
Identifiable Object Representations under Spatial Ambiguities

Avinash Kori 1 Francesca Toni 1 Ben Glocker 1

Abstract
Modular object-centric representations are essen-
tial for human-like reasoning but are challeng-
ing to obtain under spatial ambiguities, e.g. due
to occlusions and view ambiguities. However,
addressing challenges presents both theoretical
and practical difficulties. We introduce a novel
multi-view probabilistic approach that aggregates
view-specific slots to capture invariant content in-
formation while simultaneously learning disentan-
gled global viewpoint-level information. Unlike
prior single-view methods, our approach resolves
spatial ambiguities, provides theoretical guaran-
tees for identifiability, and requires no viewpoint
annotations. Extensive experiments on standard
benchmarks and novel complex datasets validate
our method’s robustness and scalability.

1 Introduction
The ability to capture the notion of objectness in learned rep-
resentations is considered to be a critical aspect for develop-
ing situation-aware AI systems with human-like reasoning
capabilities (Schölkopf & von Kügelgen, 2022; Lake et al.,
2017). Objectness can be characterised as understanding
the environment from the perspective of its building blocks.
These can further be divided into object-part composition
(Hinton, 1979; 2022), which might be a potential reason
why humans generalise across environments with few ex-
amples to learn from (Tenenbaum et al., 2011). Recent ad-
vances in object-centric representation learning (OCL) have
shown great potential in segregating objects in observed
scenes (Locatello et al., 2020b; Kori et al., 2023; Löwe
et al., 2024). Indeed, the goal of OCL is to enable agents to
learn representations of objects in an observed scene in the
context of their environment, as opposed to learning global
representations as in the case of traditional generative mod-
els such as variational auto-encoders (Kingma & Welling,
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Figure 1. (a) Occlusion Ambiguity: the orange object, which is
occluded by the blue object, could be any of the six plausible
objects shown on the right. (b) View Ambiguity: the blue object
is observed from two different viewpoints (represented with a red
arrow and a dot), leading to a change in its overall shape. In general,
identifiable representations resolve ambiguities by determining the
most plausible object under occlusion and correct object properties
in case of view transformation by leveraging information from
multiple viewpoints.

2013). OCL approaches enable agents to learn spatially
disentangled representations, which is an important step in
compositional scene generation (Bengio et al., 2013; Lake
et al., 2017; Battaglia et al., 2018; Greff et al., 2020) and
understanding of causal (and physical) interactions between
the objects (Marcus, 2003; Gerstenberg et al., 2021; Gopnik
et al., 2004).

Recent progress in OCL has been limited to learning scene
representations from single-viewpoints (Locatello et al.,
2020b; Engelcke et al., 2021; Singh et al., 2021; Kori et al.,
2023; Chang et al., 2022; Seitzer et al., 2022; Löwe et al.,
2024). Although these approaches can learn meaningful
object-specific representations, they encounter significant
challenges stemming from spatial ambiguities such as oc-
clusion and view ambiguities (see Fig. 1 for examples).
Additionally, while it has been hypothesised that these mod-
els learn un-occluded object representations even in the case
of occlusions. Learning from a single viewpoint fails to cap-
ture effective object representations, due to the presence of
multiple plausibilities of partially or fully occluded objects
and the effects of view transformations, as demonstrated
in Fig. 1 and highlighted by the results in Fig. 2 (we will
revisit these results later in section 6). Another example of
spatial ambiguities can be observed in Fig. 3, where object
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Figure 2. Identifiability across a number of views measured with
Slot Mean Correlation Coefficient (SMCC).

O4 in x1 and x2 can be interpreted as a cube, but only after
considering x3 we can conclude that being a pyramid.

A handful of approaches, including MULMON(Li et al.,
2020), DYMON(Li et al., 2021), OCLOC(Yuan et al.,
2024), have considered multiple viewpoints for extracting
object representations. Additionally, methods such as (Liu
et al., 2025; Chen et al., 2021; Luo et al., 2024) effectively
use NERF(Mildenhall et al., 2021) for constructing a 3D
environment from multi-viewpoint images, where the occlu-
sions are addressed by construction. Among these methods,
MULMON, DYMON, and all NERF based approaches
assume that the viewpoint annotations are known, which
simplifies the problem of learning to disentangle object rep-
resentations conditioned on viewpoint information.

The problem setting in this work aligns with OCLOC, in
that, our aim is to learn invariant object representations
while simultaneously learning global view information with
respect to an implicit global coordinate frame. This elim-
inates the requirement for paired viewpoint-image data.
While OCLOC introduces an innovative approach for learn-
ing global view information independently of the scene, its
primary focus is on achieving object-consistency uncondi-
tional to views rather than explicitly learning view-invariant
object representations. Additionally, learning global uncon-
ditional view representations does not guarantee learning
identifiable view/object representations, which was not stud-
ied for OCLOC. In this work, we provide a novel model,
where object representations satisfy view-invariance and
view representations satisfy approximate equivariance prop-
erties, allowing us to exploit objects’ inherent geometry and
semantics to establish correspondences across views.

In single-view OCL, Kori et al. (2024); Brady et al. (2023);
Lachapelle et al. (2023) make an effort in rigorously formal-
ising the underpinning, explicit and implicit assumptions
and provide conditions under which models result in learn-
ing identifiable slot representations, leaving out ambiguous
scenarios. Unlike them, our approach resolves spatial am-
biguities, provides theoretical guarantees for identifiability,
and requires no viewpoint annotations. To the best of our

Figure 3. The figure illustrates a scene with four objects Os =
{O1,O2,O3,O4}, observed from three different viewpoints,
each described with a set of clearly visible objects: O1 =
{O3,O4},O2 = {O1,O3,O4},O3 = {O1,O2,O3,O4}. The
corresponding images are passed through view and content en-
coders, and sampled global view vector v is used to estimate
transformation function Tθv given by parameters θv predicted us-
ing a localisation network. We apply a view-specific inverse T −1

θv

on respective images projecting them to an implicit space, which
is used to learn view conditioned slot posterior corresponding to
GMMs represented by q(sv | T −1

θv (xv)), which are further aggre-
gated to marginalize viewpoint information, resulting in a content
posterior, also a GMM q(c | {s1, . . . , sV }), which is further accu-
mulated across all samples resulting in optimal prior p(c).

knowledge, this is the first work addressing explicit formal-
isations of assumptions and theory required for achieving
identifiable object representations under occlusions with
multi-view observational data. To this end, we make use
of the spatial Gaussian mixture models(GMM) in latent
distribution across viewpoints to encourage identifiability
without additional auxiliary data. Our main contributions in
this work can be summarised as follows:

(i) We propose a probabilistic slot attention variant, View-
Invariant Slot Attention (VISA) for learning identifi-
able object-centric representations from multiple view-
points, resolving spacial ambiguities such as occlusions
and view ambiguities (Section 4).

(ii) We prove that our object-centric representations are
identifiable in the case of partial or full occlusions with-
out additional view information up to an equivalence
relation with a mixture model specification (Section 5).

(iii) We provide conclusive evidence of our identifiabil-
ity results, including visual verification on synthetic
datasets; we also demonstrate the scalability of the pro-
posed method on two new, carefully designed complex
datasets MVMOVI-C and MVMOVI-D (Section 6).
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2 Related Works
Identifiable Object-centric learning. Extending nonlin-
ear Independent Component Analysis (ICA) from represen-
tation learning to object-specific representational learning
has been heavily explored before (Burgess et al., 2019; En-
gelcke et al., 2019; Greff et al., 2019) by employing an iter-
ative variational inference approach (Marino et al., 2018),
whereas Van Steenkiste et al. (2020); Lin et al. (2020) adopt
more of a generative perspective, studied the effect of object
binding and scene composition empirically. Recently, the
use of iterative attention mechanisms has gained a signifi-
cant interest (Locatello et al., 2020b; Engelcke et al., 2021;
Singh et al., 2021; Wang et al., 2023; Singh et al., 2022;
Emami et al., 2022). Most of these works operate in a single-
view setting, which causes fundamental issues of viewpoint
ambiguities in terms of occlusions and uncertainties in bind-
ing. Recent methods, including (Eslami et al., 2018; Ar-
salan Soltani et al., 2017; Tobin et al., 2019; Wu et al., 2016)
consider a single object from multiple views to tackle this
particular problem. Additionally, (Kosiorek et al., 2018;
Hsieh et al., 2018; Li et al., 2020) explore multi-object bind-
ing in videos and multiple views, tackling object binding
issues across frames. Despite their empirical effectiveness,
most of these works lack formal identifiability guarantees.
In line with recent efforts analysing theoretical guarantees
in object-centric representations (Lachapelle et al., 2023;
Brady et al., 2023; Kori et al., 2024), we formally investigate
the modelling assumptions and their implications for achiev-
ing identifiability guarantees in the context of multi-object,
multiview object-centric representation learning settings.

Multiview nonlinear ICA. It has been noted that address-
ing the challenge of nonlinear ICA can involve incorporating
a learnable clustering task within the latent representations,
thereby imposing asymmetry in the latent distribution (Wil-
letts & Paige, 2021; Kivva et al., 2022). Moreover, Gresele
et al. (2020) delve into multiview nonlinear ICA, particu-
larly in scenarios involving corrupted observations, where
they aim to recover invariant representations while account-
ing for certain ambiguities. Along similar lines, Daunhawer
et al. (2023); Von Kügelgen et al. (2021) explore the concept
of style-content identification using contrastive learning, fo-
cusing on addressing the multiview nonlinear ICA prob-
lem. Here, we work along similar lines by emphasising the
learning of invariant content and identifiable object-centric
representations. We achieve this by formulating a recon-
struction objective where the enforced invariance and equiv-
ariance stem from the underlying probabilistic graphical
model rather than relying on a contrastive learning objective.
Similar to the noiseless setting in (Gresele et al., 2020), we
demonstrate the recovery of invariant content representa-
tions using different subsets of viewpoints.

3 Preliminaries
Probabilistic Slot Attention (PSA) as introduced by Kori
et al. (2024), presents a probabilistic interpretation of the
slot attention algorithm (Locatello et al., 2020b). In PSA,
a set of feature embeddings z ∈ RN×d per input x is taken
as input, and an iterative Expectation Maximization (EM)
algorithm is applied over these embeddings. This process
results in a Gaussian Mixture Model (GMM) characterized
by mean (µ ∈ RK×d), variance (σ2 ∈ RK×d), and mixing
coefficients (π ∈ [0, 1]K×1). In summary, PSA employs the
initial mean sampled from the prior distribution and initial
variance initialized with unit vector, then iteratively updates
the mean based on assignment probabilities (Ank) using
Eqn. 1, and adjusts the mean and variance accordingly as
described in Eqn. 4, for T iterations.

Ank =
π(t)kN

(
zn;µ(t)k,σ(t)

2
k

)∑K
j=1 π(t)jN

(
zn;µ(t)k,σ(t)2j

) ; (1)

Ânk = Ank/

N∑
l=1

Alk; π(t+ 1)k =

N∑
n=1

Ank/N ; (2)

µ(t+ 1)k =

N∑
n=1

Ânkzn; (3)

σ(t+ 1)2k =

N∑
n=1

Ânk (zn − µ(t+ 1)k)
2 (4)

Identifiable representations. A model is considered iden-
tifiable when different training iterations yield consistent
latent distributions, thereby resulting in identical model pa-
rameters (Khemakhem et al., 2020a;c). In the context of
a parameter space Θ and a family of mixing functions F ,
identifiability of the model on the dataset X is established
if, for any θ1, θ2 ∼ Θ and fθ1 , fθ2 ∼ F , the condition
p(f−1

θ1
(x)) = p(f−1

θ2
(x)) holds for all x ∈ X , implying

θ1 = θ2. However, in practical scenarios, exact equality or
“strong” identifiability is often unnecessary, as establishing
relationships to transformations, which can be manually
recovered, proves equally effective, resulting in a notion
of weak identifiability, where relationships are recovered
up to an affine transformation (Khemakhem et al., 2020c;
Kivva et al., 2022). Similar identifiability relations have
been elucidated for OCL in (Brady et al., 2023; Lachapelle
et al., 2023; Kori et al., 2024; Mansouri et al., 2023). The
notion of ∼s equivalence relation is elaborated in Dfn. 3.1.
Definition 3.1. (∼s equivalence (Kori et al., 2024)) Let
fθ : S → X denote a mapping from slot representation
space S to image space X (satisfying Assumption F.4),
the equivalence relation ∼s w.r.t. to parameters θ ∈ Θ is
defined as: θ1 ∼s θ2 ⇔

∃P ,H, c : f−1
θ1

(x;v) = P (f−1
θ2

(x;v)H + a),∀x ∈ X ,
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Figure 4. Graphical model for multi-view probabilistic slot at-
tention: For every image in a dataset a view v ∈ Rdv ∼ p(v),
this view is used to compute transformation Tθv . Similarly, desired
number (< K) of content representations c ∈ RN×ds are sampled
content distribution p(c). Finally, the image x is generated using
the transformed content Tθv (c) and view v.

where P ∈ P ⊆ {0, 1}K×K is a permutation matrix, H ∈
Rd×d is an affine matrix, and a ∈ Rd.

4 VISA Formalism

Let x1:V = {x1, . . .xV } ∈ X = X 1 × · · · ×X V , V views
of the same scene observed from different viewpoints with
an observational space X ⊆ RV×H×W×C . We consider
[V ] as a shorthand notation for {1, . . . , V }. LetOe = O1∪
· · ·∪OV correspond to an abstract notion of object sets of an
environment, while Ov,∀v ∈ [V ] is a set of objects present
in a considered viewpoint v. Importantly, we consider that
the number of objects per viewpoint can vary, i.e., |O1 ∪
· · · ∪ OV | ≥ |Ov| ∀ v ∈ [V ], allowing for partial or full
occlusion in some viewpoints. Let v1:V ∈ V = V1 × · · · ×
VV ⊆ RV×dv be inferred viewpoint-specific information1,
while s1:V1:K ∈ S = S1× · · · ×SV ⊆ RV×K×ds correspond
to a viewpoint-specific slot representation. Let c1:K ∈
C ⊆ RK×dc capture the notion of an aggregate, effectively
accumulating the object knowledge across viewpoints. For
any subset A of [V ], we represent scene observations as
xA = {xi : ∀i ∈ A} ∈ ×i∈AX i. The inferred viewpoints
and the view specific slots are denoted as vA = {vi :
∀i ∈ A} ∈ ×i∈AVi, and sA1:K = {si1:K : ∀i ∈ A} ∈
×i∈ASi, respectively. We define pA(c) as the distribution
of c over A. A more comprehensive summary of notations
and terminologies is provided in App. A.

In modelling, w.l.o.g, we consider access to a certain
subset A ⊆ [V ], ensuring the model’s applicability across
different scenarios. Furthermore, to simplify notation, we
sometimes do not include the superscript denoting the full
set of views, thereby using x = xA, s1:K = sA1:K , and
v = vA interchangeably. Likewise, if we do not specify the
subscripts for c and s, it implies they represent the entire
collection of objects, specifically as s = sA1:K and c = c1:K .
Lastly, for any function f that operates on two distinct in-

1We abuse the terminology by considering viewpoint, lighting,
object dimension, to be encoded in a representation v. Note that
the v is inferred by the model.

puts x = f(z,v), its inverse is denoted by z = f−1(x;v),
which signifies the reversal of f conditioned on a variable v.
In the rest of this section, we introduce all the components
involved in our model. We also introduce assumptions, ex-
amples, and intuition wherever necessary. Considering the
generative model Eqn. 5, which is overviewed in graphical
model Fig. 4, any scene x is generated using view v and
content c. Here, both c and v are latent variables learned
with variational inference(Kingma & Welling, 2013).

p(x) =

∫∫
p(xv | Tθv (c),vv) p(c) p(vv) dvv dc (5)

View model. Given that the view property remains consis-
tent across all objects, we treat the view as a global, image-
level property as opposed to Yuan et al. (2024), where view
is treated as an object-level property. Assuming access
to a discrete set of viewpoints denoted by A, we consider
prior over a view distribution to be a GMM represented
by p(v) =

∑|A|
v=1 π

vN (v;µv,σ
2
v). To learn the parame-

ters of this GMM, we consider the posterior of the form
qϕ(v | xv) ∀ v ∈ A2. In both prior and posterior, we con-
sider the covariance to be diagonal, implicitly making an
ICA assumption (Khemakhem et al., 2020a). The sampled
variable v ∼ qθ(v | xv) is used to estimate transforma-
tion parameters θv ∈ R3×2 as in Jaderberg et al. (2015)
which makes an affine transformation map Tθv , which is
later applied on content c and on view-specific slots s. It is
important to note that we use the same set of parameters ϕ
across all viewpoints in A for inferring view information v.

Viewpoint specific slots. As illustrated in Fig. 3 the in-
ference of c depends on the view-specific slots s. For a
considered image xv, v ∈ A, we first apply an inverse view
transformation T −1

θv and model the slot distribution as a
spatial mixture model represented by q(sA1:K | T

−1
θv (xA)).

The inverse transformation makes sure that the estimated
object representations across all view in A are in a com-
mon implicit representation space. As this is an inter-
mediate variable which does not show up in our genera-
tive model in Eqn. 5, we update the corresponding pa-
rameters with closed-form equations via expectation max-
imisation algorithm as in (Kori et al., 2024). The result-
ing slot posterior is a conditional GMM as described in
Eqn. 6, where x̄v = T −1

θv (xv) is a transformed inputs,
(µk(x̄

v), σ2
k(x̄

v), πk(x̄
v)) are mean, diagonal covariance,

and mixing coefficients for the considered a view and object.

q(sv | x̄v) =

K∑
k=1

πk(x
v)N

(
svk;µk(x̄

v),σ2
k(x̄

v)
)

(6)

2We consider the parametric form of q to be Gaussian.
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Representation matching. Given the permutation equiv-
ariance property of slot representations, we use a matching
function with a permutation matrix P v, ms : SA → SA
such that ms(s

v
1:K) = P vsv1:K mapping representation axis

w.r.t P v. The permutation matrix P v is estimated by
considering the slots of the first viewpoint s1 as a base repre-
sentation, and other representations sv ∀v ∈ A are matched
to align with it. We utilise Hungarian matching, as illus-
trated in (Locatello et al., 2020b; Wang et al., 2023), to
estimate this permutation matrix P v , to control the noise in
the matching algorithm, we introduce view-warmup strategy,
which we detail in App. G.5.

Content aggregator. We consider g : S → C as a con-
tent aggregator function, which marginalises the effect of
view conditioning. To achieve this, we consider a convex
combination of all the aligned slot representations (aligned
to a base representation), considering mixing coefficients
πk(x

v) (we use πv
k for simplicity) in Eqn. 6 as a combina-

tion weight. The convex combination accounts for potential
object occlusions, which may cause objects to be absent
in particular views ensuring only active representations are
combined (refer to an intuition below), resulting in a con-
tent posterior (q(c | s)), which is a GMM with mixing
coefficients π̃k =

(∑|A|
v=1 π

v
k

)
/|A| and the parameters

described in Eqn. 8 (w.l.o.g we consider s,π to rep-
resent aligned representations), refer to Lemma F.3, with
wi = 1/|A| ∀i ∈ A. Additionally, algorithm 1 details the
entire forward process.

Intuition: Content aggregation

Based on illustrated example in Fig. 3, for images
x1,x2,x3, the resulting matched slots and mixing coef-
ficients correspond to s1 = {s1r, s1r, s1O3

, s1O4
, s1b}, s2 =

{s2O1
, s2r, s

2
O3

, s2O4
, s2b}, s3 = {s3O1

, s3O2
, s3O3

, s3O4
, s3b},

where svOi
, svr , and svb correspond to slot representa-

tion for object Oi, random slot representation and back-
ground information, respectively, with mixing coefficients
π1 = {0, 0, 1, 1, 1},π2 = {1, 0, 1, 1, 1}, and π1 =
{1, 1, 1, 1, 1}. Proposed aggregation merges the slots ig-
noring the random slots svr , resulting in cO1 = (s2O1

+

s3O1
)/2, cO2 = s3O2

and so on.

g(s1:V1:K ,π1:V ) =

|A|∑
v=1

πv
1:k

|A|π̃v
k

sv1:K ; (7)

µ̃k(x
A) =

|A|∑
v=1

πv
k

|A|π̃v
k

µk(x
v);

σ̃2(xA) =

|A|∑
v=1

(
πv
k

|A|π̃v
k

)2

σ2
k(x

v); (8)

Mixing function and training objective. We consider

both additive and non-additive (ref. definition E.1) mixing
functions fd : C × Vv → X v. For additive decoders, we
use a spatial-broadcasting (Greff et al., 2019) and MLP
decoders, and for non-additive mixing function, we use
auto-regressive transformers (Vaswani et al., 2017). We use
the shared decoder fd for all views and objects, modelling
the conditional distribution p(xv | Tθv (c),vv). To train
our model in an end-to-end fashion, we maximise the log-
likelihood of the joint p(xA), which results in the evidence
lower bound (ELBO), Eqn. 9, check Lemma F.1. Here,
we consider the distribution form of p(xv | c,vv) to be
Gaussian with learnable mean with isotropic covariance.

E log p(x | Tθv (c),v)−KL (q(v | x) ∥ p(v)) (9)

Computational complexity: VISA achieves
O(VT NKd) with the added complexity of 2O(VNd) for
inverse and forward view point transformation given by Tθ,
while it retains the complexity per view to be O(T NKd)
which is the same as slot attention and probabilistic
slot attention. Additionally, the representation matching
function contributes O(VK3

d): this term does not alter the
dominant term, in the general case when K << N . Similar
to PSA, when VISA is combined with an additive decoder,
the complexity of the decoder can be lowered due to the
property of automatic relevance determination (ARD),
eliminating the need to decode inactive slots.

5 Theoretical Analysis
In this section, we leverage the properties of the proposed
model to theoretically demonstrate the learning of identifi-
able representations under challenging spatial ambiguities.
In this work, we consider our data-generating process to
satisfy a viewpoint sufficiency assumption (refer to 5.1).

Assumption 5.1. (View-point sufficiency) For any set A ⊆
[V ], we consider set A to be view-point sufficient iff |OA| =
|Oe|. This basically means that all the objects are visible
across all the considered views A, even when an individual
view may not contain all the objects.

Example: Viewpoint-sufficiency

Example 1. Based on illustrated example in Figure
3, the scene is composition of four objects Oe =
{O1,O2,O3,O4}, view point subset A = [V ] = {1, 2, 3}
is considered to be view point sufficient since

⋃
v∈A Ov =

{O3,O4} ∪ {O1,O3,O4} ∪ {O1,O2,O3,O4} = Oe.

Given that we learn the parameters of our view-specific
spatial GMM with closed-form updates, we do not use
an explicit prior minimising KL divergence. Instead, we
rely on the fact that marginalising the effect of data points
from posterior (aggregate posterior) is an optimal prior
(Hoffman & Johnson, 2016; Kori et al., 2024), resulting in
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p(c) =
∫∫

q(c|sA,xA)dsAdxA. Given that GMMs are uni-
versal density approximates given enough components (even
GMMs with diagonal covariances), the resulting aggregate
posterior q(c) = p(c) is highly flexible and multi-modal.
It often suffices to approximate it using a sufficiently large
subset of the dataset if marginalising out the entire dataset
becomes computationally restrictive.

Lemma 5.2 (Optimal Prior). For A ∈ [V ], given the a
local content distribution q(c1:K | sA1:K ,xA) (per-scene
xA ∈ {xA

i }Mi=1), which can be expressed as a GMM with
K components, the aggregate posterior q(c) is obtained by
marginalizing out x, s is a non-degenerate global Gaussian
mixture with MK components:

p(c) = q(c) =
1

M

M∑
i=1

K∑
k=1

π̂ikN
(
c; µ̂ik, σ̂

2
ik

)
. (10)

Proof Sketch. The result is obtained by integrating the prod-
uct of involved posterior densities q(c | s)q(s | x)p(x). Fur-
ther, we verify if the mixing coefficients sum to one in the
new mixture, proving the aggregate to be well-defined.

With this, we show three main results: firstly, we show that
aggregate content representations (c) are identifiable with-
out supervision (up to ∼s). Secondly, we show that these
representations are invariant to the choice of viewpoints un-
der assumption 5.1. Finally, we show that the model exhibits
in an approximate view equivariance.

Theorem 5.3. (Affine Equivalence) For any subset A ⊆
[V ], such that |A| > 0 , given a set of images xA ∈ XA

and a corresponding aggregate content c ∈ C and a non-
degenerate content posterior q(c | sA), considering two
mixing function fd, f̃d satisfying assumption F.4, with a
shared image, then c are identifiable up to ∼s equivalence.

Intuition: Affine equivalence

Considering an example 1, with two perfectly trained mod-
els fd and f̃d. Resulting aggregate contents are described
as c = f−1

d (xA;vA) = {cO1 , cO2 , cO3 , cO4 , cOb} and
c̃ = f̃−1

d (xA;vA) = {c̃O2 , c̃O4 , c̃O3 , c̃O1 , c̃Ob} for A =
[V ] = {1, 2, 3}. ∼s equivalence states that there exists a
permutation matrix P which aligns the object order in c̃ to
match with c and there exists and invertible affine mapping
A such that c̃Ok = AcOk∀k ∈ {1, 2, 3, 4}.

Proof Sketch. To prove the following result, we follow mul-
tiple steps as described below: (i). We demonstrate the distri-
bution p(c) obtained as a result of lemma 5.2 is non-degen-
erate and a valid distribution, (ii). With the above results, we
demonstrate invertibility restrictions on mixing functions,
(iii). Finally, we constrain the subspace to affine, demon-
strating ∼s of aggregate content c.

Theorem 5.4. (Invariance of aggregate content) For any
subset A,B ⊆ [V ], such that |A| > 0, |B| > 0 and both
A,B satisfy an assumption 5.1, we consider aggregate con-
tent to be invariant if fA ∼s fB for data XA ×XB .

Intuition: Invariant slots

Considering an example 1, with A = {1, 3}, B = {2, 3},
such that sets A,B are viewpoint sufficient. Let fA and fB ,
be trained models on XA and XB respectively. Resulting
in c = f−1

A (xA;vA) = {cO1 , cO2 , cO3 , cO4 , cOb} and
c̃ = f̃−1

B (xB ;vB) = {c̃O2 , c̃O4 , c̃O3 , c̃O1 , c̃Ob}. Thm.
5.4 states that the representations T −1

θB
(c̃Ok ) can be mapped

to T −1
θA

(cOk ) by permuting object indices and an affine
transformation.

Proof Sketch. To prove this, we extend the proof of Thm.
5.3, and establish that there exist two inevitable affine func-
tions hA, hB for mixing functions fA, fB : C × V → X to
map representations c with a given view set vA to observa-
tions xA. Later, we show that, in the case of invariance, an
affine mapping exists from hA to hB .

Theorem 5.5. (Approximate representational equivariance)
For a given aggregate content c, for any two views v, ṽ ∼
pA(v), resulting in respective scenes x ∼ pA(x | v, c)
and x̃ ∼ pA(x | ṽ, c), for any homeomorphic transfor-
mation hx ∈ Hx such that hx(x) = x̃, their exists an-
other homeomorphic transformation hv ∈ Hv such that
Hv ⊆ Hx ⊆ Rdim(x) and v = h−1

v

(
f−1
d (hx(x); c)

)
.

Remark 5.6. Note that the theorem only says that the trans-
formation function transforming the view representations v
as an effect of the homeomorphic transformation of x lies
in the same subspace of input transformations.

Intuition: Approximate equivariance

In the scenario when the cameras are positioned such that
they have overlapping fields of view, and their relative pose
(rotation and translation) must avoid degeneracies like align-
ing on the same plane or mapping points to infinity. This
results in the transformation between views being smooth,
invertible, and consistent. If the scene is planar or depth
variations are minimal, the homography can capture the
transformation accurately without the need for inverse ren-
dering. Notably, the cameras should have non-zero rotation
and translation to avoid collapsing the scene, and their in-
trinsic parameters must be known or identical to prevent
distortions. When the scenario satisfies all the above prop-
erties, the 2D homography transformation H between two
camera views can be learned as a homeomorphic transfor-
mation (Hartley & Zisserman, 2003).

Proof Sketch. We prove the following result by following
the steps in Thm. 5.4, over a view distribution p(v) but for
a fixed content vector c.
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6 Empirical Evaluation
Given the work’s theoretical focus, experimentally, we aim
to provide strong empirical evidence of our identifiability,
invariance, and equivariance claims in a multiview setting.
We also extend our experiments to standard imaging bench-
marks, including CLEVR-MV, CLEVR-AUG, GQN (Li
et al., 2020); we additionally demonstrate the framework’s
scalability to highly diverse setting with GSO (Downs et al.,
2022) and proposed datasets MV-MOVIC, MV-MOVID
which are multiview versions of MoViC dataset with fixed
and varying scene-specific cameras (Greff et al., 2022).

Experimental setup. To verify our claims on (i) identi-
fiability claim, we train our model on a given view subset
A ⊆ [V ] and compare view averaged slot mean correlation
coefficient (SMCC) measure as defined (Kori et al., 2024)
(SMCC(s, s̃) := 1

Kd

∑d
i=0

∑d
j=0 ρ(sij ,As̃τ(i)j) for some

permutation map τ and affine transformation A), (ii) invari-
ance claim, we train multiple models on different subsets of
viewpoints A,B ⊆ [V ] and compare the aggregate content
representations across models, quantifying the similarities
with SMCC, we consider this measure to be invariant SMCC
(INV-SMCC), and finally, (iii) for subspace equivariance,
we consider a trained model with a view subset A ⊆ [V ]
and compute MCC of view information v by applying ran-
dom homeomorphic transformations on samples xA ∼ XA

(which can also be done by considering samples xB ∼ XB ,
where cameras relative position satisfy the required con-
straints 5.5, and analyse p(vA) and p(vB)).

Models & baselines. We consider two ablations with two
types of decoders: (i) additive with MLPs and spatial broad-
casting CNNs and (ii) non-additive decoders, which include
transformer models. In all cases, we use LeakyReLU acti-
vations to satisfy the weak injectivity conditions (Assump-
tion F.4). In terms of object-centric learning baselines, we
compare with standard additive autoencoder setups follow-
ing (Brady et al., 2023), slot-attention (SA) (Locatello et al.,
2020b), probabilistic slot-attention (PSA) (Kori et al., 2024),
MulMON (Li et al., 2020), and OCLOC (Yuan et al., 2024).

Architectures: As detailed in the paper we use two dif-
ferent classes of decoder architectures: (i) additive and (ii)
non-additive; within the additive architecture we use both
spatial broadcasting and MLP decoders, for the non-additive
architecture we use transformer decoders. Concretely, we
follow SA (Locatello et al., 2020b) for spatial broadcasting
decoders and DINOSAUR (Seitzer et al., 2022) for both
MLP and transformer decoder. In detail we use:

1. Spatial broadcasting decoders - Input/Output: The
generated slots are s ∈ RK×d, each slot representation
is broadcasted onto a 2D grid of dimension 8× 8× d
and augmented with position embeddings. Similar
to slot attention, each such grid is decoded using a

shared CNN to produce an output of size W ×H × 4,
where W and H are width and height of the image,
respectively. The output channels encode RGB color
channels and an (unnormalized) alpha mask. Further,
we normalize the alpha masks with Softmax and per-
form convex combinations to obtain reconstruction.
Shared CNN architecture: 3 × [Conv(kernel = 5 ×
5, stride = 2),LeakyReLU(0.02)]+Conv(kernel =
3× 3, stride = 1),LeakyReLU(0.02)

2. MLP decoders- Input/Output: similar to the spatial
broadcasting decoder, here, each slot representation
is broadcasted onto N tokens (resulting in N × d)
and augmented with position embeddings. Then the
individual slot representation is transformed with a
shared MLP decoder to generate a representation
corresponding to feature dimension along with addi-
tional alpha mask, which is further normalised with
Softmax and used in creating convex combinations
to obtain reconstruction. Shared MLP architecture:
[Linear(d, d, bias = False),LayerNorm(d)] +
3 × [Linear(d, dhidden),LeakyReLU(0.02)] +
Linear(dhidden, d+ 1)

3. Transformer decoders: Input/Output- transformer
consists of linear transformers encoder output (N × d)
and extracted slots (K × d) as input, while returning
the slot conditioned feature as output with a dimension
of (N × d). Transformer architecture: is made up of 4
transformer blocks, where each transformer block con-
sists of a self-attention on input tokens, cross-attention
with the set of slots, and residual two-layer MLP with
hidden size 4×d. Before the Transformer blocks, both
the initial input and the slots are linearly transformed
to d, followed by a layer norm.

CASE STUDY 1: ILLUSTRATION OF IDENTIFIABILITY.
To definitively show the validity of our claims about iden-
tifiability (Thm 5.3, Thm 5.4, and Thm 5.5), we created a
synthetic unconfounded scenario for modelling. This pro-
vides us with two data modalities, Fig, 7 (i) projected point
cloud data, and (ii) corresponding imagery data, we detail
point cloud illustrations in appendix G.1. Additionally, this
dataset also provides us with the ground truth object and
viewpoint features for evaluation. To visualise the aggregate
mixture, following Lemma F.2, we use the projected GMM
to interpret the distribution of random variables in Rd.

The data-generating process is thoroughly explained in the
App. D.1. In Fig. 5, we display the distributions of marginal-
ized aggregate content distribution q(c), comparing individ-
ual features and a mean feature across different runs that
are either scaled, shifted, or split (increase in number of
modes), which is reflective of affine transformation of fea-
tures across runs. To quantitatively measure the same, we
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Figure 5. Identifiability of q(c). The top row indicates individual feature distribution across five different runs. The bottom row reflects
the feature feature distribution, which we use as a proxy for multi-dimensional features given Lemma F.2. As observed, mean feature
distribution across runs is either scaled, shifted, or split (increase in number of modes); this provides strong evidence of recovery of the
latent space up to affine transformations, empirically verifying our claims in Thm. 5.3.

Table 1. Comparing identifiability of q(s), q(c), and p(v) scores wrt existing OCL methods.
METHOD CLEVR-MV GQN GSO

SMCC ↑ INV-SMCC ↑ MCC ↑ SMCC ↑ INV-SMCC ↑ MCC ↑ SMCC ↑ INV-SMCC ↑ MCC ↑

AE 0.32 ± .02 - - 0.29 ± .02 - - 0.24 ± 0.08 - -
SA 0.47 ± .03 - - 0.38 ± .02 - - 0.28 ± 0.06 - -
PSA 0.49 ± .02 - - 0.38 ± .02 - - 0.30 ± 0.04 - -
MulMON 0.61 ± .03 0.62 ± .02 - 0.59 ± .06 0.61 ± .02 - 0.56 ± 0.04 0.48 ± 0.06 -
OCLOC 0.63 ± .02 0.64 ± .01 0.48 ± .04 0.60 ± .03 0.60 ± .01 0.42 ± .08 0.58 ± 0.04 0.54 ± 0.03 0.46 ± 0.04

VISA 0.67 ± .01 0.66 ± .01 0.60 ± .04 0.59 ± .01 0.63 ± .01 0.52 ± .03 0.60 ± .03 0.61 ± .02 0.58 ± .03

Table 2. Identifiability and generalisability analysis on MV-MOVIC dataset.
METHOD IN-DOMAIN RESULTS OUT-OF-DOMAIN RESULTS

mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑ mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑

SA-MLP 0.28 ± 0.091 0.36 ± 0.004 - - 0.26 ± 0.08 0.38 ± 0.006 - -
PSA-MLP 0.30 ± 0.022 0.38 ± 0.002 - - 0.30 ± 0.03 0.40 ± 0.005 - -

VISA-MLP 0.28 ± 0.021 0.52 ± 0.021 0.61 ± 0.023 0.54 ± 0.026 0.27 ± 0.02 0.51 ± 0.029 0.58 ± 0.031 0.52 ± 0.021

SA-TRANSFORMER 0.34 ± 0.014 0.36 ± 0.016 - - 0.33 ± 0.041 0.36 ± 0.043 - -
PSA-TRANSFORMER 0.37 ± 0.021 0.38 ± 0.007 - - 0.37 ± 0.033 0.39 ± 0.016 - -

VISA-TRANSFORMER 0.38 ± 0.008 0.44 ± 0.003 0.46 ± 0.001 0.53 ± 0.011 0.36 ± 0.017 0.46 ± 0.033 0.46 ± 0.018 0.55 ± 0.082
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Figure 6. Viewpoint invariance for q(c). The top and bottom row
indicates individual feature levels and mean feature distributions,
respectively. Each columns reflect marginalised aggregate content
distribution q(c) when trained with different view pairs {(blue,
red), (green, blue), and (green, red)}, respectively. As the resulting
distributions with different datasets only vary by an affine transfor-
mation, providing strong evidence for Thm. 5.4.

computed SMCC and observed it to be 0.72 ± 0.04, em-
pirically verifying our Thm. 5.3. Furthermore, to illustrate

the invariance of distribution q(c) across viewpoints (Thm.
5.4), we consider three different viewpoints. We use all
possible pairs to learn q(c) distributions as illustrated in
Fig. 6, where the distributions are described w.r.t view-
points described by {g, r}, {r, b}, and {g, b}, respectively.
These distributions were also found to have similar prop-
erties as before, with an observed SMCC of 0.71 ± 0.11,
further confirming the claims in Thm. 5.4. Additionally,
Fig. 2 demonstrates the improvement in identifiability as
the number of viewpoints increases.

CASE STUDY 2: IMAGING APPLICATIONS. We first
evaluate the framework on standard benchmarks, specifi-
cally focusing on CLEVR-MV, CLEVR-AUG, GQN, and
GSO with simple objects. Given the true generative factors
are unobserved, we derive our quantitative assessments from
multiple runs. The results are shown in Table 1, confirming
the validity of our theory on imaging datasets. Regarding
the baseline comparisons that utilize a single viewpoint, the
INV-SMCC mirrors the SMCC due to its inherent design
(i.e., aggregation of a set with a single element is the same
element). Moreover, in the case of AE, SA, PSA, and
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MULMON, the models do not estimate view information
but either treat them independently or use the observed view
conditioning, rendering the MCC metric inapplicable. Fig.
12 showcases how the number of viewpoints impacts the
identifiability of the s,v, and c variables; the involved exper-
iments reflect the increase in performance with an increase
in the number of views, across all benchmark datasets.

Additionally, we demonstrate our methodology on proposed
complex datasets, MV-MOVIC and MV-MOVID, the latter
dataset enables us to examine the model performs when the
assumption 5.1 is not satisfied. To evaluate model behaviour
in an environment with consistent objects but with different
viewpoints, we conducted in-domain and out-of-domain
(OOD) evaluations. For in-domain analysis, the model is
trained and assessed on the same viewpoint group A =
[1, 2, 3]. Conversely, for OOD evaluation, we consider the
previously trained model but test it against a new set of
viewpoints B = [3, 4, 5]. The findings presented in Table
2 regarding the MV-MOVIC dataset reveal that the SMCC,
INV-SMCC, and MCC metrics show similar performance
across both domains. This indicates that the distributional
characteristics remain unchanged when both the training
and testing environments contain the same objects. The
MV-MOVID dataset analysis can be found in App. G.

7 Conclusion & Discussion
Understanding when object-centric representations are both
unambiguous and identifiable is essential for developing
large-scale models with provable correctness guarantees.
Unlike most existing work on identifiability, which largely
focuses on single-view setups, we offer identifiability guar-
antees in multi-view scenarios. We use distributional as-
sumptions for latent slot and view representations, drawing
inspiration from mixture model-based structures. To achieve
this, we propose a model that is viewpoint-agnostic and does
not require additional view-conditioning information.

Our model specifically guarantees the identifiability of view-
specific slot representations, viewpoint-invariant content
representations, and view representations, all without the
need for additional supervision (up to an equivalence re-
lation). We visually validate our theoretical claims with
unconfounded synthetic dataset with illustrative 2D data
plots. We then empirically demonstrate the model’s identi-
fiability properties on multiple object-centric benchmarks,
highlighting its ability to resolve view ambiguities in imag-
ing applications. Furthermore, we showcase the scalability
of our approach on large-scale datasets and more complex
decoders using realistic datasets and transformer decoders,
respectively, demonstrating its capacity to scale effectively
with both data volume and decoder complexity.

Limitations & future work. We recognize that our as-

sumptions, particularly regarding the viewpoint sufficiency,
are strong and may not always hold in practice. However,
we did not observe limiting effects of this assumption on
the proposed MV-MOVID dataset. A more extensive anal-
ysis of this assumption and its implications in real-world
applications is left for future work. We would also high-
light that the weak injectivity of the mixing function may
not always hold for different types of architectures. While
generally applicable, the piecewise-affine functions we use
may not always capture valid assumptions for real-world
problems, e.g., when the model is misspecified. Neverthe-
less, to the best of our knowledge, our theoretical results on
multi-object, multi-view identifiability are unique and cap-
ture key concepts in object-centric representation learning,
opening various new avenues for future research along the
lines of generalisability, world-modelling, and planning.

Impact Statement
This paper proposes a view invariant slot attention algorithm,
addressing spatial ambiguities with identifiability guaran-
tees. The work extends theoretical advancements in the
field of OCL, and as such, it has little immediate societal or
ethical consequences. Our method might be a step towards
interpretable, equivariant, and aligned models, which are
desired properties of trustworthy AI.
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A Notations

Ov : Abstract object set as observed from viewpoint v.

[V ] = {1, . . . , V } : Exhaustive set of viewpoints, representing all possible views.

A,B ⊂ [V ] : Subsets of viewpoints, used for training.

X = ×v∈AX v : Data space, formed by the Cartesian product of data spaces for each view in subset A.

xA = {xv : ∀v ∈ A} ∈ X : Data sample, where xv is the data from view v, and xA represents the set of data across
all views in A.

fe : Encoder model maps input data to a latent space or feature representation.

z : Spatial latent features, representing inferred spatial properties from the data.

S : View-specific slot space, a space for features that are tied to particular viewpoints.

C : View-invariant content space, representing features that are constant across different
viewpoints.

s ∈ S : Samples from the view-specific slot space, representing view-dependent latent features.

c ∈ C : Samples from the view-invariant content space, representing features that remain
consistent across views.

fs, f̃s : Slot attention module, responsible for attending to and disentangling different parts of
the input related to different views.

fd, f̃d : Mixing function, which combines view-specific and view-invariant features into a
unified representation.

V : View information space, a space that encodes information specific to each viewpoint
(e.g., angle, position).

v ∈ V : A sample from the view information space representing a specific view or camera
configuration.

fv, f̃v : View extractor function, which extracts viewpoint-related information from the data.

µc,µs,µv : Mean of invariant content, view-specific slots, and view distributions.

σc,σs,σv : Standard deviation of invariant content, view-specific slots, and view distributions.

πc,πs,πv : Mixing coefficients of invariant content, view-specific slots, and view distributions.

Ank : Assignment confidence of a slot k getting mapped to token n.

P ∈ P ⊆ {0, 1}K×K : Permutation matrix.

ms : Matching function, used to align object representations across views.

∆K : Simplex in the space of dimension K.

Hx,Hv : Space of homeomorphic transformation.
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B Extended Related Works
Identifiable representation learning. Learning meaningful representations from unlabeled data has long been a primary
objective of deep learning (Bengio et al., 2013). Several approaches, such as those proposed by (Higgins et al., 2017; Kim
& Mnih, 2018; Eastwood & Williams, 2018; Mathieu et al., 2019), relied on independence assumptions between latent
variables to learn disentangled representations. However, (Hyvärinen & Pajunen, 1999; Locatello et al., 2019) demonstrated
the provable impossibility of unsupervised methods for learning independent latent representations from i.i.d. data. Which
is tackled by restricting mixing functions to conformal maps (Buchholz et al., 2022) or volume-preserving transformations
(Yang et al., 2022), or with additional data assumptions (Zimmermann et al., 2021; Locatello et al., 2020a; Brehmer et al.,
2022; Ahuja et al., 2022; Von Kügelgen et al., 2021), or by imposing structure in the latent space as in nonlinear Independent
Component Analysis (ICA) (Hyvarinen et al., 2019; Khemakhem et al., 2020a;b), resulting in identifiable models. In the
context of nonlinear ICA, (Dilokthanakul et al., 2016) introduced a VAE model with a GMM prior, and (Willetts & Paige,
2021) empirically demonstrated the effectiveness of the GMM prior, which was later rigorously proven by (Kivva et al.,
2022). (Kori et al., 2024) use this notion of latent GMM in the context of OCL, achieving identifiability guarantees for
object-centric representations. Here, we use this notion in the context of multi-view object-centric representations, tackling
the issues with spatial ambiguities and uncertainties in bindings.

Multi-view Object-centric learning. Recent progress in multi-view object-centric learning has seen notable contributions
from methods like MULMON (Li et al., 2020), ROOTS (Chen et al., 2021), SLOTLIFTER(Liu et al., 2025), and UOCF(Luo
et al., 2024), each offering distinct approaches to compositional representation learning. However, these methods rely
heavily on viewpoint annotations, which limit their applicability in fully unsupervised settings. MULMON refines object
representations iteratively using annotated viewpoint-image pairs, while ROOTS, SLOTLIFTER, UOCF estimates 3D
object positions performing an inverse rendering operation within a grid and projects them into image space via viewpoint
transformations. In contrast, we deal with fully unsupervised framework without the need of viewpoint annotations while
providing approximate viewpoint equivariance for object representations.

Temporal Object-centric learning. An alternative approach to bypass the need for viewpoint annotations leverages tem-
poral information. Methods for learning from single-viewpoint video sequences, such as Relational N-EM (Van Steenkiste
et al., 2018), SQAIR (Kosiorek et al., 2018), SILOT (Crawford & Pineau, 2020), and SAVI (Kipf et al., 2021), focus
on modeling object motion, interactions, and identity tracking across frames, even under occlusion. However, these
methods assume fixed viewpoints, making them unsuitable for multi-view scenarios where objects appear in different spatial
configurations. Additionally, object motion affects individual objects independently, unlike viewpoint changes, which
influence the entire scene. Recent advances such as DYMON (Li et al., 2021) extend multi-view approaches like MULMON
(Li et al., 2020) to dynamic scenes by disentangling object motion and viewpoint changes, assuming one dominates in
adjacent frames. However, DYMON relies on viewpoint annotations, limiting its utility in unsupervised settings. Temporal
methods such as SIMONE (Luo et al., 2024) address this by leveraging temporal coherence across multi-view videos, using
spatial and temporal positional embeddings to disentangle object and viewpoint representations. Yet, SIMONe’s reliance on
temporal continuity restricts its generalizability to scenarios where such coherence is absent. In contrast, our framework
does not assume temporal dependencies.

C Algorithm
Here we illustrate all the steps involved in the of proposed method VISA, refer 1.

D Datasets

D.1 Illustrative dataset

To visually illustrate the effectiveness of our theory we experiment with two dimensional illustrative dataset. For this, similar
to (Kori et al., 2024), we defined a K = 5 component GMM, with differing mean parameters µ = {µ1, . . . ,µ5}, and
shared isotropic covariances, which we use to sample locations for an object. For a given location, we randomly select one
object from {‘cube’, ‘cylinder’, ‘pyramid’, ‘sphere’} and generate 1000 random points on the surface
of the selected shape uniformly covering it. To create a single data point, we randomly select three of the five locations and
place a randomly selected object at the location. To include multiple viewpoints, we consider V camera location and project
the objects, creating V different scenes. We then fill this by considering convex hull operation resulting in projected images
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Algorithm 1 View Invariant Slot Attention VISA

1: Input: A ∈ [V ], zA = {fe(xv) ∀v ∈ A} ∈ R|A|×N×d ▷ input representations
2: View: vA = {vv ∼ N (vv;µ(zv),σ2(zv)) ∀v ∈ A} ∈ R|A|×d ▷ view representations
3: View Transformation: θA = {θv = STN(vv) ∀v ∈ A} ∈ R|A|×2×3 ▷ transformation parameters
4: keyA ←WkT −1

θv (zA) ∈ R|A|×N×d, valueA ←WvT −1
θv (zA) ∈ R|A|×N×d ▷ optional value := key

5: s← ∅; π̂ ← ∅
6: for v ∈ A do
7: ∀k, π(0)k ← 1/K, µ(0)k ∼ N (0, Id), σ(0)2k ← 1d

8: for t = 0→ T − 1 do
9: Ank ←

π(t)kN(keyn;Wqµ(t)k,σ(t)2k)∑K
j=1 π(t)jN(keyn;Wqµ(t)j ,σ(t)2j)

▷ compute attention

10: Ânk ← Ank∑N
l=1 Alk

▷ normalize attention

11: µ(t+ 1)k ←
∑N

n=1 Ânk · valuen ▷ update slot mean
12: σ(t+ 1)2k ←

∑N
n=1 Ânk · (valuen − µ(t+ 1)k)

2
▷ update slot variance

13: π(t+ 1)k ← 1
N

∑N
n=1 Ank ▷ update mixing coefficient

14: end for
15: s← s ∪ {(µ1:K(T ),σ2

1:K(T ))}; π̂ ← π̂ ∪ {π1:K(T )} ▷ slot collection
16: end for
17: return ConvexCombination(s, π̂) ▷ K view invariant content

as illustrated in Fig. 7. To maintain uniformity, we only use imaging modality in the main paper while also demonstrating
point cloud illustrations here in the appendix. We use different colours representing different objects in Fig. 8, ?? and used
10, 000 data points in total to train our toy models. Unlike existing benchmark datasets, here we remove all the confounding
effects caused by lighting and depth. This provides an ideal test bed to validate all our theoretical claims.

D.2 Proposed dataset

In this work, we introduce the MV-MOVI datasets, created using Kubric (Greff et al., 2022), which feature multi-view scenes
with segmentation annotations. We propose two variants of the dataset: MV-MOVIC, where the camera locations for every
viewpoint remain fixed across all scenes, and MV-MOVID, where the camera locations dynamically change for each scene.

Both MV-MOVIC and MV-MOVID primarily consist of scenes generated by randomly selecting a background from a set of
458 available options and choosing K objects, where 3 ≤ K ≤ 6, from a pool of 930 objects. In total, a significantly high
number of images can be generated in general. In contrast, for this work, we generate 72,000 scenes, each captured from
5 different viewpoints, with object segmentation masks for every view to facilitate the evaluation of model performance.
In the case of MV-MOVIC, the locations of all five cameras are fixed across the 72, 000 scenes, while in MV-MOVID, the
camera positions are dynamically sampled and vary across scenes.

E Mask Generation
In the case of additive decoders, the decoder outputs K three channelled tensors along with K single channelled mask.
We consider normalising these masks with softmax transformation along slot dimension, ensuring that each pixel only
contributes to a single slot. The resulting softmaxed masks are used in composing (image =

∑
k maskk · imagek) the slots

to reconstruct an image for training. During inference, we normalise masks with sigmoid transformation, allowing us to
estimate occluded objects visually, resolving the spatial ambiguities with occluded objects. In a later section, we illustrate
the results with both softmax and sigmoid transformations.

E.1 Additivity Implications

Definition E.1. (Additive models) Function f is considered to be an additive decoder if, for any object decoders fobj and
masking mechanism mobj, if they can be expressed as:
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Figure 7. Data generating process: The figure illustrates 3D point cloud data in the first row, with camera location highlighted in red,
blue, and green arrow. Following rows indicates projected images and point cloud as observed from red, blue, and green cameras,
respectively.

f(z) =
∑

k∈[K]

mobj(zk)⊙ fobj(zk) (11)

As pointed out in (Lachapelle et al., 2023), softmax-based masks do not truly fall under the category of additive decoders
due to the competition between masks for groups of pixels. This implies that the additive decoders studied in (Lachapelle
et al., 2023) are not expressive enough to represent the “masked decoders” typically employed in object-centric representation
learning. The issue arises from the normalization of alpha masks, and care must be taken when extrapolating the findings
from (Lachapelle et al., 2023) to the models used in practice.

Although sigmoid-based masks satisfy the condition of additivity during inference, it is important to note that the model
is still trained using softmax normalization in our setting. The effect of using sigmoid masks during inference can be
visually observed in App. G.

F Proofs
Lemma F.1 (ELBO ). With prior distributions p(v) and p(c) for view and content latent random variables, the likelihood
p(x) can be maximised by maximising the following expression:

log p(x) ≥ E log p(x | Tθv (c),v)−KL (q(v | x) ∥ p(v)) := ELBO(x) (12)

Proof. Considering the generative model in Eqn. 5 respecting the graphical model in Fig. 4, we get:
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p(x) =

∫∫
p(xA | Tθv (c),vA) p(c) p(vA) dv dc (13)

log p(x) = log

∫∫
p(xA | c1:K ,vA) p(c1:K) p(vA)

q(v, c | xA)

q(v, c | xA)
dv dc1:K (14)

≥
∫∫

q(vA | xA)q(c1:K | T −1
θv (xA)) log p(xA | Tθv (c)1:K ,vA)

p(vA
1:K)

q(vA | xA)

p(cA1:K)

q(c1:K | xA)
dvA dc1:K (15)

=
∑
v∈A

∫∫
q(vv | xv)q(c1:K | T −1

θv (xv))) log p(xv | Tθv (c)1:K ,vv)
p(vA

1:K)

q(vA | xv)

p(cA1:K)

q(c1:K | xv)
dvv dc1:K (16)

Given the iterative update for c with EM algorithm, ideally we expect posterior to converge to prior, which results in:

log p(x) =
∑
v∈A

∫∫
q(vv | xv)q(c1:K | T −1

θv (xv))) log p(xv | Tθv (c)1:K ,vv)
p(vA

1:K)

q(vA | xv)
dvv dc1:K (17)

=
∑
v∈A

Ec,v log p(x
v | Tθv (c),v)−KL (q(v | xv) ∥ p(v)) (18)

Given the subscript notation, the above expression can also be expressed as:

Ec,v log p(x | Tθv (c),v)−KL (q(v | x) ∥ p(v)) := ELBO(x) (19)

Lemma F.2 (Mean GMM). Let z ∈ RN×d be a random variable drawn from a GMM with K components:

z ∼
K∑

k=1

πkN (z;µk,Σk), (20)

where πk are the mixture weights, µk ∈ Rd are the mean vectors, and Σk ∈ Rd×d are the covariance matrices. Assuming
the mixture satisfies the ICA assumption, such that the components of z are statistically independent. A projected random
variable z̄ as the average over the dimensions of z:

z̄ =
1

d

d∑
j=1

zj , (21)

is also distributed according to a GMM with K components, with appropriately transformed means and variances.

Proof. Given the random variable z follows a GMM, so its density can be expressed as:

p(z) =

K∑
k=1

πkN (z;µk,Σk), (22)

where:

µk = [µk,1, µk,2, . . . , µk,d]
⊤; Σk = diag([σ2

k,1, σ
2
k,2, . . . , σ

2
k,d]). (23)

Considering, the projection of z onto z̄ is defined as:

z̄ =
1

d

d∑
j=1

zj . (24)
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Given the ICA assumption, the components z:,j are independent. For a fixed component k, the projected mean and variance
of z̄ can be derived as:

E[z̄] =
1

d

d∑
j=1

µk,j ; Var(z̄) =
1

d2

d∑
j=1

σ2
k,j . (25)

Since the projection z̄ is a linear combination of independent Gaussian variables, z̄ remains Gaussian for each component k.
Thus, the overall distribution of z̄ is also a GMM:

p(z̄) =

K∑
k=1

πkN (z̄;µz̄,k, σ
2
z̄,k), (26)

where:

µz̄,k =
1

d

d∑
j=1

µk,j ; σ2
z̄,k =

1

d2

d∑
j=1

σ2
k,j . (27)

This concludes the proof.

Lemma F.3 (Convex Combination of GMMs). Let s1 = {s11, . . . , s1K} and s2 = {s21, . . . , s2K} be two sets of K random
vectors in Rd, each distributed according to GMMs:

s1 ∼
K∑

k=1

π1,kN (µ1,k,Σ1,k); s2 ∼
K∑

k=1

π2,kN (µ2,k,Σ2,k) (28)

where µi,k ∈ Rd, Σi,k ∈ Rd×d, and πi,k are the means, covariances, and mixing coefficients respectively.

Then for any weights w1, w2 ∈ R such that w1 + w2 = 1, the convex combination s = w1s
1 + w2s

2 is also distributed
according to a GMM with K components.

Proof. Without loss of generality, assume the components of both GMMs are aligned. For each component k, we derive the
parameters of the resulting mixture:

The mixing coefficients of the resulting GMM are weighted combinations of the original coefficients:

π̃k = w1π1,k + w2π2,k (29)

For each component k, the convex combination of Gaussians results in a Gaussian distribution. The mean of the resulting
Gaussian is:

µ̃k =
w1π1,kµ1,k + w2π2,kµ2,k

π̃k
(30)

The covariance of the resulting Gaussian for each component k can be derived as follows. Firstly, recall that for a random
variable X , the covariance is:

Var(X) = E[(X − E[X])(X − E[X])⊤] = E[XX⊤]− E[X]E[X]⊤ (31)

First lets compute E[sks⊤k ]:

E[sks⊤k ] = E

[(
w1π1,ks

1
k + w2π2,ks

2
k

π̃k

)(
w1π1,ks

1
k + w2π2,ks

2
k

π̃k

)⊤]
(32)

=
w2

1π
2
1,kE[s1k(s1k)⊤] + w2

2π
2
2,kE[s2k(s2k)⊤]

(π̃k)2
(33)

+
w1w2π1,kπ2,k

(π̃k)2
E[s1k(s2k)⊤ + s2k(s

1
k)

⊤] (34)
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Then, substitute known expectations:

E[sik(sik)⊤] = Σi,k + µi,kµ
⊤
i,k (35)

E[s1k(s2k)⊤] = µ1,kµ
⊤
2,k (36)

Finally, by subtract E[sik]E[sik]T = µ̃kµ̃
⊤
k we get the covariance:

Σ̃k =
w2

1π
2
1,kΣ1,k + w2

2π
2
2,kΣ2,k

(π̃k)2
(37)

To verify this forms a non degenerate GMM, we show the mixing coefficients sum to 1:

K∑
k=1

π̃k =

K∑
k=1

(w1π1,k + w2π2,k) (38)

= w1

K∑
k=1

π1,k + w2

K∑
k=1

π2,k (39)

= w1 · 1 + w2 · 1 = 1 (40)

Therefore, the convex combination results in a valid Gaussian mixture model with K components, where each component
has mean µ̃k, covariance Σ̃k, and mixing coefficient π̃k.

Lemma 5.2. (Optimal Content Mixture) For A ∈ [V ], given the a local content distribution q(c1:K | sA1:K ,xA) (per-scene
xA ∈ {xA

i }Mi=1), which can be expressed as a GMM with K components, the aggregate posterior q(c) is obtained by
marginalizing out x, s is a non-degenerate global Gaussian mixture with MK components:

p(c) = q(c) =
1

M

M∑
i=1

K∑
k=1

π̂ikN
(
c; µ̂ik, σ̂

2
ik

)
. (41)

Proof. We extend the proof in (Kori et al., 2024), by incorporating hierarchical slot to aggregate content formalisation. For
which, we begin by noting that the aggregate posterior q(c) is the optimal prior p(c) so long as our posterior approximation
q(c | sA,xA) is close enough to the true posterior p(c | sA,xA), since for a dataset xA ∈ {xA

i }Mi=1, for which we start with
q(sA | xA), wlog, given view point transformation is deterministic, we consider xA = TθA(xA) we have that:

p(sA) =

∫
p(sA | xA)p(xA)dxA (42)

= ExA∼p(xA)

[
p(sA | xA)

]
(43)

≈ 1

M

M∑
i=1

p(sA | xA
i ) (empirical approximation) (44)

≈ 1

M

M∑
i=1

q(sA | xA
i ) (posterior approximation) (45)

=: q(sA), (46)

We further extend this to q(c), with the result from Lemma F.3, we know that the q(c | sA) is a GMM with same number of
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components as q(sv | sv) for any v ∈ [V ] as follows

p(c) =

∫
p(c | sA)p(sA)dsA (47)

= EsA∼p(sA)

[
p(c | sA)

]
(48)

≈ 1

M

M∑
i=1

p(c | sAi ) (49)

≈ 1

M

M∑
i=1

q(c | sAi ) (50)

=: q(c), (51)

where we approximated p(x) using the empirical distribution, then substituted in the approximate posterior, marginalizing x
to get p(s), we later consider the distributional form of p(s) and marginalise sA to get p(c). This observation was first made
by (Hoffman & Johnson, 2016) and was used in (Kori et al., 2024) we use it to motivate our setup. Given our model fits
a local GMM to each latent variable sampled from the approximate posterior: zA ∼ q(zA | xA

i ), for i = 1, . . . ,M . Let
fs(z

A) denote the (local) the product of GMM density, its expectation is given by:

Ep(xA),q(zA|xA)

[
fs(z

A)
]
=

∫∫
p(xA)q(zA | xA)fs(z

A)dxAdzA (52)

≈
∫∫

1

M

M∑
i=1

δ(xA − xA
i )q(z

A | xA)f(zA)dxAdzA (53)

=

∫
1

M

M∑
i=1

q(zA | xA
i )f(z

A)dzA (54)

=

∫
1

M

M∑
i=1

N
(
zA;µ(xA

i ),σ
2(xA

i )
)
·

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
dzA

≈
∫

1

M

M∑
i=1

δ(zA − µ(xA
i )) ·

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
dzA (55)

=
1

M

M∑
i=1

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
(56)

=: q(zA), (57)

where we again used the empirical distribution approximation of p(x), and the following basic identity of the Dirac delta to
simplify:

∫
δ(x− x′)fe(x)dx = fe(x

′).

For the general case, however, we must instead compute the product of q(zA | xA) and fs(z
A) rather than use a Dirac delta

approximation as in Eqn. 55. To that end we may proceed as follows w.r.t. to each datapoint xA
i :

q(zA | xA
i ) · fs(zA) = N

(
zA;µ(xA

i ),σ
2(xA

i )
)
·

K∑
k=1

πk(x
A
i )N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)
(58)

=

K∑
k=1

πk(x
A
i )
[
N
(
zA;µ(xA

i ),σ
2(xA

i )
)
· N

(
zA;µk(x

A
i ),σ

2
k(x

A
i

)]
(59)

Given that means across all views are aligned, similar to Lemma F.3, we know the resulting combined GMM has same
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number of components:

q(zA | xA
i ) · fs(zA) =

|A|∏
v=1

K∑
k=1

π̄v
ikN

(
z; µ̄ivk, σ̄

2
ivk

)
, (60)

Given the product of GMM is a GMM with the number of components equal to the product of a number of components in
individual GMM, however in our setting we consider all the components in individual GMM across viewpoints to be aligned
resulting in GMM with a number of components equal to the sum of individual components which in our case correspond to
K. The posterior parameters of the resulting mixture are given in closed form by:

σ̄2
ivk =

(
1

σ2
k(x

v
i )

+
1

σ2(xv
i )

)−1

, µ̄ivk = σ̄2
ivk

(
µ(xv

i )

σ2(xv
i )

+
µk(x

v
i )

σ2
k(x

v
i )

)
, (61)

The resulting GMM is still on the view-specific slots, the aggregation of these slots to obtain content vectors marginalises
the viewpoint-level information with convex combination of parameters across all the viewpoints considered as described in
cf. F.3, results in:

|A|∏
v=1

K∑
k=1

π̄v
ikN

(
z; µ̄ivk, σ̄

2
ivk

)
=

K∑
k=1

π̂ikN
(
z; µ̂ik, σ̂

2
ik

)
, (62)

σ̂2
ik = g(σ̄ik, π̄ik) =

|A|∑
v=1

(
π̄v
ik∑|A|

v=1 π̄
v
ik

)2

σ̄2
ik, (63)

µ̂ivk = g(µ̄ik, π̄ik) =

|A|∑
v=1

π̄v
ik∑|A|

v=1 π̄
v
ik

µ̄ik, (64)

Now to show that the resulting GMM is non-degenerate we need to show
∑K

k=1 π̂ik = 1, for i = 1, 2, . . . ,M . Based on
Eqn. 56:

=⇒ 1

M

M∑
i=1

K∑
k=1

π̂ik =
1

M |A|

M∑
i=1

K∑
k=1

|A|∑
v=1

π̄v
ik =

1

M |A|

M∑
i=1

|A| = 1

M |A|
·M |A| = 1, (65)

=⇒ 1

M

M∑
i=1

K∑
k=1

π̂ik = 1. (66)

based on the above equation we can say that the scaled sum of the mixing proportions of all K components in all M GMMs
when the components are aligned must equal 1, show that the resulting aggregate posterior is non-degenerate and a valid
probability distribution.

Assumption F.4 (Weak Injectivity). Let f : Z → X be a mapping between latent space and image space, where
dim(Z) ≤ dim(X ). The mapping fd is weakly injective if there exists x0 ∈ X and δ > 0 such that |f−1({x})| = 1,
∀x ∈ B(x0, δ) ∩ f(Z), and {x ∈ X : |f−1({x})| = ∞} ⊆ f(Z) has measure zero w.r.t. to the Lebesgue measure on
f(Z) (cf. (Kivva et al., 2022)).

Remark F.5. In words, Assumption F.4 says that a mapping fd is weakly injective if: (i) in a small neighbourhood around a
specific point x0 ∈ X the mapping is injective – meaning each point in this neighbourhood maps to exactly one point in the
latent space Z; and (ii) while fd may not be globally injective, the set of points in X that map back to an infinite number of
points in Z (non-injective points) is almost non-existent in terms of the Lebesgue measure on the image of Z under fd.

Theorem F.6 (Mixture of Concatenated Slots). Let fs denote a permutation equivariant probabilistic slot attention
function such that fs(zv, P sv) = Pfs(z

v, sv), where P ∈ {0, 1}K×K is an arbitrary permutation matrix. Let c =
(g(sA1 , .), . . . , g(s

A
K , .)) ∈ RKd be the concatenation of K individual content vectors, where each vector is an aggregate

of all the slots obtained from considered viewpoints in a viewpoint-set A ⊆ [V ] (cf. (Kori et al., 2024)). Due to the

22



Identifiable Object Representations under Spatial Ambiguities

nature of the aggregator function, the individual content vector is Gaussian distributed within a K-component mixture:
ck ∼ N (µk,Σk) ∈ Rd,∀k ∈ {1, . . .K}. Then, c is also GMM distributed with K! mixture components:

p(c) =

K!∑
p=1

πpN (c;µp,Σp), where π ∈ ∆K!−1,µp ∈ RKd,Σp ∈ RKd×Kd. (67)

We additionally borrow some theorems and definitions from (Kivva et al., 2022) which are essential for our proofs. First, we
restate the definition of a generic point as outlined by (Kivva et al., 2022) below.

Definition F.7. (Generic point) A point x ∈ fd(Rm) ⊆ Rn is generic if there exists δ > 0, such that fd : B(s, δ)→ Rn is
affine for every s ∈ f−1

d ({x})
Theorem F.8 (Kivva et al. (Kivva et al., 2022)). Given fd : Rm → Rn is a piecewise affine function such that {x ∈
Rn : |f−1

d ({x})| = ∞} ⊆ fd(Rm) has measure zero with respect to the Lebesgue measure on fd(Rm), this implies
dim(fd(Rm)) = m and almost every point in fd(Rm) (with respect to the Lebesgue measure on fd(Rm)) is generic with
respect to fd.

Theorem F.9 (Kivva et al. (Kivva et al., 2022)). Consider a pair of finite GMMs in Rm:

y =

J∑
j=1

πjN (y;µj ,Σj), and y′ =

J′∑
j=1

π′
jN (y′;µ′

j ,Σ
′
j). (68)

Assume that there exists a ball B(x, δ) such that y and y′ induce the same measure on B(x, δ). Then y ≡ y′, and for some
permutation τ we have that πi = π′

τ(i) and (µi,Σi) = (µ′
τ(i),Σ

′
τ(i)).

Theorem F.10 (Kivva et al. (Kivva et al., 2022)). Given z ∼
∑J

i=1 πiN (z;µi,Σi) and z′ ∼
∑J′

j=1 π
′
jN (z′;µ′

j ,Σ
′
j) and

fd(z) and f̃d(z
′) are equally distributed. We can assume for x ∈ Rn and δ > 0, fd is invertible on B(x, 2δ) ∩ fd(Rm).

This implies that there exists x1 ∈ B(x, δ) and δ1 > 0 such that both fd and f̃d are invertible on B(x1, δ1) ∩ fd(Rm).

Theorem 5.3 (Affine Equivalence of aggregate content) For any subset A ⊆ [V ], such that |A| > 0 , given a set of images
xA ∈ XA and a corresponding aggregate content c ∈ C and a non-degenerate content posterior q(c | sA), considering two
mixing function fd, f̃d satisfying assumption F.4, with a shared image, then c are identifiable up to ∼s equivalence.

Proof. Based on the results of (Kori et al., 2024) we know that when p(s) is aggregate posterior of q(s | x), p(s) is
identifiable up to ∼s equivalence. Additionally, based on lemma 5.2 we know that both q(s | x) and q(c | s) are a
non-degenerate GMM with valid probability distribution. Using similar arguments in (Kori et al., 2024; Kivva et al.,
2022) we show that p(c) and p(s) are identifiable up to ∼s equivalence. W.l.o.g, given view point transformation is
deterministic, we consider xA = TθA(xA).

We know that

p(sA) =

∫
q(sA1:K | xA)p(xA)dxA (69)

=

∫ ∏
v∈A

q(sv | xv)p(xv)dxA (70)

=

∫ ∏
v∈A

(
K∑

k=1

πv
kN

(
sv;µk(x

v),σ2
k(x

v)
))

p(xv)dxA (71)

=
∏
v∈A

1

|X |

∫ ( K∑
k=1

πv
kN

(
cv;µk(x

v),σ2
k(x

v)
))

δ(xv − xv
i )dx

A (72)

=
∏
v∈A

|X |K∑
k=1

1

|X |
π̂v
ikN

(
sv; µ̂ivk, σ̃

2
ivk

) (73)
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Change of variables from s to c to get prior over random variable c, with matching function g, results in:

p(c1:K) =

∫
p(sA1:K)δ

(
sA1:K − g(sA1:K ,πA

1:K)
)
dcA1:K (74)

Given the transformation g is linear, resulting us with the distribution with mean given by:

Ec (c1:K) = Es

(
g(sA1:K ,πA,1:K)

)
(75)

= g
(
Es(s

A
1:K),πA

1:K

)
(76)

=
∑
v∈A

πv
1:K∑

v∈A πv
1:K

Es(s
A
1:K) (77)

and the covariance follows the diagonal structure as in p(c), which can be described as follows:

Var(c1:K) =
∑
v∈A

(
πv
1:K∑

v∈A πv
1:K

)2

Varc(cA1:K) (78)

Finally, the mixture components can be expressed as:

π̃1:K =

∑
v∈A πv

1:K

|A|
(79)

With distribution parameters described in equations 77, 78, and 79, we define the aggregate content distribution as GMM
expressed as follows:

p(c) =

|X |K∑
k=1

1

|X |
π̃v
kN (v;E(c)k),Var(c)k) (80)

Validity of p(c): The outer summation in equation 80 can be split into two one for image samples and other for original
mixing coefficients, which results in the equation:

p(c) =

|X |∑
i=1

K∑
k=1

1

|X |
π̃v
ikN (v;E(c)ik),Var(c)ik) (81)

Based on this we can observe the each component in our GMM corresponds to particular slots for a given image in a given
viewpoint, triple describing each component is:

{
π̃v
ik, µ̃vik, σ̃

2
vik

}
, for v = 1, . . . , |A| i = 1, 2, . . . , |X |, and k = 1, 2, . . . ,K. (82)

To verify that p(c) is a non-degenerate mixture, we observe the following implication:

|X |∑
i=1

K∑
k=1

1

|X |

∑
v∈A π̃v

ik

|A|
= 1, (83)

=⇒ 1

|X |
1

|A|

|X |∑
i=1

∑
v∈A

K∑
k=1

πv
ik =

1

|X |
1

|A|
|X | · |A| · 1 = 1 (84)

similar to lemma 5.2, this says that the scaled sum of the mixing proportions of all K components in all |X | GMMs must
equal 1, proving that the associated aggregate posterior mixture p(c) is a well-defined and non degenerate probability
distribution.
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Invertibility restrictions: Given two piece-wise affine compositional functions fd, f̃d : C × V → X , for a given set
of views vA, let c = (c1, . . . , cK),∋ ck ∼ N (ck;µk,Σk) and c′ = (c′1, . . . , c

′
K),∋ c′k ∼ N (c′k;µ

′
k,Σ

′
k) be a pair of

aggregate content representations, result of sampling a concatenated higher dimensional GMM distribution in RKd, as
shown in Theorem F.6, (Kori et al., 2024). In the case when, fd♯(C, {vA}) and f̃d♯(C′, {vA})3 are equally distributed. Now
assume that there exists xA ∈ X and δ > 0 such that fd and f̃d are invertible and piecewise affine on B(xA, δ)∩ fd(S), for
a given set of views vA, which implies dim fd(C, {vA}) = |C|.

Affine subspace: We now restrict the space B(xA, δ) to a subspace B(x′A, δ′) where xA ∈ B(x′A, δ′) such that fd and f̃d
are now invertible and affine on B(x′A, δ′)∩fd(C×{vA}). With L ⊆ XA be an |C|-dimensional affine subspace (assuming
|XA| ≥ |C|), such that B(x′A, δ′)∩fd♯(C, {vA}) = B(x′A, δ′)∩L. We also define hf , hf̃ : C → L to be a pair of invertible
affine functions where h−1

f♯ (B(x′A, δ′) ∩ L) = f−1
d♯ (B(x′A, δ′) ∩ L;vA) and h−1

f̃ ♯
(B(x′A, δ′) ∩ L) = f̃−1

d♯ (B(x′A, δ′) ∩
L;vA). Implying hf (c) and hf̃ (c

′) are finite GMMs that coincide with B(x′A, δ′) ∩ L and hf (c) ≡ hf̃ (c
′), theorem F.9,

(Kivva et al., 2022). Given, h = h−1

f̃
◦ hf and hf (c) and hf̃ (c

′) then h is an affine transformation such that h(c) = c′.

∼s equivalence: Given Theorems F.8 and F.10, there exists a point x ∈ fd♯(C, {vA}) that is generic with respect fd
and f̃d and invertible on B(x, δ) ∩ fd♯(C, {vA}). Having established that there is an affine transformation h(c) = c′ and
invertiblility of piece-wise affine functions fd and f̃d on B(xA, δ)∩ fd♯(C, {vA}), this implies that c is identifiable up to an
affine transformation and permutation of ck ∈ c, concluding our proof.

Remark: Given Theorem F.9, we know that for each higher dimensional mixture component in p(c) induces the same
measure on B(xA, δ) and hence for some permutation τ we have that (µπ(i),Σπ(i)) = (µ′

τ(π(i)),Σ
′
τ(π(i))). Therefore, each

mixture component cπ(i) is identifiable up to affine transformation, and permutation of aggregate content representations
in c. Now, given sampling ck is equivalent to obtaining K samples from the GMM, q(z) and concatenating, this makes
q(z) identifiable up to affine transformation, h and permutation of slot representations in c. It now trivially follows that
each of the aggregate content representation ck ∼ N (ck;µk,Σk) ∈ Rd,∀ k ∈ {1, . . . ,K} is identifiable up to affine
transformation, h based on the following observed property of GMMs:

K∑
k=1

πkh♯ (N (sk;µk,Σk)) ∼ h♯

( K∑
k=1

πkN (s′k;µ
′
k,Σ

′
k)
)
, (85)

Theorem 5.4 (Invariance of aggregate content) For any subset A,B ⊆ [V ], such that |A| > 0, |B| > 0 and both A,B
satisfy an assumption 5.1, we consider aggregate content to be invariant to viewpoints if fA ∼s fB for data XA ×XB .

Proof. Based on equation 80, pA(s) and pB(s) can be expressed as follows:

pA(c) =

|X |K∑
k=1

1

|X |

∑
v∈A πv

k

|A|
N

(
c;
∑
v∈A

πv
k∑

v∈A πv
k

µvk,
∑
v∈A

(
πvk∑
v∈A πv

k

)2

σ2
vk

)
(86)

pB(c) =

|X |K∑
k=1

1

|X |

∑
u∈B πu

k

|B|
N

(
c;
∑
u∈B

πuk∑
u∈B πu

k

µu
k ,
∑
u∈B

(
πu
k∑

u∈B πu
k

)2

σ2
uk

)
(87)

Given the assumption of viewpoint sufficiency 5.1 we know the objects observed in viewpoint set A are same as the object
observed in set B. Following the results of Theorem 5.3, we know that both pA(s) and pB(s) are independently identifiable
up to ∼s equivalence, which means fA and fB are invertible for a given views vA and vB respectively.

3fd♯ correspond to push forward operation, applying function fd on all the elements of the given set.
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Affine mapping. Without loss of generality, for a given set of views vA, there exists some L ⊆ XA be an |S|-dimensional
affine subspace, such that B(x′A, δ) ∩ fA♯(C, {vA}) ∩ fB♯(C, {vA}) = B(x′A, δ) ∩ L. This implies their exists an affine
map between c = f−1

A (xA;vA) and c̃ = f−1
B (xB ;vA). Let hA : C → L to be an invertible affine functions where

h−1
A♯ (B(x′A, δ′) ∩ L) = f−1

A♯ (B(x′A, δ′) ∩ L;vA) = f−1
B♯ (B(x′B , δ′) ∩ L;vA) resulting in hA(c) = c′. Similarly, we can

show their exists an affine map between c̃ = f−1
A (xA;vB) and c̃′ = f−1

B (xB ;vB), such that hB(c̃) = c̃′.

Invariance setup. In the case when representations are invariant, pA(c) and pB(c) are equally distributed, which means
aggregate content domain in both cases are same or similar CA = CB .

c′ = h(c̃′) (88)
=⇒ hA(c) = (h ◦ hB)(c̃) (89)

=⇒ c = (h−1
A ◦ h ◦ hB)(c̃) (90)

Given composition of affine maps is affine, we can consider the mapping (h−1
A ◦ h ◦ hB) to be an affine, resulting in an ∼s

equivalence between fA and fB .

Theorem 5.5 (Approximate representational equivariance) For a given aggregate content c, for any two views v, ṽ ∼
pA(v), resulting in respective scenes x ∼ pA(x | v, c) and x̃ ∼ pA(x | ṽ, c), for any homeomorphic, monotonic
transformation hx ∈ Hx such that hx(x) = x̃, their exists another homeomorphic and monotonic transformation hv ∈ Hv

such thatHv ⊆ Hx ⊆ Rdim(x) and v = h−1
v

(
f−1
d (hx(x); c)

)
.

Proof. For a given view v and a mixing function fd that satisfy assumptions F.4 and is piecewise affine, from theorem 5.3
we know the latent view representations are identifiable up to ∼s equivalence for a given aggregate content vector. We know
that p(v) is expressed as GMM with a considered set of viewpoints, ideally learning each component for each viewpoint.

p(v) =

|A|∑
v=1

πvN (v;µv,σv)

Following similar arguments in Theorem 5.3 and (Kivva et al., 2022), we can show that for a given content representation
c the view distribution p(v) is identifiable up to affine transformation. This means, for any two considered models
fd, f̃d, such that fd♯(V; {c}) and f̃d♯(V; {c}) are equally distributed, then for any xA ∼ X with the corresponding content
representations given by c the views v = f−1

d (xv; c), v′ = f̃−1
d (xv; c) are related in by an affine transformation h(v) = v′,

results in:

|A|∑
v=1

πvh♯

(
N (v;µv,σ

2
v)
)
∼ h♯

 |A|∑
v=1

πvN (v;µv,σ
2
v)

 , (91)

Without loss of generality we can consider any function f : C × V → X is identifiable up to affine transformation, with
this for given views v, ṽ ∼ p(v) and for any object representations c, the resulting scenes are sampled by distributions
learned with mixing function f is given by x ∼ pf (x | c,v), x̃ ∼ pf (x | c, ṽ). As previously established for some affine
transformation h,

h(v) = f−1(x̃; c) =⇒ v = h−1
(
f−1(x̃; c)

)
(92)

Given hx(x) = x̃, when combined with above equation we know v = h−1
(
f−1(x; c)

)
, ṽ = h′−1

(
f−1(hx(x); c)

)
, for

some invertible affine transformations h and h′.
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Figure 8. Identifiability of q(c) and q(s). Estimated marginalised slot distribution (q(s)–blue contours) and marginalised content
distribution (q(c)–orange contours, across 4 runs of VISA. This provides strong evidence of recovery of the latent space up to affine
transformations, empirically verifying our claims in Thm. 5.3.

Given hx is homeomorphic and monotonic, and f is piecewise linear, the inverse can be transferred resulting in ṽ =
h′−1

(
h̄v(f

−1(x; c))
)
, similarly we can also swap h′−1 with h̄v, resulting in ṽ = h̄v

(
h′−1

(
f−1(x; c)

))
. Additionally

combining the results from theorem 5.3 and (Kivva et al., 2022), we know that h′−1 ◦ h is an affine transformation h̄. This
results in:

h̄ = h′−1 ◦ h (93)

=⇒ ṽ = (h̄v ◦ h ◦ h̄)
(
f−1(x; c)

)
(94)

=⇒ ṽ = hv(v) (95)

Given affine transformation preserves monotonicity and homeomophism, the resulting transformation hv ∈ Hv and
hv ∈ Hx, concluding the proof.

G Experiments

G.1 Toy Setting

Here, we repeat the experiments in CASE STUDY 1 with point cloud giving us two dimensional distributions, which can
analysed visually. In Fig. 8, we display the distributions of marginalized aggregate content distribution q(c), comparing
different runs that are either rotated, skewed, or mirrored with respect to each other, indicating identifiability up to affine
transformation. To quantitatively measure the same, we computed SMCC and observed it to be 0.95± 0.01, empirically
verifying our Thm. 5.3. Furthermore, to illustrate the invariance of distribution q(c) across viewpoints (Thm. 5.4), we
consider three different views. We use all possible pairs to learn q(c) distributions as illustrated in Fig. 9, where the
distributions from second to last sub-figures are learned wrt viewpoints described by {g, r}, {r, b}, and {g, b}, respectively.
Similar to our previous findings, these distributions were also found to be rotated, skewed, or mirrored relative to each other,
with an observed SMCC of 0.87± 0.11, further confirming the claims in Thm. 5.4.

G.2 Synthetic dataset results

Here, we illustrate visual results reflecting object binding in the case of view ambiguities. Table 3, demonstrates identifiability
results on CLEVR-AUG datasets. In Fig. 10, we demonstrate the results of VISA across three different views. We
additionally highlight some of the occluded regions which seem to be better captured by our proposed model, which can be
attributed to the multi-view setting and the sigmoid mask.

Additionally, we also illustrate the results from CLEVR-MV dataset in figure 11.

G.3 Influence of Number of Views

Here, we demonstrate the influence of the number of views on the overall identifiability of object-centric representations.
Similar to Fig. 2, in Fig. 12, we observe an increasing number of views increase overall results.
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Figure 9. Viewpoint invariance for q(c). Estimated marginalised aggregate content distribution q(c) when trained with different view
pairs {(green, red), (red, blue), (green, blue)} are illustrated in later figures. As the resulting distributions with different datasets only vary
by an affine transformation, providing strong evidence for Thm. 5.4.

Table 3. Comparing identifiability of q(s), q(c), and p(v) scores wrt existing OCL methods on CLEVR-AUG dataset.

METHOD SMCC ↑ INV-SMCC ↑ MCC ↑

AE 0.26 ± .01 - -

SA 0.45 ± .05 - -

PSA 0.48 ± .03 - -

MulMON 0.56 ± .04 0.57 ± .01 -

OCLOC 0.58 ± .02 0.60 ± .01 0.48 ± .04

VISA 0.64 ± .01 0.66 ± .01 0.57 ± .04

G.4 MVMOVI Results

Here, we discuss the results obtained from the proposed dataset. To reiterate, MVMOVI-C is a variant where fixed camera
positions are maintained for all viewpoints across all scenes in the dataset. This setup helps assign a fixed type of viewpoint
conditioning for all images captured from a particular camera.

The detection and binding quality of different models are illustrated in Table 2. From these results, we can clearly observe
that while the model demonstrates similar binding capabilities, the identifiability of object representations is improved in
our proposed model. This suggests that the use of fixed camera positions in MVMOVI-C enhances the consistency and
quality of object representation learning, leading to better detection performance across different viewpoints.

Figure 13 & 14 showcases the object discovery capabilities of the VISA. In the iteration of the MVMOVI-D dataset, we vary
the camera position for each scene, making the dataset more dynamic and allowing for the potential violation of assumption
5.1 in certain cases. Table 4 presents the binding and identifiability results for both in-domain and out-of-domain data,
following a similar analysis as in Table 2. We observe consistent trends and behaviours, suggesting that the impact of the
assumption is minimal. A more detailed analysis of the assumption’s effects will be left for future work.

G.5 View warm-up

Given the stochasticity during the initial phase of training, to facilitate meaningful representation in content aggregator
function, we consider view warm-up strategy. For the initial 100,000 iterations, we randomly use the view-specific slots for
reconstruction instead of invariant content with a probability of 0.5.

This primary makes sure the feature extractor extracts meaningful representations before aggregation, which helps to
stabilize the training process and allows the model to effectively bind and integrate information from different perspectives
in later stages of training.
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(a)

(b)

(c)

Figure 10. Visual illustrations of benchmark results on CLEVR-AUG dataset.

G.6 Hyperparameters

In Table 5, we detail all the hyper-parameters used in our experiments. In the case of benchmark experiments, we use
trainable CNN encoder as used in (Locatello et al., 2020b; Kori et al., 2023), while in the case of proposed MVMOVI
datasets we use DINO (Caron et al., 2021) encoder to extract image features and change our objective to reconstruct these
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(a)

(b)

(c)

Figure 11. Visual illustrations of benchmark results on CLEVR-MV dataset.

features rather than the original image as proposed in (Seitzer et al., 2022). For most of hyperparameters we use the values
suggested by (Locatello et al., 2020b; Seitzer et al., 2022), based on their ablation results.
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Figure 12. Influence of Number of viewpoints on identifiability for synthetic datasets.

(a)

(b)

Figure 13. Visual illustrations of benchmark results on MVMOVI-C dataset with 2 views.

G.7 Computational Resources

We run all our experiments on a cluster with a Nvidia NVIDIA L40 48GB GPU cards. Our training usually takes between
eight hours to a couple of days, depending on the model and the dataset. It is to be noted that speed might differ slightly
with respect to the considered system and the background processes. All experimental scripts will be made available on
GitHub at a later stage.
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(a)

(b)

Figure 14. Visual illustrations of benchmark results on MVMOVI-C dataset with 3 views.

Table 4. Identifiability and generalisability analysis on MV-MOVID dataset.

METHOD INDOMAIN ANALYSIS OUT OF DOMAIN

mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑ mBO ↑ SMCC ↑ INV-SMCC ↑ MCC ↑

SA-MLP 0.24 ± 0.031 0.44 ± 0.005 - - 0.24 ± 0.097 0.45 ± 0.008 - -

PSA-MLP 0.26 ± 0.022 0.44 ± 0.006 - - 0.25 ± 0.012 0.42 ± 0.006 - -

VISA-MLP 0.24 ± 0.099 0.48 ± 0.009 0.46 ± 0.054 0.57 ± 0.021 0.25 ± 0.011 0.48 ± 0.006 0.51 ± 0.021 0.55 ± 0.021

SA-TRANSFORMER 0.34 ± 0.017 0.40 ± 0.041 - - 0.34 ± 0.066 0.38 ± 0.031 - -

PSA-TRANSFORMER 0.37 ± 0.021 0.38 ± 0.007 - - 0.36 ± 0.024 0.36 ± 0.016 - -

VISA-TRANSFORMER 0.39 ± 0.016 0.46 ± 0.001 0.48 ± 0.001 0.54 ± 0.032 0.37 ± 0.051 0.46 ± 0.022 0.45 ± 0.010 0.54 ± 0.029
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Table 5. Experimental details w.r.t datasets

DATASETS(↓) PARAMETERS VALUES

CLEVR, GSO

No. Layers 4
No. Views 10 (GSO: 8)
No. Slots 7
Training Epochs 5000
Batch Size 32
Optimizer ADAM
Learning Rate 0.0002
Initial Slot µ N (0, 1)
Initial Slot σ I
Warmup Steps 10000
Decoder SPATIAL BROADCASTING-CNN
x− likelihood N (µx, σ

2
xI)

GQN

No. Layers 4
No. Views 10
No. Slots 4
Training Epochs 5000
Batch Size 64
Optimizer ADAM
Learning Rate 0.0002
Initial Slot µ N (0, 1)
Initial Slot σ I
Warmup Steps 10000
Decoder SPATIAL BROADCASTING-CNN
x− likelihood N (µx, σ

2
xI)

MVMOVI-C, MVMOVI-D

No. Layers 4
No. Views 5
No. Slots 7
Training Epochs 560
Batch Size 64
Optimizer ADAMW
Learning Rate 0.0002
Initial Slot µ N (0, 1)
Initial Slot σ I
Warmup Steps 10000
Pretrained Encoder DINO_VITB16
Decoder MLP, TRANSFORMER
x− likelihood N (µx, I)
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