HYBRID SPATIAL REPRESENTATIONS FOR SPECIES DISTRIBUTION MODELING

Anonymous authors

Paper under double-blind review

ABSTRACT

We address an important problem in ecology called Species Distribution Modeling (SDM), whose goal is to predict whether a species exists at a certain position on Earth. In particular, we tackle a challenging version of this task, where we learn from presence-only data in a community-sourced dataset, model a large number of species simultaneously, and do not use any additional environmental information. Previous work has used neural implicit representations to construct models that achieve promising results. However, implicit representations often generate predictions of limited spatial precision. We attribute this limitation to their inherently global formulation and inability to effectively capture local feature variations. This issue is especially pronounced with presence-only data and a large number of species. To address this, we propose a hybrid embedding scheme that combines both implicit and explicit embeddings. Specifically, the explicit embedding is implemented with a multiresolution hashgrid, enabling our models to better capture local information. Experiments demonstrate that our results exceed other works by a large margin on various standard benchmarks, and that the hybrid representation is better than both purely implicit and explicit ones. Qualitative visualizations and comprehensive ablation studies reveal that our hybrid representation successfully addresses the two main challenges. Our code is open-sourced at https://anonymous.4open.science/r/HSR-SDM-7360.

028 029

031

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027

1 INTRODUCTION

Understanding species distribution ranges is a key issue in ecological research, and it has become increasingly important in the context of the current global climate crisis and biodiversity decline. Conventionally, species distribution data has been collected through field studies by human experts and explorers, who must gather and assess large amounts of information to determine whether a species is present in a given region. These processes are typically slow and labor-intensive, and by the time the models are completed, they may already be outdated or irrelevant.

Species Distribution Modeling (SDM) is a method that aims to use collected data to directly predict the distribution range of species, thus making related ecological research easier (Elith & Leathwick, 2009; Elith et al., 2010; Miller, 2010). SDMs have many crucial applications in fields such as climate change assessment (Santini et al., 2021), invasive species management (Srivastava et al., 2019), and extinction risk mapping (Ramirez-Reyes et al., 2021). Whilst such models have achieved some success over the past two decades, most SDMs remain poor indicators of important ecological parameters (Lee-Yaw et al., 2022). Consequently, new SDM methodologies employing more advanced modeling techniques have continued to emerge (Beery et al., 2021).

One challenge in constructing SDMs is the collection of sufficient data for both training and testing (Feeley & Silman, 2011; Vaughan & Ormerod, 2005). The large volume of data required for constructing accurate models, coupled with the difficulty of obtaining it, has consistently been a major obstacle in the development of SDMs. With the emergence of community-sourced data platforms such as iNaturalist, eBird, and PlantNet, difficulties in data collection have been somewhat mitigated, but new challenges have arisen regarding data quality and the model's ability to process large volumes of data (Hartig et al., 2024). For example, due to the nature of the data collection process, most large species distribution datasets are highly susceptible to sampling bias, class imbalance, and noise (Benkendorf et al., 2023; Dubos et al., 2022; Kramer-Schadt et al., 2013).

Figure 1: Results of Independent Component Analysis (ICA) on the feature embeddings for implicit, explicit, and hybrid models. The explicit embedding captures higher-frequency information and reflects local environmental data, while the implicit embedding, as a global location encoder, is less noisy. The hybrid representation combines the strengths of both. Differences are more pronounced in the 1000 samples per species setting. Note the noise in the explicit embeddings are mainly caused by the presence-only and community-sourced natures of our training data used.

065

066

067

068

Recent advances Cole et al. (2023) in using deep learning for SDMs has reduced the demand for
large amounts of high-quality data. In particular, some recent methods applying implicit neural
representations achieved considerable accuracy, and no longer required training signals besides
presence-only data. However, in practice, predictions from those models are often of limited spatial
precision due to the implicit nature of their representational schemes: neural networks inherently
produce global embeddings that are not grounded in local features.

078 In this paper, we explore a challenging task that highlights the limitations of implicit representations. 079 First, we use presence-only data instead of presence-absence data. Since confirming a species' presence is generally easier than confirming its absence, many previous studies have constructed SDMs using presence-only data (Barbet-Massin et al., 2012; Mac Aodha et al., 2019; Cole et al., 081 2023), making this a more difficult but valuable task. Second, we use **no additional environmental** information. Although conventional SDMs usually use a lot of environmental inputs, and satellite 083 images are also a common source of information (Dollinger et al., 2024; Gillespie et al., 2024; 084 He et al., 2015; Klemmer et al., 2023), we will focus on exploring the locational embedding and 085 thus not use those information. Third, similar to most previous deep learning-based methods, we use iNaturalist, a community-sourced dataset, which, as previously discussed, presents various 087 difficulties. Finally, we construct a single model for a large number of species simultaneously. 088

To address these issues, inspired by advances in explicit and hybrid representations, we propose a Hybrid Spatial Representation for Species Distribution Modeling. Specifically, our representation combines an implicit component based on FCNet (Mac Aodha et al., 2019) with an explicit component based on multiresolution hashgrids (Müller et al., 2022), forming a hybrid model well-suited for the SDM task. An intuitive view of these embeddings is shown in Figure 1.

Experiments show that our method achieves the best of both worlds, producing state-of-the-art results on this challenging task, outperforming both previously proposed methods and purely implicit or explicit versions of our model by significant margins. We also investigate the mechanisms behind the effectiveness of hybrid representations and characterize our model across a wide range of settings and evaluation methods for additional insights. Specifically, we show that hybrid representations are well-suited for learning from presence-only observations and modeling a large number of species simultaneously.

100 101

2 RELATED WORKS

102 103

104 2.1 Species Distribution Modeling

105

As discussed earlier, SDM is a challenging field that often requires learning from large volumes of
 inaccurate data. Recently, several works have used deep learning (Botella et al., 2018; Chen et al.,
 2017; Cole et al., 2023; Mac Aodha et al., 2019) to create SDMs from those massive datasets. This is

Figure 2: Illustration of our problem formulation and basic model structure.

a difficult task due to the inherent difficulties in the data, and therefore requires highly effective representational methods. The current state-of-the-art representation, as verified by several works (Cole et al., 2023; Lange et al., 2024; Rußwurm et al., 2023), is the FCNet architecture (Mac Aodha et al., 2019), which makes use of a Residual Network (He et al., 2016)-based structure to achieve effective implicit location embeddings.

It is understandable that explicit or hybrid representations have not been previously applied in SDMs, since — as our experiments will later demonstrate — explicit representations often produce noisy predictions with artifacts. However, there is a strong rationale for using explicit representations in SDMs: popular implicit embedding-based models, which rely on neural networks, struggle to capture local details. Since neural networks lack a separable component to describe local distributional features, predictions from implicit models often consist of blurry "blobs" of distributional peaks with poorly defined boundaries.

Our work demonstrates the power of combining implicit and explicit representations for SDM construction, and achieves state-of-the-art results on challenging benchmarks.

137 138

139

121 122

2.2 IMPLICIT, EXPLICIT, AND HYBRID REPRESENTATIONS

In fields such as signal processing, 3D vision, and computer graphics, Neural Implicit Representations (NIR) have achieved great results (Sitzmann et al., 2020; Mildenhall et al., 2021). A common pattern in those fields is that the success of implicit representations was often followed by the appearance of explicit ones which offer advantages such as increased accuracy and efficiency (Chen et al., 2022; Sun et al., 2022; Yu et al., 2021). In practice, hybrid representations that combine both implicit and explicit schemes often achieve superior performance by capturing the strengths of of both approaches.

While some previous works in the context of global spatial encoding have used hybrid or explicit 147 representations (Kim et al., 2024; Mai et al., 2020; Rußwurm et al., 2023), to the best of our knowl-148 edge, no works on SDM have done this. In this work, inspired by Müller et al. (2022), we design 149 an innovative two-dimensional multiresolution hashgrid as an explicit representation, specifically 150 suited to the task of SDM construction. This model generates explicit embeddings, which are ag-151 gregated with conventional implicit embeddings from an FCNet-inspired portion. The aggregated 152 embeddings are then put through a regular neural network as results. We demonstrate the merits 153 of explicit representations, and show that our hybrid representation outperforms both implicit and 154 explicit schemes by combining their advantages.

155 156

3 PRELIMINARIES

157 158

Let $\mathcal{P}(\cdot) : [-1, 1]^{n \times 2} \to \{0, 1\}^{n \times S}$ be the ground-truth presence function, where S is the number of species in the model, and for the coordinates (lat, lon) (regularized between -1 and 1), we have $\mathcal{P}([lat, lon])_i = 1$ iff the species i is present at (lat, lon). Let $\mathbf{X} \in [-1, 1]^{N \times 2}$ be a matrix of coordinates where observations have been performed, where N is the number of observation entries. Corresponding to the observations are species indices $\mathbf{s} \in [1, S]^N$, where $\mathcal{P}(\mathbf{x}_n)_i = 1$ if $i = s_n$. Here \mathbf{x}_n represents the *n*th row of \mathbf{X} . While it is possible in practice that false presences occur through misidentification or aberrant migration, we treat this as regular noise in the data rather than a part of the problem formulation. Hence we need to construct a model $f(\cdot) : [-1, 1]^{n \times 2} \rightarrow \{0, 1\}^{n \times S}$ such that $f(\mathbf{X})$ approximates $\mathcal{P}(\mathbf{X})$.

This can be seen as a multiclass version of the positive-unlabeled learning problem, since observations can be seen as presences for one species and unlabeled data points for all others. Du Plessis et al. (2014) show that this is equivalent to a weighted positive-absence problem with the unlabeled points as absences, which coincides with works in SDM that consider "pseudoabsences" (Barbet-Massin et al., 2012). Works like Phillips et al. (2009) have used additional randomly sampled points as unlabeled points for all species.

Given random all-unlabeled pseudoabsences $\mathbf{Z} \in [-1, 1]^{N \times 2}$, the Assume Negative Full Loss as in Cole et al. (2023) can be written as follows:

$$\mathcal{L}_{\text{full}}(\mathbf{X}, \mathbf{s}, \mathbf{Z}) = -\frac{1}{NS} \sum_{i=1}^{N} \sum_{j=1}^{S} (\mathbb{1}_{j=s_i} \lambda \log f(\mathbf{x}_i)_j + \mathbb{1}_{j\neq s_i} \log(1 - f(\mathbf{x}_i)_j) + \log(1 - f(\mathbf{z}_i)_j)), \quad (1)$$

where subscripts represent row slices, and λ is a hyper-parameter to prevent the latter two terms from dominating.

¹⁸¹ Under the NIR-based setting, the function $f(\mathbf{X})$ consists of two parts: a location embedding $g(\cdot)$: ¹⁸² $[-1,1]^{N\times 2} \to \mathbb{R}^{N\times F}$ (where F is the dimension of the embedding, also known as the number of ¹⁸³ features), and the occupancy predictor $h(\cdot) : \mathbb{R}^{N\times F} \to \mathbb{R}^{N\times S}$ which takes the embeddings as input ¹⁸⁴ and outputs the occupancy predictions for the species. Hence the model is described by:

$$f(\mathbf{X}) = h(g(\mathbf{X})). \tag{2}$$

Usually $h(\cdot)$ has a simple structure, such as being a single linear layer, while $g(\mathbf{X})$ is a more sophisticated model. Hence the significance of the embedding g lies in encoding the coordinates in such a manner that it would be easy for h to conduct the final mapping step. We call the architecture of g the *representation scheme*. The current state-of-the-art is FCNet (Mac Aodha et al., 2019), which makes use of a Linear-ReLU layer followed by four repetitions of Linear-ReLU-Dropout-Linear-ReLU residual blocks.

At the beginning of g there is also often a quick positional encoding of the coordinates. This is because, per Sitzmann et al. (2020), implicit representations perform better when the inputs are of high frequency. FCNet uses the wrap encoding $(\sin(\pi lon), \cos(\pi lon), \sin(\pi lat), \cos(\pi lat))$.

Figure 2 displays a brief summary of the data and model structure in our problem formulation.

4 Methods

4.1 MOTIVATION

202 203 We notice two insufficiencies in the implicit formulation above.

Global Parameterization Since g is a neural network, in the back-propagation process, most parameters have nonzero gradient steps. More intuitively, one can see the implication that each parameter is equally capable of being associated with the Amazon Rainforest as with the Saharan Desert. In the process of training parameters gradually get implicitly mapped to different features, but there is still no guarantee that the parameters can reliably describe local environmental information.

209

198 199

200

201

176 177 178

185

Low Signal Frequency In addition, since MLPs follow the Lipschitz constraint, intuitively maintaining a degree of "smoothness," they often struggle to describe high-frequency patterns. Indeed, a lot of previous work in NIRs has focused on encoding the data to facilitate modeling. In our task, this means that embeddings for nearby locations tend to be similar regardless of their characteristics, which indicates an inability to describe local details. In practice this is very undesirable, since many ecological boundaries (*e.g.*, mountain ridges, wide rivers, and artificial constructs) cause sharp distinctions between ecosystems in physical proximity of each other.

Figure 3: Illustration of our multiresolution hashgrid representation's mechanism. The Earth's surface is divided using several different resolutions into different levels, and vertices of the grids formed from division are mapped to hashed features in the hash table. The explicit embedding of any position (cyan) is calculated via calculating features (green) at each resolution level (blue) using bilinear interpolation and concatenating them.

Principle for Explicit Embedding We propose a guiding principle which could simultaneously solve to problems above. We introduce explainable parameters which each correspond to only a specific region on Earth. If a data point is not contained within the region associated with a parameter, the gradient of that parameter with respect to this input is zero, thus creating *local* instead of *global* parameterization. In addition, at the boundaries between those regions, due to the change in the set of associated parameters, the Lipschitz constraint no longer applies, and thus the output can have arbitrarily high signal frequency.

Such an implementation would require an explicit rule dictating the correspondence between parameters and geographical regions, which currently no one has considered. Hence, we introduce a new explicit embedding scheme which suits our purposes.

241 242 243

253 254

256

257

258

259

260

262

216

217

218

219 220

222

224

230

4.2 MULTIRESOLUTION HASHGRIDS FOR SDMs

We propose using a multiresolution hashgrid encoding scheme as an explicit representation for SDM modeling. Specifically, we divide the Earth's surface into multiple grids with different resolution levels, and store trainable feature parameters associated with lattices of the grid in a hashtable.
Embedded features on any given point for each resolution level are then calculated via bilinear interpolation. Finally, the output embedding is given by concatenating all hashed features from the different layers. An intuitive depiction is shown in Figure 3.

The resolution of each layer follows a geometric sequence from a maximum resolution to a minimum resolution (both of which are hyper-parameters). Specifically, given maximum and minimum resolutions R_{max} and R_{min} , and a total of L layers, the resolution of layer l is calculated as follows:

$$R_l = R_{min} \exp\left(\frac{l}{L-1} \left(\log R_{max} - \log R_{min}\right)\right)$$
(3)

The grids allow for our model to explicitly capture information regarding the local environment by using the features as representation. Furthermore, the different resolutions allow for the description of explicit interactions in between smaller grids, based on their mutual intersection with larger grids. The hashgrid, meanwhile, ensures that the number of parameters created is not of overly large size.

261 4.3 HYBRID SPATIAL REPRESENTATION

Despite that our explicit embedding does carry many advantages, it inevitably also carries some drawbacks. For instance, due to the nature of encoding using artificially divided grids, there is a lot of noise in the resulting embedding. Furthermore, the implicit embedding's ability to aggregate global information is still valuable, while this ability is weakened for an explicit embedding. Hence, we propose a method to combine the two, and further, to make the model tunable between purely explicit and implicit encoding schemes.

Our method is the aggregate the locational embeddings from two parallel location encoders, one using the conventional implicit scheme and one using our explicit multiresolution hashgrid. We

Figure 4: Simplified schematics of our hybrid SDM architecture. The implicit portion sends wrapencoded coordinates into an MLP. The explicit portion uses the multiresolution hashgrid representation. The two feature embeddings are then concatenated and passed through the occupancy predictor.

concatenate resulting embeddings from the two, and proceed to input the concatenated results as the embedding for the occupancy predictor. 289

Letting $g_i(\cdot): [-1,1]^{N\times 2} \to \mathbb{R}^{N\times F_i}$ and $g_e(\cdot): [-1,1]^{N\times 2} \to \mathbb{R}^{N\times (F-F_i)}$ represent the encoders, 290 291 the resulting hybrid model is: 292

$$f(\mathbf{X}) = h(g_i(\mathbf{X}) \oplus g_e(\mathbf{X})), \tag{4}$$

293 where \oplus represents concatenation along the second dimension, and F_i is the dimension of the implicit embedding. We refer to the ratio $\frac{F_i}{F}$ as "implicitness," and treat it as a tunable hyper-parameter. 295 For an explicit model with L layers and M features per level, we have $F - F_i = L \times M$. In practice 296 we keep M to powers of two for implementational reasons and vary L for tuning implicitness. A depiction of the schematics of our hybrid model is shown in Figure 4. 297

5 **EXPERIMENTS**

284

285

287

288

298 299

300 301

302

5.1 IMPLEMENTATION AND SETTINGS

Our codebase was altered from Cole et al. (2023), and we use their version of the FCNet encoding 303 as well (which in turn is based on Mac Aodha et al. (2019)). We borrowed and altered part of the 304 explicit encoding implementation from Tancik et al. (2023), which in turn used Müller (2021) as the 305 core for the multiresolution hashgrid. All deep learning operations are based on PyTorch (Paszke 306 et al., 2019), and all optimizers were Adam (Kingma & Ba, 2014). 307

308 All experiments were conducted on a single GPU: either an RTX A4000 (16GB) or a GeForce RTX 309 3090 (24GB). We run our models for 10 epochs each across learning rates 0.01, 0.003, 0.001, 0.0003, and 0.0001, and report the best results here. For most of the experiments below we also ran models 310 across 9 implicitness settings from 0.0 to 1.0 with a step size of 0.125 but may have only reported 311 some of the results here for clarity of presentation — for the full results, results under suboptimal 312 learning rates, and raw data from graphs, please refer to Appendix A. For models with implicitness 313 smaller than 0.5 we use M = 16, while for models with implicitness larger than 0.5 we use M = 8. 314

315 The dataset used was iNaturalist, which is a popular choice for benchmarking SDMs and has been used in multiple previous works (Mac Aodha et al., 2019; Cole et al., 2023; Rußwurm et al., 2023). 316 We use standardized settings introduced by Cole et al. (2023) in order to ensure fair comparison, 317 and the specific version of the iNaturalist dataset we used was the same as theirs as well. To deal 318 with class imbalance, as well as to condition on the amount of data provided, we sample 10, 100, or 319 1000 observations per species from the dataset, referred to below as the "Observation Cap" or "Obs. 320 Cap" for short. The data, and thus the model, covers a total of 47375 species. 321

It should be noted that the purely implicit version of our model, which uses FCNet (Mac Aodha et al., 322 2019), is architecturally equivalent to SINR (Cole et al., 2023), and differences between results from 323 the two are attributable to hyper-parameter tuning and randomness.

~	0	
J	2	4
з	2	5

327

Table 1: Results of experiments on S&T and IUCN benchmarks. Reported values are mAP percentages. Values in parentheses represent implicitness. Values for SINR, GP, and BDS are as reported by Cole et al. (2023). Results for BDS used all training data with no observation cap. We achieve large improvements compared to previous works, especially on the difficult IUCN task.

Benchmark		S&T		IUCN			
Obs. Cap	10	100	1000	10	100	1000	
Ours-Explicit (0.0)	60.21	71.23	76.01	48.83	62.46	64.23	
Ours-Hybrid (0.25)	66.76	<u>75.05</u>	77.86	<u>58.30</u>	69.02	68.03	
Ours-Hybrid (0.5)	<u>66.64</u>	75.27	78.4 7	59.39	69.57	70.32	
Ours-Hybrid (0.75)	66.54	75.01	78.01	58.28	69.23	69.46	
Implicit (1.0)	65.59	73.12	76.81	50.98	62.06	65.57	
SINR (Cole et al., 2023)	65.36	72.82	77.15	49.02	62.00	65.84	
GP (Mac Aodha et al., 2019)			73.14			59.51	
BDS (Berg et al., 2014)			61.56*		37.13*		

Table 2: Results of experiments on the GeoFeature benchmark. Reported values are averaged R^2 correlations across eight environmental features. Values for SINR and GP are as reported by Cole et al. (2023). As shown, explicit models are the most correlated with environmental features.

		Ours (
Obs. Cap	0.0	0.25	0.5	0.75	1.0	SINR	GP
10	74.6	74.5	73.5	72.5	71.1	71.2	
100	78.0	78.0	77.1	76.6	73.9	73.6	
1000	79.3	<u>79.0</u>	78.6	77.9	75.2	75.2	72.4

354

342

343

5.2 BENCHMARKING

Comparison on SDM Benchmarks We evaluate our models on two human expert-created distribution range datasets: S&T (eBird Status and Trends) and IUCN (the International Union for Conservation of Nature). There are a total of respectively 535 and 2418 species overlapping between the iNaturalist training dataset and the two testing datasets, and we report the Mean Average Precision (mAP) of the models' predictions. Results are shown in Table 1. The reported results for all our models are means from five repetitions: for error bars please refer to Subsection 5.3, and for the full raw data please refer to Appendix A.

As shown, our models consistently achieve state-of-the-art results on those standardized tasks, by margins of up to **21.2%** relative improvement (for few-shot learning with 10 samples/species on the difficult IUCN benchmark), demonstrating the benefit of using a hybrid representation. In addition, we see that the model with implicitness 0.5 performs well across all scenarios, ruling out the need for extensive tuning of the implicitness hyper-parameter in practice (discussed more in Subsection 5.3).

367

Correlation with Environmental Data We investigate whether our explicit representation indeed represents local environmental information better as expected by using some common environmental parameters as proxies. The data comes from the GeoFeature benchmark in Cole et al. (2023), and includes 8 parameters in different locations sampled within the contiguous United States, such as above-ground carbon, elevation, *etc.* We report the average R^2 correlation between the embeddings and the environmental parameter. Results are shown in Table 2.

As shown, explicit models are the most correlated with environmental information, as we expected in our design. There is also a very clear negative relation between implicitness and the performance on this task. We conclude that explicit models have strong capability for capturing environmental information. Interestingly, this might indicate that in hybrid models, the explicit portion of the embedding is serving as a "bootstrapped" proxy for environmental data, thus improving the results.

Figure 5: The training time per epoch of differ- Figure 6: The inference time of models on the ent models, divided by the training time of the S&T baseline. Error bars are \pm one standard deimplicit model for normalization.

viation across five repetitions.

Table 3: All were run with an observation cap of 1000. The hybrid model had implicitness 0.5. Results display that simply increasing the dimension of the implicit embedding (and thus the number of parameters) does not result in results comparable to our hybrid method.

	Number of	icit)			
	256 (SINR)	512	1024	2048	Ours (Hybrid)
Training Time (s)	574	839	1376	2760	568
Inference Time (s)	16.8	23.2	24.7	27.7	16.7
S&T mAP (%)	77.15	77.73	78.02	78.29	78.47

405 **Training and Inference Speed** We trained models for all 9 implicitness settings for a single epoch 406 on single RTX A4000 (16GB) GPUs, running five repetitions simultaneously. We then conduct in-407 ference under the same settings on the S&T benchmark. We found that all standard deviations for 408 the training time are within 2% times the mean, suggesting that the results have high statistical sig-409 nificance, so we omit reporting them and just report the means here. Results are shown in Figures 5 and 6. 410

411 As shown, we see that when implicitness is less than 0.5 (the model leans explicit), there seems to 412 be a training overhead of up to around 47% times the implicit model, presumably due to the larger 413 number of features per level. However, for models with implicitless greater than or equal to 0.5 (the 414 model leans implicit), there is no overhead compared to the implicit model. Hence, using our hybrid model for better results does not require incurring sacrifices in speed. Meanwhile, no statistically 415 significant difference between the models was observed for inference time. 416

417

391

392

393

394

396

397

418 **Comparison with Larger Implicit Networks** In all of the experiments above, the dimension of the location embedding is 256 as in SINR. One may wonder whether simply increasing the di-419 mension of this feature embedding would allow the resulting "fat" implicit model to achieve better 420 results than our explicit representation. We conduct experiments to show that this is not the case: 421 while marginal performance gains can be achieved, they come at a very heavy cost for training and 422 inference speed, and still cannot exceed results of our hybrid model. Results are reported in Table 3. 423

- 424 425
- 5.3 CHARACTERIZATION

426 Hyper-Parameter Sensitivity Analysis of Implicitness Here we present data from all 9 implic-427 itness settings under the two benchmarks, each ran for five repetitions to rule out the effect of ran-428 domness. All reported results are under the best learning rate settings for respective models. Results 429 are displayed in Figure 7. 430

Our results further verify that any value of implicitness except 0.0 and 1.0 (the degenerate cases) are 431 relatively insensitive and robust: all hybrid models have several standard deviations' improvement

Figure 7: Results of models with different implicitness on the S&T task. Error bars are \pm one standard deviation across five repetitions. As shown, implicitness is not a very sensitive hyper-parameter.

Figure 8: Precision-Recall Curves averaged across the 535 species on the S&T benchmark. Precision is regularized with respect to the implicit models. As shown, models with lower implicitness have higher precision in low-recall scenarios, and vice versa.

compared to explicit or implicit ones. Hence, no extensive tuning is needed for this newly introduced hyper-parameter. In practice, we recommend a simple value of 0.5.

Precision-Recall Trade-Off To further identify mechanisms via which the hybrid model achieves superior results, we plot the Precision-Recall Curves (PRCs) for models with 0.0, 0.25, 0.5, 0.75, and 1.0 implicitness here. We use PRCs instead of other tools like ROCs because it is better suited to our task, which has strong class imbalance (Saito & Rehmsmeier, 2015). Results are shown in Figure 8.

It can be seen that the improvement our models achieve stem mainly from their high precision for
 low-recall scenarios in comparison to implicit models. However, the precision of explicit models
 plunge when recall is high. Hybrid models successfully balance between the two, achieving the best
 of both worlds.

472 Conditioning on the Number of Species To verify that hybrid and explicit models are better at ag473 gregating information from the distribution of multiple species, we run the S&T and environmental
474 data baselines again with different numbers of species. Following Cole et al. (2023)'s approach, we
475 train the models on the 535 S&T species only first, and increment the number of species in intervals
of 4000. All models in this experiment were trained with an observation cap of 1000 observations
477 per species. Results are shown in Figures 9 and 10.

We can notice from the results that on the S&T benchmark, hybrid models perform better than others, and that this gap generally tends to grow as the number of species increases, suggesting the superiority of hybrid models in terms of learning distributions across species. The implicit baseline, meanwhile, learns only a limited amount of new information from having more species modeled. However, explicit models perform poorly, especially with large amounts of species — is this due to their own incapability or to overfitting? Our experiments on correlation with environmental data show that it is the latter, as explicit models are actually much better at inferring environmental information from data on large numbers of species, and present larger performance gains in this respect when the number of species increases.

Figure 9: Results on the S&T benchmark with respect to the number of species. Hybrid models experience larger increases in performance as the number of species increase.

Figure 10: Results on the GeoFeatures benchmark with respect to the number of species. Explicit models experience larger increases in performance as the number of species increase, due to their inherent ability of inferencing environmental information from species observations.

6 CONCLUSION

⁵¹⁴Our work explores the application of explicit and hybrid representations to the task of SDM con-⁵¹⁵struction. We introduce an innovative explicit representation scheme, and use it in conjunction with ⁵¹⁶conventional implicit methods to form a hybrid representation. Experiments show that our hybrid ⁵¹⁷models consistently achieve state-of-the-art accuracy on multiple standard benchmarks, outperform-⁵¹⁸ing both implicit and explicit models, and that our explicit representations are good at representing ⁵¹⁹local environmental information. We also conducted extensive experiments to characterize our mod-⁵²⁰els and investigate their properties.

As supported by our experiments, we conclude that the hybrid representation is well- suited to our
 problem formulation because:

- **Presence-Only Data**: The hybrid model presents informative embeddings that have both low noise and high signal frequency, thus allowing accurate and precise inference based on presence-only data.
- No Additional Environmental Information: The explicit portion of the model can bootstrap environmental information from the species presences, thus providing a proxy for environmental data.
 - **Community-Sourced Dataset**: Keeping the implicit portion allows for reduction of noise and bias from the dataset, preventing the explicit portion from overfitting to inaccuracies.
- Large Number of Species: As the number of species increases, the hybrid representation consistently gains performance, while the explicit representation (although prone to overfitting) becomes better at inferring environmental information.

535 536

534

495

496

497

507

508

509

510 511 512

513

524

525

527

528

529

530

531

532

Limitations Since our work concentrates on effective representations for the locational embedding
 portion of SDMs, we did not incorporate extra components such as remote sensing data, presence absence data, or environmental data. We consider those extensions to our model interesting directions for future research.

Ethics Statement Our work, like most similar ones on SDMs, is prone to the ethical hazards of damaging conservation fairness (Donaldson et al., 2016; Fedriani et al., 2017), insufficient reliability (Lee-Yaw et al., 2022), and potential for unintended uses such as poaching (Atlas & Dando, 2006). We suggest judicious use of our methods and careful interpretation of results.

545 Reproducibility Statement We open-sourced our implementation as a codebase, allowing all of
546 our experimental results to be easily reproducible and making it easy for others to extend upon our
547 work. We also released a zoo of all trained models under different learning rates, implicitness, and
548 observation caps, such that the experiments can be repeated with minimal difficulty.

References

- Ronald M Atlas and Malcolm Dando. The dual-use dilemma for the life sciences: perspectives, conundrums, and global solutions. *Biosecurity and bioterrorism: biodefense strategy, practice, and science*, 4(3):276–286, 2006.
- Morgane Barbet-Massin, Frédéric Jiguet, Cécile Hélène Albert, and Wilfried Thuiller. Selecting
 pseudo-absences for species distribution models: How, where and how many? *Methods in ecology and evolution*, 3(2):327–338, 2012.
- Sara Beery, Elijah Cole, Joseph Parker, Pietro Perona, and Kevin Winner. Species distribution modeling for machine learning practitioners: A review. In ACM SIGCAS Conference on Computing and Sustainable Societies, pp. 329–348, 2021.
- Donald J Benkendorf, Samuel D Schwartz, D Richard Cutler, and Charles P Hawkins. Correcting
 for the effects of class imbalance improves the performance of machine-learning based species
 distribution models. *Ecological Modelling*, 483:110414, 2023.
- Thomas Berg, Jiongxin Liu, Seung Woo Lee, Michelle L Alexander, David W Jacobs, and Peter N
 Belhumeur. Birdsnap: Large-scale fine-grained visual categorization of birds. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2011–2018, 2014.
- Christophe Botella, Alexis Joly, Pierre Bonnet, Pascal Monestiez, and François Munoz. A deep learning approach to species distribution modelling. *Multimedia Tools and Applications for Environmental & Biodiversity Informatics*, pp. 169–199, 2018.
- Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
 fields. In *European Conference on Computer Vision*, pp. 333–350. Springer, 2022.
- 574 Di Chen, Yexiang Xue, Daniel Fink, Shuo Chen, and Carla P Gomes. Deep multi-species embed575 ding. In *Proceedings of the 26th International Joint Conference on Artificial Intelligence*, pp. 3639–3646, 2017.
- 577
 578
 579
 579
 579
 579
 579
 580
 580
 580
 581
 581
- Johannes Dollinger, Philipp Brun, Vivien Sainte Fare Garnot, and Jan Dirk Wegner. Sat-sinr: High resolution species distribution models through satellite imagery. *ISPRS Annals of the Photogram- metry, Remote Sensing and Spatial Information Sciences*, 10:41–48, 2024.
- 585 Michael R Donaldson, Nicholas J Burnett, Douglas C Braun, Cory D Suski, Scott G Hinch, Steven J
 586 Cooke, and Jeremy T Kerr. Taxonomic bias and international biodiversity conservation research,
 587 2016.
- Marthinus C Du Plessis, Gang Niu, and Masashi Sugiyama. Analysis of learning from positive and unlabeled data. *Advances in neural information processing systems*, 27, 2014.
- Nicolas Dubos, Clémentine Préau, Maxime Lenormand, Guillaume Papuga, Sophie Monsarrat,
 Pierre Denelle, Marine Le Louarn, Stien Heremans, Roel May, Philip Roche, et al. Assessing
 the effect of sample bias correction in species distribution models. *Ecological Indicators*, 145: 109487, 2022.

594 Jane Elith and John R Leathwick. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40:677–697, 2009. 596 Jane Elith, Michael Kearney, and Steven Phillips. The art of modelling range-shifting species. 597 Methods in ecology and evolution, 1(4):330–342, 2010. 598 José M Fedriani, Luis V García, María E Sánchez, Juan Calderón, and Cristina Ramo. Long-term 600 impact of protected colonial birds on a jeopardized cork oak population: conservation bias leads 601 to restoration failure. Journal of Applied Ecology, 54(2):450–458, 2017. 602 Kenneth J Feeley and Miles R Silman. Keep collecting: accurate species distribution modelling 603 requires more collections than previously thought. Diversity and distributions, 17(6):1132–1140, 604 2011. 605 Lauren E Gillespie, Megan Ruffley, and Moises Exposito-Alonso. Deep learning models map rapid 607 plant species changes from citizen science and remote sensing data. Proceedings of the National 608 Academy of Sciences, 121(37):e2318296121, 2024. 609 Florian Hartig, Nerea Abrego, Alex Bush, Jonathan M Chase, Gurutzeta Guillera-Arroita, Mathew A 610 Leibold, Otso Ovaskainen, Loïc Pellissier, Maximilian Pichler, Giovanni Poggiato, et al. Novel 611 community data in ecology-properties and prospects. Trends in Ecology & Evolution, 2024. 612 613 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-614 nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 615 770–778, 2016. 616 Kate S He, Bethany A Bradley, Anna F Cord, Duccio Rocchini, Mao-Ning Tuanmu, Sebastian 617 Schmidtlein, Woody Turner, Martin Wegmann, and Nathalie Pettorelli. Will remote sensing shape 618 the next generation of species distribution models? *Remote Sensing in Ecology and Conservation*, 619 1(1):4-18, 2015.620 621 Hyomin Kim, Yunhui Jang, Jaeho Lee, and Sungsoo Ahn. Hybrid neural representations for spheri-622 cal data. arXiv preprint arXiv:2402.05965, 2024. 623 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint 624 arXiv:1412.6980, 2014. 625 626 Konstantin Klemmer, Esther Rolf, Caleb Robinson, Lester Mackey, and Marc Rußwurm. Sat-627 clip: Global, general-purpose location embeddings with satellite imagery. arXiv preprint arXiv:2311.17179, 2023. 628 629 Stephanie Kramer-Schadt, Jürgen Niedballa, John D Pilgrim, Boris Schröder, Jana Lindenborn, 630 Vanessa Reinfelder, Milena Stillfried, Ilja Heckmann, Anne K Scharf, Dave M Augeri, et al. The 631 importance of correcting for sampling bias in maxent species distribution models. Diversity and 632 distributions, 19(11):1366–1379, 2013. 633 Christian Lange, Elijah Cole, Grant Horn, and Oisin Mac Aodha. Active learning-based species 634 range estimation. Advances in Neural Information Processing Systems, 36, 2024. 635 636 Julie Lee-Yaw, Jenny McCune, Samuel Pironon, and Seema Sheth. Species distribution models 637 rarely predict the biology of real populations. *Ecography*, 2022(6):e05877, 2022. 638 Oisin Mac Aodha, Elijah Cole, and Pietro Perona. Presence-only geographical priors for fine-639 grained image classification. In Proceedings of the IEEE/CVF International Conference on Com-640 puter Vision, pp. 9596–9606, 2019. 641 642 Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale represen-643 tation learning for spatial feature distributions using grid cells. In 8th International Conference 644 on Learning Representations, ICLR 2020, 2020. 645 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and 646 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications 647 of the ACM, 65(1):99–106, 2021.

648	Jennifer Miller. Species distribution modeling. Geography Compass, 4(6):490-509, 2010.
650	Thomas Müller. tinv-cuda-nn. 4 2021. URL https://github.com/NVlabs/
651	tiny-cuda-nn.
652	Thomas Müller Alex Evans, Christoph Schied and Alexander Keller, Instant neural graphics prim-
653	itives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, 2022.
654	Adam Daszka Sam Grass Francisco Massa Adam Larer Jamas Prodhury Grazowy Chanan Traver
655	Killeen Zeming Lin Natalia Gimelshein Luca Antiga Alban Desmaison Andreas Konf Edward
656	Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
657	Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
658	learning library. Advances in Neural Information Processing Systems, 32, 2019.
660	Steven J Phillips, Miroslav Dudík, Jane Elith, Catherine H Graham, Anthony Lehmann, John Leath-
661	wick, and Simon Ferrier. Sample selection bias and presence-only distribution models: implica-
662	tions for background and pseudo-absence data. <i>Ecological applications</i> , 19(1):181–197, 2009.
663	Carlos Ramirez-Reyes, Mona Nazeri, Garrett Street, D Todd Jones-Farrand, Francisco J Vilella,
664	and Kristine O Evans. Embracing ensemble species distribution models to inform at-risk species
665	status assessments. Journal of Fish and Wildlife Management, 12(1):98–111, 2021.
666	Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic lo-
667	cation encoding with spherical harmonics and sinusoidal representation networks. arXiv preprint
668	arXiv:2310.06743, 2023.
670	Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the roc plot
671	when evaluating binary classifiers on imbalanced datasets. <i>PloS one</i> , 10(3):e0118432, 2015.
672	Luca Santini, Ana Benítez-López, Luigi Maiorano, Mirza Čengić, and Mark AJ Huijbregts. Assess-
673	ing the reliability of species distribution projections in climate change research. Diversity and
674	Distributions, 27(6):1035–1050, 2021.
675	Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
676	plicit neural representations with periodic activation functions. Advances in neural information
677	processing systems, 33:7462–7473, 2020.
678	Vivek Srivastava, Valentine Lafond, and Verena C Griess. Species distribution models (SDM):
680	applications, benefits and challenges in invasive species management. CABI Reviews, pp. 1-13,
681	2019.
682	Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
683	vergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
684	Computer Vision and Pattern Recognition, pp. 5459–5469, 2022.
685	Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander
686	Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, David Mcallister, Justin Kerr, and
687	In ACM SIGGRAPH 2023 Conference Proceedings pp 1–12 2023
680	Difference in the second
690	Ian Phillip Vaughan and Stephen James Ormerod. The continuing challenges of testing species distribution models. <i>Journal of applied coology</i> 42(4):720–730, 2005
691	distribution models. <i>Journal of applied ecology</i> , $42(4)$. $720-750$, 2005.
692	Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
693	Conference on Computer Vision pp 5752–5761 2021
694	Conjerence on Computer Vision, pp. 5752–5761, 2021.
695	
696	A FULL RESULTS AND RAW DATA
697 608	Benchmarking with Different Implicitness Settings Shown in Tables 4-6
699	Deneminariang with Different implements bettings bilown in fubics + 0.
700	Training and Inference Time Shown in Tables 7 and 8.
/01	Searching for Optimal Learning Rate Shown in Tables 9-11.

		Obs. Cap	
Implicitness	10	100	1000
0.0	60.21±0.22	71.23±0.09	76.01±0.05
0.125	65.69 ± 0.34	$74.93 {\pm} 0.21$	$77.61 {\pm} 0.15$
0.25	<u>66.76</u> ±0.31	$75.05 {\pm} 0.27$	$77.86 {\pm} 0.16$
0.375	66.78 ±0.20	75.23 ± 0.14	$77.92{\pm}0.14$
0.5	66.64 ± 0.33	75.27±0.17	78.47±0.07
0.625	66.58±0.12	$75.11 {\pm} 0.20$	$78.25 {\pm} 0.12$
0.75	66.54 ± 0.23	$75.01 {\pm} 0.16$	$\overline{78.01} \pm 0.18$
0.875	66.52 ± 0.09	$74.38 {\pm} 0.24$	$77.69 {\pm} 0.04$
1.0	65.59±0.17	$73.12{\pm}0.19$	$76.81{\pm}0.26$

Table 4: Full results on S&T benchmark.

Table 5: Full results on IUCN benchmark.

-			Implicitness											
	Obs. Cap	0.0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1.0				
-	10	48.83	56.39	58.30	59.56	59.39	58.29	58.28	57.52	50.98				
	100	62.42	66.71	69.02	69.41	69.57	68.95	69.23	67.69	62.06				
	1000	64.23	67.57	68.36	69.13	70.32	<u>70.27</u>	69.46	68.27	65.57				

Table 6: Full results on GeoFeatures benchmark.

		Implicitness										
Obs. Cap	0.0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1.0			
10	74.56	74.65	74.51	74.22	73.52	72.98	72.54	72.58	71.12			
100	78.04	78.11	77.95	77.80	77.13	76.67	76.62	76.42	73.92			
1000	79.28	<u>79.19</u>	79.03	78.87	78.59	78.12	77.88	77.48	75.17			

Table 7: Full results on training time.

		Obs. Cap	
Implicitness	10	100	1000
0.0	26.77±0.04	237.99±0.27	843.79±1.3
0.125	25.71 ± 0.07	$230.46 {\pm} 0.62$	816.49±1.4
0.25	24.79 ± 0.19	$220.90 {\pm} 0.59$	781.41±1.7
0.375	$23.48 {\pm} 0.08$	$210.75 {\pm} 0.72$	747.15±2.4
0.5	$17.89 {\pm} 0.15$	$160.10 {\pm} 0.45$	567.90±1.8
0.625	$17.84{\pm}0.04$	$160.52 {\pm} 0.46$	570.05 ± 2.0
0.75	18.26 ± 0.34	$160.93 {\pm} 0.55$	571.61±1.7
0.875	$17.96 {\pm} 0.05$	$162.32{\pm}0.64$	573.93±1.1
1.0	$18.30 {\pm} 0.16$	162.71 ± 1.10	574.37±2.3

Table 8: Full results on inference time.

Implicitness	Time (s)
0.0	17.21 ± 1.09
0.125	$16.84{\pm}1.58$
0.25	$16.72 {\pm} 0.88$
0.375	$16.43 {\pm} 0.54$
0.5	$16.74 {\pm} 0.94$
0.625	16.24 ± 0.40
0.75	16.69 ± 1.18
0.875	16.15 ± 0.25
1.0	16.78 ± 0.53

Table 9: Full results on S&T benchmark with different learning rates.

772						In	nplicitne	SS			
773	Obs. Cap	Learning Rate	0.0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1.0
775		0.01	42.29	40.95	42.66	43.49	44.87	46.87	22.78	54.48	64.52
775		0.003	60.07	58.05	59.09	60.30	59.98	60.51	62.51	63.80	64.92
//6	10	0.001	58.13	64.57	66.86	67.00	66.73	66.46	66.40	66.58	65.41
777		0.0003	24.98	57.13	63.21	64.18	64.97	65.47	65.30	65.15	64.46
778		0.0001	24.42	34.12	44.49	47.93	50.78	52.98	53.43	55.38	57.91
779		0.01	48.21	50.40	50.97	52.32	57.32	59.12	23.50	29.34	70.73
780		0.003	58.77	60.87	61.55	63.26	65.73	67.78	69.00	71.39	72.53
781	100	0.001	70.27	70.64	71.62	72.52	73.23	73.44	73.72	74.13	73.17
782		0.0003	71.25	74.98	75.35	75.53	75.44	75.24	75.14	74.30	72.76
783		0.0001	64.05	71.08	72.13	72.12	72.25	72.43	72.46	71.95	71.26
784		0.01	60.21	62.17	63.54	64.71	68.24	69.33	19.28	19.28	71.75
785		0.003	65.25	66.99	68.07	68.58	72.12	72.26	73.81	74.44	75.78
786	1000	0.001	72.20	73.52	74.07	74.29	76.16	76.03	75.98	76.63	77.10
787		0.0003	76.02	77.44	77.38	77.88	78.40	78.15	77.98	77.81	76.60
788		0.0001	74.83	60.21	78.08	77.91	78.13	77.91	77.56	76.89	75.41
789			1								

Table 10: Full results on IUCN benchmark with different learning rates.

792		10010 1011 0111	courte on	10 01 0	•••••						
793						In	nplicitne	ss			
794	Obs. Cap	Learning Rate	0.0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1.0
795		0.01	33.60	32.71	34.31	35.70	36.00	37.63	0.86	44.39	47.71
796		0.003	48.83	52.22	53.32	54.41	53.79	54.42	55.25	56.16	49.87
797	10	0.001	38.41	56.39	58.30	59.56	59.39	58.29	58.28	57.52	50.98
798		0.0003	4.82	34.12	46.36	50.72	53.53	54.02	54.28	52.99	46.85
799		0.0001	1.18	8.02	15.12	19.53	24.58	31.42	31.24	31.82	31.85
800		0.01	32.51	34.96	36.98	38.44	43.77	45.82	0.88	0.85	55.89
801		0.003	48.67	49.54	51.09	53.05	56.54	58.19	60.54	61.77	58.52
802	100	0.001	62.42	64.27	64.79	65.49	67.33	67.38	67.12	66.44	60.54
803		0.0003	61.91	66.71	69.02	69.41	69.57	68.95	69.23	67.69	62.06
804		0.0001	46.58	59.67	63.88	64.98	65.41	65.26	64.87	63.39	58.77
805		0.01	35.99	38.95	40.47	42.25	48.24	50.42	1.00	0.85	54.01
806		0.003	44.36	46.05	48.04	49.62	54.64	56.57	58.19	60.05	59.31
807	1000	0.001	58.68	59.70	61.11	61.37	64.45	64.90	66.08	65.43	64.40
808		0.0003	64.23	67.57	68.03	68.56	70.32	70.27	69.46	68.27	65.57
809		0.0001	60.73	66.53	68.36	69.13	69.50	68.41	68.83	67.15	62.30

Table 11: Full results on GeoFeatures benchmark with different learning rates.

829									-		
830			Implicitness								
831	Obs. Cap	Learning Rate	0.0	0.125	0.25	0.375	0.5	0.625	0.75	0.875	1.0
832		0.01	73.54	73.64	72.99	73.14	72.65	72.47	55.48	70.19	69.78
833		0.003	74.56	74.65	74.03	74.22	73.52	72.98	72.38	72.58	71.12
834	10	0.001	73.73	74.43	74.51	73.50	73.28	72.69	72.54	71.34	70.76
835		0.0003	70.10	71.86	72.64	72.57	72.68	72.09	71.85	70.73	69.83
836		0.0001	69.98	70.65	70.64	70.26	70.80	70.64	68.94	69.89	67.59
837		0.01	73.22	73.37	72.79	72.08	72.17	72.46	59.01	53.63	67.81
838		0.003	75.90	76.61	75.54	75.65	76.00	74.54	75.12	74.28	71.01
839	100	0.001	78.04	78.05	77.25	77.59	77.13	76.64	76.62	76.42	73.66
840		0.0003	77.30	78.11	77.95	77.80	76.97	76.67	75.45	76.12	73.92
841		0.0001	74.53	75.75	76.66	76.24	75.68	75.26	73.89	73.72	71.93
842		0.01	74.10	74.98	74.50	74.93	74.32	74.45	62.69	53.68	62.99
843		0.003	76.31	76.84	76.87	76.79	76.29	76.28	76.32	75.14	72.33
844	1000	0.001	78.98	78.75	78.74	78.52	78.59	77.36	77.88	77.44	74.82
845		0.0003	79.28	79.19	79.03	7 8.8 7	78.32	78.12	77.69	77.48	75.17
846		0.0001	78.80	78.45	78.91	78.58	78.42	77.89	77.17	76.80	74.18