
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

WHAT SECRETS DO YOUR MANIFOLDS HOLD?
UNDERSTANDING THE LOCAL GEOMETRY OF
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ABSTRACT

Deep Generative Models are frequently used to learn continuous representations
of complex data distributions using a finite number of samples. For any gener-
ative model, including pre-trained foundation models with GAN, Transformer
or Diffusion architectures, generation performance can vary significantly based
on which part of the learned data manifold is sampled. In this paper we study
the post-training local geometry of the learned manifold and its relationship to
generation outcomes for DDPM, Diffusion Transformer (DiT), an unconditional
latent diffusion model and near state-of-the-art Stable Diffusion 1.4 text-to-image
model. Building on the theory of continuous piecewise-linear (CPWL) generators,
we characterize the local geometry in terms of three geometric descriptors - scaling
(ψ), rank (ν), and complexity/un-smoothness (δ). We provide quantitative and
qualitative evidence showing that for a given latent, the local descriptors are in-
dicative of generation aesthetics, artifacts, diversity, and memorization. Finally we
demonstrate that training a reward model using the local geometry of a pre-trained
model, allows us to control the log-likelihood of a generated sample under the
learned distribution and qualitative aspects of the generated image.
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Figure 1: Controlling visual complexity using geometry guidance. We train a reward model
on the geometric descriptor local scaling computed for the decoder of Stable Diffusion (Rombach
et al., 2021). Positive (top-row) or negative (bottom-row) guidance ρ on this reward model allows
decreasing (top-row) or increasing (bottom-row) the likelihood of the generated samples under the
learned distribution of the Stable Diffusion decoder. As we decrease likelihood more background
elements come into view and the focus on the subject decreases, vice-versa when increasing the
likelihood.
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1 INTRODUCTION

In recent years, deep generative models have emerged as a powerful tool in machine learning, capable
of synthesizing realistic data across diverse domains (Karras et al., 2019; 2020; Rombach et al., 2021).
However, the performance of such generative models may not be uniform across all downstream tasks,
for example, recent studies have demonstrated that models like Stable Diffusion can exhibit biases in
generation in terms of reduced generation fidelity or diversity, for certain demographic groups Zhao
et al. (2018); Luccioni et al. (2023). Especially for 1) models trained with large heterogeneous data
distributions, and 2) any pre-trained generative model without access to the training distribution, the
aforementioned observations can become hard to interpret or reason. In such cases it is imperative
to look at the model internals to obtain reasoning for model behavior. In this regard, we pose the
following research question:

Research Question. For any sample generated using a deep generative model, how is the local
geometry of the model connected to downstream generation?

The ttheory of continuous piecewise-linear generators Balestriero et al. (2020) suggests that a large
class of generative models can be considered continuous piecewise linear (CPWL) operators, implying
that such generative models can be fully characterized in terms of their weights and architecture.
We consider it the framework of choice to find answers to the aforementioned question and propose
using three local geometric descriptors to quantify local characteristics of any pre-trained generative
model:

• Local rank (ν), that characterizes the local dimensionality of the learned manifold.

• Local scaling (ψ), that characterizes the local change of volume by the generative model
input output mapping.

• Local complexity (δ), that approximates the un-smoothness of the generative model in
terms of second order changes in the input-output mapping.

Geometric descriptors such as local scaling, complexity or rank, have previously been used to
measure function complexity of Deep Neural Networks (DNN) (Hanin & Rolnick, 2019) and DNN
expressivity (Poole et al., 2016; Raghu et al., 2017), to evaluate the quality of representations learned
with a self-supervised objective (Garrido et al., 2023), for interpretability and visualization of DNNs,
(Humayun et al., 2023), to understand the learning dynamics in reinforcement learning (Cohan et al.,
2022), to explain grokking, i.e., delayed generalization and robustness in classifiers (Humayun et al.,
2024), maximum entropy or controlled sampling of GAN based generative models (Humayun et al.,
2021; 2022b), and maximum likelihood inference in the latent space (Kuhnel et al., 2018). To the best
of our knowledge, we are the first to use such geometric descriptors in the context of foundational
scale text-to-image generative models.

Our contributions. In this paper, through rigorous experiments on large image generative models,
we establish correlations between the local geometric descriptors and the aesthetic qualities, diversity,
and degree of memorization of generated samples. We demonstrate how these manifest differently for
different sub-populations of the generative distribution. We also show that the geometry of the data
manifold is heavily influenced by the training data which enables applications in out-of-distribution
detection and reward modeling to control the output distribution. Our empirical results lead to the
following conclusions:

• C1. We present the first large-scale analysis of the local geometry of foundational text-
to-image latent diffusion models and establish correlations between the local geometric
descriptors and downstream aesthetic quality, diversity, and memorization (Sec 4.).

• C2. For small diffusion models and foundational image generative models, we show that the
local geometry on the generative model manifold is distinct from the off manifold geometry,
and can help distinguish the domain of a generative model (Sec. 3).

• C3. By training a auxiliary model on the local geometry of Stable Diffusion, we present a
novel framework for reward guidance on a diffusion model to increase/decrease sampling
diversity or control aesthetic qualities (Sec 5).
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2 LOCAL DESCRIPTORS OF GENERATIVE MODEL MANIFOLDS

We start by introducing the geometric descriptors we will use in our study and provide intuition on
what aspect of the generative model manifold geometry each of the descriptors quantify.

2.1 CONTINUOUS PIECEWISE-LINEAR GENERATIVE MODELS

Consider a generative network G, which can be the decoder of a Variational Autoencoder
(VAE) (Kingma & Welling, 2013), the generator of a Generative Adversarial Network (GAN) (Good-
fellow et al., 2014), or an unrolled denoising diffusion implicit model (DDIM) (Song et al., 2020).
Suppose, G : RE → RD is a deep neural network with L layers, input space dimensionality E and
output space dimensionality D. For any such generator, if the layers comprise affine operations
such as convolutions, skip-connections, or max/avg-pooling, and the non-linearities are continuous
piecewise-linear (CPWL) such as leaky-ReLU Xu (2015), ReLU, or periodic triangle, then the
generator is a continuous piecewise-linear operator (Balestriero & Baraniuk, 2018a; Humayun et al.,
2023). This implies that the G : RE → RD mapping can be expressed in terms of a subdivision of
the input space into linear regions Ω with each region ω from the input domain being mapped to the
output via an affine operation. The continuous data manifold or image of the generator Im(G) can be
written as the union of sets:

Im(G) =
⋃

∀ω∈Ω

{Aωz + bω∀z ∈ ω}, (1)

where, Ω is the partition of the latent space RE into continuous piecewise-linear regions, Aω and
bω are the slope and offset parameters of the affine mapping from latent space vectors z ∈ ω to the
data manifold. For the class of continuous piecewise-linear (CPWL) neural network based generative
models, Ω, Aω , and bω are functions of the neurons/parameters of the network. For a generator with
L layers, Aω and bω can be expressed in closed-form in terms of the weights and the region-wise
activation pattern of neurons for each layer. We refer the readers to Lemma 1 of (Humayun et al.,
2023) for details.

To help build intuition, without loss of generality lets consider a CPWL toy generator that is trained
on a handcrafted task where the target function f : R2 → R3 is a mapping between R2 and a mixture
of five gaussian functions. Since the learned function is a continuous piecewise-affine spline operator,
we use SplineCAM (Humayun et al., 2023) to analytically compute the function learned by the
generator and visualize the learned manifold, as well as the input space piecewise-linear partition
learned by the generator in Fig. 2 middle-left and left. Each convex region ω bounded by the black
lines, is mapped to Im(G) via per region parameters as described in Equation 1. The input-output
mapping operation by the generator is affine region-wise, therefore any given input space region can
be scaled, rotated or translated with a continuity constraint between regions, while going from the
input to the output. For CPWL generators there are three characteristics of the learned manifold that
can be studied: i) the affine scaling induced per region, ii) the number of dimensions that are retained
after scaling, i.e., local dimensionality of the learned manifold, and iii) the local smoothness of the
CPWL partition. We now introduce local descriptors that can be used to characterize these quantities.

2.1.1 LOCAL SCALING, ψ
We first introduce local scaling as a target descriptor to be used in our study that measures the local
scaling performed on a region ω by a CPWL generator.

Definition 1. For a CPWL manifold produced by generator G, the local scaling ψω is constant
within each region ω, and measures the log-scaling of the volume induced by the affine slope Aω for
all latents z ∈ ω. Local scaling for ω is expressed as

ψω = log(
√
det(AT

ωAω)) =

k∑
i

log(σi)1{σi ̸=0}, (2)

where, {σi}i=k
i=0 , are the non-zero singular values of Aω .

Refering back to the example in Fig. 2, each region on the CPWL manifold (middle-left) and in the
input space (left) is colored by ψω , with darker shades indicating higher ψω . Suppose G has a uniform
latent distribution, meaning every region ω has a uniform probability density in the latent space.
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Figure 2: The geometry of a continuous piecewise-linear toy generator. For a CPWL generator
G : R2 → R3, we provide analytically computed visualization of the input space partition, i.e.,
arrangement of linear regions (left) and learned CPWL manifold (middle-left). Each piece for this
example, is colored by the piecewise-constant scaling induced by G that is also analytically computed.
Uniform samples from the latent domain (middle-right) and generated samples (right) are presented,
colored by the estimated density at each sample using a gaussian kernel density estimator in R3. We
see that for any sample z ∈ ω, the estimated density (↑ green) is inversely proportional to the scaling
(↓ green) for region ω.

Under an injectivity assumption for any input space region ω and S = {Aωz+bω∀z ∈ ω}, according
to Theorem 1. in Humayun et al. (2022a), the output density on S, pS(x) ∝ 1

eψω
. Therefore, local

scaling ψω is proportional to the negative log-likelihood of the generative model for any z ∈ ω. We
can validate this by using a kernel density estimator (KDE) to estimate the density of generated
samples on the data manifold from a uniform latent distribution. In Fig. 2-right and middle-right,
we denote the KDE estimated density per sample via colors, where higher density corresponds to
brighter shades. Local scaling for any two regions ω ∈ Ω and ω′ ∈ Ω, can therefore be used to
express the difference in generation uncertainty for two locations on the data manifold:

Hω −Hω′ = ψω − ψω′ , (3)

where, Hω, Hω′ are the conditional entropy on the manifold for input space regions ω and ω′.

2.1.2 LOCAL RANK, ν .
The second descriptor we study is the rank of the region-wise slope matrix Aω , which represents the
dimensionality of the manifold learned by a CPWL generator.

Definition 2. For a CPWL manifold produced by generator G, local rank νω is the exponent of the
Shannon entropy of the spectral distribution of the per-region affine slope Aω and can be expressed
as:

νω = exp

(
−

k∑
i

αi log(αi)

)
(4)

where αi =
σi∑k
i σi

+ ϵ. (5)

Here, {σi}i=k
i=0 are non-zero singular values of Aω and ϵ = 10−30 is a constant. The local rank νω

can be shown to be equivalent to the dimensionality of the tangent space on the data manifold at z.

2.1.3 LOCAL COMPLEXITY, δ
An important geometric notion to characterize any manifold locally is the local smoothness of the
manifold. However, smoothness requires computing the hessian of the input-output mapping making
it computationally intractable for large generative models. We therefore consider local complexity
as a proxy for sharpness of the manifold locally for our study. Based on the notion of complexity
for CPWL neural networks (Hanin & Rolnick, 2019), we can define local complexity of a CPWL
generator as the following.
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Definition 3. For a CPWL generator with input partition Ω, the local complexity δz for a P -
dimensional neighborhood of radius r around latent vector z is

δz =
∑

∀ω∩Vz ̸=∅

1ω (6)

where Vz = {x ∈ RE : ||B(x− z)||1 < r}. (7)

Here, B is an orthonormal matrix of size P ×E with P ≤ E, ||.||1 is the ℓ1 norm operator and r is a
radius parameter denoting the size of the locality to compute δ for. Here we consider a P dimensional
neighborhood instead of the full dimensionality of the latent space to reduce computational complexity.
The sum over regions ω ∈ Vz requires computing Ω ∩ Vz which can be computationally intractable
for high dimensions. A proxy for computing the partition for Vz with small r is counting the number
of non-linearities within Vz , since for small r, the one can assume that the non-linearities do not fold
inside Vz , therefore providing an upper bound on the number of regions according to Zaslavsky’s
Theorem (Zaslavsky, 1975). To compute local complexity, we use the method introduced by Humayun
et al. (2024) for general neural networks. We provide in appendix further implementation details and
pseudocode.

2.2 EXTENDING BEYOND CONTINUOUS PIECEWISE-LINEAR GENERATORS

Networks with smooth activations. While the descriptors are defined for CPWL mappings, modern
generative models employ a mixture of CPWL and non-CPWL operations. For networks with smooth
activation functions or non-piecewise-linear non-linearities, our descriptors are first order Taylor
approximations. We agree with the reviewer that there may be approximation errors incurred when we
move from ReLU to smooth variants. However, Stable Diffusion already employs the GeLU activation
function for which we perform the bulk of our experiments and find strong connections between the
approximate local geometry and downstream generation. This is because smooth activation functions
induce a soft VQ partitioning of the latent space compared to the hard VQ partitioning induced by
a CPWL map Balestriero & Baraniuk (2018b). This suggest that much of the local linear structure
we expect in CPWL maps are retained even if we employ smooth approximations of ReLU. Recent
work has also empirically verified the local linearity for a large class of image based diffusion models
Chen et al. (2024).

Computing jacobians for large networks. To avoid computing the singular values using the full
input-output jacobian – which will be significantly expensive for large networks – when computing
local scaling and rank we obtain singular values via randomized SVD Halko et al. (2011). First we
obtain a random projection matrix with orthonormal rows W with shape k×n such that WWT = Ik.
Here n is the dimensionality of the outputs generated by the network. We therefore approximate local
scaling as:

ψ
(trunc)
ω =

∑k
i=1 log(σ

(trunc)
i ), where σ(trunc)

i are the non-zero singular values of WAω .

For any ω, if W forms a basis for the range of Aω then σi ≈ σ
(trunc)
i ∀i = 1, 2. . . k [4]. Therefore

WAω would provide us a low-rank approximation of Aω .

In our experiments we have tried two methods to obtain the projection matrix W 1) by obtaining
the eigenvectors for the covariance matrix for a set of 50K randomly generated samples. This was
suggested in Halko et al. (2011). 2) by performing QR decomposition of a randomly initialized
matrix. We see that the performance difference between methods 1) and 2) are negligible therefore
consider the cheaper alternative 2) and consider a fixed pre-computed W with k=120 for all Aω in
our Stable Diffusion experiments.

3 CHARACTERIZING THE LOCAL GEOMETRY OF PRE-TRAINED MODELS VIA
DESCRIPTORS

In this section, we explore the geometry of pre-trained generative models by characterizing the
latent space to output manifold mapping in terms of the local geometric descriptors mentioned in the
previous section. We are interested in the following questions: i) How does the on manifold local
geometry vary from the off manifold local geometry? ii) How does the local geometry vary across
the input domain?
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3.1 ON AND OFF MANIFOLD GEOMETRY FOR DENOISING DIFFUSION PROBABILISTIC
MODELS

Setup. To study the on and off manifold geometry of diffusion models, we train a denoising diffusion
probabilistic model (DDPM) (Ho et al., 2020) on a toy dataset1 to visualize how the local geometry
varies for 1) different noise levels t, and 2) different training iterations. In Fig. 13-heatmaps we
present the local complexity δtx, local scaling ψt

x and local rank νtx computed for different input space
vectors x using the DDPM conditioned on noise levels t. Here T is the highest noise level in the
forward diffusion process. We also present the difference between the expected descriptor values on
and off the manifold, EM[Φ]− EM̄[Φ],∀Φ ∈ {ψt, δt, νt} at different training iterations (right). We
consider the set of input vectors within 0.05 units of the training data as on manifold M and rest as
off the manifold M̄.
Observations. The first observation is that with longer training, the maximum absolute difference
between on and off manifold local geometry maxt{|EM[Φ]− EM̄[Φ]|} increases. Since with more
training we see higher distinction between the on and off manifold geometry, this difference can be an
indicator of learning in diffusion models. We see that for well trained models, apart from t > 0.17T ,
ψt
x and νtx decreases and δtx increases with decreasing t, ∀x ∈ M. This means, the likelihood on

the manifold increases as noise levels are reduced, the smoothness decreases and the dimensionality
of the manifold decreases as well. The quantity EM[Φ]− EM̄[Φ] is also minimized at t ≈ 0.17T .
This indicates that there can exist a noise level t conditioned on which diffusion model local scaling,
rank and complexity have the highest distinction geometrically between on and off manifold vectors
from the input space. It can allow directly probing which parts of the input space are on the learned
manifold to possibly perform one step denoising or propose novel guidance schedules.

δ ψ ν Anchors

Figure 3: Geometry of the Stable Diffusion latent space. Geometric descriptors (left, middle-left,
middle-right) visualized on a 2D latent space subspace, that passes through the latent representations
of "a fox", "a cat" and "a dog" (right), denoted via markers on the 2D subspace descriptor. In
Appendix, we provide denoised images for different high/low descriptor regions from the subspace.
We see that in the convex hull of the three anchor latent vectors ψ ↑, ν ↓ and δ ↑. Moreover we see
that in the convex hull, the local rank ν undergoes sharp changes which are not visible towards the
edges of the domain.

3.2 THE LOCAL GEOMETRY OF LATENT DIFFUSION MODELS

In Sec. 3.1, we see that the local geometry in the input domain of a ddpm can be distinctive of its
learned manifold. In this section we study the local geometry of the Stable Diffusion (SD) latent
space, to explore whether there exists a relationship between the local geometry and the domain of
the SD decoder.

Setup. While in Sec. 3.1 we could visualize the whole input domain of the diffusion model, for
SD we can only visualize a subspace of the SD latent space. We use three prompts "a cat", "a dog"
and "a fox" to generate three latent vectors using the SD diffusion model and consider a 2D slice in
the latent space, going through the three denoised latents as our domain to visualize. Note that since
this is a 2D subspace of the latent space, we can expect part of it to be in-domain for the SD decoder,
whereas part of it would be out-of-domain. We provide implementation details in appendix.

Observations. We observe that 1) In the convex hull of the three denoised latents used as anchors
for the 2D subspace being visualized, we have higher complexity, lower rank and higher local scaling.
The decoded images from the convex hull may contain artifacts but are legible generations. 2) Local

1https://jumpingrivers.github.io/datasauRus
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rank does not smoothly vary across the latent space, especially with sharp changes in the local rank
within the convex hull of the the anchor latent vectors. For the lowest rank regions in the convex hull,
decoded images have good fidelity compared to latents with high uncertainty or complexity. 3) If
we move away from the convex hull we see that generated images become more broken and contain
heavy artifacts, indicating that such regions are out-of-domain for the SD decoder. However, we see
that the local scaling is lower in these regions compared to the convex hull.

4 WHAT SECRETS DO YOUR MANIFOLDS HOLD?
contrast reduction fog gaussian blur glass blur
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saturate brightness spatter frost
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Figure 4: Local scaling is
sensitive to image corruptions.
We use 16 corruptions from
(Hendrycks & Dietterich, 2019)
to corrupt 10K imagenet images
and compute the local geometry
of the SD decoder. We see that SD
local geometry is sensitive to cor-
ruptions, i.e., aesthetic changes
to in-domain images (here Ima-
genet).

Correlations with visual complexity.

We selected 20K samples from Imagenet with resolution higher or equal to 512× 512, encode the
samples using the SD encoder, and compute the local descriptors for the SD decoder. In Fig. 16
each column represents a local scaling level set, with the ψ for columns increasing from left to right.
Recall that in Eq. 3 we show that increase in local scaling is equivalent to increase in uncertainty. In
this figure, we can see that for lower uncertainty images we have more modal features in the images,
i.e., the samples have less background elements and are focused on the subject corresponding to the
Imagenet class.
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Increasing ψ level sets →

Figure 5: Local Geometry level sets Ima-
genet prompts. Vendi diversity scores and
RAHF Liang et al. (2024) aesthetic scores
computed for images with classifier free guid-
ance (CFG) 7, 5 and 3. Diversity per level set
increases and then decrease with increased lo-
cal scaling. Aesthetic score slightly increases
and then decreases as well with increased
local scaling.

For higher uncertainty images, we see that images have
more outlier characteristics. For images with higher local
rank in Fig. 18, we see that the backgrounds have higher
frequency elements compared to lower rank images. For
higher rank images, the dimensionality of the manifold
is higher locally, therefore allowing more noise dimen-
sions on the manifold. These qualitative results provide
evidence that the local geometry is indeed sensitive to
natural variations of Imagenet images.

Local geometry of corrupted images.

Fig. 6 illustrates the effect of applying 16 different image
distortions (originally proposed in (Hendrycks & Diet-
terich, 2019)) to 10k ImageNet images. We consider Im-
agenet as in-domain for Stable Diffusion and encode them
to the SD latent space to compute the geometric descrip-
tors for the SD decoder. Samples are uniformly distributed
over its classes. The plot shows the local scaling distribu-
tion at 6 increasing levels of severity ∈ {0, 1, 2, 3, 4, 5},
with zero corresponding to no corruptions applied. We
observe that corruptions that are associated with reduction
of spectral band, and/or reduction to the color range result
in a reduction to the local scaling therefore the negative
log-likelihood. We conjecture that this is due to the aver-
aging effect of such distortions which move the corrupted
images close to the mean of all images. Conversely, distortions known to be associated with the
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introduction of high-frequency artifacts are observed to produce an increase in local scaling therefore
uncertainty moving the images away from the mean. The results clearly indicate that the local
geometry is sensitive to aesthetic changes to images introduced via most of the 16 corruptions.
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Figure 6: Local geometry of denoising trajectories. Geometric descriptors computed for the SD
decoder unconditionally, during 50 stable diffusion denoising steps, for (top) 100 COCO and 100
memorized prompts (Wen et al., 2024) with guidance scale 7.5 and (bottom) 100 COCO prompts
with varying guidance scales. For each prompt or guidance scale, we start from the same seeds.
Shaded region represents 95% confidence interval. We see that the local geometry trajectories are
discriminative of memorization, as well as increased alignment when stronger classifier free guidance
is used.

Sensitivity to alignment and memorization.

Classifier-free-guidance is a method for increasing the alignment between the conditioning text-
prompt and generated image Rombach et al. (2021). In Fig. 6-bottom, we see that for higher classifier
free guidance scales during denoising, the avg. local scaling is lower, avg. local rank is lower and the
avg. local complexity is higher. This indicates that for more conditionally aligned images obtained
via classifier-free-guidance of the SD diffusion Unet, the decoder uncertainty is also lower especially
during the final denoising steps. We also compute the local geometric descriptors for denoising
trajectories conditioned on memorized prompts Wen et al. (2024) vs coco captions (Fig.6-top). We
see that the mean local geometry is significantly different for denoising trajectories of 100 memorized
prompts vs 100 random coco prompts. We also see that for higher guidance scales local rank ν is ↓
and local complexity δ is ↓ as well.

Downstream diversity and Human Preference Scores.

In Fig.8-left we present Vendi score aggregates and in middle and right, we present aesthetic and
artifact score (higher is better) aggregates for real and generated Imagenet images with classifier
free guidance scales of 7, 5 and 3, sorted in increasing local geometry level sets from left to right.
Aesthetic and artifact scores are predicted by a human preference model Liang et al. (2024). We see
that for increasing local scaling level sets, we have an increase in the diversity of images per bin.
With very high local scaling, we get images from the highest uncertainty modes, i.e., the anti-modes,
which result in a drop in the diversity of images. For real images, aesthetic and artifact scores get
reduced for higher local scaling non-monotonically. This behavior is expected, as we have discussed
before, higher local scaling images have higher uncertainty and higher visual complexity which may
result in lower human preference predictions. For images from the highest local scaling bins however,
we see an increase in the aesthetic and artifact scores. This is a unique phenomenon showing that for
very uncertain images there could be a possible positive human preference. For local rank there is an
increase in human preference scores for the high rank bins.

5 GUIDING GENERATION WITH GEOMETRY

In the previous sections, we have presented qualitative and quantitative evidence, establishing the
connection between geometric descriptors and downstream generation. Among the three descriptors
we find that local complexity has the highest sensitivity to aesthetic changes in images due to
corruptions (section 4), and correlates with visual complexity (fig. 16). We also observe in section 4
higher local scaling level sets for samples generated using a classifier free guidance scale of 7.5, have
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Figure 8: Reward guidance on stable diffusion. Local scaling reward guidance increases from left
to right in each picture (left-panel) and decreases left to right in each picture (right-panel), with the
first image showing no reward guidance. We observe maximizing the reward leads to sharper details,
improved sharpness and contrast, and higher diversity in the images. Decreasing the local scaling
leads to minimized uncertainty, resulting in a noticeable blurring effect and loss of details especially
in the background of the image.

higher diversity while maintaining higher predicted human preference scores. Based on these results,
we wish to explore whether local scaling can be used to guide generation.
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Figure 7: Guidance via reward models trained with increasing number
of training samples. We observe that even with when only 50K samples
are used in training, reward models can increase generation diversity, local
scaling and human preference scores. Here we present the change of vendi
score, average local scaling and average aesthetic score for pre-guidance
local scaling level sets increasing from left to right on the x-axis.

Recently proposed
instance-level uni-
versal guidance
method (Bansal et al.,
2023), can effectively
influence the latents in
the reverse process of
a latent diffusion mod-
els to produce desired
changes. Directly
using local scaling
to guide generation
using such methods,
require calculating the
input-output Hessian
since local scaling is
a first-order measure

that requires computing the input-output jacobian. To avoid computing the Hessian we train a reward
model as a proxy and use the reward model gradients directly. Instead of training on continuous local
scaling values in a regression task, we transform it into a local scaling level set classification task.
We discretize the range of local scaling values into 5 bins and use the bin indices as training labels.

Data preparation. We obtain training data for the reward model by i) sampling N images from
Imagenet and encoding them to the Stable Diffusion latent space ii) adding noise using the forward
diffusion process up to randomly chosen noise levels iii) for each latent computing the local scaling
descriptor.

To evaluate the performance of the reward model and dependency of the reward model on the number
of training samples, we train multiple models forN = 50K, 200K, 400K, 800K . For evaluation, we
generate 2560 samples using the dreambooth live subject prompt templates Ruiz et al. (2023), with
Imagewoof Howard (2019) dogs as subjects. While Imagewoof dog classes are present in Imagenet
therefore possibly in the training data, the dreambooth prompt templates contain a variety of settings
that are not generally present in Imagenet, e.g., ‘a <subject> on top of pink fabric’.

Evaluation Setup. We first sample Stable diffusion without any reward guidance and with classifier-
free guidance of 7.5 to obtain baseline samples. We partition the range of local scaling values obtained

9
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for the baseline samples into n = 10 bins fig. 7, where each bin contains images from a local scaling
level set. Following that we use the same seed and prompts as the baseline samples to generate
images using reward guidance to increase local scaling. For each bin or pre-guidance local scaling
level set, we compare between the baseline samples and corresponding reward guided generations
in the following three axes: i) change of local scaling ii) change of vendi (diversity) score iii) the
change of human preference score (RAHF Liang et al. (2024) aesthetic score).

Results. In fig. 7, we present the mean local scaling per bin with 95% confidence interval. Here the
blue line represents the mean pre-guidance local scaling values, increasing from left to right. In fig. 7,
we present vendi scores and average predicted human preference scores. For any bin, we present
results for the reward guidance scale that maximizes the local scaling. We see that even for a model
trained with 50K samples, we can have a considerable increase in the local scaling, diversity and
aesthetic score for most of the bins. Changes in local scaling, vendi and aesthetic scores are higher
for the lower pre-guidance local scaling level set bins compared to the higher pre-guidance local
scaling level set bins.

Our experiments reveal that maximizing local scaling in the manifold of a stable diffusion model
directly correlates with adding texture to the generated images. Moreover, this approach reduces
the likelihood on the manifold for single images. By optimizing the local scaling descriptor, the
generative model is guided towards producing more varied and textured outputs.

This approach is notable because traditional methods for diversity guidance generally function at the
distribution level. Our method, however, focuses on maximizing the inherent diversity as preserved
by the model within its learned manifold, effectively steering the generated images towards the
extremities of the distribution. This instance-level intervention allows for a more detailed and precise
enhancement of diversity, presenting a novel approach to guiding generative models.

As seen from Fig. 8 (left-panel) maximizing the reward results in added details in form of sharpening
the image, adding texture and contrast. We also observe that if we move towards minimizing the
reward, the images tend to loose fine-grained details as seen in Fig. 8 (right-panel). Please refer to the
supplementary material for more visual results.

6 CONCLUSION & FUTURE DIRECTIONS

In this paper, we present empirical evidence that the local geometric descriptors – local scaling
(ψ), local rank (ν) and local complexity (δ) - can effectively characterize the local geometry and
distinguish between downstream qualitative aspects of generated samples such as generation quality,
aesthetics, diversity, and memorization. Such descriptors only utilize the model’s architecture and
weights to characterize the behavior of generative models. We acknowledge two main limitations that
warrant further investigation. First, the geometry of the learned manifold is inherently influenced
by the training dynamics of the model. A deeper understanding of this relationship is needed to
fully leverage geometric analysis for models. Second, the computational complexity of our method,
particularly the calculation of the Jacobian matrix, may pose a practical challenge, especially for
large-scale models. Future work should explore more efficient algorithms or approximations to
address this limitation.
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