
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

ShapeShifter: Workload-Aware Adaptive Evolving Index
Structures Based on Learned Models

ABSTRACT
In applications such as data management and Web search engines,
indexes are key to enabling efficient data retrieval. We find that
unlike standard benchmarks with uniform data distribution, index
operations in real-world tasks often exhibit strong skewness. How-
ever, existing high-performance learned indexes, while proposed to
enhance query and update efficiency, often fail to account for the
characteristics of skewed workload access, leading to an imbalanced
focus on optimizing a single performance metric at the expense of
other critical aspects of overall index performance. Furthermore,
the complete use of learned models in index structures can lead
to increased robustness issues, making them highly vulnerable to
attacks and resulting in system unavailability.

To address these challenges, we propose ShapeShifter, an adap-
tive evolutionary structure based on traditional indexes, capable of
dynamically adjusting node structures according to the workload.
ShapeShifter introduces a node evolution strategy, designed with
workload-skew-aware policies, to adaptively adjust and optimize
the most suitable partial index structure, leveraging a hybrid mech-
anism that combines traditional and learned structures for robust
performance and an optimal time-space trade-off under skewed
workloads and extreme data conditions. The evaluation results
show that ShapeShifter achieves the optimal trade-off between
performance and space efficiency while maintaining robustness.

KEYWORDS
index structure, learnedmodel, evolving strategy, data management,
web search engine

1 INTRODUCTION
In the fields of data management and Web search engines, indexes
play a crucial role, enabling efficient data retrieval. For instance, in
search engine technology, an efficient index structure can swiftly
filter out the most relevant information from billions of Web pages.
In response to the continuous growth in data volume and retrieval
demands, the academic community has recently proposed some
learned index architectures[9, 14, 19, 20, 25, 43]. The aim of this ar-
chitecture is to minimize space usage[20] or maximize the efficiency
of processing queries and update tasks[9, 43]. Research has shown
that its experimental performance substantially exceeds that of tra-
ditional tree-based indexes in certain specific dimensions[13, 42].

The “RUM Conjecture”[2] posits that no data structure can
achieve perfect optimization among reads, updates, and space over-
head. However, unlike standard uniformly distributed data bench-
marks such as TPC-H, index operations in scenarios frequently
demonstrate significant skew, especially in processing real-time
hot information like Web search and retrieval. In scenarios with
skewed workloads, the constraints of the “RUM Conjecture” may
be mitigated, allowing designers to compress cold nodes in an index
while fine-tuning the data structure through adapting to the spe-
cific cumulative distribution function (CDF) of hot nodes, thereby
enhancing read-write performance while reducing space overhead.

0 5 10
Size (GB)

0

300

600

La
te

nc
y 

(n
s)

(a) READ

B+Tree ART HOT ALEX LIPP

0 5 10 15
Size (GB)

0

300

600

La
te

nc
y 

(n
s)

(b) WRITE

1 2 3 4 5
Range 10x

0

175

350

Th
ro

ug
hp

ut
 (M

 k
ey

s/
s)

(c) SCAN

low cost high cost

Figure 1: (a) (b) illustrate the trade-off between point search
and insert performance and index size under skewed con-
ditions on the LIBIO dataset (200M)[28]. The point search
workload follows a Zipfian[7] distribution, with a write skew
affecting 30% of the key range. (c) presents the index perfor-
mance under varying scan numbers.

Consequently, we argue that designing an index structure with
workload-aware and adaptive adjustment capabilities not
only improves system performance but also maintains sta-
bility in dynamically changing data access environments.

However, we observe that numerous contemporary learned
index structures are developed with a predominant emphasis
on enhancing a specific performance metric, frequently to
the detriment of other vital performance dimensions. For
instance, while some structures achieve near-optimal space utiliza-
tion in theory, they significantly compromise read performance or
update capabilities. Early learned indexes, i.e., RMI[20] and RS[19],
sacrifice update functionality in pursuit of high space efficiency
and read performance. Similarly, the PGM-index[11] trades off read
performance for improved space efficiency and write performance.
Furthermore, most database management systems prioritize read
and write performance in their index structure designs, which of-
ten results in higher space overhead. For example, the LIPP[43],
while enhancing read andwrite performance, severely compromises
space and scan efficiency, rendering its trade-off unacceptable. The
ALEX[9] attempts to strike a balance between read, write, and space
overhead, seemingly achieving a more optimal trade-off. However,
its reliance on a purely learned model makes it vulnerable to poi-
soning attacks[45], leading to structural failures. This issue stems
from the fact that the complexity of the CDF of real-world data
far exceeds the approximation capabilities of learned mod-
els, making it difficult to ensure the robustness of index structures
when balancing optimizations for read, write, and space overhead.

To address the aforementioned challenges, we prioritize adap-
tive adjustment capabilities as “first-class citizens” and design a
workload-aware, adaptive evolving index framework ShapeShifter.
This framework can flexibly self-adjust its form to accommodate
varying skewed workloads and the characteristics of CDFs. Initially,
ShapeShifter is based on a traditional tree-like index, selected for
its robustness to meet the complex CDF challenges found in real
scenarios. Based on this foundation, ShapeShifter develops a node
evolving strategy capable of sensing the degree of workload skew

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

and adaptively selecting the most appropriate traditional/learned
structure, progressively optimizing hot nodes to enhance system
performance. By employing a hybrid approach that combines tradi-
tional and learned structures, ShapeShifter notably enhances per-
formance while ensuring robustness. Concurrently, ShapeShifter
compresses cold node to achieve an optimal balance between per-
formance and space. Additionally, the node evolving strategy of
ShapeShifter designs dynamic learned structures tailored to differ-
ent workloads for hot nodes, allowing them to self-adjust based
on workload changes, thus maintaining superior performance. Ul-
timately, ShapeShifter also develops a lightweight node hot-cold
sensing model that allows to adaptively and precisely detect local
structural “temperature changes” without significantly sacrificing
performance, guiding itself timely evolving.

Our microbenchmark with real-world datasets demonstrates
that, under skewed workloads, ShapeShifter achieves up to a 6.34×
increase in throughput and a 51.79% reduction in space usage com-
pared to the state-of-the-art (SOTA) traditional tree-based indexes.
When compared to the SOTA learned indexes, ShapeShifter shows
up to a 1.26× improvement in throughput and an 824.19% reduc-
tion in space usage, while also effectively mitigating poisoning at-
tacks. These results provide compelling evidence that ShapeShifter
achieves an optimal balance between space and performance.

This paper makes three primary contributions: (1) we intro-
duce ShapeShifter, a workload-aware adaptive index framework
based on learned models, designed to achieve an optimal trade-off
between performance and space utilization while ensuring robust-
ness of the index. (2) this study integrates traditional and learned
models for the first time, defining a series of node evolution strate-
gies. These strategies enable the index to adapt to various skewed
workload, effectively balancing the robustness of traditional mod-
els with the high performance characteristics of learned models,
thereby achieving an effective trade-off between the two. (3) we
design a lightweight model for determining hot/cold nodes, which
identifies the optimal timing for triggering index evolving without
compromising performance.

The rest of the paper is organized as follows. Section 2 discusses
existing index limitations and the objectives of this paper. Section
3 outlines the architecture of ShapeShifter, framework evolution,
and node classification algorithm. Section 4 shows experimental
results from real-world datasets and skewed workloads. Section 5
reviews related work, and Section 6 concludes the paper.

2 INDEX FRAMEWORK INVESTIGATION
In real-world tasks, index operations demonstrate significant skew-
ness across multiple dimensions, including query patterns, key
value ranges, and the structure of the accessed index space [6].
Thus, in environments with highly skewed workloads, designers
can compress cold nodes and adaptively adjust the index structure
based on the data distribution of hot nodes, enhancing performance
and reducing space overhead [1].

Observation 1: In workload-skewed scenarios, designing
index structures with adaptive capabilities is essential to
achieve a more optimal trade-off between time and space.

Figure 1 (a) and (b) display the performance of various index
structures in point queries/insertion and space utilization under

Time-Space Tradeoff Scan Poisoning AttacksPoint Search Insert Size
B+Tree[4] × × ✓ ✓ ✓
ART[24] ✓ ✓ × × ✓
HOT[5] ✓ × ✓ × ✓
ALEX[9] ✓ ✓ ✓ ✓ ×
LIPP[43] ✓ ✓ × × ✓

ShapeShifter ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

Table 1: Aspects of challenges in SOTA index structures.

skewed conditions. We observe that the time-space trade-off for
B+Tree[4] is primarily limited due to poor performance in point
queries and insertions, while the ART[24] index suffers due to
its high space overhead. The learned index LIPP, which exhibits
the best performance in point queries and insertions, also incurs
unacceptably high costs when handling large-scale data due to its
substantial space requirements.

Observation 2: Index structural design frequently priori-
tizes a single performance metric at the detriment of others.
Furthermore, existing indexes fail to adequately consider
workload-skewed accesses, hindering the achievement of an
optimal balance and enhancement of overall performance.

Although Figure 1 (a) and (b) appear to show the ALEX exhibiting
a favorable time-space trade-off, experiments by Yang et al.[45]
reveal and highlight that since the structure of the ALEX index is
entirely based on a learned model, it is susceptible to poisoning
attacks, which can lead to structural collapse.

Observation 3: In practical applications, the complexity of
the CDF of stored data surpasses the approximation abilities
of current learned models. As a result, when indexes depend
solely on learnedmodels to balance time and space optimally,
ensuring their robustness becomes challenging.

Figure 1 (c) illustrates the scan performance of various indexes.
Notably, some indexes, such as HOT, exhibit generally poor perfor-
mance. Considering the frequency of scan operations in real-world
applications, such inadequate performance can significantly dimin-
ish the practical utility of indexes in databases.

Observation 4: Some indexes exhibit a favorable trade-off
between time-space. However, its scan performance is poor.

In summary, our analysis in Table 1 highlights the limitations
of current SOTA index structures. We propose that more effective
indexes should incorporate workload-sensitive adaptive features to
manage workload skewness and optimize the balance between time
and space, rather than focusing solely on maximizing performance
in one aspect while neglecting others. Additionally, the current
piecewise linear models used in learned indexes have limited fitting
capabilities, making it difficult for indexes that depend entirely on
these models to maintain robustness and achieve an optimal time-
space trade-off. Effective index designs should ensure enhanced
scan performance to support prevalent range queries in databases;
thus, our research excludes index structures that lack this capability.

3 THE SHAPESHIFTER DESIGN
This section provides a detailed introduction to the ShapeShifter,
which aims to address the key issues discussed in Sections 1 and 2.
By ensuring the robustness of the index, ShapeShifter incorporates
learned models to assist in dynamic evolving operations of the
index structure, thereby improving performance and reducing space
overhead.

2



233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models Conference’17, July 2017, Washington, DC, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 2: The structure of ShapeShifter.
In particular, Section 3.1 presents an overview of the ShapeShifter

architecture and describes the different operational processeswithin
the framework. In Section 3.2, we propose a strategy framework
based on adaptive evolving operation, which further enhances the
performance and robustness of the index under skewed workloads
with the assistance of learned models. Finally, Section 3.3 introduces
a hot-and-cold node classification framework that maintains statis-
tical information for different node roles at minimal cost, thereby
optimizing the management of the index.

3.1 Overview
3.1.1 The structure of ShapeShifter. The ShapeShifter framework,
as illustrated in Figure 2, consists of twomainmodules: the classifier
module and the adaptation module. In the first phase, during each
lookup or insertion operation, ShapeShifter utilizes the classifier
within the classification module to determine the “temperature
state” 1 , i.e., hot or cold, of the target node. In the second phase,
if a node is classified as either hot 2 3 or cold 4 , an evolving
operation is triggered; otherwise, the structure remains unchanged.

Specifically, ShapeShifter evaluates whether the CDF of the keys
stored in hot nodes is conducive to adopting a high-performance
learned model in lieu of traditional index structures. If the learned
model can provide stable performance improvements, the node
evolves into a learned model 3 ; otherwise, it retains the tradi-
tional structure 2 to ensure system robustness. For nodes that
have evolved into learned structures, if insertion operations render
their CDFs difficult to approximate effectively or even unusable,
ShapeShifter provides a mechanism to revert to the traditional struc-
ture 2 , ensuring system stability. Note that our evolving strategy
encompasses the functionality of traditional structure modification
operations (SMOs).
3.1.2 Operations of ShapeShifter.

(1) Lookup operation. Algorithm 1 delineates the query pro-
cess for ShapeShifter. Due to the evolutionary adaptation of certain
nodes within ShapeShifter into learned model structures, it is im-
perative to first ascertain the type of the current node during a
query. In detail, the process begins with locating the leaf node
corresponding to the target key (lines 1-11). When querying an
internal node, if the node is a learned model, the model predicts the
target position, followed by comparison operations to determine
the precise location (lines 3-5). If the internal node is a B+Tree node,
a binary search algorithm is employed to locate the target position
(lines 6-8). Upon locating the leaf node where the target key resides,
it is then necessary to ascertain its exact position within the leaf
node (lines 14-23). If the leaf node incorporates a learned model,
the target position is predicted and a last mile search is conducted

to find the precise location (lines 14-16). If the leaf node adheres
to a B+Tree structure, the exact position is located through binary
search (lines 17-19). If the retrieved key does not match the target
key, the query fails; otherwise, the query succeeds (lines 20-23).

Algorithm 1: ShapeShifter Lookup Operation
Input: 𝑘𝑒𝑦
Output: target⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩

1 Function Traverse_To_Leaf(key):
2 for 𝑁𝑜𝑑𝑒.𝑡𝑦𝑝𝑒 ≠ 𝐿𝑒𝑎𝑓 do
3 if 𝐼𝑛𝑛𝑒𝑟_𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 then
4 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝑁𝑜𝑑𝑒.𝑙𝑖𝑛𝑒𝑎𝑟 (𝑘𝑒𝑦)
5 𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ← 𝑅𝑎𝑛𝑔𝑒_𝐶𝑜𝑚𝑝𝑎𝑟𝑒 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 )
6 else if 𝐼𝑛𝑛𝑒𝑟_𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝐵 +𝑇𝑟𝑒𝑒 then
7 𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ← 𝑁𝑜𝑑𝑒.𝑏𝑖𝑛𝑎𝑟𝑦_𝑠𝑒𝑎𝑟𝑐ℎ (𝑘𝑒𝑦)
8 end
9 𝑆𝑢𝑏_𝑛𝑜𝑑𝑒 ← 𝐼𝑛𝑛𝑒𝑟_𝑛𝑜𝑑𝑒 [𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ]

10 end
11 return 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒
12 Function Lookup_Operation(key):
13 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 ← Traverse_To_Leaf(key)
14 if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 then
15 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑙𝑖𝑛𝑒𝑎𝑟 (𝑘𝑒𝑦)
16 𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ← 𝐿𝑎𝑠𝑡_𝑀𝑖𝑙𝑒 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 )
17 else if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝐵 +𝑇𝑟𝑒𝑒 then
18 𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ← 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑏𝑖𝑛𝑎𝑟𝑦_𝑠𝑒𝑎𝑟𝑐ℎ (𝑘𝑒𝑦)
19 end
20 if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 [𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ] .𝑘𝑒𝑦 ≠ target 𝑘𝑒𝑦 then
21 return ⟨𝑁𝑢𝑙𝑙, 𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ⟩
22 end
23 return target⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩

(2) Insert operation. Before inserting a new key, ShapeShifter
uses the𝑇𝑟𝑎𝑣𝑒𝑙_𝑇𝑜_𝐿𝑒𝑎𝑓 function in Algorithm 2 to locate the leaf
node where the new key will be inserted and to determine its type
(lines 2-3, 15). If the target leaf node is a learned model (i.e., a linear
model), the target key-value pair can be calculated (lines 4-6). If the
target key is Null, the new key-value pair is directly inserted (lines
7-8). Else, it must be determined whether the target key matches
the new key. If they match, the target value is directly updated
(lines 9-10). Otherwise, insertion conflicts must be resolved (by
shifting or chaining), and then insert the new key-value pair (lines
11-14). If the target is a B+Tree node, the key-value pair is inserted
or updated using the B+Tree method (lines 15-17).

(3) Other operations.For the algorithmic description of the
evolving (SMO), please refer to Section 3.2. The descriptions of the
Scan and Delete algorithms can be found in Appendix A.1 and A.2.

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference’17, July 2017, Washington, DC, USA

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Algorithm 2: ShapeShifter Insert Operation
Input: ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩

1 Function Insert_Operation(key):
2 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 ← Traverse_To_Leaf(key)
3 if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 then
4 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 ← 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑙𝑖𝑛𝑒𝑎𝑟 (𝑘𝑒𝑦)
5 𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ← 𝐿𝑎𝑠𝑡_𝑀𝑖𝑙𝑒 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑_𝑠𝑙𝑜𝑡 )
6 tar⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ ← 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 [𝑝𝑟𝑒𝑐𝑖𝑠𝑒_𝑠𝑙𝑜𝑡 ] .𝑑𝑎𝑡𝑎
7 if tar 𝑘𝑒𝑦 = 𝑁𝑢𝑙𝑙 then
8 insert ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ to precise_slot
9 else if tar 𝑘𝑒𝑦 = 𝑘𝑒𝑦 then
10 𝑈𝑝𝑑𝑎𝑡𝑒 (tar 𝑣𝑎𝑙𝑢𝑒 ← 𝑣𝑎𝑙𝑢𝑒 )
11 else if tar 𝑘𝑒𝑦 ≠ 𝑘𝑒𝑦 then
12 𝑛𝑒𝑤_𝑠𝑙𝑜𝑡 ← 𝑆ℎ𝑖 𝑓 𝑡_𝑀𝑒𝑡ℎ𝑜𝑑 𝑜𝑟 𝐶ℎ𝑎𝑖𝑛_𝑀𝑒𝑡ℎ𝑜𝑑

13 insert ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ to new_slot
14 end
15 else if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝐵 +𝑇𝑟𝑒𝑒 then
16 insert ⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ uses B+ methods
17 end

3.2 Evolving Strategies
This section is dedicated to a detailed exposition of the evolving
strategies of ShapeShifter. Section 3.2.1 delves into the design of the
learned models employed by ShapeShifter. Section 3.2.2 thoroughly
explains the evolutionary strategies for hot nodes, where different
types of hot nodes evolve into distinct learned models tailored
to their specific demands, thereby optimizing the performance of
ShapeShifter. Section 3.2.3 discusses the evolving strategy for cold
nodes, with the main aim of reducing space overhead.
3.2.1 Learned model. Existing learned structures in indexes pri-
marily utilize piecewise linear functions, as shown in Figure 3 (a).
Considering that the distribution of stored keys often exhibits non-
linear characteristics (the black dots), a single linear approximation
(the red line) can result in significant errors when approximating
the CDF of stored keys. In such cases, employing piecewise linear
functions (the blue line) to approximate each local key segment can
effectively reduce these errors. This method of piecewise linear ap-
proximation is what learned indexes initially adopted. However, as
the number of segments increases, this method leads to an increased
height of the tree. Essentially, this approach represents a trade-off
strategy that sacrifices tree height to reduce approximation errors,
generally resulting in moderate performance.

Figure 3 (b) illustrates a SOTA method that maintains minimal
errors. To be specific, by “stretching” the shape of the cumulative
distribution function (CDF) to more closely approximate linear
characteristics without segmentation1, effectively reducing the ap-
proximation errors of the linear model. For example, in Figure 3(b),
predicting with the red line for 𝑘𝑒𝑦 = 4 results in errors, whereas
predictions using the green line achieve complete accuracy. This
accuracy is due to the increased slope of the red line transitioning to
the green line, necessitating a recalculation of storage position for
the key based on the new green line, which alters the original shape
of the CDF of the key (the green dots) to closely resemble linear
characteristics. This method reduces prediction errors without the
1Figure 3(b) is merely illustrative; actual applications still require segmentation, con-
siderably less than the method shown in Figure 3(a).

0 5 10 15 20
CDF Input (Key)

0

5

10

15

20

C
D

F 
O

ut
pu

t (
Po

si
tio

n)

(a) Piecewise

0 5 10 15 200

5

10

15

20

C
D

F 
O

ut
pu

t (
Po

si
tio

n)

(b) Increase slope

C
D

F 
O

ut
pu

t (
Po

si
tio

n) y=a1·x 

CDF

a1<a2<a3

y=a2·x 
y=a3·x 

(c) Learned model
CDF Input (Key) CDF Input (Key)

Figure 3: The principles of learned models.

need for segmentation. However, this “stretching” process creates
gaps (the green hollow circles), thereby increasing space overhead.
Therefore, this approach essentially involves a time-space trade-off
strategy. Nevertheless, these gaps provide space for subsequent
insertion operations, ensuring that space is not wasted in nodes
with frequent insertions (hot).

Intuitively, inspired by Figure 3 (b), ShapeShifter decides to em-
ploy a learned structure with gaps as the evolving architecture for
its hot nodes. Figure 3 (c) illustrates the extent to which the CDF of
local storage keys is “stretched” under linear models with varying
slopes. The red line fits the original CDF. The yellow line, with an
increased slope, stretches the original CDF to make it more linear
and further reduces the prediction error. The green line, with the
highest slope, further stretches the original CDF towards linear-
ity, also reducing the prediction error even more. Therefore, the
critical task now is how the nodes of ShapeShifter, when evolving
into learned models, can select the appropriate slope to balance
the trade-off between performance and space. The most suitable
approach is for the write hot nodes to adaptively select the appro-
priate slope based on the insertion rate, reserving appropriate gaps.
On the other hand, read hot nodes should not reserve too many
gaps to achieve the optimal time-space trade-off. We will discuss
this strategy in detail in Section 3.2.2.

During the insertion process within the learned structure, if
the targeted insertion position is a gap, direct insertion is feasible.
However, if the designated insertion position is already occupied
due to an imprecise fit, leading to an insertion conflict (similar to a
hash collision), specific strategies must be adopted to resolve this.
Currently, there are two main strategies to address such conflicts:
one is the shift method[9], which involves rearranging nodes by
moving existing keys; the other is the chain method[43], which
employs a linked structure to create a new node for the targeted
slot, transforming the “last mile” search into a sub-tree traversal.
Among these conflict resolution methods, we find that the chain
method outperforms the shift method in terms of efficiency and
performance, although it incurs a relatively higher spatial over-
head. Therefore, within ShapeShifter, for hot insertion nodes, we
utilize the chain method to support efficient insertion operations,
aiming for superior performance. Conversely, for hot read nodes,
the shift method is employed to handle minimal insertions, seeking
to minimize space utilization.

3.2.2 Hot node evolving strategies. ShapeShifter categorizes hot
nodes into hot read nodes and hot write nodes, each following
distinct evolving paths. It is important to emphasize that in practical
applications, learned models may fail to fit the CDF of stored data
accurately, i.e., resulting in significant errors, or may even fail under
extreme conditions. Therefore, learned models should be used with

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

caution in these instances to enhance the robustness of the index.
To address these challenges, we define two modes for the learned
model in this section: “easy” mode and “hard” mode. In “easy” mode,
ShapeShifter evolves into different learned structures based on the
specific needs of hot read and hot write nodes. In “hard” mode,
to ensure the stability and reliability of the system, ShapeShifter
should retain or revert to a traditional B+Tree structure. For details
on how to determine the hot or cold status of nodes, please refer to
Section 3.3.

The method for determining the hard mode is by multiplying
operational performance and space overhead defined by Zhang et
al.[47], i.e., 𝐶𝑂𝑆𝑇 = 𝑃𝑒𝑟 𝑓 𝑟 · 𝑆𝑝𝑎𝑐 .
𝑃𝑒𝑟 𝑓 refers to the performance estimate of a learned model or a

B+Tree, i.e., the average query latency, which is calculated based on
the query time complexity of each node during index construction
or node SMO processes. More precisely, we compute the average
query cost for the keys stored in a node under both the learned
model and the B+Tree structure. 𝑆𝑝𝑎𝑐. denotes the space overhead,
while 𝑟 represents the weight between performance and space
overhead. When 𝑟 > 1, performance is prioritized; when 𝑟 < 1,
space overhead is given more importance. Let 𝐶𝑂𝑆𝑇1 represent
the cost of the learned model, and 𝐶𝑂𝑆𝑇2 represent the cost of the
B+Tree. When 𝐶𝑂𝑆𝑇1 ≥ 𝐶𝑂𝑆𝑇2, the system is considered to be in
hard mode, during which the node will not evolve into a learned
model, and the learned model also reverts to a B+Tree structure.

𝑛.𝑠𝑖𝑧𝑒 = 𝛽 ×min (1, 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡
𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡−1

) × 𝑛.𝑠𝑙𝑜𝑡_𝑛𝑢𝑚 (1)

For nodes identified as operating in “easy” mode during hot
insertion processes, ShapeShifter dynamically reserves varying
numbers of gaps based on insertion rates during the node splitting
phase, as illustrated in Equation 1. This ensures that leaf nodes with
higher insertion rates are allocated more space. Here, 𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡
represents the insertion rate at time 𝑡 . For details on how insertion
rates are determined, refer to Section 3.3. The ratio 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡

𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡−1
indicates the growth rate of the insertion rate. The parameter 𝛽
serves as the space factor for reserving gaps. For the determination
of weight values, see Equation 2.

𝛽 =


𝛾, 𝑛.𝑠𝑙𝑜𝑡_𝑛𝑢𝑚 ≥ 1𝑀
3𝛾, 𝑛.𝑠𝑙𝑜𝑡_𝑛𝑢𝑚 ≥ 500𝐾
6𝛾, 𝑛.𝑠𝑙𝑜𝑡_𝑛𝑢𝑚 < 100𝐾

(2)

As indicated by Equation 2, nodes of varying sizes should be
equipped with corresponding space factors, denoted as 𝛽 . Equation
1 demonstrates that smaller nodes require larger space factors to
ensure adequate space reservation. For example, suppose two hot
nodes have slot capacities of 8 and 16, respectively; they would
require expansion factors of 6 and 3 to achieve a total expansion of
48 units. The weight value of the space factor 𝛽 can be dynamically
adjusted based on different workloads. In our evaluation, we set
the default value of 𝛾 to 1.

Within the learned structure, as the number of insertions in-
creases, the quantity of gaps gradually diminishes, requiring an ex-
pansion of space to accommodate insertion demands. In ShapeShifter,
the classifier employs a probabilistic model to determine when to
expand nodes in the learned structure; for specific strategies, please
refer to Section 3.3. To mitigate extreme situations, a safeguard

mechanism is incorporated into the learned models: when the num-
ber of gaps reaches a 𝜎 fraction2 of the total number of slots within
the node, a forced automatic node expansion is triggered. The spe-
cific scale of this expansion is defined in Equation 1.

For hot read nodes identified as operating in an “easy” mode,
during their evolving process, the primary purpose of the reserved
gaps is to reduce prediction errors (see Figure 3); thus, an excess of
gaps should not be maintained. In ShapeShifter, a spatial expansion
parameter3 𝛿 has been established to determine the extent of space
expansion for read-hot nodes, aiming to achieve the optimal trade-
off between query performance and space overhead.

Regarding internal nodes evolving, refer to Appendix A.3.
3.2.3 Cold node evolving strategies. If a leaf node is identified as
a cold node, it will not evolve into a learned structure but will
retain the structure of a B+Tree leaf node. This is because the gaps
present within the learned structure increase the space overhead
of the index, which does not benefit cold nodes. Additionally, the
reserved space (B+Tree space) within nodes identified as cold will
also be correspondingly reduced, namely to a fraction 𝜎 of the total
number of keys within the node.

3.3 Classifier Model
3.3.1 The method for determining hot write nodes. In the index,
to determine whether a node qualifies as a “hot write” node, it is
necessary not only to assess whether the cumulative number of
inserted keys reaches a certain threshold but also to consider the
speed of key insertion. Therefore, in ShapeShifter, the insertion rate
of a node is used to determine whether it is a hot node, as detailed
in Equation 3. Let 𝑛.𝑘𝑒𝑦_𝑛𝑢𝑚𝑡 represent the total number of keys
in node 𝑛 at time 𝑡 . We assume that 𝑡 and 𝑡 − 1 are the timestamps
of the current and previous constructions or SMOs of the node.
Therefore, the key insertion rate at the current moment 𝑡 can be
estimated by dividing the difference in the number of keys inserted
between two timestamps by the time interval.

𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 =
𝑛.𝑘𝑒𝑦_𝑛𝑢𝑚𝑡 − 𝑛.𝑘𝑒𝑦_𝑛𝑢𝑚𝑡−1

𝑛.𝑡𝑖𝑚𝑒𝑡 − 𝑛.𝑡𝑖𝑚𝑒𝑡−1
(3)

Next, we estimate the number of keys newly inserted from the
last SMO to the currentmoment using the insertion rate𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 .
The calculation is expressed as 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 −
𝑛.𝑡𝑖𝑚𝑒𝑡 ). By employing Equation 4, we can assess whether the
number of newly inserted keys reaches a sufficient level. Here, 𝜃
represents the threshold for key growth. If the number of newly
inserted keys exceeds the threshold 𝜃 , it is considered that there
are sufficient keys, and the node is classified as a hot node.

𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑡𝑖𝑚𝑒𝑡 ) ≥ 𝜃 (4)

Based on Equation 1, the expanded insertion space (gap) since
the last SMO is calculated as 𝛽 ×min(1, 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡

𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡−1 ) − 1. Con-
sequently, we set Equation 5 as the criterion to satisfy 𝜃 . Here, 𝜖
denotes the fill factor, which is the multiple of the reserved space
that is to be filled.

𝜃 = 𝜖 × [𝛽 ×min (1, 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡
𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡−1

) − 1], (0 < 𝜖 ≤ 1) (5)

2In ShapeShifter, 𝜎 is set to 0.2.
3We set 𝛿 to 1.6, i.e., the expansion of space is 1.6 times the original size.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference’17, July 2017, Washington, DC, USA

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 4: Cold node identification framework.

Substituting Equation 5 into Equation 4 and through equivalent
transformations, we derive the probability model 𝑃𝑤𝑟𝑖𝑡𝑒 , as shown
in Equation 6. In ShapeShifter, under specific insertion conditions4,
it is necessary to determine whether the 𝑃𝑤𝑟𝑖𝑡𝑒 within a node is
triggered. When 𝑃𝑤𝑟𝑖𝑡𝑒 < 1, a Bernoulli probability experiment is
conducted to decide whether to trigger node evolving for hot nodes.
When 𝑃𝑤𝑟𝑖𝑡𝑒 = 1, the node is directly classified as a hot node and
undergoes evolving. Please refer to Appendix A.4 for details.

𝑃𝑤𝑟𝑖𝑡𝑒 =
𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑡𝑖𝑚𝑒𝑡 )]

𝜖 × [𝛽 ×min (1, 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡
𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡−1 ) − 1]

(6)

3.3.2 The method for determining hot read nodes. We define the
probability that a target node is identified as a hot read node due
to search operations, denoted as 𝑃𝑟𝑒𝑎𝑑 . This hyperparameter can
be adjusted based on actual conditions. Each time a leaf node is
searched, ShapeShifter calculates whether this node meets the trig-
gering criteria for 𝑃𝑟𝑒𝑎𝑑 . If it does, ShapeShifter then considers this
node as a hot read node.

Note that if the most recent evolving operation of a leaf node is
triggered by a hot read, it indicates that no evolution of the node
has been triggered by insertion operations since then, i.e., the read
performance of the node has not noticeably deteriorated, and the
number of new keys inserted might be limited. In such cases, we
may consider adjusting 𝑃𝑟𝑒𝑎𝑑 to a smaller value to avoid overly
frequent evolving operations. In particular, this adjustment can be
made as 𝑃𝑟𝑒𝑎𝑑 = 𝑃𝑟𝑒𝑎𝑑 × 𝜆, where 𝜆 ∈ (0, 1) is a penalty coefficient.

3.3.3 The method for determining cold nodes. We propose a cold
node compression evolving strategy aimed at optimizing space uti-
lization under skewed workloads for ShapeShifter. Initially, when
creating the ShapeShifter index structure, we also introduce a cool-
ing pool space[23], as shown in Figure 4. During the construction
or each evolving operation of ShapeShifter, each leaf node in the
index has a 10% probability of being selected into the cooling pool.
When a node undergoes an evolving operation, it is removed from
the cooling pool. At this stage, nodes remaining in the cooling pool
are considered temporary cold nodes.

ShapeShifter supports user customization of compression fre-
quency settings. When the user specifies a compression time, Shape-
Shifter will check if the size of the index exceeds the user-defined
upper limit. Should this condition be met, ShapeShifter will select
the earliest added nodes from the cooling pool for compression
and deletion, continuing until the index size is reduced to a range
acceptable to the user.

4In B+Tree, 𝑃𝑤𝑟𝑖𝑡𝑒 is calculated with each insertion. In learned structures, 𝑃𝑤𝑟𝑖𝑡𝑒 is
only calculated when insertions conflict; otherwise, due to efficient node insertion
performance, node evolution is not necessary.

4 EVALUATION
4.1 Experimental Setup
All experiments are conducted on a two-socket equipped with two
16-core Intel Xeon Silver 4216 @ 2.10GHz CPUs and 503GB of
DRAM. We implement ShapeShifter5 with ∼4k LOC of C++.
4.1.1 Baselines. We benchmark ShapeShifter against five baselines.
They are all top-performing traditional/learned index structures
as evaluated by the GRE[42] benchmarking tool: (1) B+Tree[4], a
highly robust tree structure widely used in databases and file sys-
tems; (2) ART[24], an efficient adaptive radix tree structure that
dynamically adjusts node sizes to optimize memory use and acceler-
ate look-up operations; (3) HOT[5], a height-optimized in-memory
index structure that flexibly adjusts node bit widths to reduce trie
tree height; (4) ALEX[9], an updateable learned index offering opti-
mal time-space trade-off; (5) LIPP[43], a high-performance learned
index utilizing a model-based insert strategy for precise look-up.
4.1.2 Datasets and workloads. We select several real datasets from
the GRE benchmarking tool to evaluate the performance of indexes.
(1) COVID[29]: Tweet ID with tag COVID-19. (2) LIBIO[28]: Repos-
itory ID from libraries.io. (3) GENOME[36]: Pairs of locations on
human chromosomes. (4) OSM[3]: OpenStreetMap locations.

We design skewed workloads to evaluate index performance
using the aforementioned datasets. Specifically, the point search
workload employs a Zipfian distribution, with the skewness con-
trolled by adjusting the parameter 𝛼 . For instance,𝑊𝑅1 denotes
a scenario where 𝛼 = 1. Please refer to Appendix A.5 for further
details. For the insertion workload, skewness is indicated by defin-
ing the percentage of the data range in which insertions occur.
For example,𝑊𝑊10 signifies that insertions are confined to 10%
of the data locally. Note that all𝑊𝑊 also randomly write 1% of
the data without the range of hot nodes. Additionally, all keys are
randomized in their order before evaluation.
4.2 Index Performance Evaluation
In Figure 5, we assess six indexes on the COVID/GENOME datasets
for average latency and index size across different workload skews,
recording space overhead in the𝑊𝑅 scenarios for clarity. In read-
only scenarios, workload skew ranges from𝑊𝑅0 to𝑊𝑅1.6, with
𝑊𝑅1.6 being the most skewed; in write-only scenarios, the skew
ranges from𝑊𝑊100 to𝑊𝑊1.

In the𝑊𝑅 scenario of the COVID dataset, the evolving begins
at𝑊𝑅0.2 because the uniformity of the queries, i.e.,𝑊𝑅0, prevents
hot nodes from being detectable.

At 𝑊𝑅1, ShapeShifter reduces the average query latency by
534.23% and 3.85% compared to B+Tree and SOTA, i.e., ALEX, re-
spectively, and achieves a reduction in index size by 48.15% and
26.13%. When 𝛼 exceeds 1, the performance of ShapeShifter stabi-
lizes, indicating that the evolution of local hot read nodes is com-
plete. In𝑊𝑊 , the evloving starts at𝑊𝑊70. At𝑊𝑊30, ShapeShifter
reduces the average query latency by 219.44% and 9.01% compared
to B+Tree and SOTA, i.e., LIPP, respectively, while matching B+Tree
in index size and achieving a 204.91% reduction compared to LIPP.
HOT shows the optimal performance in terms of space overhead.

In the GENOME dataset𝑊𝑅1, ShapeShifter demonstrates reduc-
tions in average query latency by 175.26% and 8.85% compared to

5https://anonymous.4open.science/r/Shapeshifter-35F3.

6

https://anonymous.4open.science/r/Shapeshifter-35F3


697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models Conference’17, July 2017, Washington, DC, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0.0 0.4 0.8 1.2 1.6
Skew 

0

350

700

La
te

nc
y 

(n
s)

evolving begins

(a) COVID lat.(WR)

ShapeShifter B+Tree ART HOT ALEX LIPP

100 75 50 25 1
Skewed (%)

0

350

700

La
te

nc
y 

(n
s)

evolving begins

(b) COVID lat.(WW)

0.0 0.4 0.8 1.2 1.6
Skew 

0
2
4
6
8

Si
ze

 (G
B

)

16.72

(c) COVID size(WR)

0.0 0.4 0.8 1.2 1.6
Skew 

100

350

600

La
te

nc
y 

(n
s)

evolving begins

(d) GENOME lat.(WR)

100 75 50 25 1
Skewed (%)

350

525

700

La
te

nc
y 

(n
s)

evolving begins

(e) GENOME lat.(WW)

0.0 0.4 0.8 1.2 1.6
Skew 

0

5

10

Si
ze

 (G
B

)

25.75

(f) GENOME size(WR)

Figure 5: Average latency/space overhead of various indexes on COVID/GENOME under workloads with varying skew degrees.
Extended plots are available in Appendix A.6 and A.8.

B+Tree and ALEX, respectively. The index size decreases by 51.79%
and 27.98%, respectively. Although the average query latency of
ShapeShifter is slightly higher than SOTA, i.e., LIPP, it achieves a
significant reduction in index size, with a decrease of 666.96%. In
the𝑊𝑊30 scenario, ShapeShifter reduces the average latency by
54.67% compared to the B+Tree and matches the performance of
SOTA, i.e., LIPP. Concurrently, in terms of index size, ShapeShifter
compares favorably with the B+Tree and achieves a substantial
reduction of 306.51% compared to LIPP.

Insight 1: As workload skewness increases, ShapeShifter
sees more evolved nodes, leading to ongoing decreases in
average latency and space overhead, especially inWR1 and
WW30 and other more skewed scenarios, where it shows
superior time-space trade-off. Although ALEX and HOT seem
optimal in terms of latency or space, respectively, their balance
between time and space requires deeper evaluation.

0 5 10
Size (GB)

0
200
400
600

La
te

nc
y 

(n
s)

(a) READ (WR1)

ShapeShifter
B+Tree
ART
HOT
ALEX
LIPP

0 5 10 15
Size (GB)

0
200
400
600

La
te

nc
y 

(n
s)

(b) WRITE (WW30)

low cost high cost

Figure 6: Time-Space trade-off evaluation on the LIBIO
dataset. Extended plots are available in Appendix A.7.

4.3 Time-Space Trade-off Evaluation
To better illustrate the trade-off between performance and space, we
utilize the𝐶𝑂𝑆𝑇 = 𝑃𝑒𝑟 𝑓 𝑟 ·𝑆𝑝𝑎𝑐 function[47], as detailed in Section
3.2.2. Figure 6 illustrates the COST comparison among six indexes
under𝑊𝑅1 and𝑊𝑊30 workloads in the LIBIO dataset. Using a blue
curve to visualize the scenario where 𝑟 = 1, indicating that space
and performance are considered equally important, indexes located
on the same curve are deemed “equivalent” in terms of their time-
space trade-off. Notably, under both𝑊𝑅1 and𝑊𝑊30 workloads,
ShapeShifter consistently achieves the optimal trade-off. Indeed,
starting from the more skewed workloads of𝑊𝑅0.9 and𝑊𝑊40,
ShapeShifter continues to exhibit the best trade-off, with other
datasets showing similar performance. Secondly, ALEX and HOT
demonstrate the second-best trade-off. Meanwhile, LIPP, which
performs best in terms of latency, has a COST comparable to that
of the B+Tree, indicating that the design of LIPP fundamentally
prioritizes trading space for time performance. This is consistent
with the findings of Wongkham et al[42]. Due to space limitations,
the relevant evaluation can be found in the Appendix A.9.

1 5 10 15Time (s)
0
2
4
6
8

10

Th
ro

ug
hp

ut
 (M

 o
p/

s)

evolving

(a) COVID throughput (WR1.3)

ShapeShifter ART HOT ALEX

1 5 10 15Time (s)
0
1
2
3
4
5

Th
ro

ug
hp

ut
 (M

 o
p/

s) poisoning attack

OOM

(b) COVID throughput (WW10)

1 5 10 15Time (s)
0

4

8
Si

ze
 (G

B
)

(c) COVID size (WR1.3)
Figure 7: Latency and space overhead over time (COVID).

Insight 2: ShapeShifter demonstrates the optimal perfor-
mance and space trade-off under skewed workloads. ALEX
and HOT also exhibit commendable trade-off.

4.4 Time-Varying Performance Evaluation
In Figure 7, we present the changes in throughput and index size
over time for indexes which are similar to ShapeShifter in terms of
time-space trade-off. We select more skewed scenarios,𝑊𝑅1.3 and
𝑊𝑊10, to more vividly demonstrate the performance improvements
brought about by a limited number of evolutions. In the𝑊𝑅1.3
scenario, as shown in Figure 7 (a), ShapeShifter initiates its first
evolving process at the 3.5th second, marking the start of local
nodes being identified as hot read nodes. As time progresses, the
pace of evolving accelerates, culminating in complete evolving by
the 12th second, thereby achieving the highest throughput.

Note that during the initial evolving, the increase in throughput
is equal to the gain from evolving minus the cost of evolving, i.e.,
SMO. For the intermediate evolving, the increase in throughput is
the gain from evolving minus the cost of the previous evolution
plus the cost of the subsequent one, effectively neutralizing the
performance loss due to costs, thus making the performance im-
provement more apparent than the first. Following the final phase
of evolving, there is a marked improvement in performance, attrib-
utable to the absence of costs associated with evolving that need to
be amortized during this period.

In the𝑊𝑊10 scenario, as shown in Figure 7 (b), ShapeShifter
undergoes its first evolution at the 5th second. As time progresses,

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference’17, July 2017, Washington, DC, USA

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

1 2 3 4 5
Range 10x

0

120

240

360

Th
ro

ug
hp

ut
 (M

 k
ey

s/
s)

(a) COVID

ShapeShifter B+Tree HOT ALEX LIPP

1 2 3 4 5
Range 10x

(b) LIBIO

1 2 3 4 5
Range 10x

(c) OSM

1 2 3 4 5
Range 10x

(d) GENOME
Figure 8: The performance of scan on different indexes.

the speed of evolution gradually increases, completing by the 11.4th
second, at which point throughput peaks. In𝑊𝑅1.3, as shown in
Figure 7 (c), changes in index size are achieved through periodic
compression operations. In this experiment, we set the system to
perform a compression every 3 seconds to control and optimize the
space occupancy of the index. The results indicate that compressing
cold nodes considerably reduces the space overhead of ShapeShifter,
thereby achieving the optimal time-space trade-off.

Insight 3: Over time, the number of evolving operations in
ShapeShifter progressively increases, resulting in continual
improvements in performance and reductions in space over-
head, ultimately achieving the optimal time-space trade-off.

In Figure 7 (b), at the 12th second, we subject all indexes to
a poisoning attack designed by Yang et al.[45], following which
ALEX experiences an out-of-memory (OOM) error and crashes.
ShapeShifter and traditional indexes are resilient to this attack,
showing strong robustness. Although ShapeShifter experiences
a temporary decline in throughput when some poisoned data is
not added to hot nodes, performance swiftly rebounds once data
insertion resumes in hot nodes.

Insight 4: The poisoning attack reveals the high vulnera-
bility of ALEX and the significant robustness of ShapeShifter
which benefits from a hybrid architecture that combines tra-
ditional/learned models without relying solely on the latter.

4.5 Index Range Query Evaluation
This experiment is designed to evaluate the performance of range
queries. Initially, we batch load a complete dataset containing 200
million keys into each index, and then initiate a read-only scan
workload. Each query starts from a randomly selected starting key
𝐾 and retrieves a fixed number of keys. Throughout the experiment,
a total of 10 million range queries are issued, and throughput is
assessed by calculating the number of keys accessed per second.

Figure 8 shows the performance of five different indexes across
a range of query sizes, i.e., from 10 to 100,000. The performance of
ShapeShifter is comparable to that of ALEX, both achieving the cur-
rent best performance level. This indicates that ShapeShifter also
maintains high throughput and excellent performance when han-
dling large-scale range queries. This is largely due to the leaf nodes
of ShapeShifter utilizing the same linked-list connection method
as B+Tree, and the adoption of bitmap structures in its learned
architecture to skip gaps, thereby accelerating scan performance.

HOT and LIPP exhibit relatively poorer performance, primarily
because HOT utilizes a Trie structure, while LIPP employs a struc-
ture similar to a B-Tree. Both require frequent recursive querying
of parent nodes during range queries. Note that since ART is based
on a Trie tree structure as well, its scan performance is even worse
than that of LIPP, and hence it is not displayed here.

Insight 5: ShapeShifter exhibits superior scan performance,
whereas HOT shows poorer scan capabilities.

4.6 Summary
In this section, our evaluation confirms that ShapeShifter offers the
best time-space trade-off, and scanning performance near SOTA
i.e., ALEX. While ALEX also performs well in time-space trade-off
(hereinafter referred to as “performance”), its susceptibility leads
to an inferior performance-robustness trade-off. This is largely be-
cause a sole reliance on learned models cannot adequately address
complex CDF variations in real scenarios. In contrast, ShapeShifter
uses a hybrid of traditional and learned models, enhancing perfor-
mance through learned models while maintaining robustness with
traditional models, thus achieving a better performance-robustness
trade-off. Despite the good time-space trade-off of HOT, its poor
scanning performance reduces competitiveness against ShapeShifter.
Overall, ShapeShifter exhibits the best performance when simulta-
neously considering time-space trade-off, performance-robustness
trade-off, and scanning capabilities.

5 RELATEDWORK
Kraska et al.[20] introduced a read-only learned index that re-
duces index size and query latency using learned models. To make
learned indexes more practical, several updatable versions have
been developed[14, 16, 21, 22, 30, 31, 33, 34, 37, 40, 41, 44, 46, 48, 50].
Galakatos et al.[12] pioneered the FITing-tree, an updatable learned
index with segment-specific buffers. Ferragina et al.[11] applied
LSM-Tree[35] insertion concepts to create the updatable PGM-
Index. Ding et al.[9] developed ALEX, employing a model-based
insertion strategy to improve time-space trade-off. Wu et al.[43]
designed the LIPP, which delivers optimal search and insertion per-
formance. Li et al.[27] combined ALEX and LIPP to design the data
distribution-aware DILI. Tang et al.[39] introduced XIndex, the first
learned index supporting concurrent write operations. Li et al.[25]
proposed FINEdex with fine-grained insertions. Zhang et al.[49]
designed Hyper for superior time-space trade-off. Chameleon, by
Guo et al.[17], is an adaptive learned index optimized for skewed
scenarios with frequent updates.

Note that this paper compares ALEX and LIPP as public bench-
marking tools[13, 18, 32, 38, 42] indicate their SOTA performance.
Given that architecture of DILI is similar to ALEX and equally
susceptible to poisoning attacks, it is not compared separately. Hy-
per is not open-sourced and is also not compared in this study.
Chameleon does not aim for optimal time-space trade-off, and its
local hash structure does not support scan operations; therefore, it
is not compared with ShapeShifter. There are also some excellent
works on SOTA multidimensional learned indexes[8, 10, 15, 26].
However, these works are beyond the scope of our discussion.

6 CONCLUSION
This paper proposes ShapeShifter, an adaptive index aware of work-
load dynamics, blending traditional and learned models to maintain
robustness while dynamically optimizing its structure for skewed
workloads, targeting optimal time-space trade-off. Experimental
results demonstrate that under skewed workloads, ShapeShifter
increases throughput by up to 6.34× and reduces space usage by
51.79% compared to traditional indexes. Against SOTA learned
indexes, it achieves up to 1.26× higher throughput and decreases
space usage by 824.19%. Moreover, ShapeShifter effectively balances
time and space while successfully preventing poisoning attacks.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models Conference’17, July 2017, Washington, DC, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Christoph Anneser, Andreas Kipf, Huanchen Zhang, Thomas Neumann, and

Alfons Kemper. 2022. Adaptive Hybrid Indexes. In Proceedings of the 2022 Inter-
national Conference on Management of Data. 1626–1639.

[2] Manos Athanassoulis, Michael S Kester, Lukas M Maas, Radu Stoica, Stratos
Idreos, Anastasia Ailamaki, and Mark Callaghan. 2016. Designing Access Meth-
ods: The RUM Conjecture.. In EDBT, Vol. 2016. 461–466.

[3] AWS. 2010. OpenStreetMap database. https://aws.amazon.com/public-
datasets/osm.

[4] Timo Bingmann. 2013. STX B+ Tree 0.9. https://panthema.net/2007/stx-btree/,
retrieved Sep. 1, 2021..

[5] Robert Binna, Eva Zangerle, Martin Pichl, Günther Specht, and Viktor Leis.
2018. HOT: A height optimized trie index for main-memory database systems. In
Proceedings of the 2018 International Conference on Management of Data. 521–534.

[6] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HCDu. 2020. Characterizing,
modeling, and benchmarking {RocksDB}{Key-Value} workloads at facebook.
In 18th USENIX Conference on File and Storage Technologies (FAST 20). 209–223.

[7] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking cloud serving systems with YCSB. In Proceedings of
the 1st ACM symposium on Cloud computing. 143–154.

[8] Angjela Davitkova, Evica Milchevski, and Sebastian Michel. 2020. The ML-Index:
A Multidimensional, Learned Index for Point, Range, and Nearest-Neighbor
Queries.. In EDBT. 407–410.

[9] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,
Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,
et al. 2020. ALEX: an updatable adaptive learned index. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 969–984.

[10] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020.
Tsunami: a learned multi-dimensional index for correlated data and skewed
workloads. Proceedings of the VLDB Endowment 14, 2 (2020), 74–86.

[11] Paolo Ferragina and Giorgio Vinciguerra. 2020. The PGM-index: a fully-dynamic
compressed learned index with provable worst-case bounds. Proceedings of the
VLDB Endowment 13, 8 (2020), 1162–1175.

[12] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim
Kraska. 2019. Fiting-tree: A data-aware index structure. In Proceedings of the
2019 International Conference on Management of Data. 1189–1206.

[13] Jiake Ge, Boyu Shi, Yanfeng Chai, Yuanhui Luo, Yunda Guo, Yinxuan He, and
Yunpeng Chai. 2023. Cutting Learned Index into Pieces: An In-depth Inquiry
into Updatable Learned Indexes. In 2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 315–327.

[14] Jiake Ge, Huanchen Zhang, Boyu Shi, Yuanhui Luo, Yunda Guo, Yunpeng Chai,
Yuxing Chen, and Anqun Pan. 2023. SALI: A Scalable Adaptive Learned Index
Framework based on Probability Models. Proceedings of the ACM on Management
of Data 1, 4 (2023), 1–25.

[15] Behzad Ghaffari, Ali Hadian, and Thomas Heinis. 2020. Leveraging soft
functional dependencies for indexing multi-dimensional data. arXiv preprint
arXiv:2006.16393 (2020).

[16] Na Guo, Yaqi Wang, Haonan Jiang, Xiufeng Xia, and Yu Gu. 2022. TALI: An
Update-Distribution-Aware Learned Index for Social Media Data. Mathematics
10, 23 (2022), 4507.

[17] Na Guo, Yaqi Wang, Wenli Sun, Yu Gu, Jianzhong Qi, Zhenghao Liu, Xiufeng
Xia, and Ge Yu. 2024. Chameleon: Towards Update-Efficient Learned Indexing
for Locally Skewed Data. In 2024 IEEE 40th International Conference on Data
Engineering (ICDE). IEEE, 4316–4328.

[18] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2019. SOSD: A benchmark for learned
indexes. NeurIPS Workshop on Learned Systems (2019).

[19] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail Stoian, Alfons Kemper,
Tim Kraska, and Thomas Neumann. 2020. RadixSpline: a single-pass learned
index. In Proceedings of the Third International Workshop on Exploiting Artificial
Intelligence Techniques for Data Management. 1–5.

[20] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.
The case for learned index structures. In Proceedings of the 2018 international
conference on management of data. 489–504.

[21] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska. 2020.
The case for a learned sorting algorithm. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 1001–1016.

[22] Hai Lan, Zhifeng Bao, J Shane Culpepper, and Renata Borovica-Gajic. 2023.
Updatable Learned Indexes Meet Disk-Resident DBMS-From Evaluations to
Design Choices. Proceedings of the ACM on Management of Data 1, 2 (2023),
1–22.

[23] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018.
LeanStore: In-memory data management beyond main memory. In 2018 IEEE
34th International Conference on Data Engineering (ICDE). IEEE, 185–196.

[24] Viktor Leis, Alfons Kemper, and Thomas Neumann. 2013. The adaptive radix tree:
ARTful indexing for main-memory databases. In 2013 IEEE 29th International
Conference on Data Engineering (ICDE). IEEE, 38–49.

[25] Pengfei Li, Yu Hua, Jingnan Jia, and Pengfei Zuo. 2021. FINEdex: a fine-grained
learned index scheme for scalable and concurrent memory systems. Proceedings
of the VLDB Endowment 15, 2 (2021), 321–334.

[26] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A
learned index structure for spatial data. In Proceedings of the 2020 ACM SIGMOD
international conference on management of data. 2119–2133.

[27] Pengfei Li, Hua Lu, Rong Zhu, Bolin Ding, Long Yang, and Gang Pan. 2023. DILI:
A Distribution-Driven Learned Index. Proceedings of the VLDB Endowment 16, 9
(2023), 2212–2224.

[28] Libraries.io. 2017. Repository ID. (2017). https://libraries.io/data.
[29] Christian E Lopez and Caleb Gallemore. 2021. An augmented multilingual

Twitter dataset for studying the COVID-19 infodemic. Social Network Analysis
and Mining 11, 1 (2021), 102.

[30] Baotong Lu, Jialin Ding, Eric Lo, Umar FarooqMinhas, and TianzhengWang. 2021.
APEX: a high-performance learned index on persistent memory. Proceedings of
the VLDB Endowment 15, 3 (2021), 597–610.

[31] Chaohong Ma, Xiaohui Yu, Yifan Li, Xiaofeng Meng, and Aishan Maoliniyazi.
2022. FILM: A Fully Learned Index for Larger-Than-Memory Databases. Pro-
ceedings of the VLDB Endowment 16, 3 (2022), 561–573.

[32] Ryan Marcus, Andreas Kipf, Alexander van Renen, Mihail Stoian, Sanchit Misra,
Alfons Kemper, Thomas Neumann, and Tim Kraska. 2020. Benchmarking learned
indexes. Proceedings of the VLDB Endowment (2020).

[33] Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Alizadeh,
Tim Kraska, Olga Papaemmanouil, and Nesime Tatbul. 2019. Neo: a learned
query optimizer. Proceedings of the VLDB Endowment 12, 11 (2019), 1705–1718.

[34] Mayank Mishra and Rekha Singhal. 2021. RUSLI: real-time updatable spline
learned index. In Proceedings of the Fourth International Workshop on Exploiting
Artificial Intelligence Techniques for Data Management. 1–8.

[35] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The
log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351–385.

[36] Suhas SP Rao, Miriam H Huntley, Neva C Durand, Elena K Stamenova, Ivan D
Bochkov, James T Robinson, Adrian L Sanborn, Ido Machol, Arina D Omer, Eric S
Lander, et al. 2014. A 3D map of the human genome at kilobase resolution reveals
principles of chromatin looping. Cell 159, 7 (2014), 1665–1680.

[37] Mihail Stoian, Andreas Kipf, Ryan Marcus, and Tim Kraska. 2021. Towards
practical learned indexing. arXiv preprint arXiv:2108.05117 (2021).

[38] Zhaoyan Sun, Xuanhe Zhou, and Guoliang Li. 2023. Learned index: A com-
prehensive experimental evaluation. Proceedings of the VLDB Endowment 16, 8
(2023), 1992–2004.

[39] Chuzhe Tang, Youyun Wang, Zhiyuan Dong, Gansen Hu, Zhaoguo Wang, Minjie
Wang, and Haibo Chen. 2020. XIndex: a scalable learned index for multicore
data storage. In Proceedings of the 25th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. 308–320.

[40] Yulai Tong, Jiazhen Liu, Hua Wang, Ke Zhou, Rongfeng He, Qin Zhang, and
Cheng Wang. 2023. Sieve: A Learned Data-Skipping Index for Data Analytics.
Proceedings of the VLDB Endowment 16, 11 (2023), 3214–3226.

[41] ZhaoguoWang, Haibo Chen, YouyunWang, Chuzhe Tang, and HuanWang. 2022.
The concurrent learned indexes for multicore data storage. ACM Transactions on
Storage (TOS) 18, 1 (2022), 1–35.

[42] Chaichon Wongkham, Baotong Lu, Chris Liu, Zhicong Zhong, Eric Lo, and
Tianzheng Wang. 2022. Are Updatable Learned Indexes Ready? Proceedings of
the VLDB Endowment (2022).

[43] Jiacheng Wu, Yong Zhang, Shimin Chen, Jin Wang, Yu Chen, and Chunxiao Xing.
2021. Updatable learned index with precise positions. Proceedings of the VLDB
Endowment 14, 8 (2021), 1276–1288.

[44] Shangyu Wu, Yufei Cui, Jinghuan Yu, Xuan Sun, Tei-Wei Kuo, and Chun Jason
Xue. 2022. NFL: robust learned index via distribution transformation. Proceedings
of the VLDB Endowment 15, 10 (2022), 2188–2200.

[45] Rui Yang, Evgenios M Kornaropoulos, and Yue Cheng. 2024. Algorithmic Com-
plexity Attacks on Dynamic Learned Indexes. arXiv preprint arXiv:2403.12433
(2024).

[46] Tong Yu, Guanfeng Liu, An Liu, Zhixu Li, and Lei Zhao. 2023. LIFOSS: a learned
index scheme for streaming scenarios. World Wide Web 26, 1 (2023), 501–518.

[47] Huanchen Zhang, Hyeontaek Lim, Viktor Leis, David G Andersen, Michael
Kaminsky, Kimberly Keeton, and Andrew Pavlo. 2018. Surf: Practical range
query filtering with fast succinct tries. In Proceedings of the 2018 International
Conference on Management of Data. 323–336.

[48] Jiaoyi Zhang and Yihan Gao. 2022. CARMI: a cache-aware learned index with a
cost-based construction algorithm. Proceedings of the VLDB Endowment 15, 11
(2022), 2679–2691.

[49] Shunkang Zhang, Ji Qi, Xin Yao, and André Brinkmann. 2024. Hyper: A High-
Performance and Memory-Efficient Learned Index via Hybrid Construction.
Proceedings of the ACM on Management of Data 2, 3 (2024), 1–26.

[50] Yong Zhang, Xinran Xiong, and Oana Balmau. 2022. TONE: cutting tail-latency in
learned indexes. In Proceedings of the Workshop on Challenges and Opportunities
of Efficient and Performant Storage Systems. 16–23.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference’17, July 2017, Washington, DC, USA

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX
A.1 The Scan Operation Algorithm in

ShapeShifter
Algorithm 3 comprehensively delineates the range query mecha-
nism of ShapeShifter. Initially, the algorithm identifies the leaf node
containing the target key and retrieves its storage location, thereby
initiating the query process (lines 2-3). Subsequently, the system tra-
verses this leaf node, counting the number of keys scanned until the
traversal of the entire linked list is complete or the cumulative count
of keys meets the preset target (lines 4-11). During this process,
depending on the type of leaf node, appropriate scanning strategies
are employed: for leaf nodes utilizing learned models, scanning
begins from the target value and employs bitmap technology to ef-
ficiently skip gaps, thereby accelerating the scanning process (lines
5-6). for leaf nodes structured as B+Trees, the standard scanning is
implemented (lines 7-9). After traversing the current leaf node, the
algorithm updates the node pointer to its subsequent node (line 10).
Ultimately, the total number of keys scanned is returned at the end
of the process (line 12).

Algorithm 3: ShapeShifter Range Query Operation
Input: 𝑘𝑒𝑦, 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑢𝑚
Output: 𝑠𝑐𝑎𝑛_𝑛𝑢𝑚

1 Function Range_Query_Operation(key, target_num):
2 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 ← Traverse_To_Leaf(key)
3 tar⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ ← Lookup_Operation(key)
4 while 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 ≠ 𝑁𝑢𝑙𝑙 & 𝑠𝑐𝑎𝑛_𝑛𝑢𝑚 < 𝑡𝑎𝑟𝑔𝑒𝑡_𝑛𝑢𝑚 do
5 if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 then
6 𝑠𝑐𝑎𝑛_𝑛𝑢𝑚 += 𝑆𝑐𝑎𝑛𝐵𝑖𝑡𝑚𝑎𝑝 (𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒, tar 𝑣𝑎𝑙𝑢𝑒 )
7 else if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝐵 +𝑇𝑟𝑒𝑒 then
8 𝑠𝑐𝑎𝑛_𝑛𝑢𝑚 += 𝑆𝑐𝑎𝑛𝐵+𝑛𝑜𝑑𝑒 (𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒, tar 𝑣𝑎𝑙𝑢𝑒 )
9 end

10 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 ← 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑛𝑒𝑥𝑡𝑛𝑜𝑑𝑒
11 end
12 return 𝑠𝑐𝑎𝑛_𝑛𝑢𝑚

A.2 The Delete Operation Algorithm in
ShapeShifter

Algorithm 4 fully describes the deletion process for ShapeShifter.
Initially, the algorithm locates the leaf node containing the key and
retrieves its associated storage location (lines 2-3). For leaf nodes
employing a learned model, the model-specific deletion method
is used to remove the key and its corresponding payload (lines
4-5); for leaf nodes that are B+Tree nodes, the standard deletion
procedure of the B+Tree is implemented (lines 6-8).

A.3 Internal Node Evolving of ShapeShifter
Section 3.2.2 provides a detailed discussion of the evolving strate-
gies for leaf nodes. Specifically, based on the COST model proposed
by Zhang et al.[47], ShapeShifter assesses whether leaf nodes meet
the evolutionary criteria. Consequently, internal nodes, when meet-
ing the COST criteria, should also evolve into learned structures
to enhance the overall system performance. The parent and an-
cestor nodes of hot leaf nodes involved in read/write operations
are invariably hot nodes, however, their all child nodes may not

necessarily be hot. Therefore, this paper stipulates that an internal
node should evolve into a learned structure when the proportion of
its hot child nodes exceeds the 𝜙 threshold of all its children. Before
evolving, it is necessary to determine whether the node satisfies
the COST criteria. If compliant, the node will evolve into a hot read
structure; if not, it will retain its existing structure, i.e., traditional
model. Nodes that preserve the traditional structure will continue
to carry the hot label, facilitating their recognition as hot nodes by
their parent nodes during the evolution of the latter.

Algorithm 4: ShapeShifter Delete Operation
Input: 𝑘𝑒𝑦

1 Function Delete_Operation(key):
2 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒 ← Traverse_To_Leaf(key)
3 tar⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ ← Lookup_Operation(key)
4 if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟 then
5 delete tar⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ uses linear methods
6 else if 𝐿𝑒𝑎𝑓 _𝑛𝑜𝑑𝑒.𝑚𝑜𝑑𝑒𝑙 𝑖𝑠 𝐵 +𝑇𝑟𝑒𝑒 then
7 delete tar⟨𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒 ⟩ uses B+ methods
8 end

Note that the evolving of internal nodes solely results in their
transformation into hot read structures within a learned framework.
This configuration maximizes read performance while ensuring
minimal space overhead. Additionally, write operations on internal
nodes are confined to instances of leaf node splitting. Consequently,
compared to leaf nodes, the frequency of updates in internal nodes
is considerably lower.

In the experimental of this paper, we stipulate that if any child
node is identified as a hot node, its parent node must evolve. This
rule is based on the fact that under conditions satisfying the COST
criteria, the performance improvements from evolving a parent
node far outweigh its spatial costs. Furthermore, under skewed
workloads, we believe that evolving parent nodes offers a high
benefit-cost ratio. Experimental evaluations indicate that the space
overhead incurred by the evolving of a single parent node is negligi-
ble, and all experimental results presented support this conclusion.

A.4 Supplementary Conditions for Determining
Hot Write Nodes

The computation of Equation 3 may result in a zero value for
𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 . In such instances, the cumulative probability com-
puted by Equation 6 will invariably be zero, thereby precluding
any further alterations in 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 . To address this issue, a
corrective factor 𝜁 is introduced into the numerator of Equation 6.
Specifically, 𝜁 is defined as 𝜁 = 𝑝𝑎𝑡ℎ_𝑠𝑖𝑧𝑒/10000, where 𝑝𝑎𝑡ℎ_𝑠𝑖𝑧𝑒
denotes the path length from the root node to the current node. The
refined cumulative probability model, encapsulated in Equation 7,
determines whether a node has accommodated a sufficient number
of new insertions.

𝑃𝑤𝑟𝑖𝑡𝑒 =
𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡 × (𝑛.𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑡𝑖𝑚𝑒 − 𝑛.𝑡𝑖𝑚𝑒𝑡 )] + 𝜁

𝜖 × [𝛽 ×min (1, 𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡
𝑛.𝑖𝑛𝑠𝑒𝑟𝑡_𝑟𝑎𝑡𝑒𝑡−1+𝜁 ) − 1]

(7)

A.5 Supplementary Notes on Zipfian
The Zipfian distribution[7], proposed by George Zipf, is a discrete
probability distribution used to describe the distribution patterns

10



1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

ShapeShifter: Workload-Aware Adaptive Evolving Index Structures Based on Learned Models Conference’17, July 2017, Washington, DC, USA

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

0.0 0.4 0.8 1.2 1.6
Skew 

0

350

700

La
te

nc
y 

(n
s)

evolving begins

(a) LIBIO lat.(WR)

ShapeShifter B+Tree ART HOT ALEX LIPP

100 75 50 25 1
Skewed (%)

0

350

700

La
te

nc
y 

(n
s)

evolving begins

(b) LIBIO lat.(WW)

0.0 0.4 0.8 1.2 1.6
Skew 

0

5

10

Si
ze

 (G
B

)

(c) LIBIO size(WR)

0.0 0.4 0.8 1.2 1.6
Skew 

0

325

650

La
te

nc
y 

(n
s)

evolving begins

(d) OSM lat.(WR)

100 75 50 25 1
Skewed (%)

300

500

700

La
te

nc
y 

(n
s)

evolving begins

(e) OSM lat.(WW)

0.0 0.4 0.8 1.2 1.6
Skew 

0

5

10

Si
ze

 (G
B

)

31.33

(f) OSM size(WR)

Figure 9: Average latency/space overhead of various indexes on LIBIO/OSM under workloads with varying skew degrees.

0 5 10 15
Size (GB)

0

200

400

600

La
te

nc
y 

(n
s)

(a) COVID(read)

ShapeShifter B+Tree ART HOT ALEX LIPP

0 5 10 15
Size (GB)

0

200

400

600

(b) COVID(write)

0 10 20 30
Size (GB)

0

200

400

600

(c) OSM(read)

0 10 20
Size (GB)

0

200

400

600

(d) OSM(write)

0 10 20 30
Size (GB)

0

200

400

600

(e) GENOME(read)

0 10 20
Size (GB)

0

200

400

600

(f) GENOME(write)

low cost high cost

Figure 10: Time-Space trade-off evaluation of different indexes on the COVID/OSM/GENOME datasets. The reads follow a
standard Zipfian distribution, i.e., 𝛼 = 1 (𝑊𝑅1). Writes employ a skewed workload of 30%, i.e.,𝑊𝑊30. The “points” for Alex and
Hot are rendered “transparent” because their performance in terms of robustness and scan capabilities is poor, making them
incomparable to ShapeShifter.

like word frequency, population distribution across cities, and in-
ternet traffic. It follows a power-law, where a few events are highly
frequent and most are rare, resulting a “long-tail” feature. This dis-
tribution effectively models real-world phenomena where a small
number of occurrences dominate, while the majority are less com-
mon.

The probability mass function (PMF) of the Zipfian distribution
is given by the following Equation 8:

𝑃 (𝑘 ;𝑁, 𝛼) = 1/𝑘𝛼∑𝑁
𝑛=1

1
𝑛𝛼

(8)

where: 𝑘 is the event rank (positive integer, from highest to low-
est frequency), 𝑁 is the total number of events, 𝛼 is the parameter
of the distribution, known as the “exponent” or “scaling parameter”,
The denominator

∑𝑁
𝑛=1

1
𝑛𝛼 is the normalization constant, ensuring

that the total probability sums to 1.
The parameter 𝛼 determines the shape and steepness of the

distribution. Specifically, 𝛼 controls the relative difference between
high-frequency and low-frequency events:

When 𝛼 = 1, the Zipfian distribution is referred to as the Zipf
distribution, which corresponds to the case originally proposed by
Zipf. In this case, the event frequency is inversely proportional to
its rank, i.e., 𝑃 (𝑘) ∝ 1

𝑘
.

When 𝛼 > 1, the probability of high-ranked events increases
sharply, and the probability of low-ranked events decreases rapidly,
making the distribution steeper, i.e., the workload is more skewed..

When 0 < 𝛼 < 1, the probability of low-ranked events becomes
larger, and the tail of the distribution flattens, i.e., the workload is
more uniform.

Larger values of 𝛼 generally indicate a more “concentrated” dis-
tribution, where high-frequency events dominate substantially over

low-frequency events. Conversely, smaller values of 𝛼 imply a more
“flattened” distribution, with higher probabilities for tail events.

A.6 Supplementary Illustrations for Index
Performance Evaluation

In the Figure 9, we evaluate six indexes in terms of average latency
and index size within the LIBIO and OSM datasets. In the 𝑊𝑅

scenario of the LIBIO dataset, the evolving begins point is set at
𝑊𝑅0.3. At𝑊𝑅1, ShapeShifter reduces the average query latency
by 448.98% compared to the B+Tree, performs on par with ALEX,
and achieves a reduction in index size of 46.67%/24.64%. Although
ShapeShifter exhibits a higher average latency than the SOTA, i.e.,
LIPP, it significantly reduces the index size by 203.48%, presenting
the best trade-off.

In the𝑊𝑊 scenario, the evolving begins at𝑊𝑊60. Under the
𝑊𝑊30 scenario, ShapeShifter decreases the average latency by
312.33%/26.47% compared to the B+Tree/SOTA, i.e., LIPP, respec-
tively, while maintaining parity in index size with the B+Tree and
achieving a 203.01% reduction compared to LIPP.

In the𝑊𝑅1 scenario of the OSM dataset, ShapeShifter reduces
the average query latency by 80.27% compared to the B+Tree, while
also decreasing the index size by 49.85%. Although ShapeShifter
exhibits a higher average latency than ALEX and the SOTA, i.e.,
LIPP, it reduces the index size by 28.62% and 824.19% respectively,
thus maintaining a favorable trade-off.

In the𝑊𝑊30 scenario, ShapeShifter reduces average latency by
45.39% compared to the B+Tree and is comparable to LIPP. In terms
of index size, ShapeShifter is on par with the B+Tree, but achieves a
significant reduction of 314.91% compared to LIPP. Even though the
average latency of ShapeShifter is higher than the SOTA, i.e., ART,

11



1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference’17, July 2017, Washington, DC, USA

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

Skew =1.0
0

400
800

1200
1600
2000

99
.9

%
 ta

il 
la

te
nc

y 
(n

s)
 

(a) COVID(read)

ShapeShifter B+Tree ART HOT ALEX LIPP

Skewed 30%
0

1000
2000
3000
4000
5000

(b) COVID(write)
Skew =1.0

0
400
800

1200
1600
2000

(c) LIBIO(read)
Skewed 30%

0
600

1200
1800
2400
3000

(d) LIBIO(write)
Skew =1.0

0
360
720

1080
1440
1800

(e) OSM(read)
Skewed 30%

0
2400
4800
7200
9600

12000

(f) OSM(write)

Figure 11: Demonstrating latency performance of different indexes under skewed workloads. The reads follow a standard
Zipfian distribution, i.e., 𝛼 = 1 (𝑊𝑅1). Writes employ a skewed workload of 30%, i.e.,𝑊𝑊30.

its reduction in index size by 67.02% still ensures a more favorable
trade-off.

It should be noted that in the OSM dataset, the performance
of ShapeShifter is not SOTA, primarily due to the pronounced
nonlinear characteristics of OSM, which make it challenging to
fit with learned models based on piecewise linear functions[42].
Despite this, ShapeShifter still manages to demonstrate a favorable
trade-off between time and space under these circumstances.

A.7 Supplementary Illustrations for Time-Space
Trade-off Evaluation

The Figure 10 displays a cost comparison among six indexes in
𝑊𝑅1 and𝑊𝑊30 scenarios across three datasets: COVID, OSM, and
GENOME. During poisoning attacks, ALEX exhibits out-of-memory
(OOM) issues leading to system crashes, revealing its high suscepti-
bility to attacks, as shown in Figure 7. Additionally, HOT performs
poorly in scanning tasks, as shown in Figure 8. Consequently, these
two indexes are not considered in our analysis. The Figure 10 clearly
shows that ShapeShifter consistently demonstrates the best trade-
off between time and space in all𝑊𝑊 and𝑊𝑅 scenarios.

A.8 Evaluation of Tail Latencies in Various
Indexes

The Figure 11 illustrates the performance of six indexes at the 99.9%
tail latency across the COVID, LIBIO, and OSM datasets. In the
COVID dataset, ShapeShifter exhibits the best tail latency for𝑊𝑅

and 𝑊𝑊 operations, demonstrating high performance stability
with rare occurrences of high latency. In the 𝑊𝑊 scenarios of
the LIBIO dataset, ShapeShifter shows the lowest tail latency and
the fastest response times; in the𝑊𝑅 scenarios, its tail latency is
comparable to ALEX. In the OSM dataset, which is characterized by
pronounced non-linear features, ShapeShifter performs best among
learned indexes in terms of𝑊𝑅 and𝑊𝑊 tail latency, yet its overall
tail latency remains higher than that of traditional indexes. This
underscores the limitations of learned models based on piecewise
linear functions and suggests that traditional indexes might provide
greater stability under complex datasets.

A.9 Evaluation under Changing Workload
Skewness Distribution

Figure 12 (a) and (b) respectively illustrate the dynamic evolving
process of ShapeShifter under the same skewness level but differ-
ent skewness ranges. The skewness ranges before and after the
workload change do not overlap, i.e., the key for reads/inserts are

1 10 20 30 40 50
Time (s)

0

4

8

Th
ro

ug
hp

ut
 (M

 o
p/

s) skew range variation

(a) COVID throughput (WR1)

1 10 20 30 40 50
Time (s)

0

2

4

Th
ro

ug
hp

ut
 (M

 o
p/

s)
(b) COVID throughput (WW30)

1 10 20 30 40 50
Time (s)

3

4

5

Si
ze

 (G
B

)

(c) COVID size (WR1)

Figure 12: The schematic of ShapeShifter adapting to changes
in workload distribution is presented. The reads follow a
standard Zipfian distribution, i.e., 𝛼 = 1 (𝑊𝑅1). Writes employ
a skewed workload of 30%, i.e.,𝑊𝑊30. The space overhead is
demonstrated under the𝑊𝑅1 workload. The black vertical
lines represent evolving points.

entirely different. Before the distribution change, the performance
of ShapeShifter is consistent with the results shown in Figure 7 (a)
and (b). After the distribution change, ShapeShifter experiences an
immediate performance drop due to the fact that the nodes have not
yet evolved. However, as the evolving progresses, the performance
gradually recovers, eventually reaching the same level as before
the distribution change. The same dynamic pattern is observed
under both𝑊𝑅1 and𝑊𝑊30 workloads, fully demonstrating that
ShapeShifter can quickly adapt to changes in workload skewness
and promptly adjust to achieve optimal performance.

Similar to Figure 7 (c), Figure 12 (c) illustrates the dynamic
changes in space compression under the𝑊𝑅1 scenario. We con-
tinue to trigger compression tasks at fixed time intervals. It can be
observed that space compression is minimal during the evolving
phase, while it significantly increases at the end of the evolving
process, which is due to the additional space overhead introduced
during the evolution. Moreover, after 40 seconds, the compression
ratio gradually decreases because there are no longer sufficient cold
nodes in the cooling pool for compression, indicating that the space
overhead of ShapeShifter has reached its optimal state.

12


	Abstract
	1 Introduction
	2 Index framework investigation
	3 the ShapeShifter design
	3.1 Overview
	3.2 Evolving Strategies
	3.3 Classifier Model

	4 EVALUATION
	4.1 Experimental Setup
	4.2 Index Performance Evaluation
	4.3 Time-Space Trade-off Evaluation
	4.4 Time-Varying Performance Evaluation
	4.5 Index Range Query Evaluation
	4.6 Summary

	5 Related Work
	6 Conclusion
	References
	A APPENDIX
	A.1 The Scan Operation Algorithm in ShapeShifter
	A.2 The Delete Operation Algorithm in ShapeShifter
	A.3 Internal Node Evolving of ShapeShifter
	A.4 Supplementary Conditions for Determining Hot Write Nodes
	A.5 Supplementary Notes on Zipfian
	A.6 Supplementary Illustrations for Index Performance Evaluation
	A.7 Supplementary Illustrations for Time-Space Trade-off Evaluation
	A.8 Evaluation of Tail Latencies in Various Indexes
	A.9 Evaluation under Changing Workload Skewness Distribution


