the TransCoder module, with the covariance
matrix estimated from samples of the Wikipedia dataset. To prevent overfitting, an early stopping
mechanism is employed: if the negative log-likelihood loss does not improve significantly over three
consecutive steps, training is halted, with a tolerance of 0.001.

L TRAINING DETAILS FOR TRANSCODER MODULES

The training of TransCoder modules is guided by a loss function designed to balance faithful
approximation of the original MLP outputs with sparsity of the internal feature representations.
Formally, the loss function is defined as:

LTC =
∥∥∥MLP(l)(h̄

(l)
i )− TC(l)(h̄

(l)
i )

∥∥∥2
2︸ ︷︷ ︸

faithfullness loss

+λ
∥∥∥z(l)TC(h̄

(l)
i )

∥∥∥
1︸ ︷︷ ︸

sparsity loss

(8)

The quality and effectiveness of the TransCoder modules mainly depend on two key hyperparameters:
the learning rate and the L1 regularization coefficient λ. This coefficient is balancing faithful

12https://github.com/opanhw/FiNE/tree/main/hparams/LoRA
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(a) dtc = 4, 096 ∗ 4 (b) dtc = 4, 096 ∗ 4 (c) dtc = 4, 096 ∗ 4

(d) dtc = 4, 096 ∗ 8 (e) dtc = 4, 096 ∗ 8 (f) dtc = 4, 096 ∗ 8

Figure 10: Comparison of sparsity characteristics for TransCoder modules with dtc = 4,096∗4
and dtc = 4,096∗8. Figures 10(a) and 10(d) show the log10 firing frequency distribution of features
at the end of training for a TransCoder module at layer 19. Figures 10(b) and 10(e) report the L0

sparsity, i.e., the number of active features per input token for layers 10, 19, and 23. Figures 10(c)
and 10(f) track the mean log10 activation sparsity throughout training for the same layers.

approximation of the original MLP’s outputs against maintaining a high degree of sparsity on its
internal feature space z

(l)
TC

13.

L.1 EXPERIMENTAL CONFIGURATION

Datasets. The TransCoder is trained on intermediate activations produced by the target LLM during
inference, without requiring access to the original pretraining data. As long as the input text can trigger
the target MLP’s computations, these activations can be collected for training. Such input data can be
any publicly available text, eliminating the need to access the pretraining dataset. For CodeLlama, the
TransCoder modules were trained on 80 million tokens sampled from the "codeparrot/github14"
dataset. For Llama2, the TransCoder modules were trained on 10 million tokens sampled from the
"Skylion007/openwebtext15" dataset.

Hyperparameters. TransCoders were trained with learning rates ranging from 5 ∗ 10−4 to 1 ∗ 10−4,
and the L1 regularization coefficient λ was varied between 1 ∗ 10−8 and 1 ∗ 10−6. This range
consistently produced robust results across diverse experimental settings. Regularization values above
this range tended to induce excessive sparsity, leading to a substantial number of inactive features that
failed to capture meaningful information. Conversely, sparsity constraints below this range resulted
in many features activating frequently and indiscriminately across contexts.

All TransCoders were initially trained to replace the MLP layer 19 of the target model architecture.
Once a viable hyperparameter configuration was identified for a given expansion factor, the same
configuration was reused to train TransCoders for additional layers in order to evaluate whether our
approach generalizes across the model. Here, hyperparameters selected for layer 19 were reused for
layers 10 and 23. After training, we assess the quality of a TransCoder by examining its sparsity
behavior. We present the distribution of feature firing frequencies (Figures 10(a) and 10(d)) for LTC4
and LTC8. A well-formed distribution appears smooth on a log scale and avoids heavy tails, i.e., few
features should be consistently inactive or always firing, both of which indicate poor utilization. For

13To this end, dtc is typically chosen multiple times larger than dmlp
14https://huggingface.co/datasets/codeparrot/github-code
15https://huggingface.co/datasets/Skylion007/openwebtext
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layer 10, feature sparsity increased toward the end of training, with more inactive features observed in
the log10 firing frequency. This effect aligns with prior findings: early-layer transcoders often show
lower quality (Dunefsky et al., 2024), and editing in early layers tends to be less effective (Meng
et al., 2022).

L.2 TRAINING TIME

Existing knowledge editing methods, such as ROME, MEMIT, PMET, WISE, and AGRACE, require
significant computational resources and hours-to-days to compute covariance matrices or build
external memory modules. Notably, this cost is one-time and reusable for multiple edits.

Similarly, in our study, we trained TransCoders on an internal cluster with NVIDIA H100 PCIe
GPUs (80GB VRAM). For codeLlama-7b-Instruct, training with an intermediate dimension of
4, 096 ∗ 4 took about 2 hours and 20 minutes on a single GPU. Notably, TransCoder supports one-
time training that can be reused across all locate-and-edit methods for interpretability analyses. It
provides intuitive visualizations that reveal the correspondence between edited neurons and injected
knowledge, enabling developers to transparently track the knowledge injection process.

L.3 TRANSCODER ADAPTER: FAST INTEGRATION OF THE TRANSCODER MODULE

We design a Transcoder Adapter that wraps TransCoder as a standard PyTorch submodule. This
adapter serves as a plug-and-play replacement for MLP layers: TransCoder parameters are loaded
from its pretraining, while all other model weights remain unchanged from the original pretrained
checkpoint. Here, the loading process takes only a few seconds. This approach is similar in spirit to
the integration of LoRA modules. As illustrated in Figure 11, we provide an example of loading and
integrating the TransCoder module.

We ran multiple experiments on the G4GD dataset using the same device to compare the total runtime
of ROME across different architectures (MLP, LTC4, LTC8). The results show that ROME’s runtime
is 17 m 9 s∼ 17 m 45 s on MLP, 17 m 15 s∼ 18 m 6 s on LTC4, and 17 m 2 s ∼ 17 m 52 s on LTC8.
The slight variation in runtime arises from differences in model architecture and size. Empirical
evaluation on 600 samples demonstrates that integrating the TransCoder module introduces additional
inference latency, resulting in a total increase of several seconds.

Figure 11: Efficient Layer Replacement in Transformers via TransCoder Adapters.
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