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Abstract

PAnoramic Semantic Segmentation (PASS) is an important task in computer vi-
sion, as it enables semantic understanding of a 360° environment. Currently,
most of existing works have focused on addressing the distortion issues in 2D
panoramic images without considering spatial properties of indoor scene. This
restricts PASS methods in perceiving contextual attributes to deal with the ambi-
guity when working with monocular images. In this paper, we propose a novel
approach for indoor panoramic semantic segmentation. Unlike previous works,
we consider the panoramic image as a composition of segment groups: over-
sampled segments, representing planar structures such as floors and ceilings, and
under-sampled segments, representing other scene elements. To optimize each
group, we first enhance over-sampled segments by jointly optimizing with a dense
depth estimation task. Then, we introduce a transformer-based context mod-
ule that aggregates different geometric representations of the scene, combined
with a simple high-resolution branch, it serves as a robust hybrid decoder for
estimating under-sampled segments, effectively preserving the resolution of pre-
dicted masks while leveraging various indoor geometric properties. Experimental
results on both real-world (Stanford2D3DS, Matterport3D) and synthetic (Struc-
tured3D) datasets demonstrate the robustness of our framework, by setting new
state-of-the-arts in almost evaluations, The code and updated results are available
at: https://github.com/caodinhduc/vertical_relative_distance,

1 Introduction

In recent years, 360° camera images have garnered significant attention from learning systems and
practical applications, including holistic sensing in automated vehicles [6} 8, [11} [14} [17, 20] and
immersive experiences in augmented reality (AR) and virtual reality (VR) devices [, [29]. Unlike
traditional pinhole cameras with their limited Fields of View (FoV), panoramic images offer an
expansive 360° x 180° FoV, providing a more comprehensive perception of both indoor and outdoor
environments. This wide FoV enhances numerous fundamental computer vision tasks by enabling a
richer understanding of scenes, thus benefiting many fundamental computer vision tasks. One such
task, Panoramic Semantic Segmentation (PASS) is a pivotal task that generates dense, pixel-wise class
maps, significantly improving high-level understanding of complex environments. By harnessing the
wide field of view and unique properties of panoramic images, PASS enables more comprehensive
scene analysis, delivering valuable insights across a range of applications.

Most current Panoramic Semantic Segmentation (PASS) approaches rely on 2D panoramas trans-
formed through equirectangular projection [24} 33]]. However, these methods face two major chal-
lenges: limited annotated data and significant image distortions. In terms of data scarcity, existing
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Figure 1: Panoramic segmentation problem can be re-formulated to the estimation of over-sampled
segments: floor, ceiling and under-sampled segments: chair, table, bookcase, window, etc.

datasets are small and lack scene diversity due to the labor-intensive process of manually labeling and
verifying segments in each image. For example, the widely-used Stanford 2D3DS dataset [2]] contains
only 1,413 multi-modal equirectangular images spanning 13 object categories, which is insufficient
for robust deep learning model development—posing a substantial challenge for PASS tasks. To
address this challenge, aside from unsupervised domain adaptation approaches [[19,[35}38]], which
are effective but predominantly applied to outdoor scenes, the development of a large-scale synthetic
dataset [37]], featuring detailed 3D structural annotations and photo-realistic 2D renderings of indoor
environments, presents a promising solution. As for the second issue, the conversion of panoramic
images from spherical to rectangular coordinates results in the oversampling of regions near the
poles (floor and ceiling) compared to those near the equator in the original 360° data. This distortion
leads to an imbalance in the relative sizes of different classes within each image. Supporting this
observation, a quantitative analysis of the Stanford2D3DS dataset shows that, on average, ceilings and
floors occupy 18% and 20% of a panoramic image, respectively. Consequently, larger classes such as
floors and ceilings are easier to predict, while smaller, more intricate classes like chairs and tables
pose greater challenges, as reflected in the disparity of quantitative results between these groups.

In this work, to tailor optimization for different regions of panoramic images more effectively, instead
of designing a deep learning network which performs to entire image, we divide the equirectangular
RGB input into two subgroups of segments. As shown in the Figure|l| we reformulate the problem
of panoramic semantic segmentation as the estimation of over-sampled segments (floor and ceiling)
and under-sampled segments (chair, table, window, etc.). We then exploit indoor scene geometric
properties to tailor optimization for each group with different strategies as follows: 1) We propose
a collaborative study on semantic segmentation of the over-sampled segments and dense depth
estimation, this approach enables each task to leverage the benefits of the other, not only through
implicit cross-task representation but also by enforcing consistent geometric losses. 2) To fully
leverage the rich geometric information in panoramic images, we go beyond the common approaches
to introduce a novel concept of vertical relative distance which indicates the relative positions of 3D
points with respect to the key components of indoor scenes. These relative distances, combined with
image features and other geometric representations are incorporated by a designated transformer-
based context module, along with a simple high resolution branch, it can be served as a hybrid decoder
optimized for the under-sampled segments estimation.

In this paper, we present a novel approach to Indoor Panoramic Semantic Segmentation (PASS). Our
key contributions are as follows:

* We propose a new method for PASS that decomposes the task into sub-problems and
optimizes them by integrating geometric information through distinct strategies.

* We introduce the vertical relative distance, a new geometric representation that captures the
spatial relationships between planar surfaces (ceilings and floors) and other object pixels in
3D space.

* We design a hybrid decoder combining a simple high-resolution branch with a transformer-
based context module, which integrates scene representations and exploits relationships
among geometric components.

* Our framework achieves state-of-the-art performance, demonstrating robustness, accuracy,
and efficiency on publicly available panoramic semantic segmentation datasets.

To evaluate the effectiveness of our proposed techniques, we benchmark our framework against base-
line models and prior methods on three widely-used panoramic semantic segmentation datasets: the
real-world Stanford2D3DS, Matterport3D, and the synthetic Structured3D. On the Stanford2D3DS
evaluation (fold 1), our method achieves a new state-of-the-art performance with 56.8% mloU. On



the Matterport3D dataset, we surpass previous methods under the same input conditions, reaching
33.06% mloU on testing set. A similar trend is observed on the Structured3D test set, where our
model attains 71.66% mloU, demonstrating its robustness across diverse scenarios.

2 Related Work

Panoramic Semantic Segmentation. With recent advances in deep learning, numerous neural
network-based methods have emerged for panoramic semantic segmentation. Deng et al. [9] were
among the first to convert a pinhole urban traffic scene dataset into wide-angle (fisheye) images,
introducing a pioneering framework for panoramic semantic segmentation. Yang et al. [32] later
proposed a method for semantic segmentation on 360-degree panoramic annular images, captured
with a single panoramic camera, to improve full-field environmental perception. Building on this, they
developed DS-PASS [31]], which enhances their earlier work by incorporating attentional mechanisms
to improve efficiency in panoramic segmentation.

To address distortion in equirectangular images, Tateno et al. [25] introduced distortion-aware convo-
lutions, where the convolutional filter adapts its shape based on the level of distortion in the projected
image. Similarly, Zhuang et al. [39] proposed Adaptively Combined Dilated Convolution (ACDNet),
which enhances the Field of View near the poles of spherical images by using dilated convolutions
as a direct replacement for standard convolutions. Su and Grauman [23] introduced Spherical
Convolution, a technique that adjusts kernel sizes dynamically based on spherical coordinates. Coors
et al. [[7] developed SphereNet, which handles Equirectangular Projection (ERP) by modifying the
sampling grid positions of convolution filters to achieve distortion invariance, allowing end-to-end
training. Along the same lines, Zhao et al. [36] proposed a distortion-aware CNN for 360-degree
spherical images, incorporating both distortion-aware convolutional and pooling layers. Khasanova
and Frossard [15]] took a different approach by replacing traditional convolutional filters with graph-
based filters that adjust dynamically according to the position within the omnidirectional image.
Finally, Jiang et al. [13]] introduced a novel convolution kernel for CNNs on arbitrary manifolds and
topologies, utilizing parameterized differential operators discretized via an unstructured mesh.

Sharing a similar vision but employing different approaches, Zhang et al. [34, 35] introduced
Trans4PASS and Trans4PASS+, which address spherical distortions and image deformations using
Deformable Patch Embedding (DPE) and Deformable Multi-Layer Perception (DMLP) modules.
Li et al. [18] proposed a Spherical-Geometry-Aware method to handle distortions when converting
360-degree data into 2D panoramic images. Building on the strengths of DPE and DMLP, we adopt
Trans4PASS+ as the baseline model for this paper.

Multi-task approach for the Panoramic Semantic Segmentation. A Panoramic Semantic Seg-
mentation network can be trained jointly with other computer vision tasks to leverage additional 3D
geometric information from the scene, helping to resolve ambiguities that are challenging for purely
2D approaches. HoHoNet [24]] introduced a framework for jointly predicting layout structure and
performing dense per-pixel tasks, such as depth estimation and semantic segmentation, based on a
1D horizontal feature representation. Similarly, Berenguel-Baeta et al. [4] proposed a method to
jointly perform semantic segmentation and depth estimation from a single equirectangular panorama,
utilizing Fourier convolution (FFC) to expand the receptive field and enhance feature extraction.
Following a similar intuition, MultiPanoWise [21] extends vision transformers to jointly infer multiple
pixel-wise estimation tasks along with signals from intrinsic decomposition.

3 Method

This section details the architecture of our proposed network, a novel approach for panoramic
semantic segmentation from an RGB equirectangular image. As illustrated in the Figure 2] the
network consists of three key modules: (1) an encoder that generates both high-resolution coarse
features and low-resolution fine features, (2) a branch dedicated to the concurrent estimation of
the over-sampled segments (floor and ceiling) along with dense depth estimation, and (3) a hybrid
decoder that integrates a deformable MLP with a novel transformer-based context module to produce
semantic masks for the under-sampled segments.
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Figure 2: The proposed framework consists of three main modules: an encoder for extracting image
features, a branch that estimates over-sampled segments alongside dense depth estimation, and a
hybrid decoder for estimating under-sampled segments before a merging process to obtain the final
segmentation result.

3.1 Encoder

Given an input image of size H x W x 3, we adopt the encoder architecture from Trans4PASS+ [335]
to generate multi-level feature maps, denoted as f = {f,f,,f5.f1}. These feature maps corre-
spond to resolutions of {1/4,1/8,1/16,1/32} of the original image size, with channel dimensions
C = {64,128, 320,512}, respectively. Following the approach from the baseline [33], we apply
Deformable Patch Embedding (DPE) modules to the image features at each level before the de-
coding stage. This transforms the feature hierarchy into embedded feature maps, represented as
e = { e1, ez, e3, ¢4}, while maintaining hierarchical resolution, the channel dimensions are unified to
Cemp- In our network, we set the number of embedding channels to C,,;, = 128.

3.2 Over-sampled segments estimation

We design a simple decoder to jointly estimate dense depth and over-sampled segments. Given the
embedded feature maps e = ey, ez, €3, e4, we apply deformable MLPs at each level and upscale the

spatial resolution to - X %. These upscaled features are then fused using point-wise summation to

obtain a hidden feature map (F},;4) of size % X % X Cemb-

Next, lightweight prediction heads process the hidden features to estimate both dense depth (% X

% x 1) and over-sampled segments (% X % X N.is), where N = 3, corresponding to floor, ceiling,
and unknown, represents the union of all other classes. Unlike regular objects, ceilings and floors are

typically planar surfaces in 3D environments.

To preserve these planar properties, we leverage the Plane Surface Normal Loss (PSN) from Xie
et al. [27] to enforces geometric constraints on the predicted depth map by utilizing ground truth
floor-ceiling masks. This facilitates accurate plane equation fitting in subsequent processing steps.

3.3 Contextual Information Exploitation

After obtaining the dense depth for the entire image and the predicted floor-ceiling masks, we
introduce several approaches to extract indoor geometric representations. These representations,
combined with the global image feature map, form the input for the proposed transformer-based
context module, which enhances the scene understanding for the under-sampled segments estimator.

Global Image Feature. We consider the embedded feature map e = ey, es, e3, e4 to form the global
feature of image. To streamline the patch embedding process in the transformer-based context module,
we upsample low-resolution embedded feature maps (ez, es, e4), then stack them with e; along the
channel dimension to create the global image feature denoted as Fimg(% X % X 4% Cemp)-

Cross-Task Feature Distillation. An intuitive way to help the segmentation model understand scene
context is to distill representations from the hidden features of other tasks within a multi-task network,



as proven by the effectiveness shown in [4} 28} 30]. In this work, we propose distilling information
from the hidden feature map Fj,;q (% X % X Cemp), introduced in Section This map not only
captures early depth features but also implicitly encodes the estimation of floor-ceiling planes.

3D Point Cloud. Another approach to enhance the segmentation estimator’s awareness of 3D context
is by first predicting a depth map from the input RGB image and incorporating it as input to the
segmentation network. However, we argue that using point cloud data in Cartesian coordinates offers
a more robust geometric understanding than depth maps. Point clouds represent 3D data directly,
making them better suited for capturing the spatial layout and geometry of a scene. Specifically, given
the predicted depth map as [3.2]at resolution of H x W, we apply an Equirectangular to Cartesian
projection (detail in appendix) to generate a point cloud set S € RV*3, where N = H x W. We
then resize and format this point cloud into Fj,. (% X % % 3) for further processing.

Vertical Relative Distance. Both cross-task feature distillation and 3D point clouds efficiently
capture geometric information about the surrounding environment, but neither fully leverages the
distinctive characteristics of indoor scenes (e.g., chairs typically rest on the floor, while lights hang
from the ceiling). As a key observation, floors and ceilings are prominent features that dominate most
indoor panoramic images, acting as critical constraints in these scenes. In 3D coordinates, the floor
and ceiling usually form parallel planes, creating the upper and lower boundaries of the space. Thus,
the total distance between a point to the floor and ceiling tends to remain constant.

These distances not only reflect a point’s position relative to the floor-ceiling planes but also describe
its spatial relationship to the key constraints derived from the panoramic image. Based on this
observation, we introduce a novel concept called vertical relative distance, which utilizes prior
information such as point cloud data (S € R >*?) and predicted floor-ceiling masks. This new metric
is constructed as follows:

Image ceiling-floor masks dense depth distance to ceiling distance to floor

Figure 3: Visualization of an example showing distance to floor and distance to ceiling masks. The
gradient from light to dark represents the transition from greater to shorter distances.

We define Sy € RN/ %3 and S, € RN<*3 as the sets of floor and ceiling point clouds, respectively.
For the floor set S, the equation of the floor plane e in Cartesian coordinates is given by:

afr+bry+crz+dp =0 (1

We apply the least squares method (detail in appendix) to S to determine the plane coefficients
ay,by,cy,and dy. The distance from each point p(x, y, z) € S to the floor plane e is then calculated
as follows:

_ |afx +bry +cpz+ df|

[ 2 2 2
af+bf+cf

RHXW
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By applying this process to the entire set .S, we obtain dy € , representing the distances of
points in S to the floor plane. Similarly, using this procedure, we compute the distances of points
in S to the ceiling plane, denoted as d. € R¥*W . The resulting pair of tensors, d; and d., are
stacked and resized to form Fy;4; € R > %2 which encodes the vertical relative distance of the
indoor scene (as shown in Figure [3). Additionally, we leverage the predicted floor-ceiling mask
F,, € R %7 *2_which provides prior positional information, highlighting the precise locations of
the constraint components within the panoramic images.

3.4 Under-sampled segments estimation

While estimating over-sampled segments is relatively straightforward, predicting under-sampled
segments poses a greater challenge due to the dense appearance of objects at varying scales and the
inherent ambiguities of working with monocular images. Our goal is to design a robust decoder that
efficiently leverages image features while capturing the intrinsic relationships between contextual



and geometric elements within the indoor scene. To achieve this, we propose a hybrid decoder with
the following structure:

Transformer-based Context Module. Given a single panoramic image, our objective is to improve
the extraction of representations that capture both global image features and diverse geometric
structures. As illustrated in the Figure the global image feature F},,,, is combined with the upper
branch hidden feature map Fj;q, 3D point cloud Fj,, vertical relative distance Fy;s;, and prior
predicted floor-ceiling masks F,,. These concatenated features serve as the input to the context
module:

Z = [Fimg;FhidancaFdistva] (3)
The context module is composed of patch and positional embeddings, followed by six stacked trans-
former encoder layers [26]. Each layer consists of a multi-head self-attention (MHSA) mechanism
and a feed-forward network (FFN). MHSA, a key component of the transformer architecture, allows
the model to simultaneously attend to information from multiple representation subspaces. In the
self-attention module, the input embedding Z is passed through three projection matrices (W<, WX,
WV)to generate the query (Q), key (K), and value (V') embeddings.

Q=2ZW? K=zwK v =2zw" Q)

The output of self-attention is the aggregation of the values that are weighted by the attention weights:

T

SAQ,K,V) = softmaa:(Q 5)

Vd

Where d is the dimension of query embedding. Multiple self-attention layers are stacked and their
concatenated outputs are fused by weighting matrix ", to form MHSA:

%4

H
MHSAQ,K,V) =Y MSAQ,K,V)W"
h=1

(6

After exploiting the relationship between global image feature with different geometric information
through a sequence of transformer encoder layers, the output tokens can be reshaped into an image-like
and upsampled to a size of % X % by strided 3 x 3 transpose convolution for the next processing.

Combine with a high-resolution branch. While
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3.5 Merged segments estimation Figure 4: Transformer based context module
Since the over-sampled and under-sampled segments are estimated independently, a straightforward
merging mechanism combines them to produce the final segmentation for the entire image. First, the
two sets of predicted masks are unified. For overlapping segments, priority is given to floor or ceiling
predictions, as they tend to be more accurate and stable. Finally, the merged segments is upscaled to
match the original image resolution.



4 Experiments

4.1 Experiment Settings

Datasets: We utilize three publicly available datasets for comparison: Stanford2D3DS [3]], Struc-
tured3D [37], and Matterport3D [S]. The Stanford2D3DS dataset contains 1,413 real-world
panoramic images with annotations for 13 semantic classes, organized into three official folds.
We follow the fold-splitting scheme established in previous works [4, [18] 34} 35]. The Structured3D
dataset, on the other hand, provides 21,835 synthetic equirectangular images with diverse lighting se-
tups and annotations for 40 semantic classes. Consistent with [12} [37]], we define training, validation,
and test splits as follows: scenes 00000-02999 for training, scenes 0300003249 for validation, and
scenes 03250-03499 for testing. For all evaluations, we use raw rendered images under full lighting
and furniture configurations. Meanwhile, the Matterport3D dataset introduces an additional challenge
with its 10,800 panoramic images capturing 40 semantic classes in complex indoor scenes. Following
the processing and split protocol of Guttikonda and Rambach [12], we create training, validation, and
test subsets for consistency in our experiments.

Implementation details We train our model on a single NVIDIA GeForce RTX 3090 GPU, starting
with an initial learning rate of Se-5, adjusted using a poly decay strategy with a power of 0.9 over
the training epochs. For the Stanford2D3DS, Structured3D, and Matterport3D datasets, we train for
100, 50, and 100 epochs, respectively. The AdamW optimizer [16] is used with an epsilon of 1e-8, a
weight decay of le-4, and a batch size of 4. Image augmentations include random horizontal flipping,
random cropping, and resizing to 512 x 1024. In the testing phase, images are also processed at a
resolution of 512 x 1024. Other settings and hyperparameters match those of Tran4PASS+ [35]]. For
the segmentation and depth estimation tasks, we use Focal and Huber losses, respectively, with the
final training loss computed as a combination:

Ltotal = al~Lover75a7npledfsegment + a2‘Lunderfsam.pledfsegment + 053«Ldepth (7)

Here, Lo’uer—sa'mpled—segment and Lunder—sampled—segment represent the Segmentation losses for
the over-sampled and under-sampled segments estimation, respectively. In our experiments, the
weights o, g, and a3 are set to [1, 5, 1].

4.2 Experiment Results

Table 1: Comparison with state-of-the-art methods on the Stanford2D3DS dataset. Consistent with
recent work, we report performance as the average mIoU across all three official folds (Avg mloU)
and on fold 1 specifically (F1 mIoU). Our approach demonstrates substantial improvements over both
the baseline and existing methods.

Method Venue Validation Avg mloU (%) Validation F1 mIoU (%)
Tangent [10] CVPR 2019 45.6 -

FreDSNet [4] ICRA 2022 - 46.1
PanoFormer [22]] ECCV 2022 48.9 -
SFSS-MMSI [12] WACYV 2024 - 52.9
HoHoNet [24] CVPR 2021 52.0 53.9
Trans4PASS [34] CVPR 2022 52.1 53.3
Trans4PASS+ [33]  Arxiv 2022 53.7 53.6
SGAT4PASS [18]] IJCAI 2023 55.3 56.4

Ours 55.5 56.8

Results on the Stanford2D3DS dataset: Table[T|presents a quantitative comparison of our framework
with various panoramic semantic segmentation methods on the Stanford2D3DS validation and test
sets. Our method demonstrates significant robustness, achieving a 1.8% and 3.1% mloU improvement
over the baseline Trans4PASS+, respectively, surpassing the current state-of-the-art performance by a
small margin. The qualitative results in the Figure 5| further report the advantages of our approach in
handling diverse geometric representations. Our model consistently outperforms previous methods,
particularly in regions where similar RGB features lead to confusion. For instance, in the first row, the
board and wall share similar RGB colors, making it challenging for previous methods to differentiate
between them. In contrast, our method accurately distinguishes these classes. Overall, prior methods
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Figure 5: Qualitative comparison of semantic segmentation results from Trans4PASS+ [33],
SGAT4PASS [18], and ours using the Stanford2D3D dataset. Black boxes highlight the improve-
ments. Zoom for the better view.

that estimate all segments using a single network tend to yield results optimized for large segments
(such as the floor and ceiling) but struggle with segments near the image equator. In contrast, our
proposed learning strategy mitigates the effects of imbalanced distortion across indoor panoramic
images, resulting in clearer estimations of smaller segments such as chairs, boards, and tables.

Table 2: Quantitative comparison of depth estimation task.

Method MRE| MAE| RMSE| RMSElogl &1 621 431
FreDSNet [35]  0.095  0.133  0.518 0.208 0.843 0958 0.986
Ours 0.074 0120  0.390 0.760 0.865 0.988 0.991

Performance of the depth estimation task on the Stanford2D3DS dataset: Since our work inte-
grates depth estimation within the network, we also report the performance of the depth estimation
task. We compare our framework to FreDSNet [4], a multi-task learning model for joint panoramic
semantic segmentation and depth estimation. The evaluation metrics include Mean Relative Error
(MRE), Mean Absolute Error (MAE), Root-Mean Square Error (RMSE), logarithmic RMSE (RM-
SElog), and three relative accuracy measures defined as the fraction of pixels with a relative error
within thresholds of 1.25" for n = 1,2,3 (§1,62,63). As result shown in the Table [2] our network
outperforms FreDSNet at all of quantitative metrics, demonstrate the powerfulness of our framework
not only on segmentation but also depth estimation.

Results on the Structured3D dataset: We further conduct the experiment on Structured3D synthetic
dataset, which provides a greater variety of images and classes. As the illustration in the Table 3]
on both validation and test sets, our method proves the effectiveness, outperforms previous works
to mark a new state of the art performance with 72.86% mloU and 71.66% mloU, respectively.
Qualitative comparisons in the Figure [] highlight the robustness of our framework.

Results on the Matterport3D dataset: Lastly, we evaluate the proposed approach on the challenging
Matterport3D dataset, which features diverse classes within complex indoor scenes. As shown in
Table[3] given only RGB input, our network slightly outperforms previous methods, achieving new
peaks with quantitative results of 36.42% mloU on the validation set and 33.06% mlIoU on the test
set. These metrics are competitive with methods that utilize additional dense depth (RGBD) input.
However, due to the inherent difficulty of the Matterport3D dataset, the results across all methods are
generally constrained, as illustrated in the qualitative visualization in Figure[7]
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Figure 6: Qualitative comparison of semantic segmentation results from Trans4PASS+ [35]], SFSS-
MMSI [12]], and ours using the Structured3D dataset. Black boxes highlight the improvements.

Table 3: Comparison with the SOTA methods on the Structured3D and the Matterport3D validation
and test sets. Our method marks new state of the arts on both datasets given the same input.

Structured3D Matterport3D
Methods Modal i nloU (%) TestmloU (%)  Val mloU (%)  Test mloU (%)
PanoFormer [22]] RGB 55.57 54.87 30.04 26.87
Trans4PASS+ [33]] RGB 66.74 66.90 33.43 29.21
SFSS-MMSI [12] RGB 71.94 68.34 35.15 31.30
PanoFormer RGBD 60.98 59.27 33.99 31.23
SFSS-MMSI [12] RGBD 73.78 70.17 39.19 35.92
Ours RGB 72.86 71.66 36.42 33.06

4.3 Ablation study

Impact of each contextual representation. We conduct the ablation study on the Stanford2D3DS
dataset 3] (fold 1) to measure the influence of different geometric representation to the performance
of network. We consider a baseline setting with global image feature is input of transformer-based
context module. After that, model is train with additional geometric properties as input of the
transformer-based context module, detail of the performance is reported in the Table []

Table 4: Impact of each geometric representation to the model performance.

Geometric properties mloU (%) Pixel Acc (%)
Fimg 54.41 82.06
Fimg + Frid + Fpc 55.32 82.87
Fimg + Fria + Fpe + Faist 56.68 83.32
Fimg + Fria + Fpe + Faist + Fn 56.80 83.45

Model performance with and without the involvement of depth. We also conducted ablation
studies on the Stanford2D3DS dataset (fold 1) with the baseline( [33]]), our method, and additional
two configurations to analyze the role of depth estimation task. In the first setting, we retained the
segment partitioning and optimization strategy but removed both the depth branch and the features
Fpc and Fy;e from the input of the transformer-based context module. In the second setting, we
maintained joint learning for over-sampled segments with depth estimation, but excluded Fj,. and
Fy;s; from the transformer-based context module, detail of the quantitative comparison is shown in
the Table
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Figure 7: Qualitative comparison of semantic segmentation results from Trans4PASS+ [35]], SFSS-
MMSI [12]], and ours using the Matterport3D dataset. Our method generally performs better than
previous approaches (highlighted in white boxes). However, some challenges remain in regions with
ambiguous textures (highlighted in black boxes). Zoom in for better view.

Table 5: Impact of depth estimation involvement to the model performance.

Settings Avg mloU (%) Fold 1 mloU (%))
Baseline 53.7 53.6
Without depth involvement (depth estimation, both F},. and Fg;st) 54.3 54.7
With depth estimation but no Fj,. and Fy;s¢ 54.6 55.0
With full depth involvement 55.5 56.8

Model complexity. Table 6] presents the model complexity, comparing the number of parameters and
TFLOPs of our approach against previous methods.

Table 6: Computational complexity comparison with input size: 512 x 1024 x 3.

Input Params(G) TFLOPs
Trans4PASS+ [33]] 0.039 0.131
HoHoNet [24] 0.070 0.125
SFSS-MMSI 0.040 0.079
PanoFormer [22]] 0.020 0.081
Ours 0.053 0.135

5 Conclusion

In this paper, we introduce a novel approach for Indoor Panoramic Semantic Segmentation that
decomposes the task into sub-problems, optimizing each by leveraging geometric information in
distinct ways. We treat the floor and ceiling as constrained components of the panoramic image and
propose vertical relative distance as a new geometric representation of the indoor scene. Additionally,
we design a hybrid decoder with a transformer-based context module to aggregate diverse geometric
properties effectively. Our framework demonstrates both efficiency and robustness, achieving new
state-of-the-art performance on three public datasets. Despite its strong performance, our method has
some limitations. First, since the two groups of segments are estimated separately, some unknown
areas can emerge during the merging process. Second, the addition of a depth estimation branch
increases the model’s complexity considerably (as report in the Table[6). Besides, the performance
on the Matterport3D dataset remains limited. Future work should focus on exploring robust methods
that incorporate a deeper understanding of scene structure to further enhance the panoramic semantic
segmentation task.
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A Appendix

We provide the appendix, including the detailed algorithm explanations from the main paper, color
bars for segmentation labels, examples of distance to ceiling, floor masks, and 2D/3D visualizations
of our approach. Additional qualitative/quantitative results will be updated on github, please follow
the repository at: https://github.com/caodinhduc/vertical_relative_distancel

A.1 Projection of equiretangular image to 3D points in Cartesian coordinates using depths.

€¢---3 ---P

Equirectangular Image Spherical Image

Figure 8: Convert equirectangular image to spherical image. Image is adjusted from Ai et al. [1]].

A pixel from equirectangular image can be projected to spherical coordinate, then be converted to
Cartesian coordinates (z, y, z) using a depth map estimated as described in Section Pixels in
equirectangular images can be defined: u, v, where u ranges from 0 to w and v ranges from O to h. If
we define the horizontal unit angle as 9 = %” and the vertical unit angle as ¢ = T, each pixel (u,v)
in the ERP can be mapped to the spherical coordinate (6, ¢) as shown in Figure

(0,0) = (u-9,v-¢)

Here, p is the radius or depth, 8 € [0, 27] is the longitude angle, and ¢ € [0, 7] is the latitude angle.

To convert from spherical coordinates (6, ¢) to Cartesian coordinates (x, y, z) using depth maps, the
following formulas are used: = = psin(6) sin(¢), y = pcos(d), and z = p cos(d) sin(¢).

A.2 Least Square Method for plane fitting from point cloud.

The least squares method is a statistical technique used to find the best-fitting plane to a set of
three-dimensional points (x;, y;, z;). The equation of a plane in three-dimensional space can be
written as:

ax+by+c==z

where a, b, and c are the plane parameters to be determined.
To apply the least squares method, we aim to minimize the sum of the squared distances between the
observed points and the plane. The objective function to minimize is:

S(a,b,c) = Z(axi + by +c—2z)?

i=1

where n is the number of data points. These equations can be written in matrix form as:

o Yo 1 )

X1 yl 1 a Z1
. .. [b] = 1. (8)
: o e :

Tn Yo 1 Zn
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Denoting the matrix on the left as A and the vector on the right as B, we obtain a system of linear
a

equations: Aw = B, wherew = [ b
c

The least squares solution is given by:

w = (ATA)*ATB

This provides the optimal parameters a, b, and c for the plane equation ax + by 4+ ¢ = z. Assuming
the z-axis is aligned with gravity, the plane equation can be initially defined as ¢ = z, where x and y
are zero. Here, c represents the average z-coordinate value of the point cloud.

In images where the floor or ceiling is not pre-estimated, the plane is defined as a surface parallel to
another, separated by a predefined distance.

A.3 Color bars for segmentation labels.

Void Beam Board Bookcase Ceiling Chair Clutter
Column Door Floor Table EL Window

Figure 9: Stanford2D3DS dataset label colors.
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Figure 11: Matterport3D dataset label colors.
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A.4 More examples of distance to ceiling and distance to floor masks.

Image ceiling-floor masks Dense predicted depth distance to ceiling distance to floor
Figure 12: More examples of distance to ceiling and distance to floor masks, where light to dark

colors represent distances from far to near.

A.5 2D/3D visualization of our approach step by step.

h i k

Figure 13: a) Input image. b) Predicted depth. c) Ceiling mask before softmax. d) Floor mask before
softmax. e) Different views of pointcloud constructed from predicted depth. f) Ceiling and floor in 3D
visualization. g) Planes of ceiling and floor in 3D coordinates after applying least square method. h)
Distance of 3D points to ceiling plane. i) Distance of 3D points to floor plane. k) Final segmentation.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: main claims made in the abstract and introduction accurately reflect the paper’s
contribution, there are three main contributions (check introduction for more detail).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mention two limitations on the conclusion.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no theoretical result in this paper.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We will make it publicly (weight, code, pipeline) via provided github.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will make it publicly (weight, code, pipeline) via provided github.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We mention it clearly in the implementation detail and provided github.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: There are no Experiment Statistical Significance in our paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We mention the GPU, computational complexity in the paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We follow the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite the original papers and public datasets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Justification: We do not release new assets
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

15.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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