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Abstract

In biology, messenger RNA (mRNA) plays a crucial role in gene expression and
protein synthesis. Accurate predictive modeling of mRNA properties can greatly
enhance our understanding and manipulation of biological processes, leading to
advancements in medical and biotechnological applications. Utilizing bio-language
foundation models allows for leveraging large-scale pretrained knowledge, which
can significantly improve the efficiency and accuracy of these predictions. How-
ever, mRNA specific foundation models are notably limited posing challenges for
efficient predictive modeling in mRNA-focused tasks. In contrast, DNA and protein
modalities have numerous general-purpose foundation models trained on billions
of sequences. This paper explores the potential for adaptation of existing DNA and
protein bio-language models for mRNA-focused tasks. Through experiments using
various mRNA datasets curated from both public domain and internal proprietary
database, we demonstrate that pre-trained DNA and protein models can be effec-
tively transferred for mRNA-focused tasks using various adaptation techniques
such as probing, full-rank, and low-rank finetuning. In addition, we identify key
factors that influence successful adaptation, offering guidelines on when general-
purpose DNA and protein models are likely to perform well for mRNA-focused
tasks. We further assess the impact of model size on adaptation efficacy, finding
that medium-scale models often outperform larger ones for cross-modal knowledge
transfer. We conclude that by leveraging the interconnectedness of DNA, mRNA,
and proteins, as outlined by the central dogma of molecular biology, the knowledge
in foundation models can be effectively transferred across modalities, significantly
enhancing the repertoire of computational tools available for mRNA analysis.

1 Introduction

Messenger-RNA (mRNA) is central to molecular biology, serving as the template for protein synthesis
and thereby influencing virtually every cellular process. Developing computational models that can
robustly analyze mRNA data is essential for advancing our understanding of gene regulation and
enhancing our ability to engineer biological systems.

The powerful method of analyzing molecular biology sequences such as RNA, DNA, or protein
involves the use of Language Models (LMs) to extract informative representations (Zhou et al., 2023;
Dalla-Torre et al., 2023; Nguyen et al., 2024b,a; Elnaggar et al., 2021, 2023; Lin et al., 2023; Nijkamp
et al., 2023; Ruffolo et al., 2021). These models have demonstrated substantial success across various
biological applications, ranging from prediction of protein structures and properties, understanding
of genetic variations, to decoding of complex genetic information.
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Figure 1: Left: Central dogma of molecular biology. DNA is transcribed into messanger-RNA (mRNA) which
is then translated to protein. Right: Comparing scale of data used for pre-training DNA, RNA, and protein
language models. Public RNA language models are trained on datasets with several magnitudes smaller than
ones used for pretraining DNA or protein models.

Unlike DNA and protein modalities, which have numerous general-purpose bio-LMs trained on hun-
dreds of millions to billions of sequences, publicly available mRNA models remain underrepresented.
Although a few RNA language models are publicly available, they are pretrained on much smaller
datasets (approximately 10-fold smaller) and are tailored to specific RNA subtypes or regions. This
limited scale, combined with the lack of specificity to mRNA regions, restricts the generalizability
of these models for comprehensive mRNA analysis. The development of robust mRNA models is
further hindered by the scarcity of high-quality, curated mRNA datasets and the high dimensionality
of mRNA sequences, which can reach up to 100k nucleotides.

Recognizing these challenges, we aim to explore the adaptation of existing DNA and protein LMs
for downstream mRNA-focused tasks. Although DNA, proteins, and mRNA each possess unique
biological roles and properties, they are interconnected by the central dogma of molecular biology
(Figure 1). This connection provides a unified flow of genetic information across these biomolecular
modalities and serves as a solid basis for knowledge transfer. In this paper, we aim to unveil the
knowledge transfer enabled by the central dogma to harness the extensive pretraining of DNA
and protein LMs for mRNA-focused tasks. To this end, we explore several adaptation techniques,
including probing, full-rank, and low-rank finetuning. Our findings reveal that general DNA and
protein models not only outperform the traditional one-hot mRNA-level baselines but often also
surpass general-purpose RNA-specific LMs when applied to mRNA-focused tasks. Moreover, we
uncover several key factors impacting successful adaptation and provide guidelines on when general-
purpose DNA and protein models can be expected to demonstrate good adaptation performance.

To sum up, we make the following contributions:

• Cross-modal adaptation of bio-language models: We show that DNA and protein LMs
can be effectively adapted for mRNA-focused tasks under various adaptation strategies,
including full finetuning, low-rank finetuning, and probing. This significantly enriches the
computational toolkit available for mRNA analysis.

• Factors influencing cross-modal adaptation efficiency: We delve into several datasets,
from both public domain and internal proprietary database, and analyze the influencing
factors that affect the efficiency of adapting protein and DNA LMs for mRNA-focused tasks,
enhancing understanding of cross-modal adaptation dynamics.

• Impact of model size: Through comprehensive testing on various publicly available and
internally acquired mRNA datasets, we identify model size as a key factor that influences
the performance of DNA and protein LMs in cross-modal knowledge transfer.
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2 Related work

Language models for DNA, RNA, and Protein Transformer-based LMs, structured state space
LMs and long-convolutional LMs have become state-of-the-art in modeling bio-languages. The stan-
dard approach involves pretraining a LM on a large database with masked language or causal masking
objectives. This enables learning the general grammar of the bio-language of interest, facilitating
fast adaptation for various downstream tasks. For DNA modality, transformer-based models such
as DNABERT (Ji et al., 2021), DNABERT-2 (Zhou et al., 2023), Nucleotide Transformer (Dalla-
Torre et al., 2023), and long-convolutional models like HyenaDNA (Nguyen et al., 2024b) and
Evo (Nguyen et al., 2024a) have demonstrated excellent performance in genomics applications. For
protein modality, LMs such as those from ESM-family (Lin et al., 2023), ProtTrans (Elnaggar et al.,
2021), ProGen2 (Nijkamp et al., 2023), Ankh (Elnaggar et al., 2023), and ProtMamba (Sgarbossa
et al., 2024) have excelled in predicting protein structure and functions for various protein families.
The data scale for pretraining such DNA and protein LMs typically varies from 100M to 2B sequences.
Additionally, most of these bio-LMs are openly accessible through platforms like HuggingFace (Wolf
et al., 2019), facilitating their rapid off-the-shelf deployment.

In contrast to this, publicly available general-purpose RNA modality LMs are pretrained on much
smaller datasets and often are limited to specific RNA regions and species due to the scarcity of
suitable RNA datasets. For instance, RNA-FM (Chen et al., 2022) is pretrained on 23 million
non-coding RNAs, UTR-LM (Chu et al., 2024) and UTRBERT (Yang et al., 2023) are pretrained
with 700K and 20K 5’ and 3’ UTR-RNA sequences respectively while SpliceBERT (Chen et al.,
2023) is pretrained on 2 million precursor mRNA sequences. Proprietary RNA modality LMs such
as those proposed by Li et al. (2023), Celaj et al. (2023), and Wang et al. (2023) are not accessible
under permissible licenses. There are currently no bio-LMs specifically designed for mRNA that are
freely accessible and permissibly usable.

Knowledge transfer in language models Knowledge transfer in LMs has become critical for
leveraging information from data-rich domains to improve performance in resource-constrained areas.
This approach has gained prominence with large pretrained models like BERT (Devlin et al., 2018)
and GPT (Brown et al., 2020). Techniques such as fine-tuning (Howard and Ruder, 2018), distillation
(Hinton et al., 2015), and parameter-efficient methods like adapters (Houlsby et al., 2019; Hu et al.,
2021) and prompt-tuning (Lester et al., 2021) have shown success in transferring knowledge across
diverse tasks and domains. These methods often outperform models trained from scratch on limited
domain-specific data. Our work extends this paradigm to biological domains, exploring knowledge
transfer between different molecular modalities to address the challenges of limited mRNA-specific
data and models.

3 Method

3.1 Models and datasets

Choosing bio-language models We employ state-of-the-art transformer-based bio-LMs specializ-
ing in different biomolecular modalities and recognized for their superlative performance. As a DNA
model, we employ the Nucleotide Transformer (NT) (Dalla-Torre et al., 2023). For proteins, we use
ESM-2 (Lin et al., 2023). Notably, both NT and ESM-2 offer various model sizes, allowing us to
study the impact of model scaling on cross-modal knowledge transfer.

Given that DNA and protein LMs use different vocabularies compared to mRNA, adapting these
models for mRNA-focused tasks first requires addressing this difference. Our approach leverages the
well-established central dogma of molecular biology, which outlines the flow of genetic information
from DNA to mRNA to protein. Specifically, mRNA sequences with known start and stop codons
can be mapped back to their corresponding DNA and protein sequences. This conversion process
involves two key steps: converting mRNA to DNA through reverse transcription, where nucleotide
uracil (U ) is replaced by nucleotide thymine (T ) (Temin and Mizutami, 1970; Baltimore, 1970), and
translating mRNA codons (sequences of three nucleotides) into amino acids to form proteins through
translation (Chaffey, 2003). Thus, we adapt mRNA sequences for inputs to NT and ESM-2 mirroring
the natural biological processes of reverse transcription and translation. Although these biological
principles are well-established, they have not been previously utilized in the context of adapting DNA
and protein LMs for mRNA-focused tasks.
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Since no mRNA specific model is publicly available under permissible license, we employ RNA-
FM (Chen et al., 2022) and SpliceBERT (Chen et al., 2023) as two in-modality baselines. RNA-FM,
despite being pretrained on non-coding RNAs (ncRNAs), has been acknowledged as the strongest
baseline in recent studies (Franke et al., 2024; Nguyen et al., 2024a) for various general purpose
RNA-focused tasks and used in comparison with proprietary models such as those by Boyd et al.
(2023); Li et al. (2023). In comparison, SpliceBERT has been pretrained on smaller pre-mRNA
dataset but is the closest available LM to mRNA modality from evolutionary perspective.

Unlike RNA-FM, the other models are accessible via HuggingFace, facilitating easy modification
and finetuning.

Datasets Since existing RNA models have not been pretrained and evaluated for mRNA specifically,
their associated downstream datasets and tasks cannot be used for our study that is specifically
designed for mRNA-focused tasks. Instead, we curate 4 public mRNA datasets and also acquire 2
internal proprietary mRNA datasets. The considered datasets are diverse spanning multiple species
and covering various mRNA-focused downstream tasks:

• E. coli dataset (Ding et al., 2022): contains 4450 mRNA sequences along with experimental
data binning of mRNA to protein expression within 6 classes.

• iCodon stability dataset (Diez et al., 2022): includes 1144 mRNA sequences with thermosta-
bility profiles from humans, mice, frogs, and fish.

• SARS-CoV-2 Vaccine Degradation dataset (Leppek et al., 2022): comprises a collection
of 4893 mRNA sequences with degradation rates as labels per nucleotide for the first 68
nucleotides.

• Fungal expression dataset (Wint et al., 2022): consists of 3140 mRNA sequences with
mRNA to protein yield labels.

• Internal propreitary Antibody mRNA (Ab1) expression dataset: contains 1200 mRNA
sequences with mRNA to protein expression labels.

• Internal propreitary Antibody mRNA (Ab2) expression dataset: contains 3442 mRNA
sequences with mRNA to protein expression labels.

We preprocess all mRNA sequences, removing invalid ones based on the following criteria: (i)
sequence is divisible by 3 in length2, (ii) sequence begins with start codon AUG and ends with one of
the stop codons UAA, UAG, or UGA, (iii) sequence contains only A, U, G, C, N nucleotides. These
criteria are suitable for all datasets except the SARS-CoV-2 dataset, which lacks clear start and stop
codons, creating ambiguity in translation to protein for ESM-2. This affects the performance of
ESM-2 as discussed in Section 4.4. Additionally, sequence lengths are limited to 1024 tokens owing
to the limitation imposed by both the RNA models (RNA-FM and SpliceBERT).

All tasks except for E. coli expression prediction are regression tasks. We used a 70 : 15 : 15 random
split for training, validation, and testing.

3.2 Adaptation strategies for knowledge transfer

Probing We first evaluate knowledge transfer by probing the quality of DNA and protein LM
embeddings for mRNA tasks. We freeze the LM, extract embeddings from the last layer, and
train a downstream head to map these embeddings to task-specific labels (see Figure 2 top left
panel). We compare TextCNN (Chen, 2015) and LSTM (Hochreiter and Schmidhuber, 1997) heads,
finding TextCNN to perform better or on par with LSTM for most datasets (details in Appendix A).
Consequently, we use TextCNN head for all experiments. This approach allows us to assess the
transferability of learned representations without modifying the original backbone LMs.

Supervised finetuning We also explore supervised finetuning of the bio-LMs on each labeled
dataset. We evaluate two approaches: full finetuning (Full FT), where all parameters of the model
backbone and head are updated (see Figure 2 bottom left panel), and parameter-efficient finetuning
using Low-Rank Adaptation (Hu et al., 2021) (LoRA FT) (see Figure 2 right panel). This comparison

2to ensure proper mRNA to protein translation for ESM-2
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Figure 2: Overview of the adaptation strategies used to evaluate knowledge transfer and fine-tuning in bio-LMs
for mRNA tasks. The top left panel illustrates the probing approach, where embeddings are extracted from the
frozen DNA or protein LM and mapped to task-specific labels using a TextCNN head. The bottom left panel
shows full supervised fine-tuning (Full FT), where all parameters of the model backbone and head are updated.
The right panel depicts parameter-efficient fine-tuning using Low-Rank Adaptation (LoRA FT), where only
specific layers or parameters are adapted while the rest of the model remains unchanged.

helps us understand the trade-offs between comprehensive model updating and more efficient, targeted
adaptation strategies.

3.3 Implementation details

Training and hyperparameters For probing experiments, we use AdamW optimizer (Kingma
and Ba, 2014). The batch size and head learning rate are determined through a grid search on the
validation set, exploring batch sizes of 16, 32, 64, and 128, and learning rates of 1× 10−4, 3× 10−4,
5× 10−4, 7× 10−4, and 9× 10−4. For full finetuning, we perform a grid search over batch sizes
and head learning rates in the same range as for probing experiments to select the hyperparameters.
Additionally, we consistently use a backbone learning rate of 5×10−5 during finetuning, as changing
this rate always leads to performance deterioration in all experiments. For LoRA FT, we additionally
perform a grid search over LoRA ranks 16, 32, 64, and 128 and alpha values 0.25×, 0.5×, 1×, 2×
the chosen ranks for each dataset.

For probing and finetuning, we select the 100M parameter NT model and the 150M million param-
eter ESM-2 model as these are closest in size to the available 100M parameter RNA-FM model.
SpliceBERT, on the other hand, is only available at 20M parameter scale but is pretrained on
pre-mRNA data which is evolutionarily closer to mRNA modality we are focused on.

4 Experiments

4.1 Cross-modal adaptation of DNA and protein bio-language models to mRNA-focused tasks

Table 1 displays the performance of different bio-LMs using various adaptation techniques. We
compare against traditional one-hot baselines on DNA, RNA, and protein levels, where only the head
is trained with one-hot embeddings as is typical in prior works (Harmalkar et al., 2023; Boyd et al.,
2023).

All four evaluated bio-LMs significantly outperform their respective modality specific one-hot
baselines across all datasets. Despite being pretrained on different modalities, NT and ESM-2 show
promising performance for mRNA-focused tasks. In probing experiments, ESM-2 and NT together
outperform the RNA-specific RNA-FM on 5 out of 6 datasets while outperforming SpliceBERT on 3
of the datasets and showing on-par performance on the rest.

Full and low-rank finetuning further improve performance over probing-based approaches. With
either full or LoRA finetuning, protein and DNA LMs surpass both RNA-FM and SpliceBERT on
5 out of 6 datasets. ESM-2 achieves the best performance on 4 datasets while NT has the best
performance on 1 dataset.

This suggests that DNA and protein language models can serve as powerful alternatives to RNA-
specific models for mRNA analysis. We can attribute this success of protein and DNA LMs to two
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factors: (1) the extensive pre-training of these models on larger datasets compared to RNA models
and (2) the interconnectedness of biomolecular modalities within the central dogma paradigm, which
facilitates knowledge transfer between them. In addition, we identify several factors that impact
successful adaptation and discuss them in detail in the following subsections.

Method Input type LM Fungal iCodon E. Coli SARS Ab1 Ab2

One-hot
mRNA - 0.610 0.225 33.13 0.349 0.540 0.489
DNA - 0.610 0.225 33.13 0.349 0.540 0.489

protein - 0.612 0.275 34.03 0.361 0.610 0.571

Probing

mRNA RNA-FM 0.669 0.482 39.28 0.517 0.677 0.621
mRNA SpliceBERT 0.674 0.510 41.82 0.488 0.611 0.620
DNA NT 0.656 0.518 38.08 0.503 0.786 0.592

protein ESM-2 0.676 0.502 42.13 0.458 0.631 0.644

LoRA FT

mRNA RNA-FM 0.669 0.506 40.18 0.528 0.750 0.615
mRNA SpliceBERT 0.684 0.502 40.47 0.542 0.766 0.618
DNA NT 0.678 0.530 39.13 0.501 0.796 0.598

protein ESM-2 0.687 0.534 42.27 0.453 0.758 0.650

Full FT

mRNA RNA-FM 0.680 0.525 39.88 0.577 0.754 0.599
mRNA SpliceBERT 0.693 0.523 40.47 0.589 0.749 0.601
DNA NT 0.700 0.529 39.13 0.577 0.785 0.611

protein ESM-2 0.710 0.516 42.57 0.520 0.772 0.627

Table 1: Both DNA and protein LMs adapted for mRNA-focused tasks perform well. Spearman correlation
is reported for Fungal, iCodon, SARS, Ab1, and Ab2 datasets, while classification accuracy is reported for
E. Coli dataset. Bold indicates the best performing method. Protein or DNA LMs perform best in 5 out of 6
datasets with either full FT or parameter-efficient LoRA FT. This demonstrates that DNA and protein language
models can serve as powerful alternatives to RNA-specific models for mRNA analysis, owing to their extensive
pretraining on larger datasets and the interconnectedness of biomolecular modalities within the central dogma
paradigm.

4.2 Influence of model size on cross-modal knowledge transfer

Since NT and ESM-2 are available in different sizes, we also explore the effect of model sizes on
cross-modality knowledge transfer. While scaling laws in NLP and biomolecular domains often
suggest that larger models capture more complex dependencies (Kaplan et al., 2020; Dalla-Torre
et al., 2023; Lin et al., 2023), recent findings also highlight inverse scaling (McKenzie et al., 2023),
where larger models do not uniformly outperform smaller ones on all tasks.

Our probing results in Table 2 and Figure 3 for various sizes of ESM-2 and NT models reveal that
increasing model size does not monotonically improve performance in cross-modal adaptation for
bio-languages. For both NT and ESM-2 models, performance initially improves with increasing
model sizes but deteriorates beyond a certain point, except for the Fungal dataset.

This behavior suggests that larger DNA and protein models may struggle to adapt to mRNA-focused
tasks in the cross-modal knowledge transfer setting. This may be attributed to the tendency of large
models to preserve their inertia, especially when the scale of the downstream dataset is limited for
finetuning (McKenzie et al., 2023). Our results highlight the importance of carefully considering
model size when adapting DNA and protein LMs for mRNA-focused applications.

4.3 Impact of nature of downstream task

ESM-2 performs exceptionally well in iCodon stability and expression prediction tasks for datasets
such as fungal, E. Coli, Ab1, and Ab2. This success can be attributed to ESM-2’s pretraining on
extensive protein sequence databases. It is well established that protein sequences encode thermal
stability-related information (Teng et al., 2010). Moreover, thermal stability is known to correlate
with protein expression levels, as more stable proteins are typically expressed at higher levels (Hanson
et al., 2019; Bæk et al., 2023). Given this biological context, ESM-2’s pretraining on diverse and
extensive protein datasets enables it to capture and leverage thermal stability information inherent
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Figure 3: Performance analysis of different sizes (in billions of parameters) of ESM-2 (left) and NT (right) in
cross-modal adaptation for mRNA-focused tasks. Larger models tend to exhibit poorer performance beyond a
certain size for both ESM-2 and NT. This suggests that larger DNA and protein models may face challenges in
adapting to mRNA tasks, potentially due to the preservation of their pretrained knowledge, particularly when
the downstream dataset is limited in scale. These findings underscore the need to carefully consider model size
when adapting bio-LMs for mRNA-focused applications.

ESM-2 NT

Dataset 15B 3B 650M 150M 35M 2.5B 500M 250M 100M 50M

Fungal 0.725 0.701 0.703 0.676 0.667 0.701 0.698 0.685 0.656 0.672
iCodon 0.524 0.548 0.551 0.502 0.501 0.513 0.536 0.528 0.518 0.464
E. Coli 40.32 36.58 40.32 42.12 40.17 37.18 37.78 35.68 38.08 34.63
SARS 0.440 0.448 0.455 0.458 0.453 0.511 0.513 0.503 0.503 0.498
Ab1 0.607 0.560 0.584 0.595 0.590 0.785 0.785 0.796 0.786 0.779
Ab2 0.620 0.626 0.638 0.644 0.610 0.531 0.603 0.580 0.592 0.606

Table 2: Probing performance across various sizes for ESM-2 and NT models. Bold indicates best
performing model. Larger ESM-2 and NT models show diminished performance beyond a certain size, indicating
challenges in adapting to mRNA tasks. This may result from retaining pretrained knowledge, especially with
smaller downstream datasets. These results highlight the importance of carefully selecting model size for
mRNA-focused bio-LM adaptation.

in protein sequences. The model’s ability to learn these nuanced biological relationships from its
pretraining data translates into superior performance on tasks that require understanding of protein
stability and its impact on expression.

4.4 Effect of dataset quality on cross-modal knowledge transfer

Although degradation also correlates with thermal stability (Simantov and Goyal, 2022), still ESM-2
exhibits the poorest performance among all models on the SARS dataset (Leppek et al., 2022) where
the objective is to predict degradation per nucleotide. This discrepancy can be attributed to the
inherent nature of protein models, which operate at the amino acid level and consequently encounter
a loss of resolution when predicting nucleotide level properties. Furthermore, unlike other datasets,
SARS dataset used for this task lacks a well-defined start and stop codon for some sequences, further
compromising the accuracy of the translation of mRNA sequences performed for modeling purposes.
Consequently, the resulting protein sequences used for modeling are noisy. Therefore, in cases where
the focus is on predicting nucleotide-level degradation, ESM-2 proves to be less accurate due to its
inherent amino acid-centric context and the limitations imposed by dataset quality. On the other
hand, for this task both RNA-FM and NT perform equally well owing to their ability to reason at the
nucleotide level.
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5 Discussion and conclusion

Our study demonstrates the successful adaptation of DNA and protein LMs for mRNA tasks. While
direct comparison of these models is complex due to diverse pretraining contexts, our focus was
on exploring whether easily accessible protein and DNA models can facilitate downstream tasks in
underexplored modalities like mRNA, where specialized LMs are non-existent.

The results reveal significant cross-modal adaptation potential, with protein and DNA LMs showing
promise for mRNA analysis and offering viable alternatives. These findings can also serve as a
benchmark for assessing newly pretrained mRNA LMs.

Interestingly, we also observed that larger models do not always perform better in cross-modal
adaptation, suggesting the need for careful model selection based on the specific task and available
mRNA data. Furthermore, we identified other important factors affecting adaptation success of DNA
and protein LMs: the nature of downstream tasks and the quality of available data.

These findings highlight the immense potential as well as pitfalls of leveraging knowledge transfer
from existing DNA and protein LMs for mRNA related tasks. Future work could explore more
sophisticated adaptation techniques and investigate the integration of multiple modalities to further
enhance mRNA analysis capabilities.
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A Appendix

Downstream head networks We experiment with two head architectures: TextCNN (Chen, 2015)
and LSTM (Hochreiter and Schmidhuber, 1997), each with approximately 1.2 million parameters.
The TextCNN model projects input features into a 640-dimensional space using a linear layer, and
passes them through 3 convolutional layers with kernel sizes of 3, 4, 5 and channel dimension of 100,
followed by ReLU activation. Max-pooling is applied across the temporal dimension, resulting in a
feature map of size 100 for each kernel size. These are concatenated, subjected to 0.2 dropout, and
fed into a fully connected layer for final predictions. The LSTM head processes input sequences
through an LSTM layer with a hidden dimension of 640. The output undergoes max-pooling across
the sequence length, followed by fully connected layers. Dropout of 0.2 is applied before the final
fully connected layer.

A.1 Head network ablation

Fungal iCodon E. Coli SARS Ab1 Ab2

LSTM
RNA-FM 0.646 0.420 40.02 0.509 0.630 0.628
NT 0.615 0.485 32.68 0.493 0.772 0.593
ESM-2 0.682 0.460 38.68 0.456 0.688 0.638

TextCNN
RNA-FM 0.669 0.482 39.280 0.517 0.677 0.621
NT 0.656 0.518 38.081 0.503 0.786 0.592
ESM-2 0.676 0.502 42.128 0.458 0.631 0.644

Table 3: Comparison of TextCNN and LSTM heads for probing experiments. TextCNN head performs best
with almost all models across all datasets.
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