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Abstract

Large language models (LLMs) are increasingly proficient in understanding
and generating a mixture of code and text. Evaluation based on such mixture
can lead to a more comprehensive understanding of the models’ abilities in
solving coding problems. However, current evaluation methods are either
limited in task coverage or lack standardization. To address this issue, we
propose to apply category theory as math abstraction for code-related eval-
uation. Specifically, morphisms within a code category can represent code
debugging and transformation, functors between two categories represent
code translation, and functors between a code category and a natural lan-
guage category represent code generation and explanation. We present an
automatic evaluation framework called CatCode (Category Code) that can
assess the coding abilities of various ChatGPT-like LLMs in a comprehensive
and standard way, and further support composite task evaluation. The code
can be found at https:/ /github.com/scorpio-nova/CatCode.

1 Introduction

The success of large language models (LLMs) as programming assistants has been widely
acknowledged, with their higher proficiency demonstrated in various coding tasks such
as code generation (Li et al., [2022; Svyatkovskiy et al.,|2020), code explanation (MacNeil
et al., [2022), and code translation (Zhu et al., 2022). However, what truly sets the recent
LLMs apart is their ability, akin to ChatGPT-like models, to comprehend and align with
human intents by processing a mixture of natural language and code. This unique attribute
significantly lowers the entry barrier for users, leading to their widespread adoption and
notable achievements.

To assess the coding ability of LLMs, numerous efforts have been made by researchers. How-
ever, current evaluation methods are either limited in task coverage or lack standardization.
Match-based automatic frameworks such as CodeBLEU (Ren et al.| 2020) rely primarily
on similarity scores to evaluate the quality of code. However, such frameworks often fail
to capture the nuances of code functionality and meaning. Execution-based evaluation
methods, for example, MBXP (Athiwaratkun et al, 2022) and MultiPL-E (Cassano et al.,
2023), can evaluate the function accuracy of code, but they primarily focus on code genera-
tion and translation tasks. Task-based evaluation frameworks like CodeXGLUE (Lu et al.,
2021) offer a comprehensive approach but lack standardization due to completely different
datasets, task formulations, and APIs. Consequently, we still lack an evaluation framework
to adapt to the context of a mixture of natural language and code, and there is a need to
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Figure 1: The overall evaluation framework. We use category perspectives to reorganize
and transform data, formulate different coding tasks, and conduct model evaluations.

establish a comprehensive evaluation framework that not only supports diverse and novel
task definitions but also provides a standardized approach.

We aim to establish a comprehensive theoretical framework that can be open-sourced and
applied to essential coding tasks, providing standardized automatic evaluation metrics. It
is a challenging task without theoretical guidance. Therefore, we seek a theory that can
effectively express the structural aspects of code, language, and their interrelationships. In
this context, we find category theory, a branch of mathematics, to be particularly suitable
for describing relationships between various elements.

By utilizing category theory’s mathematical abstractions, we can gain insights into the
relationships among different programming languages (PLs) and natural languages (NLs).
We consider PLs and NLs as categories, and functionally equivalent programs as objects,
and leverage functors and morphisms to capture the object relations within and across these
categories. This gives a unified framework for describing functional equivalence, which not
only works within a single PL, but also among different PLs, and even between PLs and
NLs. By learning the morphisms within a programming language category, the model can
grasp the similarities and differences between code snippets. Additionally, by acquiring
knowledge of the functors between categories, the model can understand the relationship
between different programming languages and natural languages.

Based on the categorical perspective above, we build a standardized evaluation framework
(see Figure . It is standardized in terms of data definition, task formulation, and APIs. This
framework can be extended to many code-related tasks as long as a categorical definition
is given. In our experiments, we give some examples of common code-related tasks, and
assess models such as ChatGPT and CodeGeeX for their capabilities in identifying functional
equivalence in code, performing code translation, generating code explanations, and recon-
structing code based on explanations. We have observed that these models still struggle
to differentiate between the concepts of “functional equivalence” and “similarity” in code.
While they demonstrated relatively satisfactory performance in code translation, maintain-
ing functional equivalence between code and its corresponding explanations remains a
persistent challenge.

Our main contributions can be listed as follows:



Published as a conference paper at COLM 2024

00
// B MORPHISM
06 G

(AN B) B EXPLANATION FUNCTOR
W REPRODUCTION FUNCTOR

Figure 2: Categorical framework for a mixture of code and NL. A, B and C represent
different objects, A and A” represent the equivalent object of A in other categories.

* We introduce CatCode, a novel evaluation perspective for code-related tasks based on
category theory, which provides a comprehensive framework that encompasses a wide
range of code-related task formulations.

* We present a standardized automatic evaluation platform within the CatCode framework,
that offers a quantitative assessment of the coding abilities of Language Models (LLMs)
and can adapt to various datasets and models, which will be publicly available.

* We evaluate competitive LLMs, including ChatGPT, StarCoder and CodeGeeX, providing
insights into their strengths and limitations in understanding the mixture of NL and code.

2 Methods

Generally, it is difficult to achieve both comprehensiveness and standardization. In Sec-
tion[2.1, we show that the categorical perspective, with its emphasis on generalization and
abstraction, offers a valuable approach to achieving comprehensiveness in dealing with
the mixture of code and natural language. In Section we discuss the significance of
standardization and outline strategies for achieving it.

2.1 Comprehensive Categorical Perspective

Category theory studies how structures arising in different areas can be described with
a common language. It was originally developed to transport ideas from one branch of
mathematics to another, e.g. from topology to algebra. Category Theory has been applied
to different fields, ranging from functional programming to logic, software design, and
linguistics(Spivak} [2014;|/Ahrens & Wullaert} 2022; Fong & Spivak) 2018;|Bradley} 2018). Here
we provide the basic definitions used in our work and explain their applications to describe
code and natural language. Figure 2|illustrates those concepts in a comprehensive way.

Definition 2.1. (Category, Object, Morphism). A category C consists of a set of objects
Ob(C) and a set of morphisms Hom¢ (a,b), from a to b for every a,b € Ob(C). Given
two morphisms f € Homg(a,b), g € Home (b, c), we define their composition as go f €
Homg¢ (a, c). The composition of morphisms is governed by two axioms:

- Associativity: If f :a —b,g:b—c,andh:c —dthenho(gof) = (hog)o f.
- Identity: For every object x, there exists a morphism idy : x — x called the identity
morphism for x, such that for every morphism f : 4 — b, we haveid, o f = f = f oid,.

Application 2.1. (Category, Object, Morphism of Code and NL). For describing the mixture
of code and natural languages, we first regard them as objects from different categories.
We consider the code categories that contain all executable code in a certain language:
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Figure 3: Standardized evaluation platform. The central pipeline offers a consistent approach
for all evaluations. Behind the pipeline, we provide a variety of functions to automatically
conduct the most important steps. With our platform released, the pipeline can easily
accommodate novel datasets, tasks, and models by following the instructions outlined
alongside the grey lines.

Cjavas Cpython, -~ We define the natural language categories which contain all descrip-
tion/explanation/summarization of code etc.: Cgpglish, Cchineses -~ For simplicity, let’s call
them Cl/ Cz,

In a category, there are infinitely many different objects. We name these objects 01, 0y, ... Each
object contains infinitely many programs, with the same running outcome for each valid input.
We use this definition because we focus on the functional equivalence of code function. For
example, one may have sli%]htly different implementations of quick sorts, but they represent

exactly the same function.

Based on the definition of objects, we define the morphism between two objects, as “neces-
sary edits to convert a function to another”. In particular, we define the self-morphism for
each object, as “edits that do not change the functionality of the program”.

Definition 2.2. (Functor). A functor F from a category C to a category D, written as
F : C — D, maps an object x € Ob(C) to F(x) € Ob(D); as well as a morphism f : x — y in
Hom(C) to F(f) : F(x) — F(y) in D, such that the following two properties hold:

- For every object x in C, F(idy) = idp(x);
- For all morphisms f : x - yand g: y — z,F(go f) = F(g) o F(f).

Application 2.2. (Functor of Mixture of Code and NL). We define the functor from C; to Cy,

to be the transform from one language to another language, but with the same functionality.
When it applies to two code categories, it usually represents code translation, and we

define it as a “translation functor”. When the functor is between a code category and a

natural language category, it may have many possible meanings, for instance, we can define

“generation functor” from NL to PL that generate code solution to a problem description,
“explanation functor” from PL to NL that explains a piece of code, and “reproduction functor”
from NL to PL that generates code snippets based on code descriptions.

2.2 Standardized Evaluation Platform

To show the practical use of categorical framework and support the community, we open-
source our evaluation framworkﬂ Figure 3| shows the streamlined process of our stan-
dardized evaluation platform. Standardization within the framework is achieved through a
focus on three critical aspects: data definition, task formulation, and APIs.

1We can also extend the definition of the object to be the set of code with not only the same outcome,
but also with the same time or space complexity, but due to the difficulties of automatically evaluating
the complexity, this can be extended for future work.

2The code can be found in https:/ /github.com/scorpio-nova/CatCode.
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Data definition The original datasets may consist of a mixture of code and natural lan-
guages, so a clear data definition is crucial. The code can be in different languages (Java,
Python, JavaScript, etc.), and on different levels (single-line, function-level, file-level). Nat-
ural language can be in different relationships with the code (problem descriptions, code
comments, demands, etc.). By establishing a standardized data definition, we ensure com-
patibility and facilitate the comparison and integration of different datasets and tasks. For
implementation, we use a “data formatter” to rearrange code based on the definition of
objects and categories. Additionally, we provide “predefined morphisms” and implement
them based on JavaTransformer(Rabin et al., 2019) to automatically apply morphisms to
code objects, which makes it easy for data augmentation.

Task formulation We use a categorical perspective to formulate diverse code-related tasks
using the unified language of objects, morphisms, and functors. A good task formulation
allows for a more generalized and flexible approach to defining more complex code prob-
lems, enabling the inclusion of a wide variety of code-related tasks and comparing their
similarities and differences. Based on the task formulation, we carefully decide what parts
of the code and NL should be the model input, ensuring a cleaner setting. Then we use
“prompt selector” to select a suitable prompt for task description, and use “input constructor”
to combine the data and prompt as task input.

APIs After the data is ready, we focus on the standardization of model APIs and test APIs.
Standardized APIs promote transparency, fairness, and efficiency in the evaluation. By
defining a clear and consistent set of APIs, we have integrated OpenAl models into the
evaluation process and can test them using parallel requests. For postprocessing the model’s
output, we enable the extraction and filtering of plain text from the code-text mixture. For
test APIs, we provide a “pairing test” API for evaluating the model’s answer based on
natural language, and an “execution test” API, which connects to Mxeval(Athiwaratkun
et al.,|2022) for compiling and running the tests for a given code.

3 Experiments

3.1 Use category framework for evaluation

In this section, we exhibit some experimental examples of how to use our platform. Mean-
while, we explore the following three types of tasks: discriminant task, generation task, and
composite task, that correspond to those illustrated in Step 3 of Figure

Discriminant task: Can the model exactly capture code meanings and identify simi-
lar/different code?

(Related tasks: code detection, defect detection, code repair)

— Categorical perspective: Can the model identify the self-morphisms and other morphisms
within the same code category?

’ Generation task: Can the model translate code between programming languages? ‘

(Related tasks: code translation)

— Categorical perspective: Can the model accurately perform code translation functor?

’ Composite task: Can the model reproduce the code after equivalent transformations? ‘

(Related tasks: code explanation, code summarization, code generation, code reproduction)

— Categorical perspective: Can the model preserve the functional equivalence after apply-
ing an explanation functor and then a reproduction functor?

We conduct three experiments from categorical aspects accordingly. For a common setting,
we use three multilingual datasets: HumanEval-X(Zheng et al., 2023), MBXP(Athiwaratkun
et al., 2022), and MathQA(Amini et al} 2019} |Athiwaratkun et al., 2022) throughout the
three experiments, and use five models: Text-Davinci-003, gpt3.5-turbo, Llama-2-7b-chat-
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Figure 4: Morphism Identification Experiment. “1”, “2” and “global” stands for the distance
of the code.”Eq” and “neq” indicates whether the morphism is self-morphism. (Left) An
illustration of morphisms and the definition of object distance. (Right) Comparison of
Text-Davinci and ChatGPT for morphism identification.

hf, starchat-beta (Text-Davinci, ChatGPT, Llama2 and StarCoder for short accordingly) as
common baseline models. For more detailed experimental settings and interesting results
about specific model performance, please refer to Appendix[A]and

3.2 Experiment 1: Morphism Identification Within a Code Category
3.2.1 Categorical Perspective Settings

Code Objects We conduct the experiments within the PL category and define “the function
with the same running outcome for every valid input” as the same object.

Code Morphism The general category perspectives only define morphisms between two
code snippets, but morphisms do not have distance information. Considering fine-grained
evaluation, we are curious about the model’s ability to modify or debug the code, which
corresponds to the local scale; and to write an equivalent new solution to a coding problem,
which is of a global scale.

Object Distance To test the model on both local and global scales, we define the “distance”
between two codes. As illustrated in Figure[4] In a PL Category C, we use ~ to express
functional equivalence. @ = {x | x € C,x ~ a means the set of all code that has the same
functionality as 4. In this category, 2 and ¢ are two different objects. Within 4, all code
instances are functionally equivalent, e.g. a; and a;. We can apply predefined morphisms
to the objects. For example, we can apply 1-step equivalent morphisms(1-eq morphism)
on g; to get new program instances still in 4, or apply 1-step nonequivalent morphism(1-
neq morphism) to get new instance in another equivalent class b. Distance d represents
the minimal number of morphisms needed to transform one program to another given a
predefined morphism set. For example, Applying two different self-morphism on 4; returns
a} and alz, then we need at least two steps to transform from ail to alz. Those are local-scale
equivalence. If it is hard to transform a; to a; within just a few steps(e.g., 1 or 2 steps as
illustrated here), we treat them as global-scale equivalence.

3.2.2 Implementation

Dataset For local morphism, we extract the Java functions within HumanEval-X, MBXP,
and MathQA datasets. We perform the 9 local morphisms based on AST transformations.

1. Variable Renaming (VR):rename a variable, with a new name randomly chosen from all
variable names in the dataset, or use “vary” for simplicity

2. Boolean Exchange (BE): propagate the exchange of “true” and “false” throughout the
method and preserve the same logic

3. Loop Exchange (LE): exchange for loops and while loops

4. Switch To If (SI):replace a switch statement with an equivalent if statement

5. Unused Statement(US): insert an unused string declaration to a randomly selected basic
block in a method
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6. Reorder Condition (RC): write the condition in reverse order (e.g., change i < n ton > i)
7. Permute Statement(PS): swap two independent statements (i.e. without data or control
dependence)

8. Modify Condition(MC): change the binary operation in the condition (e.g., change i < n
toi < n)

9. Remove Else(RE): delete the else branch of the if-else statement

The first 7 morphisms are adopted from JavaTransform(Rabin et al.,[2019) that conducts
functionally equivalent transformations, which means they are self-morphisms. Other than
self-morphisms, we add 2 morphisms: ModifyCondition and RemoveElse, that change the
program’s function.

For global morphisms, since the three datasets above do not contain multiple solutions to
the same problem using the same PL, we complement with code from the test split of Code
Contest(L1 et al., )2022) dataset.

For dataset statistics and the detailed preprocess procedure, please refer to Table2]in the
Appendix.

Models We evaluate Text-Davinci and ChatGPT. We input (code, code) pairs from the
datasets or generated by morphisms, and ask the model to answer whether they are func-
tionally equivalent.

Evaluation We collect the model’s yes/no responses and calculate the average precision for
different morphisms.

3.2.3 Results

The results are demonstrated in Figure[dl Overall, Text-Davinci and ChatGPT make a tie.
Locally, ChatGPT is better at identifying nonequivalent morphisms, and worse at equivalent
ones. Globally, Text-Davinci is better at identifying global nonequivalent morphisms. Note
that a random guess leads to a precision of 50%, so both models behave just slightly better
than random guesses for identifying global equivalence.

3.3 Experiment 2: Translation Functor Between Different PL Categories

3.3.1 Categorical Perspective Settings

We investigate the model’s ability to perform code translation by utilizing functors between
two programming language categories. To isolate the influence of natural language, we
exclude problem descriptions and code comments, forcing the models to focus solely on
translating code from one programming language (PL) category to another. The input
prompt may contain a request for translation using natural language (e.g., “translate the
below Java code to Python code”).

3.3.2 Implementation

Datasets We conduct evaluations on the HumanEval-X, MathQA, and MBXP datasets. The
input category is Java, while the output categories are JavaScript and Python.

Models We evaluate five models: Text-Davinci, ChatGPT, CodeGeeX, Llama2 and StarCoder.
For CodeGeeX, code translation is supported inherently, so we simply input the Java code
without additional text. For the other models, we provide prompts that request the model
to do the translation.

Evaluation We extract the functions from the model’s responses and assess their correctness
using the Pass@1 rates of execution-based tests.

3.3.3 Results

The results are depicted in Figure[f] Among the three models, ChatGPT performs the best,
exhibiting a slight advantage over Text-Davinci. With regards to the datasets, ChatGPT and
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Figure 5: Comparison of performance for the model as translation functor between different
PL categories. (Left) Translate from Java to JavaScript (Right) Translate from Java to Python.

Text-Davinci achieve nearly perfect translation accuracy on MathQA, whose data consists
of functions with internal variable initialization, and without any input arguments, loops,
or conditional statements. This indicates ChatGPT’s and Text-Davinci’s proficiency in
reproducing exact numerical values and handling simple program structures.

3.4 Experiment 3: Explanation Functor and Reproduction Functor Between PL and NL
Categories

3.4.1 Categorical Perspective Settings

Code explanation and code generation tasks have been conducted separately in previous
work. However, from a categorical perspective, we can make a combination. We define the
explanation functor as the functor that maps an object from a PL category to an NL category,
with a precise description of the code’s function. We define the reproduction functor as
the functor from an NL category to a PL category, that uses an explanation object in NL
to reproduce the code of the same function in a PL category. If the reproduced code is
functionally the same as the original code, we reckon the model preserves the functional
equivalence after applying an explanation functor and then a generation functor.

3.4.2 Implementation

Datasets We conduct the evalution on three datasets: HumanEval-X, MathQA, and MBXP.
For consistency, we select Java as the programming language (PL) category for all evalua-
tions.

Models We evaluate Text-Davinci, ChatGPT, Llama2 and StarCoder, prompting each model
twice. In the first prompt, we ask the models to describe the code using natural language,
including the precise function name, arguments, and return type, and provide sufficient in-
formation to reproduce the code. In the second prompt, we provide the model’s explanation
and ask it to translate the description back into code.

Evaluation To evaluate the correctness of the reproduced code, we extract the functions from
the model’s second responses and assess them using the Pass@1 rates of execution-based
tests.

3.4.3 Results

The results are depicted in Figure@ On the same datasets and with the same two models,
the average pass@1 rate is about 30% lower compared to that of the translation functor. This
indicates the model has significant information loss in the explain-reproduce process.
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Figure 6: Comparison of model performance for the model as the combination of explanation
functor and reproduction functor between PL and NL categories.

3.4.4 Additional Notes on the composite task

As models evolve, scores on high-quality datasets tend to saturate (HumanEval 90%).
Should we abandon HumanEval, and call for massive efforts to construct new ones? We
believe it’s not the only way. With CatCode, we can easily define composite tasks, and make
the evaluation effective again. The construction of composite tasks is mostly automatic,
greatly reducing the labor for collecting new datasets.

Moreover, real-world applications often require model to handle those composite tasks. For
example, developers may need to use the model to write new features, and synchronize
code updates between Android and iOS versions. To this end, we propose and experiment
on a new task “repair morphism + translation functor” using the CodeScope dataset. We
use the code repair subset from the CodeScope dataset(Yan et al.,2023) and add a step for
the model to translate from C++ to C after debugging C programs. Results on GPT-4 show
that pass@1 drops from 26/60 in the original task to 18/60 in the composite task, which
shows that the composite task is more difficult.

3.5 Summary

Based on our experiments, we have found that both Text-Davinci and ChatGPT models
are capable of identifying the impact of one or two local morphisms on code function.
However, identifying global morphisms proves to be challenging for these models. In terms
of code translation, both ChatGPT and Text-Davinci models outperform other models. They
demonstrate accurate reproduction of basic syntax, variable names, and numerical values.
Nevertheless, when dealing with more intricate program structures and aligning data types
across different programming language categories, these models encounter obstacles that
hinder more precise translation.

It is important to note that maintaining functional equivalence between code and natural
language presents a more formidable challenge compared to code translation.

4 Related Work

4.1 Coding Abilities of Large Language Models

Research on large language models trained on code has made significant strides. CodeBERT
(Feng et al., 2020) and GraphCodeBERT (Guo et al.,2020) incorporated program Abstract
Syntax Trees (AST) and data flow information to enhance code structure and context un-
derstanding. The Encoder-Decoder architecture in CodeT5 (Wang et al.,2021) and PLBART
(Ahmad et al.|[2021) supports multi-task learning, aiding code translation and generation.
More recently, the emergence of Codex (Chen et al.,2021), ChatGPT, and StarCoder(Li et al.,
2023) has brought GPT-based models into the mainstream for content generation tasks, in-
cluding coding. These models have shown impressive performance across various domains,
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but their proprietary nature, limited access to data, or lack of model checkpoints have made
it challenging to thoroughly evaluate and understand their capabilities and limitations.
Consequently, there is a need to develop a comprehensive framework to evaluate these
black-box models.

4.2 Code Model Evaluation

Evaluation of code models is diverse, encompassing match-based, task-based, and execution-
based frameworks. The match-based approach, exemplified by CodeBLEU(Ren et al.,[2020),
considers n-gram matches and AST similarity but may overlook functional equivalence in
varying solutions. Task-based evaluations, like CodeXGLUE(Lu et al}[2021), offer compre-
hensive assessments across coding tasks but lack uniformity in data and task settings, limit-
ing scalability. Execution-based evaluation, used in benchmarks like MBXP(Athiwaratkun
et al., 2022) and MultiPL-E(Cassano et al.,2023), judges code correctness through test cases.
Our work mainly focuses on providing a new framework for unifying the task-based eval-
uation. While our work also considers test cases from execution-based benchmarks, our
focus extends beyond correctness evaluation to include code morphism, PL to NL functor
aspects, and the composition of different tasks, for example the code reproduction task can
be viewed as the combination of code explanation and generation tasks.

Moreover, code-related models are found to be sensitive to slight edits in the prompts,
therefore to evaluate their robustness is crucial. Previous work applies semantics-preserving
transformations on code docstrings and program, for better training and evaluation of
models(Wang et al., 2022; Henkel et al.}[2022). Apart from using transformations based on
AST edits to ensure accuracy, we further investigate the models’ robustness by providing a
finer-grained characterization based on the edit distance of correct and incorrect edits.

5 Conclusion

Our contributions include introducing CatCode as a novel evaluation perspective based
on category theory, which enables a comprehensive and mathematically abstract approach
to evaluate LLMs that excel in understanding and generating a mixture of code and text.
Based on categorical perspectives, we present a standardized automatic evaluation platform,
which is adaptive to new datasets, tasks, and models. We evaluate competitive LLMs to
provide valuable insights and find out current models’ deficiency in recognizing functionally
equivalent code and preserving information of code function between the code and its
explanation. We open-source our platform, hoping to contribute to the comprehensive and
standardized evaluation for LLMs by offering a categorical perspective to deal with the
mixture of code and text. We hope that CatCode inspires further research and development
in the field, leading to LLMs that can effectively assist developers in more complex coding
tasks and contribute to advancements in artificial intelligence and software engineering as a
whole.

6 Discussion

While we strive to apply categorical perspectives to offer a comprehensive and standardized
way of evaluation, we find some limitations and room for future work. First, we use prompts
to instruct the models to act as certain functors, but prompts that express similar meanings
will lead to different results, we have not investigated which prompts are more suitable for
the model or which models are more robust to different prompts.

In this paper, our experiments primarily focus on objects, morphisms, functors, and their
combinations. For future work, more powerful concepts and properties in category theory
can be used for more complex and composite coding tasks. For example, we can further
investigate the setting of composing many morphisms and many functors, to further explore
the commutative law and isomorphism properties of categories.

10
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Appendix

The appendix is divided into three main sections, each focusing on distinct aspects of the
study. These sections are labeled as follows:

A. Implementation Details: This section covers the implementation process, including the
GitHub link to our code, dataset details, data filtering, model specifications, and evaluation
metrics, providing information on how to reproduce based on our standard evaluation
pipeline.

B. Experimental Details: This part introduces the experimental settings and more experi-
mental results in detail. We further discuss the model’s performance on different morphism
types in the identification experiment, and the common error types in the translation and
reproduction experiments.

C. Case Study: This section offers some intuitive examples of the experiments. Through
analysis of those examples, we can find some limitations of current models, prompts, and
test scripts.

A Implementation Details

We have uploaded the code to GitHub: https://github.com/scorpio-nova/CatCode. A
README . md file is provided, offering step-by-step instructions on how to use the evaluation
platform and replicate the entire evaluation process in a standardized way.

In this section, we will provide additional details regarding the reproduction process,
including the dataset split, data filtering, models used, and evaluation metrics.

A.1 Dataset Details

The following datasets were used in our evaluation:

. HumanEval—XE} a human-crafted dataset with 164 problems, correct solutions in 5 dif-
ferent languages, and test cases. It is a benchmark for evaluating code generation and
translation models. We use the Java split of HumanEval-X as input for applying mor-
phism, code translation, and code explanation. Although Mxeval provide multilingual
solutions, they are generated by models and do not make a distinction between correct
and wrong solutions. In contrast, HumanEval-X provides correct solutions, making it a
more suitable complement.

e MBXP: a benchmark for evaluating code generation models. It covers over 10 program-
ming languages and is generated using a scalable conversion framework that transpiles
prompts and test cases from the original Python datasets into the corresponding data
in the target language. It’s a dataset similar to HumanEval-X but does not ensure the
correctness of the transpiled code.

* MathQA: a dataset for evaluating math problem solvers. All functions in this dataset
have no input argument and return a number. The functions first initialize variables, then
do some calculations, and do not use any loops or conditional statements. Compared to
HumanEval-X and MBXP, the code in MathQA is simpler in structure and functionality.

® Code Contest: a large-scale competitive multi-language programming dataset used for
training AlphaCode(Li et al., 2022). It consists of programming problems, test cases in
the form of paired inputs and outputs, and both correct and incorrect solutions. Since the
aforementioned datasets do not provide multiple solutions within the same programming
language, Code Contest serves as a valuable complement by offering multiple solutions
to the same problem, representing global equivalence and non-equivalence.

Data filtering

Shttps:/ /huggingface.co/datasets/THUDM/humaneval-x
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Model Morphism  Translation Functor ~Explanation Functor Reproduction Functor
Davinci v v v v
ChatGPT v v v v
CodeGeeX v
LLaMa2-7b v v v v
StarCoder v v v v

Table 1: Baseline Models and their supported evaluation tasks.

¢ Only the Java split of HumanEval-X, MBXP, and MathQA datasets are used. The local
morphism is applied by JavaTransformer by AST edits at the function level. To use
JavaTransformer, code must compile successfully and contain a single function. We filter
out code in the Mxeval datasets that are generated by the model and cannot compile or
contain multiple functions.

¢ Due to the large size of the Code Contest dataset, only the test set is used. Considering
that the maximum token length of Text-Davinci is 2048, we filter out solutions with a
length greater than 500. This ensures that the code pair length remains < 1000, allowing
for additional tokens for prompt content and response. After filtering, 97 problems
remain, and a problem may have multiple correct and incorrect solutions in different
languages. We utilize the Java and Python splits of this dataset.

A.2 Model details

We utilize the following baseline models by making API calls to their official endpoints: Text-
Davinci-003 (referred to as Davinci), ChatGPT, CodeGeeX. The default hyperparameters of
these models are used, with the exception of setting max_token to 500 when an early stop of
the answer is observed.

Table[l| provides an overview of the tasks supported by each model. Since Text-Davinci-
003 and ChatGPT support various types of text inputs and outputs, they are capable of
performing all tasks. On the other hand, the CodeGeeX API does not support natural
language output, so we only employ it in translation functor experiments.

A.3 Evaluation Metrics

To assess the performance of the model, we conduct two types of tests: pairing test and
execution-based test.

The pairing test is utilized for morphism identification. The task involves comparing two
code snippets and requesting the model to explicitly answer “True” or “False”, along with
providing a comparison. For automatic evaluation, we extract the True” or “False” answer.
The precision score is used to evaluate the model’s ability to identify different equivalence
classes. For equivalent objects, the precision is calculated as Precision(eq) = TPE%’ while
for nonequivalent objects, the precision is calculated as Precision(neq) = %

The execution-based test is employed for both translation and reproduction experiments.
We extract the functions from the model’s responses and evaluate their correctness using
the Pass@1 rates of execution-based tests. This test ensures that the translated /reproduced
code produces the same expected results as the original code.

B Experimental Details

B.1 Morphism Identification
Data statistics. Table[Z]provides the statistics of the raw data, filtered data, and constructed

pairs for the morphism identification experiment. The filtering strategy, described in Sec-
tion[A.T} involves removing comments and docstrings, resulting in filtered data consisting
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Dataset #after filter / #raw data #equivalent pair #nonequivalent pair
Humaneval-X 159 / 164 477 173
MBXP 953 / 974 2849 1010
MathQA 1734 / 1881 4852 1418
Code Contest 97 / 164 97 366

Table 2: Dataset statistics for morphism identification experiment.

HumanEval MathQA MBXP
BE-VR (66.67) MC (45.66) BE (33.33)
US (74.74) RC-US (85.71) PS-US (69.57)

LE-RC (78.57) PS-US (87.84) RC-US (70.39)

Table 3: Morphism types with the three worst average precision scores of each dataset. As
an example for notations, BE-VR (66.67) stands for a 2-eq morphism of “Boolean Exchange”
and “Variable Renaming” with a precision score of 66.67%.

solely of Java code. The constructed pairs are generated through sampling. It is worth
noting that certain morphisms can have multiple outputs for a given input. For instance,
the Variable Renaming morphism can be applied to all variables in a function, resulting
in multiple outputs equal to the number of variables. To balance the number of outputs
across different morphism types, random sampling is employed when there are more than
two applicable morphism types. For each code sample, two types of morphisms are first
sampled, followed by sampling one output for each morphism type.

Discussion of different morphism types.

Which morphism types are harder to be identified, and are they hard across datasets? We
calculate the average precision scores for 1-eq, 2-eq and 1-neq local morphisms for ChatGPT
answers, as shown in Table

The following observations can be made:

® For one morphism: “Unused Statements”, “Modify Condition” and “Boolean Exchange’
are particularly difficult to identify. One possible reason for this difficulty is that these
morphisms involve subtle changes or transformations in the code that may not be eas-
ily recognizable based on the surrounding context alone. It requires a more nuanced
understanding of the code logic and structure to detect these morphisms

7

® For 2-eq morphisms: The observation that “Unused Statements” remains challenging
when combined with other morphisms suggests that the presence of multiple morphisms
in the code can further complicate the identification task.

¢ Dataset-specific difficulties: The results indicate that the difficulty of identifying “Unused
Statements” persists across datasets, suggesting that this morphism type poses inherent
challenges in code comprehension. On the other hand, the specific difficulty in identifying
“Modify Condition” in the MathQA dataset may be attributed to the nature of the dataset
itself, which focuses on math problem solvers.

B.2 Translation Functor

Data statistics. We use the filtered data in Table[2)as input, i.e. 159, 953, and 97 Java Snippets
for HumanEval-X, MBXP, and MathQA, respectively. Each model generates a Python object
and a JavaScript object for each Java object. During test phase, since the Mexeval dataset
is missing 3 test cases in the Java split of HumanEval (TaskID: 32, 38, 50), we use 156, 953,
and 97 Java functions to calculate the pass@1 rates for HumanEval-X, MBXP, and MathQA
respectively.

Results statistics. The pass@1 score of different models on different datasets is shown in
Table[d] Overall, ChatGPT has a relatively higher translation ability.
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HumanEval MathQA MBXP
Model Avg.
Java->Py Java->JS Java->Py Java->JS Java->Py Java->JS
Text-Davinci 80.8 79.5 99.4 99.1 66.6 64.4 81.6
ChatGPT 83.0 85.8 99.2 99.4 69.0 72.1 84.8
CodeGeeX 24.5 20.5 70.5 72.2 29.2 32.8 41.6

Table 4: Translation pass@1 score (%) statistics, corresponding to the Figure 5| (Left). The
models translate Java code to two languages Python (Py) and JavaScript (JS), on three
datasets. The average (Avg.) is the average score over the six scores.

Model HumanEval MathQA MBXP
Java->Py Java->JS Java->Py Java->JS Java->Py Java->JS

Unknown (10) ReferenceErr. (24) Unknown (9) Test Failure (10) Unknown(175)  ReferenceErr. (285)

Davinci NameErr. (7) Test Failure (18) IndentationErr. (1)  ReferenceErr. (2) NameErr. (47) Test Failure (174)
Test Failure (2) TypeErr. (5) NameErr. (1) SyntaxErr. (2) ReferenceErr. (26) TypeErr. (41)

Unknown (14) ReferenceErr. (21) Unknown (8) Test Failure (9) Unknown (145)  ReferenceErr. (247)

ChatGPT NamekErr. (6) Test Failure (17) SyntaxErr. (4) SyntaxErr. (1) NameErr. (81) Test Failure (101)
SyntaxErr. (2) SyntaxErr. (1) NamekErr. (1) \ (0) SyntaxErr. (15) SyntaxErr. (8)

Unknown (50) Test Failure (82) ReferenceErr. (330) Test Failure (394)  Unknown (175)  ReferenceErr. (559)
CodeGeeX  NameErr. (31) ReferenceErr. (26)  NameErr. (107)  ReferenceErr. (75) NameErr. (47) Test Failure (289)
Test Failure (10) TypeErr. (6) Unknown (38) SyntaxErr. (11) ReferenceErr. (26) TypeErr. (55)

Table 5: Most frequent failure types of translation functor. The data in the table cell is written
as ErrorType (frequency), and Err. is short for Error. Specifically, the “Unknown” type only
exists in Python and “Test Failure” represents the code that complies successfully but fails
to pass some of the test cases. Other types of errors in this table are primarily caused by
compilation errors.

Discussion of failure types. Table[5|represents the most frequent failure types of translation
functor on three datasets. We observe that most errors are compilation errors rather than
failures at corner test cases.

These errors are often caused by type mismatches between different programming languages.
For instance, when translating a list in Java, there are multiple potential types in Python,
including list, tuple, and List from the typing module.

The occurrence of “NameError” and “ReferenceError” indicates an unfaithful translation
of variable names by the model or mismatched function input arguments across different
languages for the same problem. This is a limitation inherent in the current evaluation
setup.

Overall, the models have demonstrated the ability to perform correct translations in most
cases between different programming languages. The errors mainly arise from type align-
ment issues between programming languages and local variable definitions. These errors
are typically easy to debug for programmers if provided with relevant information. Future
work could involve passing error messages to the model and allowing it to debug itself.

B.3 Explanation and Reproduction Functor

Data statistics. Same as Appendix[B.2} we use 156, 953, and 97 Java functions to calculate
the pass@1 rates for HumanEval-X, MBXP, and MathQA separately.

Results statistics. Table [6|shows the pass@1 rates of different models. TextDavinci is better
at MathQA, while ChatGPT is better at HumanEval and MBXP datasets. The pass@1 score
is significantly lower compared to translation functor experiments, indicating that it’s a
more difficult task.

Discussion of failure types. Tabledﬁ] shows the most frequent failure types of translation
functor on the three datasets. Based on the results, it appears that both models encounter
similar types of failures across the different evaluation tasks. The “Test Failure” type is par-
ticularly prominent, indicating that the reproduced code, although compiling successfully,
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Model HumanEval MathQA MBXP Avg.
TextDavinci 33.0 75.5 55.2 54.6
ChatGPT 35.9 69.1 57.1 54.0
Llama-2-7b-chat-hf 259 59.4 454 435
Starchat-beta 21.8 454 40.7 36.0

Table 6: Pass@1 score (%) statistics of the reproduced code, corresponding to the Figure 6]
(Right).

Model HumanEval MathQA MBXP
CannotFindSymbol (47) Test Failure (350) Test Failure (181)
TextDavinci TypeError (38) Uninitialized Variable (24)CannotFindSymbol (164)
Test Failure (22) CannotFindSymbol (18) TypeError (27)
CannotFindSymbol (46) Test Failure (401)  CannotFindSymbol (137)
ChatGPT TypeError (39) DuplicateDeclaration (60)  Test Failure (126)
Test Failure (17) SyntaxError (44) UnexpectedEOF (70)

Table 7: Most frequent failure types of the reproduced code. The data in the table cell is
written as ErrorType(frequency). Specifically, the “Test Failure” type represents the code
that complies successfully but fails to pass some of the test cases. Other types of errors in
this table are primarily caused by compilation errors.

fails to pass some of the test cases. Additionally, both models also encounter errors related
to symbol identification, such as “CannotFindSymbol” and “TypeError”. These errors are
primarily compilation errors.

It’s worth further investigating the causes behind these failure types and exploring strategies
to improve the models’ performance, especially in handling test cases and resolving symbol-
related errors.

C Case Study

In this Section, we analyze some classical cases from our three experiments.

C.1 Morphism Identification

Refer to Figure [7] and Figure [8 Those cases show the model can identify the literate
differences between the code pairs but fails to clearly interpret their functional difference.

C.2 Translation Functor

According to the previous statistics, most translation errors happen in the compilation stage.
We are also concerned about if there are no compile errors, when will the model make
mistakes. Figure [g] shows such a case where some information about the numerical data
type is missing when translation.

C.3 Explanation Functor and Reproduction Functor

Figure[10|shows a case where information loss and hallucination happen during explanation
and reproduction. This is often the case when the model deals with the MathQA dataset. To
improve the performance of the model, using few-shot prompts to illustrate how to explain
the code may be useful.
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Prompt Text:

Do the two codes below have the same output for each input? In your first sentence, answer “True” or
“False”. Then points out all the differences of the two codes.

HumanEval/154 LoopExchange-ReorderCondition
public boolean cycpatternCheck(String a, String b) { public boolean cycpatternCheck(String a, String b) {
int I = b.length(); int 1 = b.length();
String pat =b + b; String pat =b + b;
for (int i = 0; i <= a.length() - I; i++) { for (int i = 0; i <= a.length() - I; i++) {
for (int j = 0; j <= ; j++) { {
if (a.substring(i, | + i).equals(pat.substring(j, j intj=0;
+D) { while (j <=1) {
return true; if (a.substring(i, i + 1).equals(pat.
} substring(j, j + 1)) {
} return true;
} }
return false; jtts
} }
}
}
return false;
}
ChatGPT Response

False. Differences:

- In code A, the while loop is used to iterate through the '1+1" possible subpatterns of "a’ that have length ‘I'. In code B, the
for loop is used instead.

- In code B, the condition for the for loop is 'j <=1", which means it checks if 'j" is less than or equal to "I". This will result
in the last possible subpattern being ignored because 'j° will stop at 'I" and not check anything after it. Therefore, the correct
condition should be 'j <T".

- In code B, the condition for comparing the substrings is "if (a.substring(i, | + i).equals(pat.substring(j, j + 1)))". This checks
if the substring of "a’ starting from index 'i° with a length of 'I' equals the corresponding substring of "pat’. In code A, the
condition is similar, except it uses ‘a.substring(i, i + 1)* instead. Both conditions are correct, but they differ slightly in their
expression.
HumanEval/129
ChatGPT Response
False. The codes have differences in their inner loops and conditions inside the loops.

LoopExchange-ReorderCondition

Code A uses a while loop to iterate through the columns of each row, whereas Code B uses two for loops
to iterate through both rows and columns of the grid.

Code A also checks whether a cell contains a 1 before checking its neighbors, while Code B simply
iterates through every cell regardless of its value.

Finally, there is an error in Code B where it checks the neighbor to the bottom incorrectly: it should use 'i
+ 1" instead of "1 +1i".

Figure 7: Two failed cases of ChatGPT in the morphism identification experiment. For
“HumanEval/154”, ChatGPT fails to interpret the loop execution condition correctly. For
“HumanEval/129” ChatGPT reckon equivalent math expression as different. To improve the
model’s reasoning ability, a possible way is to utilize the method of Chain of Thoughts(CoT)
to construct better prompts and give the model some time to think before making a decision.
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Prompt Text:
Do the two codes below have the same output for each input? In your first sentence, answer “True” or
“False”. Then points out all the differences of the two codes.
HumanEval/94 BooleanExchange-VariableRenaming
public int skjkasdkd(List<Integer> Ist) { public int skjkasdkd(List<Integer> var) {
int maxx = 0; int maxx = 0;
for (inti : Ist) { for (inti : var) {
if (i > maxx) { if (i > maxx) {
boolean isPrime = !(i != 1); boolean isPrime =i !=1;
for (int j = 2; j < Math.sqrt(i) + 1; j++) { for (int j = 2; j < Math.sqrt(i) + 1; j++) {
if (i % j == 0) { if (i %j == 0) {
isPrime = true; isPrime = false;
break; break;
} }
¥ ¥
if (!(isPrime)) { if (isPrime) {
maxx = i; maxx = i;
} }
} }
} }
return sum; return sum;
} }
ChatGPT Response
False.
Differences:
- In code A, the “isPrime’ boolean variable is assigned to *!(i = 1)* which is equivalent to 'i == 1". Whereas in code B, it is
assigned to ‘i !=1".
- In code A, the condition for updating the ‘maxx" variable is "if (!(isPrime))" which means if the number is not prime.
Whereas in code B, it is “if (isPrime)" which means if the number is prime.
- Inside the inner loop of the “isPrime’ check, code A sets "isPrime’ to "true’ if a factor of "i* is found and breaks out of the
loop. This is incorrect since it sets "isPrime” to true even when a factor is found, whereas it should set it to false because 'i’
has factors other than 1 and itself. Code B correctly sets “isPrime’ to “false’ in this case.

Figure 8: A failed case of ChatGPT in the morphism identification experiment. ChatGPT
understands the meaning of the word “isPrime” and points out the logical error. Although
logical error exists in natural language, the code function is still the same. ChatGPT fails to
find that code A is still equivalent to B.
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Prompt Text:

answer the JavaScript function body without further comments and explanations.

MBXP/803

Java Code (from the dataset) JavaScript Code (by TextDavinci)

public static Boolean isPerfectSquare(int n) { if(n<0) {

if(n<0) { return false;

return false; }

} let sqrt = Math.sqrt(n);

int sqrt = (int) Math.sqrt(n); return sqrt * sqrt == n;

return sqrt * sqrt ==n; }
}
Test Cases

var arg00 = 10;
var x0 = isPerfectSquare(arg00);

var argl0 = 36;
var x1 = isPerfectSquare(arg10);
var vl = true;
if(!compare(x1, v1)){
throw 'Error at 2th assert statement. Value ="' + JSON_stringify(x)
}
var arg20 = 14;
var x2 = isPerfectSquare(arg20);
var v2 = false;
if(!compare(x2, v2)){
throw 'Error at 3th assert statement. Value ="'+ JSON.stringify(x)

}

Execution Results

throw 'Error at 3th assert statement.

Translate the below Java code to JavaScript code. The function header is function isPerfectSquare(n) { {. You should only

Figure 9: A notable failure case occurred during the translation functor experiment with
Text-Davinci. Text-Davinci fails to consider data type conversions during translation. This
issue becomes evident when examining the three test cases provided in Mxeval, as the
execution encounters an error in the third case. However, if it were not for the incorrect test
scripts generated by the model in Mxeval, the translated code should have been identified
as incorrect in the first case. This particular case highlights the importance of enhancing the
correctness of model-generated execution test scripts for a more accurate test of code.
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Prompt Text:

(Explanation task) Please describe the following code written in " using natural language. Your
description should include the exact function name, its arguments, and the return type. Additionally,
provide enough details such as variable initialization to allow someone to reproduce the code based on
your explanation.

(Reproduction task) Translate the below code description to Java code: <Explanation>

MathQA/1014
Java Code (from the dataset) Reproduced Code (by Text-Davinci)
double n0 = 2;

public static double problem() { double n1 =4;
double n0 =2.0; double n2 =1;
double n1 =7.0; double n3 = 3;
double n2 = 57.0; double n4 =2;
double n3 =3.0; double n5 = 8;
double n4 =6.0; double n6 = 10;
double n5 = 63.0; double n7 = 3;
double n6 = 5.0; double n8 = 14;
double n7 =9.0; double n9 = 2;
double n8 =206.0; double n10 = 3;
double n9 =5.0; double t0 = Math.pow(n9, n10);
double n10 = 8.0; double t1 = Math.min(n3, n0);
double t0 = Math.pow(n9, Math.min(n3, 5)); return t0 + t1;
double t1 = Math.pow(n10, Math.min(n0, 5));
double answer =t0 + t1;
return answer;
}

Explanation (by Text-Davinci)

This is a public static method called 'problem()' that does not take any arguments and returns a double
value. The method initializes the variables n0 to n10 with double values and assigns them to the specified
numbers. It then uses the Math.pow() method to use the variables n9 and n10 as the base for the power and
the Math.min() method to use the variables n3 or n0 as the second parameter. It then assigns these two
values, t0 and t1, as addends of a sum and returns the answer, a double value.

Execution Results

Exception -- test case 0 did not pass.

Figure 10: A failure happen in the explanation and reproduction functor experiment. Text-
Davinci doesn’t explain the code with any numerical details, and it makes up some numbers
during reproduction.
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