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ABSTRACT

We address an important problem in ecology called Species Distribution Model-
ing (SDM), whose goal is to predict whether a species exists at a certain posi-
tion on Earth. In particular, we tackle a challenging version of this task, where
we learn from presence-only data in a community-sourced dataset, model a large
number of species simultaneously, and do not use any additional environmental
information. Previous work has used neural implicit representations to construct
models that achieve promising results. However, implicit representations often
generate predictions of limited spatial precision. We attribute this limitation to
their inherently global formulation and inability to effectively capture local fea-
ture variations. This issue is especially pronounced with presence-only data and a
large number of species. To address this, we propose a hybrid embedding scheme
that combines both implicit and explicit embeddings. Specifically, the explicit em-
bedding is implemented with a multiresolution hashgrid, enabling our models to
better capture local information. Experiments demonstrate that our results exceed
other works by a large margin on various standard benchmarks, and that the hy-
brid representation is better than both purely implicit and explicit ones. Qualitative
visualizations and comprehensive ablation studies reveal that our hybrid represen-
tation successfully addresses the two main challenges. Our code is open-sourced
at https://anonymous.4open.science/r/HSR-SDM-7360.

1 INTRODUCTION

Understanding species distribution ranges is a key issue in ecological research, and it has become
increasingly important in the context of the current global climate crisis and biodiversity decline.
Conventionally, species distribution data has been collected through field studies by human experts
and explorers, who must gather and assess large amounts of information to determine whether a
species is present in a given region. These processes are typically slow and labor-intensive, and by
the time the models are completed, they may already be outdated or irrelevant.

Species Distribution Modeling (SDM) is a method that aims to use collected data to directly predict
the distribution range of species, thus making related ecological research easier (Elith & Leathwick,
2009; Elith et al., 2010; Miller, 2010). SDMs have many crucial applications in fields such as cli-
mate change assessment (Santini et al., 2021), invasive species management (Srivastava et al., 2019),
and extinction risk mapping (Ramirez-Reyes et al., 2021). Whilst such models have achieved some
success over the past two decades, most SDMs remain poor indicators of important ecological pa-
rameters (Lee-Yaw et al., 2022). Consequently, new SDM methodologies employing more advanced
modeling techniques have continued to emerge (Beery et al., 2021).

One challenge in constructing SDMs is the collection of sufficient data for both training and test-
ing (Feeley & Silman, 2011; Vaughan & Ormerod, 2005). The large volume of data required for
constructing accurate models, coupled with the difficulty of obtaining it, has consistently been a
major obstacle in the development of SDMs. With the emergence of community-sourced data plat-
forms such as iNaturalist, eBird, and PlantNet, difficulties in data collection have been somewhat
mitigated, but new challenges have arisen regarding data quality and the model’s ability to process
large volumes of data (Hartig et al., 2024). For example, due to the nature of the data collection
process, most large species distribution datasets are highly susceptible to sampling bias, class im-
balance, and noise (Benkendorf et al., 2023; Dubos et al., 2022; Kramer-Schadt et al., 2013).
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Explicit ImplicitHybrid

10 Samples/Species

1000 Samples/Species

Figure 1: Results of Independent Component Analysis (ICA) on the feature embeddings for implicit,
explicit, and hybrid models. The explicit embedding captures higher-frequency information and
reflects local environmental data, while the implicit embedding, as a global location encoder, is less
noisy. The hybrid representation combines the strengths of both. Differences are more pronounced
in the 1000 samples per species setting. Note the noise in the explicit embeddings are mainly caused
by the presence-only and community-sourced natures of our training data used.

Recent advances Cole et al. (2023) in using deep learning for SDMs has reduced the demand for
large amounts of high-quality data. In particular, some recent methods applying implicit neural
representations achieved considerable accuracy, and no longer required training signals besides
presence-only data. However, in practice, predictions from those models are often of limited spatial
precision due to the implicit nature of their representational schemes: neural networks inherently
produce global embeddings that are not grounded in local features.

In this paper, we explore a challenging task that highlights the limitations of implicit representations.
First, we use presence-only data instead of presence-absence data. Since confirming a species’
presence is generally easier than confirming its absence, many previous studies have constructed
SDMs using presence-only data (Barbet-Massin et al., 2012; Mac Aodha et al., 2019; Cole et al.,
2023), making this a more difficult but valuable task. Second, we use no additional environmental
information. Although conventional SDMs usually use a lot of environmental inputs, and satellite
images are also a common source of information (Dollinger et al., 2024; Gillespie et al., 2024;
He et al., 2015; Klemmer et al., 2023), we will focus on exploring the locational embedding and
thus not use those information. Third, similar to most previous deep learning-based methods, we
use iNaturalist, a community-sourced dataset, which, as previously discussed, presents various
difficulties. Finally, we construct a single model for a large number of species simultaneously.

To address these issues, inspired by advances in explicit and hybrid representations, we propose a
Hybrid Spatial Representation for Species Distribution Modeling. Specifically, our representation
combines an implicit component based on FCNet (Mac Aodha et al., 2019) with an explicit compo-
nent based on multiresolution hashgrids (Müller et al., 2022), forming a hybrid model well-suited
for the SDM task. An intuitive view of these embeddings is shown in Figure 1.

Experiments show that our method achieves the best of both worlds, producing state-of-the-art re-
sults on this challenging task, outperforming both previously proposed methods and purely implicit
or explicit versions of our model by significant margins. We also investigate the mechanisms be-
hind the effectiveness of hybrid representations and characterize our model across a wide range of
settings and evaluation methods for additional insights. Specifically, we show that hybrid represen-
tations are well-suited for learning from presence-only observations and modeling a large number
of species simultaneously.

2 RELATED WORKS

2.1 SPECIES DISTRIBUTION MODELING

As discussed earlier, SDM is a challenging field that often requires learning from large volumes of
inaccurate data. Recently, several works have used deep learning (Botella et al., 2018; Chen et al.,
2017; Cole et al., 2023; Mac Aodha et al., 2019) to create SDMs from those massive datasets. This is
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Figure 2: Illustration of our problem formulation and basic model structure.

a difficult task due to the inherent difficulties in the data, and therefore requires highly effective rep-
resentational methods. The current state-of-the-art representation, as verified by several works (Cole
et al., 2023; Lange et al., 2024; Rußwurm et al., 2023), is the FCNet architecture (Mac Aodha et al.,
2019), which makes use of a Residual Network (He et al., 2016)-based structure to achieve effective
implicit location embeddings.

It is understandable that explicit or hybrid representations have not been previously applied in SDMs,
since –– as our experiments will later demonstrate –– explicit representations often produce noisy
predictions with artifacts. However, there is a strong rationale for using explicit representations in
SDMs: popular implicit embedding-based models, which rely on neural networks, struggle to cap-
ture local details. Since neural networks lack a separable component to describe local distributional
features, predictions from implicit models often consist of blurry “blobs” of distributional peaks
with poorly defined boundaries.

Our work demonstrates the power of combining implicit and explicit representations for SDM con-
struction, and achieves state-of-the-art results on challenging benchmarks.

2.2 IMPLICIT, EXPLICIT, AND HYBRID REPRESENTATIONS

In fields such as signal processing, 3D vision, and computer graphics, Neural Implicit Representa-
tions (NIR) have achieved great results (Sitzmann et al., 2020; Mildenhall et al., 2021). A common
pattern in those fields is that the success of implicit representations was often followed by the ap-
pearance of explicit ones which offer advantages such as increased accuracy and efficiency (Chen
et al., 2022; Sun et al., 2022; Yu et al., 2021). In practice, hybrid representations that combine both
implicit and explicit schemes often achieve superior performance by capturing the strengths of of
both approaches.

While some previous works in the context of global spatial encoding have used hybrid or explicit
representations (Kim et al., 2024; Mai et al., 2020; Rußwurm et al., 2023), to the best of our knowl-
edge, no works on SDM have done this. In this work, inspired by Müller et al. (2022), we design
an innovative two-dimensional multiresolution hashgrid as an explicit representation, specifically
suited to the task of SDM construction. This model generates explicit embeddings, which are ag-
gregated with conventional implicit embeddings from an FCNet-inspired portion. The aggregated
embeddings are then put through a regular neural network as results. We demonstrate the merits
of explicit representations, and show that our hybrid representation outperforms both implicit and
explicit schemes by combining their advantages.

3 PRELIMINARIES

Let P(·) : [−1, 1]n×2 → {0, 1}n×S be the ground-truth presence function, where S is the number
of species in the model, and for the coordinates (lat, lon) (regularized between -1 and 1), we have
P([lat, lon])i = 1 iff the species i is present at (lat, lon). Let X ∈ [−1, 1]N×2 be a matrix of
coordinates where observations have been performed, where N is the number of observation entries.

3
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Corresponding to the observations are species indices s ∈ [1, S]N , where P(xn)i = 1 if i = sn.
Here xn represents the nth row of X. While it is possible in practice that false presences occur
through misidentification or aberrant migration, we treat this as regular noise in the data rather
than a part of the problem formulation. Hence we need to construct a model f(·) : [−1, 1]n×2 →
{0, 1}n×S such that f(X) approximates P(X).

This can be seen as a multiclass version of the positive-unlabeled learning problem, since observa-
tions can be seen as presences for one species and unlabeled data points for all others. Du Plessis
et al. (2014) show that this is equivalent to a weighted positive-absence problem with the unlabeled
points as absences, which coincides with works in SDM that consider “pseudoabsences” (Barbet-
Massin et al., 2012). Works like Phillips et al. (2009) have used additional randomly sampled points
as unlabeled points for all species.

Given random all-unlabeled pseudoabsences Z ∈ [−1, 1]N×2, the Assume Negative Full Loss as in
Cole et al. (2023) can be written as follows:

Lfull(X, s,Z) = − 1

NS

N∑
i=1

S∑
j=1

(1j=siλ log f(xi)j+1j ̸=si log(1−f(xi)j)+log(1−f(zi)j)), (1)

where subscripts represent row slices, and λ is a hyper-parameter to prevent the latter two terms
from dominating.

Under the NIR-based setting, the function f(X) consists of two parts: a location embedding g(·) :
[−1, 1]N×2 → RN×F (where F is the dimension of the embedding, also known as the number of
features), and the occupancy predictor h(·) : RN×F → RN×S which takes the embeddings as input
and outputs the occupancy predictions for the species. Hence the model is described by:

f(X) = h(g(X)). (2)

Usually h(·) has a simple structure, such as being a single linear layer, while g(X) is a more sophis-
ticated model. Hence the significance of the embedding g lies in encoding the coordinates in such
a manner that it would be easy for h to conduct the final mapping step. We call the architecture of
g the representation scheme. The current state-of-the-art is FCNet (Mac Aodha et al., 2019), which
makes use of a Linear-ReLU layer followed by four repetitions of Linear-ReLU-Dropout-Linear-
ReLU residual blocks.

At the beginning of g there is also often a quick positional encoding of the coordinates. This is
because, per Sitzmann et al. (2020), implicit representations perform better when the inputs are of
high frequency. FCNet uses the wrap encoding (sin(πlon), cos(πlon), sin(πlat), cos(πlat)).

Figure 2 displays a brief summary of the data and model structure in our problem formulation.

4 METHODS

4.1 MOTIVATION

We notice two insufficiencies in the implicit formulation above.

Global Parameterization Since g is a neural network, in the back-propagation process, most pa-
rameters have nonzero gradient steps. More intuitively, one can see the implication that each param-
eter is equally capable of being associated with the Amazon Rainforest as with the Saharan Desert.
In the process of training parameters gradually get implicitly mapped to different features, but there
is still no guarantee that the parameters can reliably describe local environmental information.

Low Signal Frequency In addition, since MLPs follow the Lipschitz constraint, intuitively main-
taining a degree of “smoothness,” they often struggle to describe high-frequency patterns. Indeed, a
lot of previous work in NIRs has focused on encoding the data to facilitate modeling. In our task,
this means that embeddings for nearby locations tend to be similar regardless of their characteris-
tics, which indicates an inability to describe local details. In practice this is very undesirable, since
many ecological boundaries (e.g., mountain ridges, wide rivers, and artificial constructs) cause sharp
distinctions between ecosystems in physical proximity of each other.

4
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Figure 3: Illustration of our multiresolution hashgrid representation’s mechanism. The Earth’s sur-
face is divided using several different resolutions into different levels, and vertices of the grids
formed from division are mapped to hashed features in the hash table. The explicit embedding of
any position (cyan) is calculated via calculating features (green) at each resolution level (blue) using
bilinear interpolation and concatenating them.

Principle for Explicit Embedding We propose a guiding principle which could simultaneously
solve to problems above. We introduce explainable parameters which each correspond to only a spe-
cific region on Earth. If a data point is not contained within the region associated with a parameter,
the gradient of that parameter with respect to this input is zero, thus creating local instead of global
parameterization. In addition, at the boundaries between those regions, due to the change in the set
of associated parameters, the Lipschitz constraint no longer applies, and thus the output can have
arbitrarily high signal frequency.

Such an implementation would require an explicit rule dictating the correspondence between param-
eters and geographical regions, which currently no one has considered. Hence, we introduce a new
explicit embedding scheme which suits our purposes.

4.2 MULTIRESOLUTION HASHGRIDS FOR SDMS

We propose using a multiresolution hashgrid encoding scheme as an explicit representation for SDM
modeling. Specifically, we divide the Earth’s surface into multiple grids with different resolution
levels, and store trainable feature parameters associated with lattices of the grid in a hashtable.
Embedded features on any given point for each resolution level are then calculated via bilinear
interpolation. Finally, the output embedding is given by concatenating all hashed features from the
different layers. An intuitive depiction is shown in Figure 3.

The resolution of each layer follows a geometric sequence from a maximum resolution to a mini-
mum resolution (both of which are hyper-parameters). Specifically, given maximum and minimum
resolutions Rmax and Rmin, and a total of L layers, the resolution of layer l is calculated as follows:

Rl = Rmin exp(
l

L− 1
(logRmax − logRmin)) (3)

The grids allow for our model to explicitly capture information regarding the local environment by
using the features as representation. Furthermore, the different resolutions allow for the description
of explicit interactions in between smaller grids, based on their mutual intersection with larger grids.
The hashgrid, meanwhile, ensures that the number of parameters created is not of overly large size.

4.3 HYBRID SPATIAL REPRESENTATION

Despite that our explicit embedding does carry many advantages, it inevitably also carries some
drawbacks. For instance, due to the nature of encoding using artificially divided grids, there is a
lot of noise in the resulting embedding. Furthermore, the implicit embedding’s ability to aggregate
global information is still valuable, while this ability is weakened for an explicit embedding. Hence,
we propose a method to combine the two, and further, to make the model tunable between purely
explicit and implicit encoding schemes.

Our method is the aggregate the locational embeddings from two parallel location encoders, one
using the conventional implicit scheme and one using our explicit multiresolution hashgrid. We

5
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Figure 4: Simplified schematics of our hybrid SDM architecture. The implicit portion sends wrap-
encoded coordinates into an MLP. The explicit portion uses the multiresolution hashgrid representa-
tion. The two feature embeddings are then concatenated and passed through the occupancy predictor.

concatenate resulting embeddings from the two, and proceed to input the concatenated results as the
embedding for the occupancy predictor.

Letting gi(·) : [−1, 1]N×2 → RN×Fi and ge(·) : [−1, 1]N×2 → RN×(F−Fi) represent the encoders,
the resulting hybrid model is:

f(X) = h(gi(X)⊕ ge(X)), (4)
where ⊕ represents concatenation along the second dimension, and Fi is the dimension of the im-
plicit embedding. We refer to the ratio Fi

F as “implicitness,” and treat it as a tunable hyper-parameter.
For an explicit model with L layers and M features per level, we have F −Fi = L×M . In practice
we keep M to powers of two for implementational reasons and vary L for tuning implicitness. A
depiction of the schematics of our hybrid model is shown in Figure 4.

5 EXPERIMENTS

5.1 IMPLEMENTATION AND SETTINGS

Our codebase was altered from Cole et al. (2023), and we use their version of the FCNet encoding
as well (which in turn is based on Mac Aodha et al. (2019)). We borrowed and altered part of the
explicit encoding implementation from Tancik et al. (2023), which in turn used Müller (2021) as the
core for the multiresolution hashgrid. All deep learning operations are based on PyTorch (Paszke
et al., 2019), and all optimizers were Adam (Kingma & Ba, 2014).

All experiments were conducted on a single GPU: either an RTX A4000 (16GB) or a GeForce RTX
3090 (24GB). We run our models for 10 epochs each across learning rates 0.01, 0.003, 0.001, 0.0003,
and 0.0001, and report the best results here. For most of the experiments below we also ran models
across 9 implicitness settings from 0.0 to 1.0 with a step size of 0.125 but may have only reported
some of the results here for clarity of presentation –– for the full results, results under suboptimal
learning rates, and raw data from graphs, please refer to Appendix A. For models with implicitness
smaller than 0.5 we use M = 16, while for models with implicitness larger than 0.5 we use M = 8.

The dataset used was iNaturalist, which is a popular choice for benchmarking SDMs and has been
used in multiple previous works (Mac Aodha et al., 2019; Cole et al., 2023; Rußwurm et al., 2023).
We use standardized settings introduced by Cole et al. (2023) in order to ensure fair comparison,
and the specific version of the iNaturalist dataset we used was the same as theirs as well. To deal
with class imbalance, as well as to condition on the amount of data provided, we sample 10, 100, or
1000 observations per species from the dataset, referred to below as the “Observation Cap” or “Obs.
Cap” for short. The data, and thus the model, covers a total of 47375 species.

It should be noted that the purely implicit version of our model, which uses FCNet (Mac Aodha et al.,
2019), is architecturally equivalent to SINR (Cole et al., 2023), and differences between results from
the two are attributable to hyper-parameter tuning and randomness.
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Table 1: Results of experiments on S&T and IUCN benchmarks. Reported values are mAP percent-
ages. Values in parentheses represent implicitness. Values for SINR, GP, and BDS are as reported
by Cole et al. (2023). Results for BDS used all training data with no observation cap. We achieve
large improvements compared to previous works, especially on the difficult IUCN task.

Benchmark S&T IUCN
Obs. Cap 10 100 1000 10 100 1000

Ours-Explicit (0.0) 60.21 71.23 76.01 48.83 62.46 64.23
Ours-Hybrid (0.25) 66.76 75.05 77.86 58.30 69.02 68.03
Ours-Hybrid (0.5) 66.64 75.27 78.47 59.39 69.57 70.32

Ours-Hybrid (0.75) 66.54 75.01 78.01 58.28 69.23 69.46
Implicit (1.0) 65.59 73.12 76.81 50.98 62.06 65.57

SINR (Cole et al., 2023) 65.36 72.82 77.15 49.02 62.00 65.84
GP (Mac Aodha et al., 2019) 73.14 59.51

BDS (Berg et al., 2014) 61.56* 37.13*

Table 2: Results of experiments on the GeoFeature benchmark. Reported values are averaged R2

correlations across eight environmental features. Values for SINR and GP are as reported by Cole
et al. (2023). As shown, explicit models are the most correlated with environmental features.

Ours (Implicitness)
Obs. Cap 0.0 0.25 0.5 0.75 1.0 SINR GP

10 74.6 74.5 73.5 72.5 71.1 71.2
100 78.0 78.0 77.1 76.6 73.9 73.6
1000 79.3 79.0 78.6 77.9 75.2 75.2 72.4

5.2 BENCHMARKING

Comparison on SDM Benchmarks We evaluate our models on two human expert-created dis-
tribution range datasets: S&T (eBird Status and Trends) and IUCN (the International Union for
Conservation of Nature). There are a total of respectively 535 and 2418 species overlapping be-
tween the iNaturalist training dataset and the two testing datasets, and we report the Mean Average
Precision (mAP) of the models’ predictions. Results are shown in Table 1. The reported results for
all our models are means from five repetitions: for error bars please refer to Subsection 5.3, and for
the full raw data please refer to Appendix A.

As shown, our models consistently achieve state-of-the-art results on those standardized tasks, by
margins of up to 21.2% relative improvement (for few-shot learning with 10 samples/species on the
difficult IUCN benchmark), demonstrating the benefit of using a hybrid representation. In addition,
we see that the model with implicitness 0.5 performs well across all scenarios, ruling out the need for
extensive tuning of the implicitness hyper-parameter in practice (discussed more in Subsection 5.3).

Correlation with Environmental Data We investigate whether our explicit representation indeed
represents local environmental information better as expected by using some common environmental
parameters as proxies. The data comes from the GeoFeature benchmark in Cole et al. (2023), and
includes 8 parameters in different locations sampled within the contiguous United States, such as
above-ground carbon, elevation, etc. We report the average R2 correlation between the embeddings
and the environmental parameter. Results are shown in Table 2.

As shown, explicit models are the most correlated with environmental information, as we expected
in our design. There is also a very clear negative relation between implicitness and the performance
on this task. We conclude that explicit models have strong capability for capturing environmental
information. Interestingly, this might indicate that in hybrid models, the explicit portion of the
embedding is serving as a “bootstrapped” proxy for environmental data, thus improving the results.

7
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Figure 5: The training time per epoch of differ-
ent models, divided by the training time of the
implicit model for normalization.

Figure 6: The inference time of models on the
S&T baseline. Error bars are ± one standard de-
viation across five repetitions.

Table 3: All were run with an observation cap of 1000. The hybrid model had implicitness 0.5.
Results display that simply increasing the dimension of the implicit embedding (and thus the number
of parameters) does not result in results comparable to our hybrid method.

Number of Features (Implicit)
256 (SINR) 512 1024 2048 Ours (Hybrid)

Training Time (s) 574 839 1376 2760 568
Inference Time (s) 16.8 23.2 24.7 27.7 16.7

S&T mAP (%) 77.15 77.73 78.02 78.29 78.47

Training and Inference Speed We trained models for all 9 implicitness settings for a single epoch
on single RTX A4000 (16GB) GPUs, running five repetitions simultaneously. We then conduct in-
ference under the same settings on the S&T benchmark. We found that all standard deviations for
the training time are within 2% times the mean, suggesting that the results have high statistical sig-
nificance, so we omit reporting them and just report the means here. Results are shown in Figures 5
and 6.

As shown, we see that when implicitness is less than 0.5 (the model leans explicit), there seems to
be a training overhead of up to around 47% times the implicit model, presumably due to the larger
number of features per level. However, for models with implicitless greater than or equal to 0.5 (the
model leans implicit), there is no overhead compared to the implicit model. Hence, using our hybrid
model for better results does not require incurring sacrifices in speed. Meanwhile, no statistically
significant difference between the models was observed for inference time.

Comparison with Larger Implicit Networks In all of the experiments above, the dimension of
the location embedding is 256 as in SINR. One may wonder whether simply increasing the di-
mension of this feature embedding would allow the resulting “fat” implicit model to achieve better
results than our explicit representation. We conduct experiments to show that this is not the case:
while marginal performance gains can be achieved, they come at a very heavy cost for training and
inference speed, and still cannot exceed results of our hybrid model. Results are reported in Table 3.

5.3 CHARACTERIZATION

Hyper-Parameter Sensitivity Analysis of Implicitness Here we present data from all 9 implic-
itness settings under the two benchmarks, each ran for five repetitions to rule out the effect of ran-
domness. All reported results are under the best learning rate settings for respective models. Results
are displayed in Figure 7.

Our results further verify that any value of implicitness except 0.0 and 1.0 (the degenerate cases) are
relatively insensitive and robust: all hybrid models have several standard deviations’ improvement

8
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Figure 7: Results of models with different implicitness on the S&T task. Error bars are ± one
standard deviation across five repetitions. As shown, implicitness is not a very sensitive hyper-
parameter.

Figure 8: Precision-Recall Curves averaged across the 535 species on the S&T benchmark. Precision
is regularized with respect to the implicit models. As shown, models with lower implicitness have
higher precision in low-recall scenarios, and vice versa.

compared to explicit or implicit ones. Hence, no extensive tuning is needed for this newly introduced
hyper-parameter. In practice, we recommend a simple value of 0.5.

Precision-Recall Trade-Off To further identify mechanisms via which the hybrid model achieves
superior results, we plot the Precision-Recall Curves (PRCs) for models with 0.0, 0.25, 0.5, 0.75,
and 1.0 implicitness here. We use PRCs instead of other tools like ROCs because it is better suited
to our task, which has strong class imbalance (Saito & Rehmsmeier, 2015). Results are shown in
Figure 8.

It can be seen that the improvement our models achieve stem mainly from their high precision for
low-recall scenarios in comparison to implicit models. However, the precision of explicit models
plunge when recall is high. Hybrid models successfully balance between the two, achieving the best
of both worlds.

Conditioning on the Number of Species To verify that hybrid and explicit models are better at ag-
gregating information from the distribution of multiple species, we run the S&T and environmental
data baselines again with different numbers of species. Following Cole et al. (2023)’s approach, we
train the models on the 535 S&T species only first, and increment the number of species in intervals
of 4000. All models in this experiment were trained with an observation cap of 1000 observations
per species. Results are shown in Figures 9 and 10.

We can notice from the results that on the S&T benchmark, hybrid models perform better than
others, and that this gap generally tends to grow as the number of species increases, suggesting the
superiority of hybrid models in terms of learning distributions across species. The implicit baseline,
meanwhile, learns only a limited amount of new information from having more species modeled.
However, explicit models perform poorly, especially with large amounts of species –– is this due
to their own incapability or to overfitting? Our experiments on correlation with environmental data
show that it is the latter, as explicit models are actually much better at inferring environmental
information from data on large numbers of species, and present larger performance gains in this
respect when the number of species increases.
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Figure 9: Results on the S&T benchmark with respect to the number of species. Hybrid models
experience larger increases in performance as the number of species increase.

Figure 10: Results on the GeoFeatures benchmark with respect to the number of species. Explicit
models experience larger increases in performance as the number of species increase, due to their
inherent ability of inferencing environmental information from species observations.

6 CONCLUSION

Our work explores the application of explicit and hybrid representations to the task of SDM con-
struction. We introduce an innovative explicit representation scheme, and use it in conjunction with
conventional implicit methods to form a hybrid representation. Experiments show that our hybrid
models consistently achieve state-of-the-art accuracy on multiple standard benchmarks, outperform-
ing both implicit and explicit models, and that our explicit representations are good at representing
local environmental information. We also conducted extensive experiments to characterize our mod-
els and investigate their properties.

As supported by our experiments, we conclude that the hybrid representation is well- suited to our
problem formulation because:

• Presence-Only Data: The hybrid model presents informative embeddings that have both
low noise and high signal frequency, thus allowing accurate and precise inference based on
presence-only data.

• No Additional Environmental Information: The explicit portion of the model can boot-
strap environmental information from the species presences, thus providing a proxy for
environmental data.

• Community-Sourced Dataset: Keeping the implicit portion allows for reduction of noise
and bias from the dataset, preventing the explicit portion from overfitting to inaccuracies.

• Large Number of Species: As the number of species increases, the hybrid representa-
tion consistently gains performance, while the explicit representation (although prone to
overfitting) becomes better at inferring environmental information.

Limitations Since our work concentrates on effective representations for the locational embedding
portion of SDMs, we did not incorporate extra components such as remote sensing data, presence-
absence data, or environmental data. We consider those extensions to our model interesting direc-
tions for future research.
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Ethics Statement Our work, like most similar ones on SDMs, is prone to the ethical hazards of
damaging conservation fairness (Donaldson et al., 2016; Fedriani et al., 2017), insufficient relia-
bility (Lee-Yaw et al., 2022), and potential for unintended uses such as poaching (Atlas & Dando,
2006). We suggest judicious use of our methods and careful interpretation of results.

Reproducibility Statement We open-sourced our implementation as a codebase, allowing all of
our experimental results to be easily reproducible and making it easy for others to extend upon our
work. We also released a zoo of all trained models under different learning rates, implicitness, and
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Vanessa Reinfelder, Milena Stillfried, Ilja Heckmann, Anne K Scharf, Dave M Augeri, et al. The
importance of correcting for sampling bias in maxent species distribution models. Diversity and
distributions, 19(11):1366–1379, 2013.

Christian Lange, Elijah Cole, Grant Horn, and Oisin Mac Aodha. Active learning-based species
range estimation. Advances in Neural Information Processing Systems, 36, 2024.

Julie Lee-Yaw, Jenny McCune, Samuel Pironon, and Seema Sheth. Species distribution models
rarely predict the biology of real populations. Ecography, 2022(6):e05877, 2022.

Oisin Mac Aodha, Elijah Cole, and Pietro Perona. Presence-only geographical priors for fine-
grained image classification. In Proceedings of the IEEE/CVF International Conference on Com-
puter Vision, pp. 9596–9606, 2019.

Gengchen Mai, Krzysztof Janowicz, Bo Yan, Rui Zhu, Ling Cai, and Ni Lao. Multi-scale represen-
tation learning for spatial feature distributions using grid cells. In 8th International Conference
on Learning Representations, ICLR 2020, 2020.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jennifer Miller. Species distribution modeling. Geography Compass, 4(6):490–509, 2010.

Thomas Müller. tiny-cuda-nn, 4 2021. URL https://github.com/NVlabs/
tiny-cuda-nn.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics, 41(4):1–15, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. Advances in Neural Information Processing Systems, 32, 2019.

Steven J Phillips, Miroslav Dudı́k, Jane Elith, Catherine H Graham, Anthony Lehmann, John Leath-
wick, and Simon Ferrier. Sample selection bias and presence-only distribution models: implica-
tions for background and pseudo-absence data. Ecological applications, 19(1):181–197, 2009.

Carlos Ramirez-Reyes, Mona Nazeri, Garrett Street, D Todd Jones-Farrand, Francisco J Vilella,
and Kristine O Evans. Embracing ensemble species distribution models to inform at-risk species
status assessments. Journal of Fish and Wildlife Management, 12(1):98–111, 2021.

Marc Rußwurm, Konstantin Klemmer, Esther Rolf, Robin Zbinden, and Devis Tuia. Geographic lo-
cation encoding with spherical harmonics and sinusoidal representation networks. arXiv preprint
arXiv:2310.06743, 2023.

Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than the roc plot
when evaluating binary classifiers on imbalanced datasets. PloS one, 10(3):e0118432, 2015.
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Table 4: Full results on S&T benchmark.

Obs. Cap
Implicitness 10 100 1000

0.0 60.21±0.22 71.23±0.09 76.01±0.05
0.125 65.69±0.34 74.93±0.21 77.61±0.15
0.25 66.76±0.31 75.05±0.27 77.86±0.16

0.375 66.78±0.20 75.23±0.14 77.92±0.14
0.5 66.64±0.33 75.27±0.17 78.47±0.07

0.625 66.58±0.12 75.11±0.20 78.25±0.12
0.75 66.54±0.23 75.01±0.16 78.01±0.18

0.875 66.52±0.09 74.38±0.24 77.69±0.04
1.0 65.59±0.17 73.12±0.19 76.81±0.26

Table 5: Full results on IUCN benchmark.

Implicitness
Obs. Cap 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

10 48.83 56.39 58.30 59.56 59.39 58.29 58.28 57.52 50.98
100 62.42 66.71 69.02 69.41 69.57 68.95 69.23 67.69 62.06

1000 64.23 67.57 68.36 69.13 70.32 70.27 69.46 68.27 65.57

Table 6: Full results on GeoFeatures benchmark.

Implicitness
Obs. Cap 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

10 74.56 74.65 74.51 74.22 73.52 72.98 72.54 72.58 71.12
100 78.04 78.11 77.95 77.80 77.13 76.67 76.62 76.42 73.92

1000 79.28 79.19 79.03 78.87 78.59 78.12 77.88 77.48 75.17

Table 7: Full results on training time.

Obs. Cap
Implicitness 10 100 1000

0.0 26.77±0.04 237.99±0.27 843.79±1.31
0.125 25.71±0.07 230.46±0.62 816.49±1.49
0.25 24.79±0.19 220.90±0.59 781.41±1.77

0.375 23.48±0.08 210.75±0.72 747.15±2.40
0.5 17.89±0.15 160.10±0.45 567.90±1.82

0.625 17.84±0.04 160.52±0.46 570.05±2.04
0.75 18.26±0.34 160.93±0.55 571.61±1.73

0.875 17.96±0.05 162.32±0.64 573.93±1.10
1.0 18.30±0.16 162.71±1.10 574.37±2.34
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Table 8: Full results on inference time.

Implicitness Time (s)

0.0 17.21±1.09
0.125 16.84±1.58
0.25 16.72±0.88
0.375 16.43±0.54

0.5 16.74±0.94
0.625 16.24±0.40
0.75 16.69±1.18
0.875 16.15±0.25

1.0 16.78±0.53

Table 9: Full results on S&T benchmark with different learning rates.

Implicitness
Obs. Cap Learning Rate 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

0.01 42.29 40.95 42.66 43.49 44.87 46.87 22.78 54.48 64.52
0.003 60.07 58.05 59.09 60.30 59.98 60.51 62.51 63.80 64.92

10 0.001 58.13 64.57 66.86 67.00 66.73 66.46 66.40 66.58 65.41
0.0003 24.98 57.13 63.21 64.18 64.97 65.47 65.30 65.15 64.46
0.0001 24.42 34.12 44.49 47.93 50.78 52.98 53.43 55.38 57.91

0.01 48.21 50.40 50.97 52.32 57.32 59.12 23.50 29.34 70.73
0.003 58.77 60.87 61.55 63.26 65.73 67.78 69.00 71.39 72.53

100 0.001 70.27 70.64 71.62 72.52 73.23 73.44 73.72 74.13 73.17
0.0003 71.25 74.98 75.35 75.53 75.44 75.24 75.14 74.30 72.76
0.0001 64.05 71.08 72.13 72.12 72.25 72.43 72.46 71.95 71.26

0.01 60.21 62.17 63.54 64.71 68.24 69.33 19.28 19.28 71.75
0.003 65.25 66.99 68.07 68.58 72.12 72.26 73.81 74.44 75.78

1000 0.001 72.20 73.52 74.07 74.29 76.16 76.03 75.98 76.63 77.10
0.0003 76.02 77.44 77.38 77.88 78.40 78.15 77.98 77.81 76.60
0.0001 74.83 60.21 78.08 77.91 78.13 77.91 77.56 76.89 75.41

Table 10: Full results on IUCN benchmark with different learning rates.

Implicitness
Obs. Cap Learning Rate 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

0.01 33.60 32.71 34.31 35.70 36.00 37.63 0.86 44.39 47.71
0.003 48.83 52.22 53.32 54.41 53.79 54.42 55.25 56.16 49.87

10 0.001 38.41 56.39 58.30 59.56 59.39 58.29 58.28 57.52 50.98
0.0003 4.82 34.12 46.36 50.72 53.53 54.02 54.28 52.99 46.85
0.0001 1.18 8.02 15.12 19.53 24.58 31.42 31.24 31.82 31.85

0.01 32.51 34.96 36.98 38.44 43.77 45.82 0.88 0.85 55.89
0.003 48.67 49.54 51.09 53.05 56.54 58.19 60.54 61.77 58.52

100 0.001 62.42 64.27 64.79 65.49 67.33 67.38 67.12 66.44 60.54
0.0003 61.91 66.71 69.02 69.41 69.57 68.95 69.23 67.69 62.06
0.0001 46.58 59.67 63.88 64.98 65.41 65.26 64.87 63.39 58.77

0.01 35.99 38.95 40.47 42.25 48.24 50.42 1.00 0.85 54.01
0.003 44.36 46.05 48.04 49.62 54.64 56.57 58.19 60.05 59.31

1000 0.001 58.68 59.70 61.11 61.37 64.45 64.90 66.08 65.43 64.40
0.0003 64.23 67.57 68.03 68.56 70.32 70.27 69.46 68.27 65.57
0.0001 60.73 66.53 68.36 69.13 69.50 68.41 68.83 67.15 62.30
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Table 11: Full results on GeoFeatures benchmark with different learning rates.

Implicitness
Obs. Cap Learning Rate 0.0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1.0

0.01 73.54 73.64 72.99 73.14 72.65 72.47 55.48 70.19 69.78
0.003 74.56 74.65 74.03 74.22 73.52 72.98 72.38 72.58 71.12

10 0.001 73.73 74.43 74.51 73.50 73.28 72.69 72.54 71.34 70.76
0.0003 70.10 71.86 72.64 72.57 72.68 72.09 71.85 70.73 69.83
0.0001 69.98 70.65 70.64 70.26 70.80 70.64 68.94 69.89 67.59

0.01 73.22 73.37 72.79 72.08 72.17 72.46 59.01 53.63 67.81
0.003 75.90 76.61 75.54 75.65 76.00 74.54 75.12 74.28 71.01

100 0.001 78.04 78.05 77.25 77.59 77.13 76.64 76.62 76.42 73.66
0.0003 77.30 78.11 77.95 77.80 76.97 76.67 75.45 76.12 73.92
0.0001 74.53 75.75 76.66 76.24 75.68 75.26 73.89 73.72 71.93

0.01 74.10 74.98 74.50 74.93 74.32 74.45 62.69 53.68 62.99
0.003 76.31 76.84 76.87 76.79 76.29 76.28 76.32 75.14 72.33

1000 0.001 78.98 78.75 78.74 78.52 78.59 77.36 77.88 77.44 74.82
0.0003 79.28 79.19 79.03 78.87 78.32 78.12 77.69 77.48 75.17
0.0001 78.80 78.45 78.91 78.58 78.42 77.89 77.17 76.80 74.18
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