
Sparsifying networks by traversing Geodesics

Anonymous Author(s)
Affiliation
Address
email

Abstract

The geometry of weight spaces and functional manifolds of neural networks play1

an important role towards ‘understanding’ the intricacies of ML. In this paper,2

we attempt to solve certain open questions in ML, by viewing them through the3

lens of geometry, ultimately relating it to the discovery of points or paths of4

equivalent function in these spaces. We propose a mathematical framework to5

evaluate geodesics in the functional space, to find high-performance paths from6

a dense network to its sparser counterpart. Our results are obtained on VGG-117

trained on CIFAR-10 and MLP’s trained on MNIST. Broadly, we demonstrate that8

the framework is general, and can be applied to a wide variety of problems, ranging9

from sparsification to alleviating catastrophic forgetting.10

1 Introduction11

The geometry of weight manifolds and functional spaces represented by artificial neural networks is12

an important window to ‘understanding’ machine learning. Many open questions in machine learning,13

when viewed through the lens of geometry, can be related to finding points or paths of equivalent14

function in these spaces.15

Two prominent examples are (i) Enabling networks to learn multiple tasks sequentially while avoiding16

catastrophic forgetting[1] and (ii) to discover high-performance paths from a dense neural network to17

its sparser counterparts (sparsification) [2, 3]. Both these questions, although appearing very different,18

can be adequately solved by formulating paths in the weight manifold.19

In this paper, we propose a mathematical framework grounded in differential geometry to find novel20

solutions to these problems in machine learning. We formalize the “search” for a suitable network21

as a dynamic movement on a curved pseudo-Riemannian manifold [4]. Further, we demonstrate22

that geodesics, minimum length paths, on the weight manifold provide high performance paths that23

the network can traverse to maintain performance while ‘searching-out’ for networks that satisfy24

additional objectives. Specifically we develop a procedure based on the geodesic equation for25

finding sets of path connected networks that achieve high performance while also satisfying a second26

objective like sparsification. Broadly, our work provides procedures that will help discover an array27

of high-performing neural network architectures for the task of interest.28

2 Mathematical framework29

Preliminaries: We represent a feed-forward neural network as a smooth, C∞function f(x,w), that30

maps an input vector, x ∈ Rk, to an output vector, f(x,w) = y ∈ Rm. The function, f(x,w), is31

parameterized by a vector of weights, w ∈ Rn, that are typically set in training to solve a specific32

task. We refer to W = Rn as the weight space (W) of the network, and we refer to F = Rm as33

the functional manifold [5]. In addition to f , we will sometimes be interested in considering a loss34

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.

Figure 1: Geometric framework for analyzing neural network resilience (A) Three networks
(N1, N2, N3) in weights space W and their relative distance in functional space and loss space.
Damage is analyzed by asking how movement in weight space changes functional performance and
loss through introduction of a pullback metric g.

function, L : Rm × R→ R, that provides a scalar measure of network performance for a given task35

(Figure 1).36

Construction of metric tensor (g): We use differential geometry, rooted in a functional notion37

of distance, to analyse how infinitesimal movements in the weight space (W) impact functional38

performance of the network. Specifically, we construct a local distance metric, g, that can be applied39

at any point in W to measure the functional impact of an arbitrary network perturbation.40

To construct a metric mathematically, we fix the input, x, into a network and ask how the output of the41

network, f(w,x), moves on the functional manifold, F , given an infinitesimal weight perturbation,42

du, in W where wd = wt + du. For an infinitesimal perturbation du,43

f(x,wt + du) ≈ f(x,wt) + Jwt du, (1)

where Jwt is the Jacobian of f(x,w) for a fixed x, Ji,j = ∂fi
∂wj , evaluated at wt. We measure the44

change in functional performance given du as the mean squared error45

d(wt,wd) = |f(x,wt)− f(x,wd)|2 = duT (Jwt

T Jwt) du (2)

= duT gwt du, (3)
(4)

where gwt = Jwt

TJwt is the metric tensor evaluated at the point wt ∈W . The metric tensor g is46

an n × n symmetric matrix that defines an inner product and local distance metric, 〈du,du〉w =47

duT gw du, on the tangent space of the manifold, Tw(W) at each w ∈W .48

Global paths in functional space: Globally, we can use the metric to determine the functional49

performance change across a path connected set of networks. Mathematically, the metric changes as50

we move in W due to the curvature of the ambient space that reflects changes in the vulnerability of51

a network to weight perturbation (Figure 1c). As a network moves along a path, γ(t) ∈W from a52

given trained network γ(0) = wt to a sparse-hyperplane (hyperplane that consists neural networks53

of desired sparsity) such that γ(1) = ws, we can analyze the integrated impact of sparsification on54

network performance along γ(t) by using the metric (g) to calculate the length of the path γ(t) as:55

L(γ) =

∫ 1

0

〈dγ(t)

dt
,
dγ(t)

dt
〉γ(t) dt, (5)

where 〈dγ(t)dt , dγ(t)dt 〉γ(t) = dγ(t)
dt

T
gγ(t)

dγ(t)
dt is the infinitesimal functional change accrued while56

traversing path γ(t) ∈ W . As our objective is to find a path γ(t) ∈ W that minimizes the total57

function length (L(γ)), we evaluate the geodesic between the dense network and its sparser counter58

part.59

3 Geodesics60

In this section, we evaluate the geodesic path, defined as the minimum functional path-length in61

weight space between any pair of networks. We also demonstrate that the formulation of high-62

performance paths holds the key to solving seemingly unrelated open-questions: (i) catastrophic63

forgetting and (ii) network sparsification.64

2

Network sparsification: We pose the problem of finding a p% sparse counterpart (wps) of a dense65

neural network (wt) as finding a geodesic from (wt1) to a p% sparse hyperplane (W p
s).The sparse66

hyper-plane is the set of all networks that are p% sparse. As the geodesic minimizes the total distance67

traversed on the functional space, it ensures that the sparse network obtained will be both, functionally68

similar to the original network and high-performing.69

Catastrophic forgetting: In order to obtain a single network well-trained on two sequential tasks,70

we train two networks on the two tasks independently (wt1, wt2) and pose the problem of finding a71

network that performs well on both the tasks, as a geodesic between the two trained networks (wt172

and wt2) on the functional space. The functional manifold used could pertain to either of the tasks73

(ensuring that a single dataset/task is used at a time).74

Geodesics mathematical machinery: To find geodesics on W , we can solve the geodesic equation75

given by:76

d2wη

dt2
+ Γηµν

dwµ

dt

dwν

dt
= 0 (6)

where, wj defines the j’th basis vector of the weights space W , Γηµν specifies the Christoffel symbols77

(Γηµν =
∑
r

1
2g
−1
ηr (

∂grµ
∂xν + ∂grν

∂xµ −
∂gµν
∂xr)) on the manifold. The Christoffel symbols capture infinites-78

imal changes in the metric tensor (g) along a set of directions in the manifold. They are computed by79

setting the covariant derivative of the metric tensor along a path specified by γ(t) to zero.80

We, specifically, compute geodesic paths, γ(t), so that γ(0) = wt1 and γ(1) ∈ Ws where Ws is81

the sparsity hyper-plane (for network sparsification) and γ(1) = wt2 (for the catastrophic forgetting82

problem). As the computation of the Christoffel symbols is both memory and computationally83

intensive, we propose an optimization algorithm to evaluate the ‘approximate’ geodesic in the84

manifold.85

Given a trained network, our procedure updates the weights of the network to optimize performance86

given a direction of sparsification. To discover a geodesic path γ(t), we begin at a trained network87

and iteratively solve for the tangent vector , θ(w), at every point, w = γ(t), along the path, starting88

from wt1 and terminating at the sparse hyperplane, W p
s (for sparsification) or network (wt2) trained89

for task-2 (for catastrophic forgetting). We specifically solve90

argminθ(w) 〈θ(w), θ(w)〉w − β θ(w)T vw subject to: θ(w)T θ(w) ≤ 0.01. (7)

The tangent vector θ(w) is obtained by simultaneously optimizing two objective functions: (1)91

minimizing the increase in functional distance along the path measured by the metric tensor (gw)92

[min: (〈θ(w), θ(w)〉w) = (θ(w)Tgwθ(w))] and (2) maximizing the dot-product between the tangent93

vector and vw, vector pointing in the desired direction [max: (θ(w)T vw)] to enable movement towards94

the sparse hyperplane or network wt2.95

Our optimization procedure is a quadratic program that trades off, through the hyper-parameter96

β, motion towards the damage hyper-plane and the maximization of the functional performance97

of the intermediate networks along the path (elaborated in the appendix). The strategy discovers98

multiple paths from the trained network wt1 to Ws, sparse hyper-plane, where networks maintain99

high functional performance during sparsification. Of the many paths obtained, we can select the path100

with the shortest total length (with respect to the metric g) as the best approximation to the geodesic101

in the manifold.102

Geodesics for network sparsification: We apply the geodesic strategy to discover high-performance103

paths from a trained network (VGG11 on CIFAR-10) to a sparse hyperplane (blue curve in figure-2A).104

Here, the sparse hyperplane is defined as all networks that have zeroed out 50 (out of 60) conv-filters105

from layer-1 in VGG11. We compared our strategy with conventional heuristic fine-tuning (figure-106

2A) and demonstrate that the geodesic procedure is both rationale and computationally efficient.107

Specifically, an iterative prune-train cycle achieved through structured pruning of a single node at108

a time, coupled with SGD re-training [6, 3] (Figure 4A) requires 70 training epochs to identify a109

sparsification path. However, our geodesic strategy finds paths that quantitatively out-perform the110

iterative prune-train procedure and obtains these paths with only 10 training epochs (figure 2A,B).111

In figure-2C, we apply the geodesic strategy to find a path from a trained multi-layer perceptron112

(MLP) to its 70% sparser counterpart. The geodesic discovers a network performing at a test-accuracy113

of 96.8% on the 70% sparse hyperplane.114

3

Figure 2: Geodesic paths allow damage compensation through weight adjustment: (A) Test
accuracy (A) and (B) number of network update epochs (B) for geodesic recovery (blue) vs fine-
tuning (green) while 50 (out of 60) conv-filters are deleted from layer1 in VGG11. Geodesic recovery
requires ≤10 total update epochs. (C) Traversing the geodesic from an MLP (trained on MNIST)
to its 70% sparser counterpart. The blue line captures the test-accuracy of the networks along the
path and red-line captures the euclidean distance of the network from the sparse hyperplane (W p

s).
(D) Geodesic strategy (blue) allows networks to dynamically transition between configurations: C1,
trained VGG11 network ; C2, 50 conv-filters removed from C1; C3, 1000 additional nodes removed
from classifier-layers in C2; C4, 30 conv-filters in conv-layer1 restored to C3. Dynamic transitioning
enabled within 5 epochs. Naive strategy is red). (E) A depiction of multiple sparsification paths on
the loss landscape from trained network (N1) to networks on the sparse (damage) hyper-plane (N2,
N3, N4, N5). The z-axes is network-loss, while the x,y axes are neural net weights. (F) Traversing
the geodesic from network-1 trained on MNIST to network-2 trained on Fashion-MNIST along the
MNIST functional manifold. The solid blue line is the test-accuracy of the networks (along the
geodesic) on MNIST, while the dashed blue-line is the test-accuracy of the networks on Fashion-
MNIST, and the red-line is the distance between from network-2. At the point of intersection of the
solid and dashed blue line, we find networks that perform at 80% for both the tasks.

Additionally, the same geodesic strategy enables us to dynamically shift networks between different115

weight configurations (eg from a dense to sparse or vice-versa) while maintaining performance116

(Figure 2D). The rapid shifting of networks is relevant for networks on neuromorphic hardware to117

ensure that the real-time functionality of the hardware isn’t compromised while transitioning between118

different power configurations.119

Geodesics for alleviating catastrophic forgetting: In this section, we present our preliminary120

results on the geodesic framework formulated to alleviate catastrophic forgetting.121

We chose two datasets (MNIST and Fashion MNIST) and train our network on both tasks one after122

the other. On doing so, we notice that the network initially performs at an accuracy of 99% on MNIST123

(after training on MNIST alone), but drops its performance to 10% after being trained with Fashion124

MNIST. This is a clear demonstration of the network catastrophically forgetting.125

To alleviate this issue, we train 2 networks (on MNIST and Fashion MNIST). We find a geodesic path126

from wt1 to wt2 on the functional manifold (MNIST dataset). As we traverse the geodesic, we obtain127

a set of networks along the path that perform well on both MNIST and Fashion-MNIST (without128

having to be trained on both datasets simultaneously!). In figure-2F, we evaluated the geodesic path129

between the 2 trained networks and show that some networks along the geodesic have an accuracy of130

80% on both the MNIST and Fashion MNIST dataset, without requiring rigorous training using both131

datasets simultaneously.132

4

References133

[1] German I Parisi et al. “Continual lifelong learning with neural networks: A review”. In: Neural134

Networks 113 (2019), pp. 54–71.135

[2] Christos Louizos, Max Welling, and Diederik P Kingma. “Learning Sparse Neural Networks136

through L_0 Regularization”. In: arXiv preprint arXiv:1712.01312 (2017).137

[3] Jonathan Frankle and Michael Carbin. “The lottery ticket hypothesis: Finding sparse, trainable138

neural networks”. In: arXiv preprint arXiv:1803.03635 (2018).139

[4] Shun-Ichi Amari. “Differential geometry of curved exponential families-curvatures and infor-140

mation loss”. In: The Annals of Statistics (1982), pp. 357–385.141

[5] Detlef H Mache, József Szabados, and Marcel G de Bruin. Trends and Applications in Con-142

structive Approximation. Vol. 151. Springer Science & Business Media, 2006.143

[6] Song Han et al. “Learning both weights and connections for efficient neural network”. In:144

Advances in neural information processing systems. 2015, pp. 1135–1143.145

5

