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Abstract

The past few years have produced a series of spectacular advances in the decoding1

of speech from brain activity. The engine of these advances has been the acquisition2

of labelled data, with increasingly large datasets acquired from single subjects.3

However, participants exhibit individual differences, such as anatomy, and datasets4

use varied scanners and task designs. As a result, prior work has struggled to lever-5

age data from multiple subjects, multiple datasets, multiple tasks, and unlabelled6

datasets. In turn, the field has not benefited from the rapidly growing number of7

open neural data repositories to exploit large-scale data and deep learning. To8

address this, we develop an initial set of neuroscience-inspired self-supervised9

objectives, together with a neural architecture, for representation learning from10

heterogeneous and unlabelled neural recordings. Experimental results show that11

representations learned with these objectives scale with data, generalise across12

subjects, datasets, and tasks, and outperform learning using only labelled data.13

In addition, we set new benchmarks for two foundational speech decoding tasks.14

Taken together, these methods now unlock the potential for training speech decod-15

ing models with orders of magnitude more existing data.16
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Figure 1: Leveraging unlabelled data for speech decoding. We pre-train a neural network using
tasks that generate implicit labels from abundant unlabelled neuroimaging data, permitting learning
from large heterogeneous datasets. The tasks apply a randomly selected transformation T to the data
and the network predicts the transformation. We fine-tune a linear probe on top of the pre-trained
model with labelled data, achieving superior generalisation owing to the strength of the representation.
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1 Introduction17

In his Bitter Lesson, Richard Sutton argues that a major conclusion of 70 years of AI research is that18

general methods exploiting large-scale computation will outperform model-based approaches as the19

availability of compute increases [48]. In line with this, the generality of deep learning, via statistical20

learning from ever bigger datasets, has allowed the field to leverage computation in a way that appears21

to scale arbitrarily, leading to astounding advances across a diverse set of domains [27, 6, 40, 44].22

In the domain of brain data, and of tasks like speech decoding, the bitter lesson has not yet been fully23

assimilated. State-of-the-art brain-computer interfaces (BCIs) have tried to scale up labelled datasets24

for individual subjects, using either invasive [38, 58] or non-invasive brain recordings [50], mapping25

these to transcripts of attempted or imagined speech. Yet, a number of obstacles to scale remain.26

With few exceptions at present (e.g. [15]), speech decoding models tend not to train on data from27

more than one subject. Moreover, they do not combine data from multiple datasets and in general28

do not utilise unlabelled data, or data from diverse tasks. Thus the size of training data has been29

limited to how much can be acquired for a single subject, and data from other subjects, or from the30

growing number of public data repositories, has not been leveraged. There are many reasons for these31

limitations; individual brains and data from different neuroimaging scanners differ, for example. But32

overcoming these limitations, as has begun to happen in neighbouring sub-fields (e.g. [25]), holds the33

promise of training models on collective, internet-scale data.34

Given the scarcity of labelled data, self-supervised learning (SSL) appears promising as an avenue for35

domains where such data is rare or hard to obtain [3]. In the SSL paradigm, pretext tasks pre-train a36

model on unlabelled data by generating implicit training labels through transformations of the input37

data in order to help a downstream task. We develop a set of these tasks, informed by advances38

in neuroscience, for learning with unlabelled brain data (Figure 1) and design an architecture for39

processing continuous multi-sensor neuroimaging signals. In order to scale existing non-invasive40

datasets, we provide a unified method that allows us to leverage data from other experiments that do41

not have the same labels (by treating them as unlabelled) and that come from different subjects and42

neuroimaging scanners. We evaluate the representations learned with our approach on heard speech43

datasets acquired with non-invasive magnetoencephalography (MEG), setting the first baselines44

for speech detection and voicing classification on this data. The results not only demonstrate that45

scaling with unlabelled data works in speech decoding, but also shows that these representations can46

generalise across datasets, tasks, and even novel subjects for the first time. Our main contributions are:47

• A set of domain specific self-supervised pretext tasks for representation learning that can48

scale speech decoding over multiple subjects, multiple studies, and unlabelled data;49

• A neural architecture for learning these self-supervised objectives and training downstream50

speech decoding from brain data; and51

• A comprehensive experimental evaluation, using more than twice the volume of data52

in prior work, that verifies the above claims and additionally provides evidence for the53

existence of scaling laws when pre-training models with unlabelled MEG recordings.54

2 Method55

We utilise a convolutional neural architecture adapted from neural audio codecs (Appendix A) for56

encoding heterogeneous brain signals into latent representations. By developing three pretext tasks57

with the objective of learning generalisable brain representations, we leverage this architecture for58

self-supervised learning from unlabelled data. Since different datasets use varied numbers of sensors,59

we construct these tasks with labels that are agnostic to the number of sensors in the signal.60

Band prediction. In the literature, neural responses can be broadly segmented into functional61

frequency bands [20, 43, 34]. Delta (δ) waves (0.1–4 Hz) are commonly associated with the rhythmic62

structure of heard speech [33], Theta (θ) waves (4–8 Hz) reliably track [32] and phase-lock to63

the amplitude envelope of heard sentences [41], Alpha (α) waves (8–12 Hz) relate to attentional64

processes and the inhibition of irrelevant information, helping to focus on relevant speech signals [47],65

Beta (β) waves (12–30Hz) are implicated in top-down predictive coding [4] which affects lexical66

processing [57], Gamma (γ) waves (30–70 Hz) occur with higher cognitive functions (e.g. memory,67

learning, reasoning, and planning) [17, 5], and High Gamma (γhigh) waves (>70 Hz) have been68
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linked specifically to speech detection [24] and phonemic feature classification in the STG [36] as69

well as phonemic feature classification in the ventral sensorimotor cortex (vSMC) [8]. As High70

Gamma is a relatively wide band, we have split it into two sub-bands: Lower High Gamma (γhigh
lower)71

waves (70–100 Hz) and Upper High Gamma (γhigh
upper) waves (100–150 Hz). To learn representations72

that can distinguish between these, our band prediction task applies a band-stop filter for a randomly73

selected band ω to the sample x, passes the filtered sample xω′
through the network backbone g74

and the corresponding predictor fband, requiring the network to predict the frequency band that was75

rejected. This yields the loss76

Lband =
∑
x∈B

LCE(fband(g(x
ω′
)), ω), (1)

where B is a mini-batch of samples, ω ∈ {δ, θ, α, β, γ, γhigh
lower, γ

high
upper}, and LCE is the cross-entropy77

loss as this is a multi-class classification task.78

Phase shift prediction. Phase coupling between networks of neuron populations is necessary for79

coordinating brain activity [16, 52]. Thus, since phase often synchronises between communicating80

brain areas, phase coupling between spatially distant sensors is likely to be a useful feature. Supporting81

this insight, recent work [25] also finds phase to be an essential component of the signal. To learn82

representations that encode phase differences between brain areas, this task applies a discrete uniform83

random phase shift ϕ ∈ {0, π
8 ,

π
4 ,

3π
8 , π

2 ,
5π
8 , 3π

4 , 7π
8 } to a uniformly randomly selected proportion ρ84

of the sensors. Applying this shift to random sensors is critical since sensors are placed in different85

positions, capturing different regions of the brain. Uniform random selection ensures differences86

between any two regions of the brain are represented. The objective of this task is to predict the phase87

shift. This leads to a similar loss88

Lphase =
∑
x∈B

LCE(fphase(g(x
ϕ)), ϕ), (2)

where xϕ describes the signal with a phase shift ϕ applied to a proportion of the sensors. We use a89

discrete number of possible phase shifts, treating it as a multi-class task rather than a regression task,90

to ease the difficulty of the problem as MEG scanners typically have a large number of sensors.91

Amplitude scale prediction. MEG and EEG signals use an array of sensors at different spatial92

locations, capturing different signal sources more intensely. Representing the relative amplitude93

difference between sensors could be important for differentiating between neural responses originating94

from distinct parts of the brain. Within speech, Hamilton et al. [24] find that localised regions of the95

STG respond to sustained speech and speech onsets. Differentiating between neural responses from96

this region and others may be essential for decoding speech perception. Thus, this pretext task focuses97

on learning representations that encode relative sensor amplitude differences. Similar to the phase98

shift task, we select a random proportion of the sensors ρ and apply a discrete random amplitude99

scaling coefficient A ∈ [−2, 2], discretised into 16 scaling factors, to the signal. The objective is to100

predict the scaling factor, leading to the loss101

Lamplitude =
∑
x∈B

LCE(famplitude(g(x
A)), A), (3)

where xA is the signal scaled with A.102

These pretext tasks capture complementary time- and frequency-domain properties of the signal.103

Hence, during pre-training, we combine them, creating an augmented version of the input for every104

pretext task by applying the matching transformation. We feed the augmented inputs through a105

network backbone and apply a corresponding linear classifier to predict the transformation, summing106

the weighted losses such that our final pre-training loss is given by107

LSSL = w1Lband + w2Lphase + w3Lamplitude, (4)

where wi is a constant coefficient for each self-supervised loss.108
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Table 1: Pre-training with pretext tasks leads to better representations for decoding speech. In
the linear case, we train a supervised linear classifier on the input MEG signals. In all other cases, we
train a linear probe on top of our pre-trained backbone with its weights frozen. In the no pre-training
baseline, the backbone is random. When all pretext tasks are used, their losses are weighted equally.

Armeni Gwilliams
Experiment ROC AUC t p ROC AUC t p

Linear 0.559± 0.000 341 4e−6 0.527± 0.000 379 3e−6

Ours No pre-training 0.519± 0.002 8 7e−3 0.498± 0.003 0 7e−1
Amp(ρ = 0.2) 0.602± 0.001 114 4e−5 0.532± 0.005 6 1e−2
Phase(ρ = 0.5) 0.603± 0.003 35 4e−4 0.535± 0.003 12 3e−3
Band 0.616± 0.003 44 3e−4 0.542± 0.001 46 2e−4
All tasks 0.621± 0.003 36 4e−4 0.543± 0.003 13 3e−3

3 Experiments109

Datasets. We focus our evaluation on MEG data as the signal is rich, with better spatial resolution110

than EEG [30] and faster sampling rates than fMRI [23]. Unless specified otherwise, our experiments111

use Cam-CAN [46, 51] as an unlabelled representation learning dataset for pre-training. This is a112

study containing 641 subjects with resting and sensorimotor tasks, totalling approximately 160 hours113

of MEG recordings. For our downstream tasks, we use two labelled heard speech MEG datasets114

where participants listen to short stories or audiobooks. Armeni et al. [2] contains 3 subjects who115

listen to 10 hours of recordings each (30 hours total) while Gwilliams et al. [22] has 27 subjects, each116

recorded for 2 hours (54 hours total). Overall, we utilise over 200 hours of data. To the best of our117

knowledge, this is the largest volume of MEG data ever used for speech decoding.118

Downstream tasks. We evaluate our methods with two fundamental speech decoding tasks of119

increasing difficulty. The first, speech detection, determines whether speech occurs in the auditory120

stimulus using the neural response. The second task is voicing classification. Given data aligned at121

the occurrence of a phoneme, the task is to recognise whether the phoneme is voiced or voiceless,122

where voicing is a binary phonetic feature that categorises whether a speech sound is associated123

with vocal cord vibration. We select these tasks as they are simpler than phoneme recognition, but124

are foundational because they must be solved to decode speech accurately into natural language.125

Critically, these tasks remain unsolved within the domain of non-invasive speech decoding.126

Training. We pre-train all models to completion and then fine-tune on labelled data for each task.127

In all tables and figures, we quote the receiver operating characteristic area under the curve (ROC128

AUC) where chance is always 0.5 regardless of class balance, showing test ROC AUC at the best129

validation ROC AUC (early stopping). We quote uncertainty as the standard error of the mean over130

three seeds. We calculate the t-score and p-value from one-sample one-sided t-tests against chance.131

Learning generalisable representations using pretext tasks. In Table 1, we show that all of132

our pretext tasks lead to statistically significant results, indicating that these pre-training objectives133

are useful for speech decoding. Interestingly, the combination of all pretext tasks leads to better134

generalisation than any task on its own. This may be because our pretext tasks capture complementary135

properties in time- and frequency-space. When comparing our pre-training approach to a similarly136

parameterised supervised method, pre-training comes out on top. Thus, it is apparent that pre-training137

with unlabelled data improves generalisation over using MEG signals as input directly.138

Scaling speech decoding with unlabelled data. We examine how performance changes as we139

increase the amount of pre-training data with speech detection and voicing classification. Figure 2140

shows that any unlabelled data is sufficient to pre-train a useful representation and adding unlabelled141

data improves generalisation. As we scaled up the pre-training dataset by increasing the number of142

subjects, our self-supervised method is an exception to the common consensus that pooling subjects143

worsens generalisation. As we pre-trained with a different dataset to those we fine-tuned on, our144

representation shows cross-dataset generalisation. This is notable as the Armeni et al. [2], Gwilliams145

et al. [22], and pre-training datasets all use different scanners entirely. To our surprise, scaling our146

pre-training data, which contained no language tasks whatsoever, improved speech task accuracy.147

Remarkably, this shows that non-linguistic tasks can be used to scale downstream performance.148
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Figure 2: Scaling unlabelled data improves generalisation. We pre-train the model on increasing
amounts of unlabelled data from Cam-CAN [46, 51]. The solid lines are the best linear fits to the data
and the dashed lines show the amount of data used in prior surgical [38] and non-invasive [15] work.
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Figure 3: Scaling unlabelled data improves novel subject generalisation. We fine-tune on
Gwilliams et al. [22]. When in-distribution, we evaluate on held-out sessions from subjects in the
training set; when out-of-distribution, we evaluate on three held-out subjects. The solid lines are
the best linear fits while the dashed lines show the amount of data used in prior surgical [38] and
non-invasive [15] work.

Finally, it is notable that we have gone far beyond the data regime of prior surgical and non-surgical149

work and yet performance appears to continue to scale.150

When generalising to novel subjects rather than only across subjects, models typically struggle since151

brain data is variable across participants [9]. However, when scaling up the pre-training data, Figure 3152

reveals a positive trend in performance for novel subjects, suggesting that scale can alleviate these153

issues. As far as we are aware, this is also the first result to demonstrate novel subject generalisation154

in speech decoding from MEG.155

4 Conclusion156

Prior methods have been unable to aggregate data across different datasets, labels, or subjects to scale157

up because of heterogeneity in recording hardware, experiment design, and participants. Some studies158

have shown weak signals towards alleviating these issues. But until now, no one has developed a159

general solution. We provided a unified method that leverages unlabelled data using generic pretext160

tasks that shows that all of these problems can be solved. We verified this with experiments showing161

that our method scales with heterogeneous data and generalises across datasets, subjects, and tasks.162

We implore the research community to employ vast quantities of data and compute to realise this163

potential. If scale is all you need in speech decoding, then the bitter lesson may not be so bitter.164
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pre-training, all weights are trainable except for modules in light-red, while in fine-tuning, modules
with light-blue borders are frozen and modules with light-red borders are unfrozen. Dashed borders
indicate optional components.

A Network Architecture386

We design a two-stage neural network architecture (Figure 4). The pre-training stage uses pretext387

tasks to train a representation with unlabelled brain data. Then, the fine-tuning stage uses this388

representation to learn the downstream task by training a linear probe with labelled data.389

Normalisation. We divide recordings into windows of length w seconds or t samples. At train time,390

each batch of windows is standardised such that each sensor has zero mean and unit variance.391

Backbone. The network takes as input the standardised sample windows. To combine heterogeneous392

datasets, which have different numbers of sensors S, we apply a dataset-conditional linear layer393

to the sensor dimension, projecting the signal into a shared space with dimension dshared. Then,394

to encode the signal, we construct a wave-to-wave convolutional encoder architecture, the cortex395

encoder, inspired by work in neural audio codecs [59, 12]. Specifically, our convolutional encoder396

adapts the implementation of the SEANet architecture [49] used in Défossez et al. [12]. As these397

codecs typically operate on mono audio signals in R1×t, while our signals are in Rdshared×t, we398

increase the convolutional channel dimension from 1 to match dshared while also inflating the channel399

dimension of subsequent convolutions. We refer to the output dimension of embeddings from this400

backbone as dbackbone. Thus, the backbone takes as input a window in RS×t, and encodes this into τ401

embeddings (where τ < t), each of dimension dbackbone (i.e. an Rdbackbone×τ output).402

Pre-training. Following the advice of Balestriero et al. [3, Section 3.2], we use a two-layer feedfor-403

ward projector to alleviate misalignment between our pretext and downstream tasks in the representa-404

tion. After the projector, linear classifiers make predictions for each of the pretext tasks.405

Fine-tuning. In this stage, we introduce classifiers for the downstream tasks and train with labelled406

data and supervised learning (Figure 4). To fine-tune, we train a classifier from scratch on top of the407

pre-trained representation, which remains frozen. Thus, we backpropagate only through the classifier.408

A new trainable dataset-specific linear layer can also be introduced for a novel dataset.409

For speech detection, our classifier makes a prediction for each individual embedding. For voicing410

classification, where there is only one label for each sample window, the embeddings are flattened411

into a tensor in Rdbackbone×τ representing the entire window. This is the input to the voicing classifier412

and is referred to as full epoch decoding in neuroimaging literature [10].413

Subject conditioning. Just as speakers have different voices, neural responses between subjects have414

different characteristics. Consequently, individual variation leads to models that do not generalise415

well across subjects [9]. In the speech literature, models include speaker conditioning to account for416

these differences [18]. We take a similar approach by introducing subject conditioning, represented as417

a subject embedding, to our model. With a SEANet-based architecture, Zeghidour et al. [59] find that418

conditioning is equally as effective at the encoder bottleneck as in other stages of the model. Hence,419
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we place ours at the cortex encoder bottleneck for simplicity and use feature-wise linear modulation420

(FiLM) [42].421

Preprocessing. Each recording is in RS×T where S is the number of sensors and T is the number422

of time points sampled by the scanner. To eliminate high-frequency muscle movement artifacts, we423

apply a low-pass filter at 125Hz as well as a high-pass filter at 0.5Hz to remove slow-drift artifacts.424

Since the datasets were recorded in Europe, where the electric grid frequency is 50Hz, we apply a425

notch filter at multiples of 50Hz to account for line noise. Next, we downsample the signal to 250Hz,426

avoiding aliasing at frequencies up to our low-pass filter threshold. Finally, we detect bad sensor427

channels, those with significant noise and artifacts, using a variance threshold and replace them by428

interpolating the spatially nearest sensors.429

B Limitations430

Although our results are significant in demonstrating a viable path forward to scale up speech BCIs,431

there remain a number of limitations to the present work. We focused here on two downstream432

tasks: speech detection and voice classification. Ultimately, we would like to expand this work to433

predict full transcripts from brain recordings (i.e. brain-to-text). This has been achieved with surgical434

data [38, 58] but not yet convincingly with non-invasive methods like MEG or EEG [26]. Speech435

detection has played an important role in the development of full brain-to-text in a surgical context436

[38] and we hope may play a similar role for non-invasive methods. Prior work has further used voice437

classification as a stand in for phoneme classification [21], and we have been able to improve on these438

results here. In future work, we would like to expand this to all English phonemes. Secondly, while439

we have been able to demonstrate the utility of a few pretext tasks here, we do not claim to have440

exhausted the full set of useful tasks. Rather, we conjecture that more useful pretext tasks remain to441

be found and believe a useful avenue of research will be into other input representations for brain442

recordings. For example, this paper did not make use of spatial features. Another limitation is our443

emphasis on heard speech over other types of speech, such as attempted or imagined speech. We444

hypothesise that the same methods presented here will generalise to these other varieties of speech,445

though this has yet to be shown. But, perhaps the biggest limitation of the present work is that, while446

it surpasses the amount of data used in other studies, it remains to be seen how much speech decoding447

tasks can be improved by scaling up the number of datasets used in training. In sharing this work448

now, we believe that the current proof of concept will be sufficiently impactful to the field as we449

continue to actively scale up the datasets that we can leverage.450

C Related Work451

Prior work in speech decoding has focused almost entirely on supervised learning with decoding452

models that typically do not generalise across participants or experiments. This is true both in recent453

state-of-the-art invasive studies [38, 37, 58, 7] and non-invasive studies [50]. These prior works have454

scaled up the experimental data collected within individual subjects, but are unable to leverage data455

from other subjects and experiments. Focusing on semantic rather than phonetic decoding, work by456

Tang et al. [50] is remarkable for showing an ability to generalise across labelled task data when457

listening to speech, imagining speech, or even watching videos. They do not, however, leverage458

unlabelled data and are unable to show generalisation between subjects.459

Specific studies into the limitations of generalising models between subjects show that while per-460

formance decreases on average when subjects are pooled, there are exceptions. Csaky et al. [9]461

find that a subset of individuals perform better when evaluated with a group-level model than with462

individual models. Exploiting audio data in a multi-modal framework, Défossez et al. [15] show463

that decoding performance improves for a segment identification task as data from multiple subjects464

listening to connected speech are aggregated. Although they repeat the result within two MEG465

and two EEG datasets, Défossez et al. [15] do not show any improvements for pooling data across466

datasets. Moreover, they do not combine data from studies with different labels either; cf. [56, 14, 54].467

Unfortunately, two of these papers [56, 14] included a bug in their evaluation code. As such, their468

methods may perform no better than a baseline that provides pure noise inputs to the model [26].469

In general, speech decoding has centred on different kinds of speech: listening, imagining, speaking470

out loud, and, for paralysed patients, attempting to speak aloud. We focus here on listening because it471
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is easier to decode than imagined speech (e.g. [35]). There is also some evidence of a functional over-472

lap between listening and imagined speech representations in the brain [53], though we acknowledge473

that the question of overlap has been contested [28]. Prior work has also investigated the two tasks474

that we focus on here [11, 38, 22]. The first of these, speech detection, formed the backbone to Moses475

et al. [38], where a speech detection model was trained and subsequently used to detect isolated476

words, which were in turn classified and checked against a language model to generate acceptable477

sentences. Hamilton et al. [24] further elaborated on the neural anatomy underlying speech detection,478

categorising neural responses in the superior temporal gyrus (STG) to sustained speech and speech479

onset. As for the second task, voicing classification, Gwilliams et al. [22] used this task as a proxy for480

phoneme classification, as pooling phonemes into unvoiced or voiced segments (e.g. /p t k f s/ vs /b481

d g v z/) improves data efficiency. We note that voicing classification and speech detection are related482

tasks as voicing is a subclass of speech. This makes them foundational for building hierarchical483

speech decoding pipelines similar to prior surgical decoding work [38, 58].484

In the computer vision literature, there have been a plethora of methods that use self-supervised485

pretext tasks for representation learning [1, 13, 39, 29, 60, 19]. Until now, similar approaches have486

not translated to the brain decoding literature. However, prior work has used other methods to487

leverage unlabelled brain data. For example, Jiang et al. [25] succeeded in cross-dataset and cross-488

task generalisation, using a transformer with tokenised brain signals and a masked token prediction489

objective. Although this work combined unlabelled EEG datasets, it only achieved improvements490

on non-speech tasks. Wang et al. [55] used a similar approach, replacing tokens with contextualised491

embeddings of time-frequency input representations. They attained impressive speech detection492

results but with invasive neural recordings, which are comparatively rare and thus have much less493

potential to scale than non-invasive data.494

D Experiment Details495

We pre-train with non-overlapping sample windows from all subjects and sessions. We adjust the496

amount of unlabelled data used by increasing the number of subjects in the sequence 1, 2, 4, 8, 17,497

36, 74, 152, 312, and 641, successively randomly selecting more subjects to include. Each seed uses498

a different set of subjects to reduce negative effects from outlier subjects.499

When fine-tuning with Armeni et al. [2], we hold out session 010 from all subjects during training500

and validation, using this for evaluation. Similarly, when fine-tuning with Gwilliams et al. [22], we501

hold out session 1 from subjects 23, 24, 25, 26, and 27, using these sessions for evaluation only. As502

there is limited within-subject data in the latter dataset, we did not hold out a session from all subjects503

as before. For our novel subject experiments, we hold out subjects 1, 2, and 3 entirely and use the504

data for these subjects during evaluation. We always fine-tune to completion (usually around 300505

epochs), taking the test metric at the best validation loss (early stopping).506

In all experiments, we use three randomly selected seeds for each pre-training and correspond-507

ing fine-tuning run. For speech detection, since our encoder reduces the temporal dimension508

from 125 samples (the number of samples in a 0.5 second window with a sample rate of 250Hz)509

down to 5 embeddings, we downsample our speech detection labels to match using PyTorch’s510

torch.nn.functional.interpolate. Therefore, each speech detection label represents a 0.1511

second period of time.512

E Hyperparameters513

We conducted a search over hyperparameters of interest to optimise our self-supervised objectives and514

neural architecture. While these ablations indicated a theoretically ideal architectural configuration,515

in practice, we altered our final experimental architecture due to instabilities during training when516

data was scaled up. Our final architecture hyperparameters achieve a balance between the best values517

from our hyperparameter search and stable training. These values are detailed in Table 2.518
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Table 2: Experimental hyperparameters.

Hyperparameter Value
Window length (s) 0.5

ρ (phase) 0.5
ρ (amplitude) 0.2
{w1, w2, w3} {1.0, 1.0, 1.0}
dshared 512

dbackbone 512
SEANet convolution channels (512, 512, 512, 512)
SEANet downsampling ratios (5, 5, 1)

FiLM conditioning dimension 16
Subject embedding dimension 16

Pre-training epochs 200
Optimizer AdamW [31]
Learning rate 0.000066
Train ratio 0.8
Validation ratio 0.1
Test ratio 0.1
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F Compute Resources519

All experiments were run on individual NVIDIA V100 and A100 GPUs with up to 40GiB of GPU520

memory on a system with up to 1TiB of RAM. Each pre-training run with the maximum amount of521

pre-training data took approximately 200 hours (8.3 days). Fine-tuning following pre-training took522

up to another 12 hours. We estimate that we used approximately 3000 hours of compute for the final523

experimental runs, including hyperparameter searches. In total, over the course of developing this524

work from idea to final paper, we used around 10,000 hours of GPU compute.525

G Licences For Datasets And Code526

The Armeni et al. [2] dataset is distributed under CC-BY-4.0 while the Gwilliams et al. [22] dataset527

is distributed under the CC0 1.0 Universal licence. The Schoffelen et al. [45] dataset is distributed528

with a RU-DI-HD-1.0 licence from the Donders institute. The licence for the Cam-CAN [46, 51]529

dataset is unknown. The SEANet code adapted from Défossez et al. [12] is distributed under the MIT530

licence, and the OSL library, which we use for preprocessing, is under the BSD-3-Clause licence.531

H Broader Impacts532

Decoding speech from non-invasive brain recordings is likely to bring about significant positive533

societal impacts. Research in this field could enable paralysed patients to communicate freely and534

materially assist those with minor communication difficulty (e.g. stammering). As the technology535

matures, it could also enable new ways of communicating with others and interacting with devices536

without the risks of invasive surgical implants. Nevertheless, the maturity of this technology could537

also present potential negative societal impacts. For one, reading inner speech creates new concerns538

over data controls as this information is likely to be highly sensitive and personal to individuals. Given539

access to this technology, there is also the risk that bad actors could extract sensitive information from540

target individuals without consent. Moreover, there are possible long horizon effects associated with541

speech decoding research. Broad adoption of this technology could lead to the gradual erosion of542

privacy over inner speech within society. In addition, asymmetric effects, where some individuals or543

organisations can read inner speech but others are unable to, could worsen societal inequality. Within544

the scope of this paper, we mitigate risks associated with inner speech by focusing on decoding545

heard speech where there is low potential for abuse. Nonetheless, we acknowledge that this is still a546

stepping stone towards solving inner speech decoding.547
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NeurIPS Paper Checklist548

1. Claims549

Question: Do the main claims made in the abstract and introduction accurately reflect the550

paper’s contributions and scope?551

Answer: [Yes]552

Justification: We accurately portray the paper’s contribution and scope in the introduction553

and abstract. We thoroughly detail prior work in the Related Work section and discuss554

limitations in the paper. We make it clear when goals are aspirational and not attained.555

Guidelines:556

• The answer NA means that the abstract and introduction do not include the claims557

made in the paper.558

• The abstract and/or introduction should clearly state the claims made, including the559

contributions made in the paper and important assumptions and limitations. A No or560

NA answer to this question will not be perceived well by the reviewers.561

• The claims made should match theoretical and experimental results, and reflect how562

much the results can be expected to generalize to other settings.563

• It is fine to include aspirational goals as motivation as long as it is clear that these goals564

are not attained by the paper.565

2. Limitations566

Question: Does the paper discuss the limitations of the work performed by the authors?567

Answer: [Yes]568

Justification: We have included a discussion around limitations of this work in Section B.569

Guidelines:570

• The answer NA means that the paper has no limitation while the answer No means that571

the paper has limitations, but those are not discussed in the paper.572

• The authors are encouraged to create a separate "Limitations" section in their paper.573

• The paper should point out any strong assumptions and how robust the results are to574

violations of these assumptions (e.g., independence assumptions, noiseless settings,575

model well-specification, asymptotic approximations only holding locally). The authors576

should reflect on how these assumptions might be violated in practice and what the577

implications would be.578

• The authors should reflect on the scope of the claims made, e.g., if the approach was579

only tested on a few datasets or with a few runs. In general, empirical results often580

depend on implicit assumptions, which should be articulated.581

• The authors should reflect on the factors that influence the performance of the approach.582

For example, a facial recognition algorithm may perform poorly when image resolution583

is low or images are taken in low lighting. Or a speech-to-text system might not be584

used reliably to provide closed captions for online lectures because it fails to handle585

technical jargon.586

• The authors should discuss the computational efficiency of the proposed algorithms587

and how they scale with dataset size.588

• If applicable, the authors should discuss possible limitations of their approach to589

address problems of privacy and fairness.590

• While the authors might fear that complete honesty about limitations might be used by591

reviewers as grounds for rejection, a worse outcome might be that reviewers discover592

limitations that aren’t acknowledged in the paper. The authors should use their best593

judgment and recognize that individual actions in favor of transparency play an impor-594

tant role in developing norms that preserve the integrity of the community. Reviewers595

will be specifically instructed to not penalize honesty concerning limitations.596

3. Theory Assumptions and Proofs597

Question: For each theoretical result, does the paper provide the full set of assumptions and598

a complete (and correct) proof?599
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Answer: [NA]600

Justification: This paper is entirely empirical and does not contain any theoretical results.601

Guidelines:602

• The answer NA means that the paper does not include theoretical results.603

• All the theorems, formulas, and proofs in the paper should be numbered and cross-604

referenced.605

• All assumptions should be clearly stated or referenced in the statement of any theorems.606

• The proofs can either appear in the main paper or the supplemental material, but if607

they appear in the supplemental material, the authors are encouraged to provide a short608

proof sketch to provide intuition.609

• Inversely, any informal proof provided in the core of the paper should be complemented610

by formal proofs provided in appendix or supplemental material.611

• Theorems and Lemmas that the proof relies upon should be properly referenced.612

4. Experimental Result Reproducibility613

Question: Does the paper fully disclose all the information needed to reproduce the main ex-614

perimental results of the paper to the extent that it affects the main claims and/or conclusions615

of the paper (regardless of whether the code and data are provided or not)?616

Answer: [Yes]617

Justification: We describe our method and experimental setup in the main body and appen-618

dices. We will also provide code to reproduce our work.619

Guidelines:620

• The answer NA means that the paper does not include experiments.621

• If the paper includes experiments, a No answer to this question will not be perceived622

well by the reviewers: Making the paper reproducible is important, regardless of623

whether the code and data are provided or not.624

• If the contribution is a dataset and/or model, the authors should describe the steps taken625

to make their results reproducible or verifiable.626

• Depending on the contribution, reproducibility can be accomplished in various ways.627

For example, if the contribution is a novel architecture, describing the architecture fully628

might suffice, or if the contribution is a specific model and empirical evaluation, it may629

be necessary to either make it possible for others to replicate the model with the same630

dataset, or provide access to the model. In general. releasing code and data is often631

one good way to accomplish this, but reproducibility can also be provided via detailed632

instructions for how to replicate the results, access to a hosted model (e.g., in the case633

of a large language model), releasing of a model checkpoint, or other means that are634

appropriate to the research performed.635

• While NeurIPS does not require releasing code, the conference does require all submis-636

sions to provide some reasonable avenue for reproducibility, which may depend on the637

nature of the contribution. For example638

(a) If the contribution is primarily a new algorithm, the paper should make it clear how639

to reproduce that algorithm.640

(b) If the contribution is primarily a new model architecture, the paper should describe641

the architecture clearly and fully.642

(c) If the contribution is a new model (e.g., a large language model), then there should643

either be a way to access this model for reproducing the results or a way to reproduce644

the model (e.g., with an open-source dataset or instructions for how to construct645

the dataset).646

(d) We recognize that reproducibility may be tricky in some cases, in which case647

authors are welcome to describe the particular way they provide for reproducibility.648

In the case of closed-source models, it may be that access to the model is limited in649

some way (e.g., to registered users), but it should be possible for other researchers650

to have some path to reproducing or verifying the results.651

5. Open access to data and code652
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Question: Does the paper provide open access to the data and code, with sufficient instruc-653

tions to faithfully reproduce the main experimental results, as described in supplemental654

material?655

Answer: [Yes]656

Justification: All data is cited and available publicly. The code will be provided, with657

instructions.658

Guidelines:659

• The answer NA means that paper does not include experiments requiring code.660

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/661

public/guides/CodeSubmissionPolicy) for more details.662

• While we encourage the release of code and data, we understand that this might not be663

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not664

including code, unless this is central to the contribution (e.g., for a new open-source665

benchmark).666

• The instructions should contain the exact command and environment needed to run to667

reproduce the results. See the NeurIPS code and data submission guidelines (https:668

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.669

• The authors should provide instructions on data access and preparation, including how670

to access the raw data, preprocessed data, intermediate data, and generated data, etc.671

• The authors should provide scripts to reproduce all experimental results for the new672

proposed method and baselines. If only a subset of experiments are reproducible, they673

should state which ones are omitted from the script and why.674

• At submission time, to preserve anonymity, the authors should release anonymized675

versions (if applicable).676

• Providing as much information as possible in supplemental material (appended to the677

paper) is recommended, but including URLs to data and code is permitted.678

6. Experimental Setting/Details679

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-680

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the681

results?682

Answer: [Yes]683

Justification: The experimental setting is described in the main body and appendices. Full684

details on hyperparameters are provided in the appendices.685

Guidelines:686

• The answer NA means that the paper does not include experiments.687

• The experimental setting should be presented in the core of the paper to a level of detail688

that is necessary to appreciate the results and make sense of them.689

• The full details can be provided either with the code, in appendix, or as supplemental690

material.691

7. Experiment Statistical Significance692

Question: Does the paper report error bars suitably and correctly defined or other appropriate693

information about the statistical significance of the experiments?694

Answer: [Yes]695

Justification: For all results in figures and tables, we report the standard error of the mean.696

Results reported in tables within the main body also quote t-scores and p-values from697

one-sample one-sided t-tests.698

Guidelines:699

• The answer NA means that the paper does not include experiments.700

• The authors should answer "Yes" if the results are accompanied by error bars, confi-701

dence intervals, or statistical significance tests, at least for the experiments that support702

the main claims of the paper.703
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• The factors of variability that the error bars are capturing should be clearly stated (for704

example, train/test split, initialization, random drawing of some parameter, or overall705

run with given experimental conditions).706

• The method for calculating the error bars should be explained (closed form formula,707

call to a library function, bootstrap, etc.)708

• The assumptions made should be given (e.g., Normally distributed errors).709

• It should be clear whether the error bar is the standard deviation or the standard error710

of the mean.711

• It is OK to report 1-sigma error bars, but one should state it. The authors should712

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis713

of Normality of errors is not verified.714

• For asymmetric distributions, the authors should be careful not to show in tables or715

figures symmetric error bars that would yield results that are out of range (e.g. negative716

error rates).717

• If error bars are reported in tables or plots, The authors should explain in the text how718

they were calculated and reference the corresponding figures or tables in the text.719

8. Experiments Compute Resources720

Question: For each experiment, does the paper provide sufficient information on the com-721

puter resources (type of compute workers, memory, time of execution) needed to reproduce722

the experiments?723

Answer: [Yes]724

Justification: We provide this information in Appendix F.725

Guidelines:726

• The answer NA means that the paper does not include experiments.727

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,728

or cloud provider, including relevant memory and storage.729

• The paper should provide the amount of compute required for each of the individual730

experimental runs as well as estimate the total compute.731

• The paper should disclose whether the full research project required more compute732

than the experiments reported in the paper (e.g., preliminary or failed experiments that733

didn’t make it into the paper).734

9. Code Of Ethics735

Question: Does the research conducted in the paper conform, in every respect, with the736

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?737

Answer: [Yes]738

Justification: We comply with all of the ethical guidelines listed in the Code of Ethics.739

Guidelines:740

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.741

• If the authors answer No, they should explain the special circumstances that require a742

deviation from the Code of Ethics.743

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-744

eration due to laws or regulations in their jurisdiction).745

10. Broader Impacts746

Question: Does the paper discuss both potential positive societal impacts and negative747

societal impacts of the work performed?748

Answer: [Yes]749

Justification: We provide a discussion around societal impacts in Appendix H.750

Guidelines:751

• The answer NA means that there is no societal impact of the work performed.752

• If the authors answer NA or No, they should explain why their work has no societal753

impact or why the paper does not address societal impact.754
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• Examples of negative societal impacts include potential malicious or unintended uses755

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations756

(e.g., deployment of technologies that could make decisions that unfairly impact specific757

groups), privacy considerations, and security considerations.758

• The conference expects that many papers will be foundational research and not tied759

to particular applications, let alone deployments. However, if there is a direct path to760

any negative applications, the authors should point it out. For example, it is legitimate761

to point out that an improvement in the quality of generative models could be used to762

generate deepfakes for disinformation. On the other hand, it is not needed to point out763

that a generic algorithm for optimizing neural networks could enable people to train764

models that generate Deepfakes faster.765

• The authors should consider possible harms that could arise when the technology is766

being used as intended and functioning correctly, harms that could arise when the767

technology is being used as intended but gives incorrect results, and harms following768

from (intentional or unintentional) misuse of the technology.769

• If there are negative societal impacts, the authors could also discuss possible mitigation770

strategies (e.g., gated release of models, providing defenses in addition to attacks,771

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from772

feedback over time, improving the efficiency and accessibility of ML).773

11. Safeguards774

Question: Does the paper describe safeguards that have been put in place for responsible775

release of data or models that have a high risk for misuse (e.g., pretrained language models,776

image generators, or scraped datasets)?777

Answer: [NA]778

Justification: With the current state of this research, where we work on heard speech779

decoding and results are very preliminary, this paper poses no risk of misuse. This is780

described further at the end of Appendix H.781

Guidelines:782

• The answer NA means that the paper poses no such risks.783

• Released models that have a high risk for misuse or dual-use should be released with784

necessary safeguards to allow for controlled use of the model, for example by requiring785

that users adhere to usage guidelines or restrictions to access the model or implementing786

safety filters.787

• Datasets that have been scraped from the Internet could pose safety risks. The authors788

should describe how they avoided releasing unsafe images.789

• We recognize that providing effective safeguards is challenging, and many papers do790

not require this, but we encourage authors to take this into account and make a best791

faith effort.792

12. Licenses for existing assets793

Question: Are the creators or original owners of assets (e.g., code, data, models), used in794

the paper, properly credited and are the license and terms of use explicitly mentioned and795

properly respected?796

Answer: [Yes]797

Justification: All creators are cited and license terms, where known, are explicitly mentioned798

in Appendix G.799

Guidelines:800

• The answer NA means that the paper does not use existing assets.801

• The authors should cite the original paper that produced the code package or dataset.802

• The authors should state which version of the asset is used and, if possible, include a803

URL.804

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.805

• For scraped data from a particular source (e.g., website), the copyright and terms of806

service of that source should be provided.807
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• If assets are released, the license, copyright information, and terms of use in the808

package should be provided. For popular datasets, paperswithcode.com/datasets809

has curated licenses for some datasets. Their licensing guide can help determine the810

license of a dataset.811

• For existing datasets that are re-packaged, both the original license and the license of812

the derived asset (if it has changed) should be provided.813

• If this information is not available online, the authors are encouraged to reach out to814

the asset’s creators.815

13. New Assets816

Question: Are new assets introduced in the paper well documented and is the documentation817

provided alongside the assets?818

Answer: [Yes]819

Justification: We provide a README.md file alongside the code we will release for our820

models. This documents details about using the code and includes licenses and limitations.821

Guidelines:822

• The answer NA means that the paper does not release new assets.823

• Researchers should communicate the details of the dataset/code/model as part of their824

submissions via structured templates. This includes details about training, license,825

limitations, etc.826

• The paper should discuss whether and how consent was obtained from people whose827

asset is used.828

• At submission time, remember to anonymize your assets (if applicable). You can either829

create an anonymized URL or include an anonymized zip file.830

14. Crowdsourcing and Research with Human Subjects831

Question: For crowdsourcing experiments and research with human subjects, does the paper832

include the full text of instructions given to participants and screenshots, if applicable, as833

well as details about compensation (if any)?834

Answer: [NA]835

Justification: We do not conduct our own research with human subjects. We use cited public836

datasets that come with their own ethics approvals.837

Guidelines:838

• The answer NA means that the paper does not involve crowdsourcing nor research with839

human subjects.840

• Including this information in the supplemental material is fine, but if the main contribu-841

tion of the paper involves human subjects, then as much detail as possible should be842

included in the main paper.843

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,844

or other labor should be paid at least the minimum wage in the country of the data845

collector.846

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human847

Subjects848

Question: Does the paper describe potential risks incurred by study participants, whether849

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)850

approvals (or an equivalent approval/review based on the requirements of your country or851

institution) were obtained?852

Answer: [NA]853

Justification: The datasets we used are public and have their own ethical approvals. The854

original documentation for these is available with the publications for these datasets.855

Guidelines:856

• The answer NA means that the paper does not involve crowdsourcing nor research with857

human subjects.858
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• Depending on the country in which research is conducted, IRB approval (or equivalent)859

may be required for any human subjects research. If you obtained IRB approval, you860

should clearly state this in the paper.861

• We recognize that the procedures for this may vary significantly between institutions862

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the863

guidelines for their institution.864

• For initial submissions, do not include any information that would break anonymity (if865

applicable), such as the institution conducting the review.866
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