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ABSTRACT

In recent years, researchers have proposed numerous benchmarks to evaluate the
impressive coding capabilities of large language models (LLMs). However, cur-
rent benchmarks primarily assess the accuracy of LLM-generated code, while
neglecting other critical dimensions that also significantly impact code quality
in real-world development. Moreover, relying exclusively on correctness as the
guiding metric renders LLMs susceptible to data contamination. Therefore, this
paper proposes the RACE benchmark, which comprehensively evaluates the qual-
ity of code generated by LLMs across 4 dimensions: Readability, mAintainability,
Correctness, and Efficiency. Specifically, considering the demand-dependent na-
ture of dimensions beyond correctness, we design various types of user require-
ments for each dimension to assess the model’s ability to generate correct code
that also meets user demands. We analyze 28 representative LLMs based on
RACE and find that: 1) current correctness-centric benchmarks fail to capture the
multifaceted requirements of code in real-world scenarios, while RACE provides
a comprehensive evaluation that reveals the defects of LLMs across multiple di-
mensions; 2) the RACE benchmark serves as an effective tool for resisting the risk
of data contamination; 3) even the most advanced code LLMs still encounter sig-
nificant challenges in customized requirements involving complex instructions;
4) most LLMs exhibit an inherent preference for specific coding style. These
findings highlight the need for a multidimensional evaluation of code LLMs, em-
phasizing metrics beyond correctness for real-world applications. Future efforts
should aim to develop novel learning algorithms to enhance code generation under
varied constraints and improve coverage and usability for diverse user needs1.

1 INTRODUCTION

The impressive coding capabilities demonstrated by Large Language Models (LLMs) are reshaping
the landscape of software development (Zheng et al., 2023c;b; Fan et al., 2023), attracting significant
attention from researchers. To accurately measure and compare the coding capabilities of various
LLMs, numerous benchmarks have been proposed to evaluate the code generation (Chen et al., 2021;
Austin et al., 2021; Hendrycks et al., 2021), completion (Gong et al., 2024), and execution (Jain
et al., 2024a) abilities of LLMs.

However, current benchmarks primarily focus on evaluating the correctness of LLM-generated code,
while neglecting other critical dimensions that also significantly impact code quality in real-world
development scenarios. For example, Börstler et al. (2023) investigate various aspects of code qual-
ity and find that code readability is the most decisive property for high-quality code (Dantas et al.,
2023; Oliveira et al., 2020). Additionally, code maintainability is crucial for ensuring the software
remains adaptable and easy to update, ultimately reducing long-term costs and technical debt (Hege-
dus, 2013). Code efficiency is essential for optimizing performance, reducing resource consumption,
and ensuring scalability in software applications (Curtis et al., 2022; Börstler et al., 2023). As shown
in Figure 1, current benchmarks lack evaluation on these critical dimensions that impact code qual-

1We provide our benchmark and source code at this anonymous repository https://anonymous.
4open.science/r/RACE-4AF1.
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def minimumCoins(prices):
n = len(prices)
for i in range((n + 1) // 2 - 1, 0, -1):

prices[i - 1] += min(prices[i: i * 2 + 1])
return prices[0]

def minimumCoins(prices):
n = len(prices)
# Use dequeues to store state(location, spend)
q = deque([(n + 1, 0)])

for i in range(n, 0, -1):
# Remove useless state from the queue
while q[-1][0] > i * 2 + 1:

q.pop()

f = prices[i - 1] + q[-1][1]

# Keep the queue monotonic
while f <= q[0][1]:

q.popleft()
q.appendleft((i, f))

return q[0][1]

Good readability
Good maintainability
Good efficiency

Test Case Based

Runtime Monitoring Based

Abstract Syntax Tree Based

Test Case Based

Correctness

Readability

Maintainability

Efficiency

Correctness

Dimensions MetricsCodes Results

Existing Benchmarks Which is better?

RACE Benchmark is better!

Generated Code
Flat readability
Flat maintainability
Flat efficiency

Figure 1: Current benchmarks perform single-dimension evaluations and mostly focus only on code
correctness (upper right); our proposed RACE benchmark performs multi-dimensional code evalu-
ations to identify truly high-quality code beyond correctness (lower right).

ity, making it challenging to distinguish genuinely high-quality code from merely correct code. Such
deficiency in evaluation could lead to incomplete assessments of the coding capabilities of different
LLMs in real-world development scenarios. Furthermore, if these correctness-based benchmarks
serve as guiding indicators and correctness alone becomes the sole criterion for driving LLM devel-
opment, these models might end up memorizing the exact solutions from the training data instead of
understanding the underlying principles or patterns. This overfitting implies the model may repro-
duce code that is highly similar to the training data during inference, leading to data leakage. Con-
sequently, this singular focus on correctness can render LLMs susceptible to data contamination,
which has been proven to be quite prevalent due to the exponential scaling of pre-training data (Rid-
dell et al., 2024; Cao et al., 2024). Therefore, there is an urgent need for a multidimensional code
evaluation benchmark that transcends correctness, addressing the gap between LLM-generated code
and real-world scenarios, and steering code LLMs towards comprehensive development.

To this end, we propose the RACE benchmark, designed to comprehensively evaluate the code gen-
erated by LLMs across multiple dimensions including Readability, mAintainability, Correctness,
and Efficiency. However, it is not trivial to develop a reliable multi-dimensional benchmark for
code generation. The first challenge is to design a quantifiable evaluation framework with corre-
sponding metrics for each dimension. Unlike correctness, other dimensions are typically difficult to
quantify with a single metric (e.g., accuracy). To address this, we refer to the definition of readabil-
ity, maintainability, and efficiency in various quality models (Curtis et al., 2022; Nistala et al., 2019;
Sadeghzadeh Hemayati & Rashidi, 2017), and summarize multiple representative factors for each
dimension of code quality. Furthermore, dimensions beyond correctness cannot directly use the pass
rate of test cases as the performance metric. Therefore, we develop specific evaluation metrics for
each factor within these dimensions, which can be objectively and automatically calculated based
on static analysis and runtime monitoring methods. As illustrated in Figure 1 and 2, by integrating
performance across multiple factors, we can comprehensively assess the quality of LLM-generated
code in each dimension. Another more critical challenge is that dimensions other than correctness
are demand-dependent. This means a fixed and uniform standard cannot be used to assess what
constitutes better code. Instead, different application scenarios could have varying requirements for
code generation. For instance, various projects require unique coding styles and interface standards
for adaptability and scalability. Additionally, balancing time and space efficiency based on hardware
conditions ensures code operates efficiently. Therefore, a genuinely practical model should generate
correct, customizable code that meets multiple dimensional requirements. To achieve this, we design
various demands for each factor and incorporate them into the task descriptions, requiring the model
to generate code that is both correct and meets the specified requirements. For example, we design
multiple instructions that direct the model to generate multiple versions of code, each optimized
differently for time and space efficiency. By incorporating the aforementioned quantifiable evalua-
tion framework, we can accurately and efficiently quantify the extent to which LLM-generated code
fulfills the corresponding customized requirements across each dimension.

Based on the RACE benchmark, we conduct a comprehensive evaluation and systematic analysis
of 28 LLMs across various scales, encompassing the most advanced open-source (e,g, Qwen2.5-
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72B (Yang et al., 2024) and DeepSeek-V2.5 (Zhu et al., 2024)) and closed-source models (e.g.,
GPT-4o (OpenAI, 2024a), o1-mini (OpenAI, 2024b) and Claude-3.5-Sonnet) in terms of coding ca-
pabilities. Our findings reveal that using correctness as the only guiding indicator is insufficient
for code benchmarks to steer code LLMs towards comprehensive advancement. 1) Current
benchmarks fail to capture the multifaceted requirements of code in real-world scenarios. There-
fore, current code LLMs, developed with a primary focus on correctness, exhibit significant room
for improvement in other critical dimensions, including code readability, maintainability, and effi-
ciency (§4.2). 2) We present concrete evidence that current code benchmarks are susceptible to data
contamination, compromising the fairness and reliability of the evaluation conclusions. In contrast,
a contaminated model may simply reproduce memorized code without the ability to generate diverse
solutions that meet various user requirements. Therefore, the RACE benchmark can robustly pro-
vide stable assessment results even under data contamination settings (§4.3). Moreover, a deeper
analysis based on RACE reveals notable deficiencies in current code LLMs: 3) Even the most
advanced code LLMs severely struggle to understand and follow complex instructions that include
several customization requirements, with performance deteriorating significantly as the number of
requirements increases (§4.4). 4) Most LLMs exhibit an inherent preference for specific coding
styles, making it difficult for them to follow user instructions that are inconsistent with their prefer-
ence (§4.5). The findings above highlight the importance of a multidimensional evaluation of code
LLMs, while also revealing the necessity for metrics that extend beyond correctness to guide the
development in real-world scenarios. In the future, code LLMs will require the design of novel
learning algorithms to acquire the ability to generate high-quality code subject to multidimensional
constraints, as well as to enhance their coverage and usability concerning diverse user requirements.

The main contributions of this paper can be summarized as follows:

• We propose a novel multi-dimensional evaluation framework for code generation.

• Based on the framework, we construct a comprehensive benchmark named RACE, featuring
data construction, customized requirement instructions, and specific evaluation metrics.

• We evaluate and analyze 28 LLMs on the RACE benchmark, and obtain valuable conclusions
that reveal the limitations of current benchmarks and models.

2 RELATED WORK

2.1 CODE LLMS

The outstanding code generation capabilities exhibited by LLMs have attracted considerable atten-
tion from researchers (Wang et al., 2021; Li et al., 2022; Fried et al., 2022; Xu et al., 2022; Roziere
et al., 2023; Zheng et al., 2023a). Some representative code LLMs, such as CodeX (Chen et al.,
2021), CodeGen (Nijkamp et al., 2022), and AlphaCode (Li et al., 2022), have achieved notable
performance in code generation, program repair, and code translation. Currently, research on LLMs
for code primarily focuses on data and pretraining methods. For training data collection, Wizard-
Coder (Luo et al., 2024) introduces code instruction-following training constructed by Evol-Instruct
to enhance the capabilities of code LLMs. For pretraining methods, StarCoder (Li et al., 2023a)
and DeepSeek-Coder (Guo et al., 2024) incorporate fill-in-the-middle training task to enhance the
model’s capability to handle various structural arrangements in code. With the rapid advancement
of code LLM capabilities, there is an increasing demand for reliable and comprehensive code eval-
uation benchmarks.

2.2 CODING BENCHMARK FOR LLMS

The existing benchmarks for LLM-based code (Ni et al., 2023), such as HumanEval (Chen et al.,
2021), APPS (Hendrycks et al., 2021), MBPP (Austin et al., 2021), CodeContests (Li et al., 2022),
and DS-1000 (Lai et al., 2023), focusing on the correctness of generated code in scenarios such as
code exercises, data science, and competitions (Yan et al., 2023; Li et al., 2023b; Shinn et al., 2024).
However, these efforts only focus on the correctness of the generated code, using the pass rate of
test cases as the sole evaluation metric. Meanwhile, there has been a recent trend in considering
other dimensions (Li et al., 2024; Jain et al., 2024b; Tian et al., 2024); for example, Huang et al.
(2024) evaluate the efficiency of the generated code, while Dillmann et al. (2024) bridge the con-
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Framework Design
Generate Code
From LLMs

mAintainability

Add Customized
Requirements

Readability Correctness Efficiency Prompt:

{problem_description}

Please complete the code below 
to solve above problem, and 
make sure that the time 
complexity is $O(nk)$ and the 
space complexity is $O(1)$.

{starter_code}

Comment

Naming
Convention

Length

def minKBitFlips(self, nums, k):
n = len(nums)
flip_count = 0
flipped = 0
is_flipped = [0] * n

for i in range(n):
if i >= k:

flipped ^= is_flipped[i - k]

if nums[i] == flipped:
if i + k > n:

return -1
flip_count += 1
flipped ^= 1
is_flipped[i] = 1

return flip_count

Measure

MI Metric

Modularity

Time Efficiency

Space Efficiency

Metrics

Results
NIT = 100

NIS = 0.02

NIT = 100 · Clip

(
1 − T̂ − T1

T2 − T1
, 0, 1

)

NIS = 100 · Clip

(
1 − Ŝ − S1

S1 − S2
, 0, 1

) (1)

(T̂ )

(Ŝ)

Figure 2: The overall evaluation pipeline in RACE benchmark.

nection between cross-entropy and logical lines of code. Nevertheless, these studies neither account
for the demand-dependent nature of these dimensions nor systematically evaluate the LLM’s code
capabilities across multiple dimensions.

3 RACE BENCHMARK CONSTRUCTION

The philosophy of our framework design comes from the demands for code quality in software
engineering (Börstler et al., 2023). Firstly, we summarize multiple representative factors for each
dimension based on their respective quality definitions (Curtis et al., 2022; Nistala et al., 2019;
Sadeghzadeh Hemayati & Rashidi, 2017). Secondly, we design several reasonable customized re-
quirements for each factor and integrate them into task descriptions, requiring the model to generate
code that is both correct and meets these requirements. Information on the detailed evaluation data
is presented in Table 1. Finally, leveraging static analysis and runtime monitoring techniques, we
develop evaluation metrics tailored to each factor to achieve accurate and efficient evaluation. The
specific designs of each instruction refer to Appendix B.2.

3.1 CORRECTNESS

Table 1: The sources and number of
evaluation cases for each factor in the
RACE benchmark.
Factors Data Source # Cases

Correctness

Correctness HumanEval+, MBPP+,
ClassEval, LeetCode 923

Readability

Code Length
HumanEval+

492
Name Convention 984
Comments 328

Maintainability

Maintainability Index ClassEval 100
Modularity LeetCode 540

Efficiency

Time Complexity LeetCode 101Space Complexity

Correctness is the core and foundation for evaluating
whether the functionality of code generated by mod-
els meets expectations. Therefore, to comprehensively
assess the capability of LLMs in generating function-
ally correct code across various task scenarios, we se-
lect 4 datasets with different distributions: HumanEval+
and MBPP+ (Liu et al., 2024) for code exercise prob-
lems, ClassEval (Du et al., 2023) for class-level code
generation, and LeetCode (Guo et al., 2024) for coding
competition problems. To mitigate bias from extrane-
ous information in the original dataset affecting the cus-
tomized requirements, we exclude such information from
the datasets. We use the macro accuracy across 4 datasets
as the metric for correctness.

Furthermore, to investigate the impact of adding cus-
tomized demands on code correctness, we also calculate
the accuracy of the generated code when instructions with customized requirements are provided.

3.2 READABILITY

In real-world development scenarios, maintaining a consistent coding style is essential for enhancing
comprehensibility and minimizing the time required for code maintenance, often referred to as code
readability (Börstler et al., 2023). One of the most fundamental aspects of coding style is line length;
excessively long lines can lead to truncation on screens. Additionally, adopting clear and consistent
naming conventions enables developers to quickly grasp the functionality of interfaces, while well-
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placed comments facilitate a rapid understanding of the implementation logic. Consequently, we
condense code readability into three key factors: Length, Naming Convention, and Comment. In
response to real-world development needs, we collect a set of customizable options for each factor.

For the Length factor, readability requirements for code length can vary depending on display scales
in different user scenarios. To address this, we refer to PEP8 style guidelines for Python and define
the following user requirements regarding code length: (60, 20), (70, 30), and (79, 40), where the
parentheses represent the maximum line length and the maximum number of lines in functions, re-
spectively. For the Naming Convention factor, camel-case and snake-case are widely used naming
conventions in programming, with specific preferences varying by project. Therefore, we provide
the option to choose between camel-case and snake-case based on the conventions employed for
functions and variables. For the Comment factor, different levels of granularity serve distinct pur-
poses. Line-level comments clarify implementation details and are beneficial for novice program-
mers, while function-level comments enhance understanding of functionality and usage. Thus, we
offer customization options for both comment types. Please kindly note that although a few read-
ability requirements can be addressed using formatting tools, we believe that assessing whether a
model can directly generate code that meets readability standards provides valuable insights into the
model’s ability to follow user instructions. Moreover, we further find that the model’s capability in
readability serves as a significant indicator of its overall coding proficiency. Refer to Appendix A
for corresponding experiment results due to page limitations.

To align with real-world scenarios that require readability, we conduct experiments on Hu-
manEval+ (Liu et al., 2024) dataset, which consists of coding exercise tasks. We incorporate the
aforementioned customized requirements into the problem descriptions to evaluate the model’s cod-
ing capabilities in terms of readability. To measure code readability, we analyze the various compo-
nents of the generated code using abstract syntax trees. We then develop corresponding rule-based
and regular expression-based methods to measure code length, detect naming conventions, and dif-
ferentiate between different levels of comment granularity.

3.3 MAINTAINABILITY

The maintainability of code plays a vital role in the long-term health of software and the efficiency
of development teams. Numerous quality models propose empirical quantitative measures to assess
maintainability. Additionally, the single responsibility principle is essential in code design, helping
to prevent excessive functional coupling. Based on these principles, we identify two key factors
influencing code maintainability: Maintainability Metric and Modularity.

For the Maintainability Metric factor, we use the Maintainability Index (MI) (Coleman et al., 1994)
to measure how maintainable the code is, which is widely used in the Microsoft Visual Studio 2010
development environment. To address concerns regarding the unreliability of evaluations related to
the MI metric when faced with differences in the volume and organizational structure of the code
under assessment (Heitlager et al., 2007), we conduct assessments solely on fixed evaluation data.
We calculate the maintainability index values of the generated code, thereby enabling a horizontal
comparison of the complexity of code generated by different models when faced with the same task.
This comparison reflects the variations in their ability to produce maintainable code and substantially
alleviates the aforementioned concerns.

Specifically, MI is a four-metric polynomial equation, resulting in a value between 0 and 100, with
higher values indicating greater maintainability. The formulation is as follows:

MI = max

[
0, 100 · 171− 5.2 lnV − 0.23G− 16.2 lnL+ 50 sin(

√
2.4C)

171

]
(1)

where V is Halstead Volume to identify measurable properties of the code, G is Cyclomatic Com-
plexity corresponding to the number of decisions a block of code contains plus 1, L is the number
of source lines of code, and C is the percent of comment lines. To comprehensively assess the
maintainability requirements satisfaction of LLM-generated code, we conduct experiments on Clas-
sEval (Du et al., 2023) dataset, to ensure the complexity of the code problems.

For the Modularity factor, different requirements determine the varying levels of code modular-
ization. Achieving compactness often requires implementing functionality within a single function,
while maximizing code reusability typically involves the use of multiple functions. Accordingly,
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we define several customization options: implementing functionality using 1, 2, or 3 functions. To
assess the modularity of the generated code, we conduct experiments on LeetCode (Guo et al., 2024)
dataset, which presents a greater challenge and thus enhances discriminative capability. Addition-
ally, we employ the abstract syntax tree to extract all function nodes from the generated code to
verify whether the number of function nodes aligns with the defined level of modularity.

3.4 EFFICIENCY

In most applications, code efficiency is closely tied to user experience and business process effec-
tiveness. Typically, efficiency is assessed through time complexity and space complexity. Given the
varying hardware conditions of users, it is common practice to balance execution time and mem-
ory usage or to optimize one of these aspects to the extreme to ensure code efficiency. To address
these scenarios, we gather 101 cases from LeetCode programming problems designed to simulate
such conditions. These cases are customized with specific requirements for time complexity, space
complexity, or both, to evaluate how well the LLM-generated code meets the efficiency standards.

To measure code efficiency, we propose the Normalized Index (NI), i.e., to measure the degree to
which the generated code satisfies the complexity requirement. Given two standard solution with
time and space complexity CT

1 , C
S
1 and CT

2 , C
S
2 , respectively, where CT

1 and CS
2 are better, and

given their total running time T1, T2 (T1 < T2) and memory usage S1, S2 (S1 > S2) on all test
cases. Now there is a code Ĉ to be evaluated, which has a running time T̂ and memory usage Ŝ,
with requirements CT

1 , C
S
1 , then the normalized index is:

NIT = 100 · Clip
(
1− T̂ − T1

T2 − T1
, 0, 1

)
, NIS = 100 · Clip

(
1− Ŝ − S1

S1 − S2
, 0, 1

)
(2)

NIT indicates the degree of time complexity toward CT
1 , and NIS indicates the degree of space

complexity toward CS
2 .

4 EXPERIMENTS

In this section, we conduct a detailed evaluation of 28 LLMs and obtain several valuable findings.
We first introduce the input formats and inference configurations for code generation tasks, along
with the selection of LLMs. Subsequently, we present the overall experimental findings and conduct
further analysis of the results to derive meaningful conclusions. The detailed experimental results
are shown in Appendix C.

4.1 SETTINGS

Task formats We construct the different prompts based on the completion style and chat style, to
better induce the LLMs to accomplish the corresponding tasks, see details in Appendix B.2. In the
inference process, we use a greedy strategy and set the temperature to 0.

Models We select 28 widely-used closed-source and open-source LLMs ranging in different
sizes, including state-of-the-art code LLMs. For closed-source models, our experiments include
the GPT series (GPT-3.5-turbo-0125, GPT-4o-2024-05-13, and GPT-4o-mini), o1-mini-2024-09-
12 (OpenAI, 2024b), and Claude-3.5-Sonnet. For open-source models, our experiments include
several series: DeepSeek (Guo et al., 2024; Zhu et al., 2024) (DeepSeek-Coder-Ins-7B/13B/34B and
DeepSeek-V2.5), CodeLlama (Roziere et al., 2023) (CodeLlama-Ins-7B/13B/34B and CodeLlama-
Python-7B/13B/34B), WizardCoder (Luo et al., 2024) (WizardCoder-15B/33B and WizardCoder-
Python-7B/13B), Qwen (Bai et al., 2023; Yang et al., 2024; Hui et al., 2024) (CodeQwen1.5-
7B-Chat, Qwen2.5-Coder-7B-Ins, Qwen2-72B-Ins, and Qwen2.5-72B-Ins), Llama3 (Dubey et al.,
2024) (Llama3-Ins-8B/70B), Mixtral-8x22B (Jiang et al., 2024) and StarCoder2-15B (Lozhkov
et al., 2024). The full list of models is shown in Appendix B.1.

4.2 OVERALL RESULTS

The overall evaluation results on all 4 dimensions of each LLM are demonstrated in Table 2, and
Figure 3 provides a more intuitive comparison of the capabilities across various dimensions for rep-
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Table 2: Based on the RACE benchmark, the performance results for each LLM in code correctness
(C), readability (R), maintainability (M), and efficiency (E). RN, RL, RC, and EC denote the Name
Convention, Length, Comments, and Complexity factor. MI denotes the Maintainability Index. MC
denotes the Modularity factor. NIT and NIS are metrics for code efficiency. RACE Score represents
the overall metrics at the dimension level. The symbol (*) indicates that the metric is a scalar from 0
to 100, and the rest are percentages (%). The symbol (†) indicates that the results are obtained from
a randomly sampled 30% of the evaluation data, in order to optimize budget efficiency.

RACE C R M E
Models Overall C RN RL RC MI* MC NIT * NIS*

Instruct-Type

o1-mini-2024-09-12 63.5 70.1 80.7 47.5 77.7 64.4 66.1† 60.3† 40.0†

Claude-3.5-Sonnet 62.3 64.6 74.4 52.0 65.5 75.3 59.8 56.8 49.7
GPT-4o 57.2 59.9 78.6 63.2 70.4 75.1 35.2 44.0 42.0
GPT-4o-mini 52.5 56.4 67.6 55.7 72.9 73.5 23.3 40.3 39.5
GPT-3.5-turbo-0125 43.6 44.7 51.4 46.1 47.5 80.2 18.5 27.5 36.5
CL-7B-Ins 23.2 23.9 17.8 23.4 22.2 71.8 7.2 8.2 8.8
CL-13B-Ins 26.9 24.4 22.9 23.6 29.0 82.1 7.6 10.4 16.1
CL-34B-Ins 24.4 26.0 21.9 17.5 10.7 73.2 8.5 14.4 13.8
DS-Coder-6.7B-Ins 39.8 39.2 45.8 46.6 50.0 79.3 8.2 27.1 30.0
DS-Coder-7B-Ins 38.9 39.9 36.8 46.0 53.7 79.6 8.9 25.1 26.8
DS-Coder-33B-Ins 44.8 44.7 59.0 53.5 54.0 75.7 11.3 35.3 36.1
DS-Coder-V2-16B-Ins 48.2 50.9 41.8 57.7 47.5 78.2 19.8 40.2 47.7
DS-V2.5-236B 57.1 59.0 72.2 66.1 65.8 72.9 33.9 46.4 49.5
CodeQwen1.5-7B-Chat 45.2 46.3 48.8 47.0 62.2 82.3 13.0 30.7 37.7
Qwen2.5-Coder-7B-Ins 49.0 57.1 53.0 51.8 61.3 78.6 17.6 37.0 33.7
Qwen2-72B-Ins 50.1 53.1 73.6 47.6 60.1 79.4 22.8 32.3 39.4
Qwen2.5-72B-Ins 61.3 64.1 77.2 72.1 72.8 76.7 40.4 47.9 49.4
Mixtral-8x22B 42.2 42.0 56.2 47.8 56.1 79.6 9.1 24.7 33.2
Llama3-8B-Ins 35.2 35.6 44.3 23.6 40.0 79.8 8.1 23.5 26.9
Llama3-70B-Ins 47.2 44.4 66.0 47.8 54.2 79.8 25.2 29.2 42.8

Completion-Type

CL-7B-Py 24.0 20.4 20.9 25.8 12.5 79.4 3.7 14.3 14.4
CL-13B-Py 25.6 21.7 23.1 30.9 24.4 78.6 2.4 13.8 14.7
CL-34B-Py 23.6 19.2 18.8 26.7 8.6 85.3 2.2 12.0 14.4
WC-Py-7B 26.2 25.2 22.8 28.0 10.1 79.3 7.2 15.3 16.7
WC-Py-13B 29.3 26.3 23.9 33.1 30.5 78.8 8.5 16.2 19.8
WC-15B 30.4 28.0 24.0 27.8 28.1 80.0 7.8 21.8 24.2
WC-33B 40.8 44.4 40.9 47.6 44.8 71.2 9.3 33.9 34.9
StarCoder2-15B 29.2 28.5 25.8 27.9 22.0 74.2 6.1 20.6 25.1
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Figure 3: Performance radar charts of several representative LLMs on the RACE benchmark, visu-
ally illustrating the capability distribution across 8 detailed factors.

resentative models. We find that compared to previous correctness-centric benchmarks, RACE
can provide a multi-dimensional comprehensive evaluation for code LLMs, offering valuable
insights for their application in real-world scenarios.

• From an overview perspective, current code LLMs still have considerable room for improve-
ment in generating correct and user-compliant code across multiple dimensions. For instance,
even the most advanced model, o1-mini, achieves only a score of 60.3 in time complexity, with
most models below 50. Additionally, apart from o1-mini and Claude-3.5-Sonnet, all other mod-
els exhibit performance below 45% in modularity. Further, we find that incorporating different
user demands into instructions has varying impacts on code accuracy. For example, increasing
the requirement to add comments in appropriate sections can enhance accuracy, which we hy-
pothesize is due to comments facilitating an implicit chain-of-thought. In comparison, adding
requirements related to code length tends to decrease accuracy, which may be attributed to
the model’s inherent preferences towards code of varying lengths (see detailed results in Ap-
pendix C.1). These findings offer valuable insights for designing better prompting methods and
future optimization directions.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: The performance comparison of LLMs trained on clean data versus contamination data
over the same number of epochs.

Benchmark
2 Epochs 4 Epochs 6 Epochs 8 Epochs 10 Epochs

Clean w/ Test ∆ ↓ Clean w/ Test ∆ ↓ Clean w/ Test ∆ ↓ Clean w/ Test ∆ ↓ Clean w/ Test ∆ ↓
HumanEval+ 22.0 40.9 +18.9 23.8 62.2 +38.4 20.1 89.6 +69.5 22.0 95.7 +73.7 22.6 97.6 +75.0
MBPP+ 35.7 52.4 +16.7 36.8 77.2 +40.4 33.1 91.5 +58.4 32.3 98.1 +65.8 33.1 98.4 +65.3
ClassEval 14.0 22.0 +8.0 11.0 46.0 +35.0 13.0 74.0 +61.0 14.0 86.0 +72.0 13.0 89.0 +76.0
LeetCode 3.9 3.9 +0.0 7.8 20.0 +12.2 6.1 70.0 +63.9 7.2 95.6 +88.4 7.2 97.8 +90.6

RACE - Overall 20.3 15.6 -4.7 18.8 20.7 +1.9 19.3 35.8 +16.5 19.8 42.9 +23.1 19.1 43.8 +24.7
RACE - IF rate 51.1 38.3 -12.8 53.9 37.4 -16.5 53.0 40.7 -12.3 53.4 41.9 -11.5 53.2 43.2 -10.0

• Since current benchmarks use correctness as the sole guiding indicator, some LLMs perform
well only on correctness but exhibit significant deficiencies in other dimensions. For example,
Qwen2.5-Coder-7B-Ins demonstrates comparable levels of code correctness to GPT-4o-mini;
however, GPT-4o-mini outperforms it by at least 5 percentage points regarding comments, mod-
ularity, and space complexity. These findings highlight the shortcomings of previous bench-
marks and suggest that such deficiencies may be related to potential data leakage (see analysis
in Section 4.3).

• The evaluation results reveal the importance of preserving the general instruction-following and
language-understanding capabilities of code LLMs during training. This aligns with the direc-
tion of recent advancements and provides valuable insights for guiding further development.
Specifically, on the one hand, current LLMs with the best coding abilities are often general-
purpose LLMs, such as Claude-3.5-Sonnet, GPT-4o, and Qwen2.5-72B-Ins, all with overall
scores exceeding 57. On the other hand, in the technical reports for Qwen2.5 (Qwen, 2024) and
DeepSeek-Coder-V2 (Zhu et al., 2024), it is mentioned that a significant proportion of natural
language corpora and general instruction data are included in training data. This approach not
only enhances coding capabilities but also preserves general-purpose abilities. Moreover, both
models achieve an overall score exceeding 57, outperforming most code LLMs.

These findings indicate that future research should prioritize improving instruction-following capa-
bilities in terms of code readability, maintainability, and efficiency, while ensuring code accuracy
remains uncompromised. This approach seeks to develop code LLMs that consistently meet real-
world development requirements across multiple dimensions.

4.3 ROBUSTNESS OF RACE ON DATA CONTAMINATION

Data contamination refers to the mixing of evaluation data into the training dataset, resulting in an
overly optimistic estimation of the model’s true performance and leading to erroneous conclusions.
With the rapid expansion in training datasets for LLMs and the opacity surrounding critical infor-
mation such as data sources and detailed data processing methods, addressing data contamination
is crucial for obtaining accurate and trustworthy evaluation results for LLMs. In this regard, RACE
plays a vital role, as it requires LLMs to generate code that is correct and meets user-specific cus-
tomization demands across several dimensions. A contaminated model would only fit the data itself,
merely enhancing accuracy without improving the model’s ability to follow user instructions. There-
fore, it is intuitive to suggest that RACE can effectively mitigate the impact of data contamination.
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Figure 4: The variation in instruction-following
capabilities under different factors in the context
of data contamination.

To validate the RACE benchmark’s robust-
ness against data contamination, we select
starcoderbase-7b (Li et al., 2023a) as our
baseline. This model has been carefully cu-
rated to exclude data from HumanEval (Chen
et al., 2021) and MBPP (Austin et al., 2021)
during its training, and ClassEval (Du et al.,
2023) and LeetCode (Guo et al., 2024) are
not within the temporal coverage of its train-
ing data. Furthermore, we compare the perfor-
mance of models under clean data conditions
and varying levels of data contamination on
the existing benchmarks and the RACE bench-
mark. Specifically, we employ LoRA (Hu et al.,
2022) to train models on both clean and con-
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Figure 5: The variation in the ability of different LLMs to generate code that is correct and satisfies
all requirements as the number of requirements in complex instructions gradually increases from 2
(2-req) to 5 (5-req).

taminated datasets. In this case, the contaminated dataset consists of HumanEval+, MBPP+, Clas-
sEval, and LeetCode data, while the clean dataset consists of an equivalent number of samples
randomly selected from Magicoder-OSS-Instruct (Wei et al., 2023). The model is trained for 10
epochs on the corresponding dataset, with a batch size of 32 and a learning rate of 1e-3. Addi-
tionally, starcoderbase-7b is pre-trained for 3 epochs on Code-Alpaca (Chaudhary, 2023) to
enhance instruction-following before performance comparisons.

The results presented in Table 3 clearly illustrate the role of the RACE benchmark in mitigating the
impact of data contamination on evaluation: 1) The original benchmarks are significantly affected
by severe data contamination. As the level of contamination increases, the code accuracy on the
corresponding benchmark rapidly rises. For instance, when trained on the contaminated dataset for 8
epochs, the accuracy of each original benchmark exceeds 85%. 2) The RACE benchmark provides
more stable evaluation results, and therefore effectively resist the risks of data contamination.
When data contamination is present, the instruction-following rate (IF rate) of the model on the
RACE benchmark consistently remains below 10% compared to the model without contamination.
As the degree of contamination increases, the rate of increase in the IF rate significantly slows down.
This phenomenon occurs because data contamination merely guides models to fit the data itself,
thereby improving the accuracy of generated code, which leads to a slow increase in the proportion of
generated code that is both correct and meets user requirements (Overall score). However, this does
not contribute to improving the model’s ability to follow user instructions. Therefore, the RACE
benchmark featured multidimensional evaluation effectively mitigates the risks associated with data
contamination. Furthermore, Figure 4 illustrates the variation in the model’s instruction-following
capability across different factors as the degree of data contamination increases. It is evident that
data contamination significantly impairs the model’s instruction-following ability in all factors.
For instance, in the case of code comments (RC), the model experiences a dramatic drop from 47%
to 2.4% after only one epoch of data leakage. Notably, for factors related to naming conventions
(RN) and code length (RC), the model’s performance first declines significantly and then gradually
improves, ultimately remaining considerably lower than its actual instruction-following capability.

4.4 COMPLEX INSTRUCTION FOLLOWING ABILITIES OF CODE LLMS

In real-world development scenarios, the requirements involved are often multifaceted. For example,
when developing a real-time data processing system, it is necessary to maintain code efficiency
while also ensuring the readability of the code through standardized variable names and comments.
To investigate the performance of code LLMs under complex requirements, we construct complex
instructions based on LeetCode cases. Specifically, we randomly select K (where 2 ≤ K ≤ 5)
factors from the five factors: naming convention, length, comment, modularity, and efficiency, to
construct complex instructions with K customized requirements. Subsequently, we calculate the
proportion of generated code that is correct and meets all customized requirements (Acc.IF), serving
as the performance metric for the model’s adherence to complex instructions.

The results from representative LLMs are illustrated in Figure 5. It is evident that as the number
of requirements increases, the performance of all models gradually declines. Even the most ad-
vanced LLMs struggle to adequately satisfy all customized requirements within the complex
instructions. For instance, when the number of requirements reaches 5 (5-req), almost all models
exhibit a significant drop in Acc.IF rate, approaching 0, revealing a notable performance gap. We
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Figure 6: The instruction-following rates of different LLMs for different customization needs. For
naming convention, we adapt camel-case or snake-case for both function names and variable names.
For code length, we set single-line lengths are limited to 60 and 79 characters, and methods are
limited to 20 and 40 lines, respectively. For loop structure, we adapt for or while statements.

attribute this deficiency to the fact that existing code benchmarks prioritize correctness, overlooking
the models’ capability to follow complex instructions. It is imperative for future work to investigate
the underlying mechanisms of code LLMs when confronted with complex instructions, with the aim
of enhancing their applicability in practical development contexts with multifaceted demands.

4.5 PREFERENCE BIAS OF CODE LLMS

To investigate whether the internal code preferences of the model affect its ability to follow user
instructions, we conduct a more fine-grained comparison across various factors that are likely to
induce such preferences. Specifically, we designed distinct instructions for naming convention,
code length, and loop structure, respectively. Our objective is to observe whether the model exhibits
a stronger capability to meet certain customization requirements. Furthermore, we calculate the
proportion of LLM-generated code that follows these customized requirements, referred to as the
Instruction-Following (IF) rate.

Figure 6 demonstrates the IF rates of 15 representative LLMs across all the customized requirements
above. Our analysis reveals that most LLMs exhibit an inherent preference bias towards gen-
erating code in specific styles. This bias often leads to difficulties in following user instructions
when the requested style diverges from that prevalent in their training data. Specifically, for naming
conventions, Python typically employs snake-case for function and variable names. When instructed
to use camel-case, most LLMs, such as CodeLlama and WizardCoder, almost fail to comprehend
and fulfill this requirement, with IF rates below 30%. Regarding code length, when presented with
stricter length constraints, the IF rates of most instruct-type LLMs drop by nearly 15%. When
it comes to loop structures, certain LLMs, including CodeLlama-34B-Ins and WizardCoder-33B,
exhibit a strong inclination towards using for statements. These observations suggest that many
LLMs primarily learn the inherent patterns of token prediction from examples, lacking a compre-
hensive understanding of code logic. Such preference bias may result in the rigidification of coding
styles in code LLMs, ultimately impeding their ability to meet specific real-world requirements and
affecting the adaptability and scalability of the generated code. This issue could be even more pro-
nounced in programming languages like Perl, JavaScript, and PHP, where there is no strict, widely
accepted standard for coding styles.

5 CONCLUSION

We introduce the RACE benchmark, a comprehensive multi-dimensional evaluation framework
for code generation, including correctness, readability, maintainability, and efficiency. The RACE
benchmark assesses the ability of LLMs to generate code that is both correct and meets customized
requirements across different dimensions. Through extensive experiments involving 28 representa-
tive LLMs, we find that the current code LLMs still fall short in generating high-quality code on
demand. Moreover, the RACE benchmark serves as an effective tool for mitigating data contami-
nation. Our research underscores the importance of enhancing code LLMs to generate high-quality
code across multiple dimensions beyond mere correctness. Future work should prioritize developing
novel learning algorithms to improve the coverage and usability of code LLMs in addressing diverse
user needs. This will enable the models to better handle complex instructions, ultimately guiding
code LLMs towards becoming practical software development agents.
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Péter Hegedus. Revealing the effect of coding practices on software maintainability. In 2013 ieee
international conference on software maintenance, pp. 578–581. IEEE, 2013.

Ilja Heitlager, Tobias Kuipers, and Joost Visser. A practical model for measuring maintainability.
In Ricardo Jorge Machado, Fernando Brito e Abreu, and Paulo Rupino da Cunha (eds.), Quality
of Information and Communications Technology, 6th International Conference on the Quality of
Information and Communications Technology, QUATIC 2007, Lisbon, Portugal, September 12-
14, 2007, Proceedings, pp. 30–39. IEEE Computer Society, 2007. doi: 10.1109/QUATIC.2007.8.
URL https://doi.org/10.1109/QUATIC.2007.8.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge competence
with apps. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and
Benchmarks Track (Round 2), 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Dong Huang, Jie M Zhang, Yuhao Qing, and Heming Cui. Effibench: Benchmarking the efficiency
of automatically generated code. arXiv preprint arXiv:2402.02037, 2024.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024a.

Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e: Turning
any github repository into a programming agent environment. In ICLR 2024 Workshop on Large
Language Model (LLM) Agents, 2024b.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-tau
Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark for data
science code generation. In International Conference on Machine Learning, pp. 18319–18345.
PMLR, 2023.

Bowen Li, Wenhan Wu, Ziwei Tang, Lin Shi, John Yang, Jinyang Li, Shunyu Yao, Chen Qian,
Binyuan Hui, Qicheng Zhang, et al. Devbench: A comprehensive benchmark for software devel-
opment. arXiv preprint arXiv:2403.08604, 2024.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023a.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023b.

Y Li, D Choi, J Chung, N Kushman, J Schrittwieser, R Leblond, T Eccles, J Keeling, F Gimeno,
A Dal Lago, et al. Competition-level code generation with alphacode. Science (New York, NY),
378(6624):1092–1097, 2022.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

12

https://doi.org/10.1109/QUATIC.2007.8
https://openreview.net/forum?id=nZeVKeeFYf9


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing
Ma, Qingwei Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with
evol-instruct. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=UnUwSIgK5W.

Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Riddell, Troy Feng, Rui Shen, Stephen Yin, Ye Liu,
Semih Yavuz, Caiming Xiong, et al. L2ceval: Evaluating language-to-code generation capabilities
of large language models. arXiv preprint arXiv:2309.17446, 2023.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio Savarese,
and Caiming Xiong. Codegen: An open large language model for code with multi-turn program
synthesis. In The Eleventh International Conference on Learning Representations, 2022.

Padmalata Nistala, Kesav Vithal Nori, and Raghu Reddy. Software quality models: A systematic
mapping study. In 2019 IEEE/ACM International Conference on Software and System Processes
(ICSSP), pp. 125–134. IEEE, 2019.

Delano Oliveira, Reydne Bruno, Fernanda Madeiral, and Fernando Castor. Evaluating code read-
ability and legibility: An examination of human-centric studies. In 2020 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pp. 348–359. IEEE, 2020.

OpenAI. Hello gpt-4o, 2024a. URL https://openai.com/index/hello-gpt-4o.

OpenAI. Openai o1-mini, 2024b. URL https://openai.com/index/
openai-o1-mini-advancing-cost-efficient-reasoning.

Qwen. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Martin Riddell, Ansong Ni, and Arman Cohan. Quantifying contamination in evaluating code gen-
eration capabilities of language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 14116–14137.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.761. URL
https://doi.org/10.18653/v1/2024.acl-long.761.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
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A CORRELATION ANALYSIS ACROSS DIMENSIONS

C RN RL RC MI MC NIT NIS
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Figure 7: The Pearson correlation coefficient matrix among factors under the dimensions of code
correctness, readability, maintainability, and efficiency. We can observe that readability is a critical
indicator of overall code quality.
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Figure 8: Comparison of code correctness among LLM-generated code without custom require-
ments, with function-level comments, and with line-level comments.

To conduct a more in-depth analysis of how different factors across various dimensions influence
overall code quality, we analyze the correlations between different factors across all models. Specif-
ically, we first compute the proportion of the generated code that is both correct and follows cus-
tomized instructions across 8 factors for 28 Code LLMs. Subsequently, we calculate the Pearson
correlation coefficients between these factors.

The results of the correlation analysis are presented in Figure 7, which demonstrate that readability
serves as a critical indicator of overall code quality. Notably, significant correlations are ob-
served between readability and nearly all the factors, with most correlation coefficients exceeding
0.8, and particularly surpassing 0.85 in relation to correctness. For example, if LLM-generated code
consistently uses proper naming conventions, follows length constraints, and includes appropriate
comments, it is more likely to exhibit higher overall quality. This finding aligns with the conclu-
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sions of Börstler et al. (2023), which identifies readability as a decisive factor in code quality,
suggesting that improving the readability of LLM-generated code is a critical path for enhancement.
Furthermore, we analyze the comments factor within the readability dimension and compare the
accuracy of LLM-generated code before and after incorporating comments. As shown in Figure 8,
requiring models to include comments in appropriate sections of code enhances the performance
of some LLMs. We hypothesize that this improvement may be attributed to an emerging ability in
large-scale LLMs (Wei et al., 2022; Schaeffer et al., 2024), where comments serve as an implicit
chain-of-thought mechanism, thereby enhancing the accuracy of the generated code.

B EXPERIMENT SETUP

B.1 MODEL SHORT NAMES

We demonstrate the details of LLMs in our experiment in Table 4.

Table 4: The short names of all LLMs in the experiment.

Model ID Short Name

claude-3.5-sonnet Claude-3.5-Sonnet
gpt-4o-2024-05-13 GPT-4o
gpt-4o-mini GPT-4o-mini
gpt-3.5-turbo-0125 GPT-3.5-turbo-0125
o1-mini-2024-09-12 o1-mini-2024-09-12
CodeLlama-7b-Python-hf CL-7B-Py
CodeLlama-7b-Instruct-hf CL-7B-Ins
CodeLlama-13b-Python-hf CL-13B-Py
CodeLlama-13b-Instruct-hf CL-13B-Ins
CodeLlama-34b-Python-hf CL-34B-Py
CodeLlama-34b-Instruct-hf CL-34B-Ins
WizardCoder-15B-V1.0 WC-15B
WizardCoder-33B-V1.1 WC-33B
WizardCoder-Python-7B-V1.0 WC-Py-7B
WizardCoder-Python-13B-V1.0 WC-Py-13B
deepseek-coder-6.7b-instruct DS-Coder-6.7B-Ins
deepseek-coder-7b-instruct-v1.5 DS-Coder-7B-Ins
deepseek-coder-33b-instruct DS-Coder-33B-Ins
DeepSeek-Coder-V2-Lite-Instruct DS-Coder-V2-16B-Ins
deepseek-v2.5 DS-V2.5-236B
CodeQwen1.5-7B-Chat CodeQwen1.5-7B-Chat
Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-7B-Ins
Qwen2-72B-Instruct Qwen2-72B-Ins
Qwen2.5-72B-Instruct Qwen2.5-72B-Ins
mixtral-8x22b Mixtral-8x22B
Meta-Llama-3-8B-Instruct Llama3-8B-Ins
Meta-Llama-3-70B-Instruct Llama3-70B-Ins
starcoder2-15b StarCoder2-15B

B.2 EVALUATION DATA AND CUSTOMIZED INSTRUCTIONS

Based on widely recognized data, we design customized requirements that are both reasonable and
closely aligned with real-world application scenarios. These requirements are incorporated into the
task descriptions to generate evaluation data for our RACE benchmark. Detailed customization
instructions for each factor are shown in Figure 9 and Figure 10.

For code correctness, we utilize data from HumanEval+ (Liu et al., 2024), MBPP+ (Liu et al., 2024),
ClassEval (Du et al., 2023), and LeetCode (Guo et al., 2024). Code readability is evaluated using
HumanEval+ (Liu et al., 2024) data, while maintainability is evaluated using ClassEval (Du et al.,
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2023) and LeetCode (Guo et al., 2024) data. Code efficiency is measured using a self-constructed
dataset based on LeetCode problems. We follow the task settings defined in the original datasets
while incorporating our customization requirements. In the case of the HumanEval+ and MBPP+
datasets (Liu et al., 2024), we modify the original prompt format by extracting the core task de-
scriptions to serve as the final prompts. This adjustment helps prevent conflicts between function
template information in the original prompts and our requirements for code readability, providing
a more accurate assessment of code-related capabilities. Additionally, it mitigates the potential for
data leakage, thereby increasing the difficulty and robustness of the RACE benchmark.

A) The templates for the correctness dimension

Please generate the Python code to solve the following problem.\n\nProblem:\n\n{problem}

B) The templates for the readability dimension

1) For the Naming Convention factor

Please generate the Python code to solve the following problem, and use camel case for both function
names and variable names.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, and use snake case for both function
names and variable names.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, and use camel case for function
names.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, and use snake case for function
names.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, and use camel case for variable
names.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, and use snake case for variable
names.\n\nProblem:\n\n{problem}

2) For the Length factor

Please generate the Python code to solve the following problem, where each line is less than 60
characters long and each function is less than 20 lines long.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, where each line is less than 70
characters long and each function is less than 30 lines long.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, where each line is less than 79
characters long and each function is less than 40 lines long.\n\nProblem:\n\n{problem}

3) For the Comment factor

Please generate the Python code to solve the following problem, and add the necessary docstring for
each function.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, and add comments for each line in
each function.\n\nProblem:\n\n{problem}

Figure 9: The prompt templates for each factor in the correctness and readability dimension for the
RACE benchmark.
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C) The templates for the maintainability dimension

1) For the MI factor

Please complete the class {class name} in the following code, and ensure that the code has
good maintainability. Code maintainability refers to how easy it is to support and change the
code.\n\n“‘python\n{skeleton}\n“‘

2) For the Modularity factor

{problem}\n\nPlease complete the code below to solve above problem, and use only the given
function.\n\n{starter code}

{problem}\n\nPlease complete the code below to solve above problem, and use only the given
function and one addition sub-function.\n\n{starter code}

{problem}\n\nPlease complete the code below to solve above problem, and use only the given
function and two addition sub-functions.\n\n{starter code}

3) For the loop structure (Only for experiments)

Please generate the Python code to solve the following problem, and just use the for statement to
implement the desired loop structures.\n\nProblem:\n\n{problem}

Please generate the Python code to solve the following problem, and just use the while statement to
implement the desired loop structures.\n\nProblem:\n\n{problem}

D) The templates for the efficiency dimension

{problem}\n\nPlease complete the code below to solve above problem, and make sure that the time
complexity of the code is ${complexity}$.\n\n{starter code}

{problem}\n\nPlease complete the code below to solve above problem, and make sure that the space
complexity of the code is ${complexity}$.\n\n{starter code}

{problem}\n\nPlease complete the code below to solve above problem, and make
sure that the time complexity is ${time complexity}$ and the space complexity is
${space complexity}$.\n\n{starter code}

Figure 10: The prompt templates for each factor in the maintainability and efficiency dimension for
the RACE benchmark.

C EXPERIMENTAL RESULTS

C.1 OVERALL RESULTS WITH DETAILED CODE ACCURACY

The experimental results with the code accuracy before and after incorporating customization in-
structions are presented in Table 5.

C.2 DETAILED RESULTS ON CODE READABILITY

The detailed experimental results under all customized instructions for the various readability factors
are presented in Table 6 and Table 7. For the Naming Convention factor, we design 6 settings that
require generated code to follow specified naming conventions for function names (function camel,
function snake), variable names (var camel, var snake), or both (camel, snake). It is evident that
most models struggle to consistently follow the camel-case naming convention. Additionally, the
variance in model performance is most pronounced in scenarios requiring function names to follow
camel-case conventions (function camel). For the Length factor, we observe that as the constraints
become more stringent, ranging from maximum single-line length of 79 and maximum method line
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Table 5: Based on the RACE benchmark, the performance results for each LLM in code correctness
(C), readability (R), maintainability (M), and efficiency (E). The performance metrics include accu-
racy (Acc) (%) and the proportion of code that is both functionally correct and follows customized
instructions (Acc. IF) (%). RN, RL, RC, and EC denote the Name Convention, Length, Comments,
and Complexity factor. MI denotes the Maintainability Index. MC denotes the Modularity factor.
NIT and NIS are metrics for code efficiency. RACE Score represents the overall Acc. IF values at
the dimension level. The (*) symbol indicates that the indicator is a scalar from 0 to 100, and the
rest are percentages (%). The symbol (†) indicates that the results are obtained from a randomly
sampled 30% of the evaluation data, in order to optimize budget efficiency.

RACE Correctness Readability Maintainability Efficiency

- C C RN RL RC C MI C MC C EC

Models Overall Acc. Acc. Acc. Acc. IF Acc. Acc. IF Acc. Acc. IF Acc. Acc. MI* Acc. Acc. Acc. IF Acc. Acc. NIT * NIS*

Instruct-Type

Claude-3.5-Sonnet 62.3 64.6 77.4 76.3 74.4 62.2 52.0 74.1 65.5 42.0 32.0 75.3 71.7 68.5 59.8 68.3 66.3 56.8 49.7
GPT-4o 57.2 59.9 80.5 81.2 78.6 78.9 63.2 79.8 70.4 38.0 35.0 75.1 57.2 56.3 35.2 59.4 58.4 44.0 42.0
GPT-4o-mini 52.5 56.4 78.0 76.4 67.6 70.3 55.7 74.1 72.9 37.0 27.0 73.5 51.7 49.1 23.3 52.5 46.5 40.3 39.5
GPT-3.5-turbo-0125 43.6 44.7 62.8 63.2 51.4 60.4 46.1 65.8 47.5 28.0 24.0 80.2 31.1 28.1 18.5 39.6 32.7 27.5 36.5
o1-mini-2024-09-12 63.5 70.1 82.9 83.2 80.7 76.4 47.5 80.2 77.7 36.0 25.0 64.4 79.6† 83.3† 66.1† 87.1† 77.4† 60.3† 40.0†

CL-7B-Ins 23.2 23.9 32.3 31.5 17.8 31.7 23.4 30.2 22.2 16.0 15.0 71.8 12.2 10.9 7.2 15.8 13.9 8.2 8.8
CL-13B-Ins 26.9 24.4 36.0 37.7 22.9 35.0 23.6 35.7 29.0 17.0 19.0 82.1 10.6 13.1 7.6 17.8 17.8 10.4 16.1
CL-34B-Ins 24.4 26.0 36.0 36.5 21.9 35.8 17.5 36.3 10.7 12.0 18.0 73.2 15.6 14.2 8.5 20.8 15.8 14.4 13.8
DS-Coder-6.7B-Ins 39.8 39.2 65.2 65.5 45.8 61.2 46.6 61.2 50.0 26.0 25.0 79.3 18.9 18.7 8.2 28.7 30.7 27.1 30.0
DS-Coder-7B-Ins 38.9 39.9 61.0 61.5 36.8 62.6 46.0 62.8 53.7 23.0 24.0 79.6 23.3 20.9 8.9 32.7 27.7 25.1 26.8
DS-Coder-33B-Ins 44.8 44.7 65.9 64.6 59.0 65.0 53.5 66.5 54.0 28.0 30.0 75.7 22.2 27.6 11.3 45.5 38.6 35.3 36.1
DS-Coder-V2-16B-Ins 48.2 50.9 72.0 71.2 41.8 66.5 57.7 67.1 47.5 26.0 30.0 78.2 44.4 44.3 19.8 49.5 55.4 40.2 47.7
DS-V2.5-236B 57.1 59.0 72.0 74.5 72.2 72.8 66.1 74.1 65.8 41.0 36.0 72.9 61.7 59.1 33.9 57.4 54.5 46.4 49.5
CodeQwen1.5-7B-Chat 45.2 46.3 76.2 76.8 48.8 73.4 47.0 74.7 62.2 22.0 22.0 82.3 33.3 32.6 13.0 39.6 38.6 30.7 37.7
Qwen2.5-Coder-7B-Ins 49.0 57.1 78.0 81.4 53.0 77.4 51.8 75.3 61.3 29.0 27.0 78.6 54.4 50.4 17.6 59.4 48.5 37.0 33.7
Qwen2-72B-Ins 50.1 53.1 73.2 76.8 73.6 74.8 47.6 71.1 60.1 40.0 33.0 79.4 42.8 37.2 22.8 45.5 40.6 32.3 39.4
Qwen2.5-72B-Ins 61.3 64.1 79.3 79.6 77.2 77.4 72.1 80.5 72.8 34.0 32.0 76.7 72.8 71.8 40.4 68.3 69.3 47.9 49.4
Mixtral-8x22B 42.2 42.0 61.0 64.4 56.2 62.4 47.8 64.9 56.1 33.0 30.0 79.6 20.0 22.6 9.1 35.6 31.7 24.7 33.2
Llama3-8B-Ins 35.2 35.6 49.4 45.5 44.3 28.7 23.6 48.1 40.0 24.0 19.0 79.8 20.6 19.1 8.1 33.7 31.7 23.5 26.9
Llama3-70B-Ins 47.2 44.4 65.2 67.8 66.0 56.1 47.8 64.6 54.2 28.0 29.0 79.8 31.7 31.7 25.2 38.6 38.6 29.2 42.8

Completion-Type

CL-7B-Py 24.0 20.4 29.3 29.5 20.9 30.1 25.8 24.7 12.5 11.0 10.0 79.4 5.6 6.5 3.7 14.9 15.8 14.3 14.4
CL-13B-Py 25.6 21.7 40.2 35.0 23.1 34.8 30.9 30.2 24.4 16.0 15.0 78.6 6.1 4.8 2.4 16.8 17.8 13.8 14.7
CL-34B-Py 23.6 19.2 31.7 27.2 18.8 32.5 26.7 27.8 8.6 3.0 2.0 85.3 7.2 5.4 2.2 17.8 11.9 12.0 14.4
WC-Py-7B 26.2 25.2 34.8 35.8 22.8 34.3 28.0 35.4 10.1 19.0 23.0 79.3 10.6 9.8 7.2 19.8 19.8 15.3 16.7
WC-Py-13B 29.3 26.3 36.0 38.2 23.9 38.4 33.1 43.6 30.5 20.0 21.0 78.8 12.8 12.8 8.5 20.8 18.8 16.2 19.8
WC-15B 30.4 28.0 38.4 38.7 24.0 41.9 27.8 40.0 28.1 22.0 21.0 80.0 11.7 11.5 7.8 21.8 22.8 21.8 24.2
WC-33B 40.8 44.4 58.5 58.8 40.9 62.2 47.6 58.8 44.8 34.0 34.0 71.2 26.1 25.0 9.3 38.6 35.6 33.9 34.9
StarCoder2-15B 29.2 28.5 36.0 39.5 25.8 40.2 27.9 35.4 22.0 24.0 25.0 74.2 16.1 13.7 6.1 26.7 25.7 20.6 25.1

count of 40 (L 79 40), to maximum single-line length of 60 and maximum method line count of 20
(L 60 20), most models exhibit a significant decline in their ability to meet requirements. For the
Comment factor, models show varying responses to comment-related requirements. However, we
find that several models, such as DS-Coder-33B-Ins, DS-V2.5-236B, and WC-Py-13B, improve in
code correctness when they meet the code comment requirements.
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Table 6: Detailed experimental results for the Name Convention factor in the readability dimension
on the RACE benchmark.

Readability (Naming Convention)

C camel snake function camel function snake var camel var snake

Models Acc. Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF

Claude-3.5-Sonnet 77.4 75.6 90.2 70.1 76.8 97.0 76.2 78.7 98.8 78.7 77.4 98.8 77.4 74.4 90.9 69.5 75.0 97.0 74.4
GPT-4o 80.5 81.7 89.6 73.8 80.5 97.6 79.9 84.1 98.8 83.5 79.9 99.4 79.9 81.7 90.2 75.0 79.3 98.2 79.3
GPT-4o-mini 78.0 73.2 42.7 34.1 76.2 98.8 76.2 75.6 86.6 65.2 78.0 99.4 78.0 79.9 95.1 77.4 75.6 99.4 75.0
GPT-3.5-turbo-0125 62.8 65.2 51.8 37.8 61.0 97.6 59.8 63.4 87.2 56.1 62.8 98.8 62.8 64.0 41.5 30.5 62.8 98.2 61.6
CL-7B-Py 29.3 28.0 18.3 4.9 29.9 98.8 29.9 29.9 22.0 7.3 31.7 98.2 31.7 28.7 78.7 23.2 28.7 98.2 28.7
CL-7B-Ins 32.3 31.7 2.4 0.0 29.3 98.2 29.3 31.1 5.5 0.0 31.7 100.0 31.7 31.7 43.9 12.2 33.5 99.4 33.5
CL-13B-Py 40.2 34.8 6.7 2.4 35.4 97.0 35.4 36.0 9.1 3.7 33.5 97.6 33.5 34.8 73.2 28.0 35.4 98.2 35.4
CL-13B-Ins 36.0 37.2 4.3 3.0 37.2 99.4 37.2 40.9 9.8 5.5 34.8 99.4 34.8 40.2 48.8 20.7 36.0 99.4 36.0
CL-34B-Py 31.7 27.4 19.5 5.5 28.0 95.7 27.4 29.9 21.3 6.1 26.2 97.6 26.2 26.2 80.5 22.6 25.6 97.0 25.0
CL-34B-Ins 36.0 37.2 4.3 2.4 34.8 92.1 34.8 36.6 5.5 2.4 36.6 97.0 36.6 37.8 47.6 19.5 36.0 94.5 36.0
WC-15B 38.4 39.6 4.3 1.2 40.9 98.2 40.9 38.4 5.5 1.2 38.4 97.6 38.4 39.0 62.8 26.2 36.0 97.6 36.0
WC-33B 58.5 57.9 25.0 14.6 59.1 95.1 57.3 57.3 34.1 20.7 57.9 97.6 57.9 59.8 60.4 35.4 61.0 95.7 59.8
WC-Py-7B 34.8 34.8 4.9 1.8 34.1 95.7 34.1 34.8 5.5 1.2 34.1 97.6 34.1 37.8 62.8 26.8 39.0 94.5 39.0
WC-Py-13B 36.0 38.4 4.3 1.8 36.6 97.0 36.6 36.6 6.1 1.2 38.4 97.6 38.4 37.8 59.8 23.8 41.5 96.3 41.5
DS-Coder-6.7B-Ins 65.2 65.2 26.2 15.9 65.9 97.6 64.6 67.7 47.0 29.9 67.7 100.0 67.7 62.8 48.2 33.5 64.0 98.2 63.4
DS-Coder-7B-Ins 61.0 61.6 9.1 6.1 59.1 99.4 58.5 62.2 11.6 7.3 61.6 100.0 61.6 62.8 43.9 26.2 61.6 98.8 61.0
DS-Coder-33B-Ins 65.9 64.6 73.2 51.2 65.2 97.0 64.6 62.2 99.4 61.6 64.0 100.0 64.0 68.3 73.2 50.0 63.4 97.6 62.8
DS-Coder-V2-16B-Ins 72.0 72.0 9.8 7.9 69.5 95.1 67.7 72.6 14.0 10.4 71.3 99.4 71.3 73.2 33.5 26.2 68.9 95.1 67.1
DS-V2.5-236B 72.0 75.0 89.0 67.7 76.2 98.8 75.6 74.4 98.8 74.4 75.0 99.4 75.0 72.0 90.9 67.1 74.4 97.6 73.2
CodeQwen1.5-7B-Chat 76.2 75.6 12.2 9.1 76.2 97.6 75.0 76.2 15.9 11.0 79.3 99.4 78.7 76.8 57.9 43.3 76.8 96.3 75.6
Qwen2.5-Coder-7B-Ins 78.0 81.1 17.1 14.6 81.1 97.6 78.7 82.9 36.0 31.1 81.7 100.0 81.7 80.5 40.9 32.9 81.1 97.6 78.7
Qwen2-72B-Ins 73.2 75.6 90.2 68.3 78.7 98.2 78.0 75.6 93.9 69.5 79.9 100.0 79.9 74.4 95.7 70.7 76.8 97.6 75.0
Qwen2.5-72B-Ins 79.3 78.7 94.5 74.4 81.1 97.0 78.0 79.9 99.4 79.3 80.5 100.0 80.5 78.0 93.3 73.8 79.3 97.6 77.4
Mixtral-8x22B 61.0 65.2 62.2 43.3 64.6 99.4 64.0 65.9 96.3 62.2 64.0 100.0 64.0 62.8 65.9 40.2 64.0 98.2 63.4
Llama3-8B-Ins 49.4 49.4 88.4 47.0 31.7 57.9 30.5 51.8 97.6 51.8 44.5 89.6 44.5 50.6 90.2 48.8 45.1 89.6 43.3
Llama3-70B-Ins 65.2 70.1 93.9 65.9 65.9 97.6 64.6 68.3 99.4 68.3 66.5 100.0 66.5 68.9 91.5 64.0 67.1 97.6 66.5
StarCoder2-15B 36.0 41.5 11.6 4.3 38.4 96.3 38.4 38.4 14.0 5.5 38.4 96.3 38.4 42.1 72.0 30.5 38.4 95.7 37.8

Table 7: Detailed experimental results for the Length and Comment factor in the readability dimen-
sion on the RACE benchmark.

Readability (Length) Readability (Comment) Maintainability (Loop Structure)

C L 60 20 L 70 30 L 79 40 by function by line for while

Models Acc. Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF Acc. IF

Claude-3.5-Sonnet 77.4 50.0 49.4 37.2 67.7 78.0 57.9 68.9 83.5 61.0 75.0 95.7 75.0 73.2 74.4 56.1 70.1 98.2 68.3 66.5 98.8 65.9
GPT-4o 80.5 80.5 74.4 61.6 76.2 75.0 58.5 79.9 87.2 69.5 77.4 98.2 77.4 82.3 76.8 63.4 75.0 93.3 71.3 70.1 97.0 68.9
GPT-4o-mini 78.0 70.7 68.3 51.8 73.2 72.0 55.5 67.1 84.1 59.8 73.8 98.8 73.8 74.4 95.1 72.0 71.3 94.5 67.1 65.2 97.0 64.6
GPT-3.5-turbo-0125 62.8 58.5 64.6 39.0 61.0 78.0 45.7 61.6 87.8 53.7 66.5 95.1 64.0 65.2 45.1 31.1 56.7 97.0 54.9 52.4 90.2 48.8
CL-7B-Py 29.3 29.9 68.3 23.8 31.1 78.0 25.6 29.3 83.5 28.0 28.7 72.6 22.0 20.7 43.3 3.0 28.7 93.9 26.2 26.8 58.5 13.4
CL-7B-Ins 32.3 29.9 50.6 20.1 31.7 57.9 23.2 33.5 70.7 26.8 29.9 100.0 29.9 30.5 52.4 14.6 31.7 95.7 31.1 29.9 42.7 11.0
CL-13B-Py 40.2 34.1 78.7 27.4 34.8 83.5 31.1 35.4 88.4 34.1 34.8 92.1 34.8 25.6 62.8 14.0 33.5 91.5 31.1 34.8 60.4 18.9
CL-13B-Ins 36.0 34.8 53.0 20.1 35.4 62.8 25.6 34.8 64.0 25.0 36.6 92.7 34.8 34.8 57.3 23.2 31.1 95.1 30.5 34.1 45.7 14.0
CL-34B-Py 31.7 32.3 64.6 22.0 33.5 72.6 28.7 31.7 82.3 29.3 23.2 67.7 12.8 32.3 29.9 4.3 25.6 94.5 25.0 25.6 70.7 12.2
CL-34B-Ins 36.0 33.5 36.0 15.9 36.6 39.0 15.9 37.2 50.0 20.7 35.4 38.4 12.8 37.2 34.1 8.5 36.0 94.5 36.0 35.4 46.3 15.2
WC-15B 38.4 42.7 50.0 20.7 40.2 67.1 28.0 42.7 77.4 34.8 41.5 99.4 41.5 38.4 30.5 14.6 42.7 97.6 41.5 40.2 59.1 21.3
WC-33B 58.5 62.2 67.7 42.7 62.8 76.2 48.2 61.6 84.1 51.8 59.8 98.2 58.5 57.9 49.4 31.1 59.8 90.2 54.9 59.8 62.8 36.0
WC-Py-7B 34.8 35.4 72.6 25.6 34.1 81.1 28.0 33.5 85.4 30.5 33.5 40.9 13.4 37.2 22.6 6.7 36.0 93.9 34.1 35.4 40.9 11.6
WC-Py-13B 36.0 40.2 75.6 32.9 37.8 84.8 31.7 37.2 89.0 34.8 43.3 98.2 43.3 43.9 37.2 17.7 43.3 91.5 38.4 39.0 43.3 16.5
DS-Coder-6.7B-Ins 65.2 62.2 61.0 40.9 61.0 76.8 47.6 60.4 82.9 51.2 64.0 100.0 64.0 58.5 56.7 36.0 64.0 90.9 59.1 62.8 65.9 39.6
DS-Coder-7B-Ins 61.0 61.6 57.3 37.2 62.2 71.3 47.0 64.0 84.1 53.7 62.2 99.4 62.2 63.4 66.5 45.1 61.6 95.1 58.5 57.9 64.0 39.6
DS-Coder-33B-Ins 65.9 62.8 73.8 47.6 65.2 84.1 53.7 67.1 90.2 59.1 68.9 100.0 68.9 64.0 61.6 39.0 66.5 91.5 60.4 68.3 70.1 48.2
DS-Coder-V2-16B-Ins 72.0 66.5 77.4 53.7 65.9 84.8 57.9 67.1 89.0 61.6 67.7 98.2 67.7 66.5 43.9 27.4 70.7 88.4 62.2 63.4 64.6 38.4
DS-V2.5-236B 72.0 72.0 86.0 63.4 72.0 93.3 67.1 74.4 90.2 67.7 73.2 96.3 72.6 75.0 78.7 59.1 70.1 92.7 65.9 67.7 95.7 66.5
CodeQwen1.5-7B-Chat 76.2 71.3 47.0 36.6 75.6 61.0 48.2 73.2 74.4 56.1 76.2 98.8 75.0 73.2 62.8 49.4 72.0 93.3 68.3 65.2 70.1 44.5
Qwen2.5-Coder-7B-Ins 78.0 77.4 61.6 50.6 78.0 70.7 54.3 76.8 64.0 50.6 79.3 99.4 79.3 71.3 61.0 43.3 78.7 92.7 73.8 71.3 78.7 55.5
Qwen2-72B-Ins 73.2 72.6 62.8 46.3 76.2 64.6 48.2 75.6 65.9 48.2 73.2 98.8 72.0 68.9 67.1 48.2 73.2 90.2 67.1 70.7 81.1 61.0
Qwen2.5-72B-Ins 79.3 75.6 92.1 71.3 76.2 96.3 73.8 80.5 87.8 71.3 82.3 98.8 81.7 78.7 79.9 64.0 78.0 92.7 72.0 72.6 97.0 70.7
Mixtral-8x22B 61.0 61.6 68.3 44.5 63.4 75.0 50.6 62.2 76.2 48.2 65.2 100.0 65.2 64.6 69.5 47.0 56.7 91.5 51.2 57.3 86.6 51.8
Llama3-8B-Ins 49.4 30.5 40.9 22.0 31.1 51.8 27.4 24.4 45.1 21.3 50.0 99.4 50.0 46.3 60.4 29.9 49.4 93.9 46.3 48.8 73.8 35.4
Llama3-70B-Ins 65.2 57.3 68.9 43.3 56.7 78.7 49.4 54.3 79.9 50.6 65.2 100.0 65.2 64.0 69.5 43.3 65.2 92.1 61.6 59.8 86.6 52.4
StarCoder2-15B 36.0 39.6 61.0 23.2 42.1 68.9 29.3 39.0 68.3 31.1 34.8 89.6 34.1 36.0 29.3 9.8 36.0 94.5 34.1 35.4 61.0 15.9

D CASE STUDIES

The tasks provided by our benchmark present challenges that even the most advanced LLMs find
difficult to handle. Here, we show some examples with Claude-3.5-Sonnet.

D.1 CORRECTNESS

Good Case: The model successfully generates functionally correct code.

# Input
Please generate the Python code to solve the following problem.

Problem:

Input to this function is a string containing multiple groups of nested parentheses. Your goal
is to

separate those group into separate strings and return the list of those.
Separate groups are balanced (each open brace is properly closed) and not nested within each

other
Ignore any spaces in the input string.

# Output
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def separate_parentheses_groups(s):
# Remove all spaces from the input string
s = s.replace(" ", "")

result = []
stack = []
current_group = ""
balance = 0

for char in s:
if char == ’(’:

balance += 1
stack.append(char)
current_group += char

elif char == ’)’:
balance -= 1
stack.pop()
current_group += char

# If balance is 0, we’ve completed a group
if balance == 0:

result.append(current_group)
current_group = ""

return result

Bad Case: The model fails to generate functionally correct code.

# Input
Please generate the Python code to solve the following problem.

Problem:

You’re given a list of deposit and withdrawal operations on a bank account that starts with
zero balance. Your task is to detect if at any point the balance of account fallls below zero,

and
at that point function should return True. Otherwise it should return False.

# Output
def check_negative_balance(operations):

balance = 0
for operation in operations:

if operation.startswith("d"): # deposit
amount = int(operation[1:])
balance += amount

elif operation.startswith("w"): # withdrawal
amount = int(operation[1:])
balance -= amount
if balance < 0:

return True
return False

D.2 READABILITY

Good Case: The model successfully generates code with function names employing camel case.

# Input
Please generate the Python code to solve the following problem, and use camel case for

function names.

Problem:

Check if in given list of numbers, are any two numbers closer to each other than
given threshold.

# Output
def areNumbersCloserThanThreshold(numbers, threshold):

"""
Check if any two numbers in the list are closer to each other than the given threshold.

:param numbers: List of numbers to check
:param threshold: The minimum distance allowed between any two numbers
:return: True if any two numbers are closer than the threshold, False otherwise
"""
# Sort the list to make comparisons easier
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sortedNumbers = sorted(numbers)

# Compare adjacent numbers in the sorted list
for i in range(len(sortedNumbers) - 1):

if abs(sortedNumbers[i] - sortedNumbers[i+1]) < threshold:
return True

# If we’ve gone through all pairs without finding any closer than the threshold
return False

Bad Case: The model fails to generate code with function names employing camel case.

# Input
Please generate the Python code to solve the following problem, and use camel case for

function names.

Problem:

Find the shortest palindrome that begins with a supplied string.
Algorithm idea is simple:
- Find the longest postfix of supplied string that is a palindrome.
- Append to the end of the string reverse of a string prefix that comes before the palindromic

suffix.

Given the following code:

‘‘‘python
def is_palindrome(string: str) -> bool:

""" Test if given string is a palindrome """
return string == string[::-1]

‘‘‘

# Output
def is_palindrome(string: str) -> bool:

""" Test if given string is a palindrome """
return string == string[::-1]

def findShortestPalindrome(s: str) -> str:
"""
Find the shortest palindrome that begins with the supplied string.
"""
if not s or is_palindrome(s):

return s

for i in range(len(s) - 1, -1, -1):
if is_palindrome(s[:i+1]):

return s[i+1:][::-1] + s

# If no palindromic suffix is found, reverse the entire string and append
return s[::-1][1:] + s

Good Case: The model successfully generates code accompanied by line-by-line comments.

# Input
Please generate the Python code to solve the following problem, and add comments for each line

in each function.

Problem:

Check if in given list of numbers, are any two numbers closer to each other than
given threshold.

# Output
def are_numbers_close(numbers, threshold):

# Sort the list of numbers in ascending order
sorted_numbers = sorted(numbers)

# Iterate through the sorted list, comparing adjacent pairs
for i in range(len(sorted_numbers) - 1):

# Calculate the difference between adjacent numbers
difference = sorted_numbers[i+1] - sorted_numbers[i]

# Check if the difference is less than the threshold
if difference < threshold:

# If a pair is found closer than the threshold, return True
return True
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# If no pair is found closer than the threshold, return False

Bad Case: The model fails to generate code accompanied by line-by-line comments.
# Input
Please generate the Python code to solve the following problem, and add comments for each line

in each function.

Problem:

Input are two strings a and b consisting only of 1s and 0s.
Perform binary XOR on these inputs and return result also as a string.

# Output
def binary_xor(a: str, b: str) -> str:

# Function to perform binary XOR on two input strings

# Ensure both input strings have the same length by padding with zeros
max_length = max(len(a), len(b))
a = a.zfill(max_length)
b = b.zfill(max_length)

# Initialize an empty result string
result = ""

# Iterate through each position in the input strings
for i in range(max_length):

# Perform XOR on corresponding bits and add to result
if a[i] == b[i]:

result += "0"
else:

result += "1"

# Remove leading zeros from the result
result = result.lstrip("0")

# Return "0" if result is empty (all zeros), otherwise return result
return result if result else "0"

Good Case: The model successfully generates code where each line is less than 70 characters long
and each function is less than 30 lines long.
# Input
Please generate the Python code to solve the following problem, where each line is less than

70 characters long and each function is less than 30 lines long.

Problem:

Check if in given list of numbers, are any two numbers closer to each other than
given threshold.

# Output
def are_numbers_closer_than_threshold(numbers, threshold):

if len(numbers) < 2:
return False

sorted_numbers = sorted(numbers)

for i in range(len(sorted_numbers) - 1):
if abs(sorted_numbers[i] - sorted_numbers[i+1]) < threshold:

return True

return False

Bad Case: The model fails to generate code where each line is less than 70 characters long and each
function is less than 30 lines long.
# Input
Please generate the Python code to solve the following problem, where each line is less than

70 characters long and each function is less than 30 lines long.

Problem:

This function takes a list l and returns a list l’ such that
l’ is identical to l in the odd indicies, while its values at the even indicies are equal
to the values of the even indicies of l, but sorted.
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# Output
def sort_even_indices(l):

# Extract values at even indices
even_values = [l[i] for i in range(0, len(l), 2)]

# Sort the even values
sorted_even = sorted(even_values)

# Create a new list with sorted even values and original odd values
result = []
even_index = 0

for i in range(len(l)):
if i % 2 == 0:

result.append(sorted_even[even_index])
even_index += 1

else:
result.append(l[i])

return result

D.3 MAINTAINABILITY

Good Case: The model successfully generates code with only the given function and two addition
sub-functions.

# Input
You are given a string word containing distinct lowercase English letters.
Telephone keypads have keys mapped with distinct collections of lowercase English letters,

which can be used to form words by pushing them. For example, the key 2 is mapped with ["
a","b","c"], we need to push the key one time to type "a", two times to type "b", and
three times to type "c" .

It is allowed to remap the keys numbered 2 to 9 to distinct collections of letters. The keys
can be remapped to any amount of letters, but each letter must be mapped to exactly one
key. You need to find the minimum number of times the keys will be pushed to type the
string word.

Return the minimum number of pushes needed to type word after remapping the keys.
An example mapping of letters to keys on a telephone keypad is given below. Note that 1, *, #,

and 0 do not map to any letters.

Example 1:

Input: word = "abcde"
Output: 5
Explanation: The remapped keypad given in the image provides the minimum cost.
"a" -> one push on key 2
"b" -> one push on key 3
"c" -> one push on key 4
"d" -> one push on key 5
"e" -> one push on key 6
Total cost is 1 + 1 + 1 + 1 + 1 = 5.
It can be shown that no other mapping can provide a lower cost.

Example 2:

Input: word = "xycdefghij"
Output: 12
Explanation: The remapped keypad given in the image provides the minimum cost.
"x" -> one push on key 2
"y" -> two pushes on key 2
"c" -> one push on key 3
"d" -> two pushes on key 3
"e" -> one push on key 4
"f" -> one push on key 5
"g" -> one push on key 6
"h" -> one push on key 7
"i" -> one push on key 8
"j" -> one push on key 9
Total cost is 1 + 2 + 1 + 2 + 1 + 1 + 1 + 1 + 1 + 1 = 12.
It can be shown that no other mapping can provide a lower cost.

Constraints:
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1 <= word.length <= 26
word consists of lowercase English letters.
All letters in word are distinct.

Please complete the code below to solve above problem, and use only the given function and two
addition sub-functions:

‘‘‘python
class Solution:

def minimumPushes(self, word: str) -> int:

‘‘‘

# Output
from collections import Counter

class Solution:
def minimumPushes(self, word: str) -> int:

def count_frequencies(word):
return Counter(word)

def calculate_pushes(frequencies):
total_pushes = 0
for i, freq in enumerate(frequencies):

pushes = (i // 8) + 1
total_pushes += pushes * freq

return total_pushes

freq_count = count_frequencies(word)
sorted_frequencies = sorted(freq_count.values(), reverse=True)
return calculate_pushes(sorted_frequencies)

Bad Case: The model fails to generate code with only the given function and two addition sub-
functions.

# Input
You are given three positive integers n, x, and y.
In a city, there exist houses numbered 1 to n connected by n streets. There is a street

connecting the house numbered i with the house numbered i + 1 for all 1 <= i <= n - 1 .
An additional street connects the house numbered x with the house numbered y.

For each k, such that 1 <= k <= n, you need to find the number of pairs of houses (house1,
house2) such that the minimum number of streets that need to be traveled to reach house2
from house1 is k.

Return a 1-indexed array result of length n where result[k] represents the total number of
pairs of houses such that the minimum streets required to reach one house from the other
is k.

Note that x and y can be equal.

Example 1:

Input: n = 3, x = 1, y = 3
Output: [6,0,0]
Explanation: Let’s look at each pair of houses:
- For the pair (1, 2), we can go from house 1 to house 2 directly.
- For the pair (2, 1), we can go from house 2 to house 1 directly.
- For the pair (1, 3), we can go from house 1 to house 3 directly.
- For the pair (3, 1), we can go from house 3 to house 1 directly.
- For the pair (2, 3), we can go from house 2 to house 3 directly.
- For the pair (3, 2), we can go from house 3 to house 2 directly.

Example 2:

Input: n = 5, x = 2, y = 4
Output: [10,8,2,0,0]
Explanation: For each distance k the pairs are:
- For k == 1, the pairs are (1, 2), (2, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3),

(4, 5), and (5, 4).
- For k == 2, the pairs are (1, 3), (3, 1), (1, 4), (4, 1), (2, 5), (5, 2), (3, 5), and (5, 3)

.
- For k == 3, the pairs are (1, 5), and (5, 1).
- For k == 4 and k == 5, there are no pairs.

Example 3:

Input: n = 4, x = 1, y = 1
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Output: [6,4,2,0]
Explanation: For each distance k the pairs are:
- For k == 1, the pairs are (1, 2), (2, 1), (2, 3), (3, 2), (3, 4), and (4, 3).
- For k == 2, the pairs are (1, 3), (3, 1), (2, 4), and (4, 2).
- For k == 3, the pairs are (1, 4), and (4, 1).
- For k == 4, there are no pairs.

Constraints:

2 <= n <= 100
1 <= x, y <= n

Please complete the code below to solve above problem, and use only the given function and two
addition sub-functions:

‘‘‘python
class Solution:

def countOfPairs(self, n: int, x: int, y: int) -> List[int]:

‘‘‘

# Output
class Solution:

def countOfPairs(self, n: int, x: int, y: int) -> List[int]:
# Initialize the distance matrix
dist = self.initializeDistanceMatrix(n, x, y)

# Apply Floyd-Warshall algorithm
self.floydWarshall(dist, n)

# Count pairs for each distance
return self.countPairsForEachDistance(dist, n)

def initializeDistanceMatrix(self, n: int, x: int, y: int) -> List[List[int]]:
# Initialize distance matrix with infinity
dist = [[float(’inf’)] * n for _ in range(n)]

# Set distance to self as 0
for i in range(n):

dist[i][i] = 0

# Set distance for adjacent houses
for i in range(n - 1):

dist[i][i+1] = dist[i+1][i] = 1

# Set distance for the additional street
if x != y:

dist[x-1][y-1] = dist[y-1][x-1] = 1

return dist

def floydWarshall(self, dist: List[List[int]], n: int) -> None:
for k in range(n):

for i in range(n):
for j in range(n):

dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j])

def countPairsForEachDistance(self, dist: List[List[int]], n: int) -> List[int]:
result = [0] * n
for i in range(n):

for j in range(n):
if i != j:

result[dist[i][j] - 1] += 1
return result

D.4 EFFICIENCY

Good Case: The model successfully generates code with a time complexity of O(n) and a space
complexity of O(n). (NIT = 100.00,NIS = 100.00)

# Input
You are given a 0-indexed string s, a string a, a string b, and an integer k.
An index i is beautiful if:

0 <= i <= s.length - a.length
s[i..(i + a.length - 1)] == a
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There exists an index j such that:

0 <= j <= s.length - b.length
s[j..(j + b.length - 1)] == b
|j - i| <= k

Return the array that contains beautiful indices in sorted order from smallest to largest.

Example 1:

Input: s = "isawsquirrelnearmysquirrelhouseohmy", a = "my", b = "squirrel", k = 15
Output: [16,33]
Explanation: There are 2 beautiful indices: [16,33].
- The index 16 is beautiful as s[16..17] == "my" and there exists an index 4 with s[4..11] ==

"squirrel" and |16 - 4| <= 15.
- The index 33 is beautiful as s[33..34] == "my" and there exists an index 18 with s[18..25]

== "squirrel" and |33 - 18| <= 15.
Thus we return [16,33] as the result.

Example 2:

Input: s = "abcd", a = "a", b = "a", k = 4
Output: [0]
Explanation: There is 1 beautiful index: [0].
- The index 0 is beautiful as s[0..0] == "a" and there exists an index 0 with s[0..0] == "a"

and |0 - 0| <= 4.
Thus we return [0] as the result.

Constraints:

1 <= k <= s.length <= 5 * 105
1 <= a.length, b.length <= 5 * 105
s, a, and b contain only lowercase English letters.

Please complete the code below to solve above problem, and make sure that the time complexity
is $O(n)$ and the space complexity is $O(n)$:

‘‘‘python
class Solution:

def beautifulIndices(self, s: str, a: str, b: str, k: int) -> List[int]:

‘‘‘

# Output
class Solution:

def beautifulIndices(self, s: str, a: str, b: str, k: int) -> List[int]:
def kmp_search(text, pattern):

m = len(pattern)
n = len(text)

# Compute LPS array
lps = [0] * m
length = 0
i = 1
while i < m:

if pattern[i] == pattern[length]:
length += 1
lps[i] = length
i += 1

elif length != 0:
length = lps[length - 1]

else:
lps[i] = 0
i += 1

# KMP search
result = []
i = j = 0
while i < n:

if pattern[j] == text[i]:
i += 1
j += 1

if j == m:
result.append(i - j)
j = lps[j - 1]

elif i < n and pattern[j] != text[i]:
if j != 0:
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j = lps[j - 1]
else:

i += 1
return result

# Find all occurrences of ’a’ and ’b’ in ’s’
a_indices = kmp_search(s, a)
b_indices = kmp_search(s, b)

# Find beautiful indices
beautiful_indices = []
j = 0
for i in a_indices:

while j < len(b_indices) and b_indices[j] < i - k:
j += 1

if j < len(b_indices) and abs(b_indices[j] - i) <= k:
beautiful_indices.append(i)

return beautiful_indices

Bad Case: The model fails to generate code with a time complexity of O(n). (NIT = 0)

# Input
You are given a 0-indexed array of positive integers nums.
In one operation, you can swap any two adjacent elements if they have the same number of set

bits. You are allowed to do this operation any number of times (including zero).
Return true if you can sort the array, else return false.

Example 1:

Input: nums = [8,4,2,30,15]
Output: true
Explanation: Let’s look at the binary representation of every element. The numbers 2, 4, and 8

have one set bit each with binary representation "10", "100", and "1000" respectively.
The numbers 15 and 30 have four set bits each with binary representation "1111" and
"11110".

We can sort the array using 4 operations:
- Swap nums[0] with nums[1]. This operation is valid because 8 and 4 have one set bit each.

The array becomes [4,8,2,30,15].
- Swap nums[1] with nums[2]. This operation is valid because 8 and 2 have one set bit each.

The array becomes [4,2,8,30,15].
- Swap nums[0] with nums[1]. This operation is valid because 4 and 2 have one set bit each.

The array becomes [2,4,8,30,15].
- Swap nums[3] with nums[4]. This operation is valid because 30 and 15 have four set bits each

. The array becomes [2,4,8,15,30].
The array has become sorted, hence we return true.
Note that there may be other sequences of operations which also sort the array.

Example 2:

Input: nums = [1,2,3,4,5]
Output: true
Explanation: The array is already sorted, hence we return true.

Example 3:

Input: nums = [3,16,8,4,2]
Output: false
Explanation: It can be shown that it is not possible to sort the input array using any number

of operations.

Constraints:

1 <= nums.length <= 100
1 <= nums[i] <= 28

Please complete the code below to solve above problem, and make sure that the time complexity
is $O(n)$:

‘‘‘python
class Solution:

def canSortArray(self, nums: List[int]) -> bool:

‘‘‘

# Output
class Solution:

def canSortArray(self, nums: List[int]) -> bool:
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def count_set_bits(n):
return bin(n).count(’1’)

n = len(nums)
set_bits = [count_set_bits(num) for num in nums]

# Group elements with the same number of set bits
groups = []
current_group = [nums[0]]
current_bits = set_bits[0]

for i in range(1, n):
if set_bits[i] == current_bits:

current_group.append(nums[i])
else:

groups.append(current_group)
current_group = [nums[i]]
current_bits = set_bits[i]

groups.append(current_group)

# Sort each group
sorted_groups = [sorted(group) for group in groups]

# Check if the sorted groups are in ascending order
prev_max = 0
for group in sorted_groups:

if group[0] < prev_max:
return False

prev_max = group[-1]

return True
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