
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GAN-BASED NERF NOISE SIMULATION IN MESH DE-
NOISING TASK

Anonymous authors
Paper under double-blind review

ABSTRACT

In the present paper, we propose a new approach and a dataset for generating
NeRF-like noise on the mesh surface. Our approach is based on GAN and was
trained on a dataset that we collect using real NeRF noise. The core idea of
our method lies in the use of graph convolutions in the generator. Our pipeline
demonstrates generated NeRF-like noise more accurate than other methods by
mesh denoising benchmarking. We also present a new NeRF noise analysis ap-
proach HTPH based on a conditional probability model to measure the similarity
of mesh noise.

1 INTRODUCTION

The problem considered in this article belongs to mesh denoising and 3D scene reconstruction do-
mains. Existing scene reconstruction algorithms work with errors called noise Nguyen et al. (2012);
Belhaoua et al. (2009). In our work, we focus on the node noise which causes the difference between
shapes of real and reconstructed objects.

Neural radiance fields (NeRF) models have recently become a popular tool for reconstructing 3D
scenes. The first one was introduced in Mildenhall et al. (2021). Many NeRF extensions were
presented in the next several years after the first publication Müller et al. (2022); Barron et al.
(2021); Jain et al. (2021); Deng et al. (2022); Yu et al. (2021); Fridovich-Keil et al. (2022); Wang
et al. (2022); Zhi et al. (2021); Jeong et al. (2021). In our paper we consider NeRF as a baseline
algorithm for 3D scene reconstruction by a set of views.

The experiments show that 3D object reconstruction using NeRF requires a lot of time. There are
NeRF models where learning a scene takes up to 40 hours. Therefore, a lot of time is required to
generate enough data to train the noise reduction algorithm specified for NeRF noise.

Our motivation is to reduce the time-consuming process of data generation. For this purpose we
introduce a pipeline that can generate a dataset in a short time. Using our approach we generate
a new dataset. We have shown that mesh denoising models trained on our dataset remove a noise
appearing in the scene after NeRF reconstruction better than without training on our dataset. Apart
from this, we present a new mesh noise description based on conditional probability model which
we have used in our analysis.

Our pipeline is based on Generative Adversarial Network (GAN) Goodfellow et al. (2014). To train
our model we select meshes from objaverse-XL Deitke et al. (2023) and preprocessed them. We use
Instant-NGP Müller et al. (2022) to prepare NeRF noise examples.

Our main contribution can be summarized as follows:

• We introduce a new analysis of mesh noise which uncovers the significant difference be-
tween artificial noise and real noise.

• We propose a new pipeline for generation NeRF-like noise on the mesh surface. The core
of our pipeline is a GAN which was trained on real NeRF noise. The application consists
in the massive generation of a dataset suitable for effective training of denoising models.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

2 RELATED WORK

In recent years, learning-based mesh denoising methods have achieved impressive results, partic-
ularly: DNF-Net Li et al. (2020), NormalNet Zhao et al. (2021), IMD-Net Botsch et al. (2022),
GeoBi-GNN Zhang et al. (2022), Cascaded Regression Wang et al. (2016) and GCN-denoiser Shen
et al. (2022). All learning-based methods require a large number of clean-noisy mesh pairs, which
are complicated and time-consuming to acquire. Mesh noise generation methods do not require as
much time as in-camera processing pipelines.

Existing noise generation methods can be divided into the following groups:

2.1 NON-LEARNING-BASED NOISE MODELS

The literature review shows that a probability density function (PDF) is typically used for non-
learning-based modeling of sensor noise. The PDF parameters are determined through experimental
measurements.

A Konica Minolta Vivid 910 3D laser scanner is considered by Sun et al. (2008). The authors plot the
histogram of noise magnitudes and interpolate the PDF using Gaussian distribution. The Microsoft
Kinect noise is analysed by Nguyen et al. (2012). The authors demonstrate how distribution depends
on the angle of rotation and the distance between the sensor and the plane. Choo et al. (2014)
creates another noise model of a Microsoft Kinect depth sensor. The authors use the chessboard for
experiments and show how noise distribution depends on the depth of scene points. Haider & Hel-Or
(2022) create a noise histogram from a series of measurements from different sensor positions and
show that the noise distribution depends on the light direction and distance. The authors compare
the noise distributions of three types of depth sensors: ZED, Microsoft Kinect V1 and Microsoft
Kinect V2.

2.2 LEARNING-BASED NOISE MODELS

The noise can be learned directly with GAN if the noise is too complicated and cannot be modeled
as PDF. In particular, noise generation is often applied to images when white noise generation is
required.

Henz et al. (2020) construct the GAN model, in which a generator consists of five sequential residual
blocks, two convolutional and one batch normalization layer. Each residual block contains two con-
volutional, two normalization layers and a ReLU layer. At the same time, the discriminator consists
of five convolutional layers, each followed by an instance normalization and a leaky ReLU layer.
Similarly, Tran et al. (2020) uses the same model with five residual blocks for image noise gener-
ation. Kim et al. (2019) introduces a generator with sequential residual blocks and convolutional
blocks where each convolutional block has batch normalization, spectral normalization and ReLU
layers. At the same time, each residual block has two 3× 3 convolutional layers.

In contrast, some researchers use U-Net-based (Ronneberger et al. (2015)) model as a generator.
Hossain & Lee (2022) creates a U-Net-based model with 10 blocks, where each block contains a
channel attention layer, two recurrent convolutional blocks with batch normalization, and ReLU
layers. Chang et al. (2020) uses a camera-encoding network in addition to U-Net-shaped generator
for realistic camera noise generation. Song et al. (2023) builds U-Net for camera noise generation
with six SNAF blocks. Each block has three convolutional, one normalization, and one simple gate
layers. The Decoder blocks have additional noise injection layers.

3 MESH NOISE ANALYSIS

In this section, we present an approach to compare mesh noise that takes into consideration the
dependence between neighboring vertex positions. Our approach uncovers the significant difference
between artificial mesh noise and realistic noise caused by the weaknesses of algorithms and sensors.

We refer to the vertex offset as the distance between original mesh and noised mesh for each vertex
in the noisy mesh. The method for calculating the distance between point and mesh is described
in the Appendix 1. This approach is based on Zong et al. (2023). Most existing denoising works

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a) Random noise (b) NeRF noise

Figure 1: Random normal noise heatmap (a) and NeRF noise heatmap (b). Each heatmap is a transi-
tion probability matrix, where the vertical axis defines a vertex offset class C(v), and the horizontal
axis defines offset classes of neighboring vertices. Thus, each cell defines the probability of two
different offsets to be neighboring. For all classes, the distribution is normal with approximately the
same expected values and standard deviations. In contrast, the MTPH of NeRF noise shows that
neighboring vertices always have sufficiently close offsets.

have noise generation tools for dataset generation. Unfortunately, the algorithms in these tools
only the offset of individual vertices without taking into account the offset of neighboring vertices.
Thus, these algorithms are only able to imitate unrealistic noise modeled by single vertex offsets
distribution, and the dependence between offsets of neighboring vertices is not taken into account.
A simple offsets distribution does not show the difference between artificial mesh noise and realistic
noise. We have developed a new approach to measure the difference between types of noise.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

We denote by s(v) the offset of the vertex v. All vertex offsets can be arranged in ascending order,
and we can find smin and smax along all vertices. The segment [smin, smax] is divided intoK equal
sub-segments. Each sub-segment represents a class of vertices to which offsets belong. Therefore,
we divide all vertices into K different classes determined by natural numbers. We define a class
index for each vertex as C(v) =

⌊
(s(v) − smin)/d

⌋
, where d = (smax − smin)/K, i.e. C ∈

{0, . . . ,K − 1}. In practice, smin is calculated as the 4th percentile and smax as the 96th percentile
so that each class does not contain too few vertices.

We denote all neighboring vertices for each vertex v as N(v). We define a dependence between the
offsets of neighboring vertices as a conditional probability model. We consider the vertex classes C
as states of the model. Let’s define state transition probabilities: for each vertex v we calculate the
class C(v) and the classes C(v

′
) for v

′ ∈ N(v). Considering all vertices, for each vertex class we
construct the distribution of classes of neighboring vertices. Therefore, we define a state transition
probability distribution for each state.

The state transition probability distributions can be represented as a transition probability matrix,
where each element pij indicates the probability of transition from state i to state j. We represent
this matrix as a heatmap and call it Mesh Transition Probability Heatmap (MTPH).

The MTPH shows the difference between NeRF noise and random noise artificially generated for
each vertex, without dependence on neighboring vertices. We calculate the MTPH for meshes from
synthetic datasets and NeRF datasets collected by our program. The results for K = 40 are shown
in Figure 1. It can be seen that the transition probability distribution in artificially generated noise
does not depend on the vertex class.

The difference between noise can be measured by the distance between MTPHs. We use the follow-
ing metrics: cosine difference, Euclidean distance, Manhattan distance, and kernel norm of MTPH
difference. Along with MTPH metrics, we use KL divergence to measure the distance between
the vertex offset distributions. Five metrics in total. We use these metrics to measure the distance
between generated noise and real noise.

4 FULL PIPELINE

The task of noise simulation requires a generative model to capture intrinsic noise features during
the training process. We choose GAN because there are already published works such as Song et al.
(2023) where authors used GAN to generate digital camera noise synthesis on images. It makes
sense to refer to the experience of the neighboring domain, which is why we recommend using
GAN specifically for noise synthesis.

In our approach we use GAN’s generator to predict offsets for point clouds. We transform the mesh
into a point cloud which is given to the GAN input. After GAN calculates offsets, we transform
noisy point clouds back to mesh. The scheme of our pipeline is depicted on Figure 2.

Generator

preprocessing mesh reconstruction

Original mesh Noisy mesh

Figure 2: The mesh noise generation pipeline scheme. In the start green point cloud is produced by
original mesh point sampling. The Generator takes the green point cloud, calculates the offset for
each point, and returns the blue point cloud. The number of points in green and blue clouds is equal.
Finally, the noised mesh is reconstructed from the blue point cloud.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

4.1 GAN ARCHITECTURE

In our method, the generator predicts the magnitude of the offset for each point along the point’s
normal, so to get a noisy point cloud we need to multiply these magnitudes with point normals and
add the resulting offsets to original point positions. The first step to generate a noisy point cloud is
to encode the original point cloud using two PointNet layers, each of those utilize the point cloud
and its knn-graph. Then, to the encoded point cloud we add random values sampled from random
distribution as suggested in study Song et al. (2023). The noisy point cloud features are then fed to
GATv2 Layer Brody et al. (2022) and head layers in the end.

The discriminator requires point offsets and the original point cloud knn-graph as input. First, it
propagates through the knn-graph using offsets as node features, and then follows a single linear
plane and global mean pooling operation to obtain a vector representation of each point cloud in
a stack. The point cloud vector representation is then fed to linear layers, followed by sigmoid
activation to predict the probability of generating a point cloud. The schematic of the generator and
discriminator is shown in the Figure 3.

GENERATOR
HeadPointNet Encoder

P
oi

nt
N

et
 L

ay
er

P
oi

nt
N

et
 L

ay
er

G
AT

v2
C

on
v

Le
ak

yR
eL

U

Random noise
Le

ak
yR

eL
U

B
at

ch
N

or
m

B
at

ch
N

or
m

D
ro

po
ut

Li
ne

ar
 L

ay
er

Le
ak

yR
eL

U

Li
ne

ar
 L

ay
er

Li
ne

ar
 L

ay
er

Original
point cloud

KNN graph

O
ff

se
ts

m
ag

ni
tu

d
es

×(1-RNR)

N
×

3
E×

2

E×
2

E×2

N
×

6
4

N×64
N

×
6

4

N
×

3
2

N
×

16

N
×

1×RNR

+

DISCRIMINATOR

G
C

N
C

on
v

Le
ak

yR
eL

U

S
ig

m
oi

d

Le
ak

yR
eL

U

M
ea

n
P

oo
l

Le
ak

yR
eL

U

Li
ne

ar
 L

ay
er

Li
ne

ar
 L

ay
er

Li
ne

ar
 L

ay
er

[0, 1]

N
×

6
4

N
×

3
2

N
×

16 1Point
cloud

KNN
graph

E×
2

N
×

3

Figure 3: Architecture of GAN: E denotes the number of knn-graph edges, N denotes the number of
points, RNR means Random Noise Ratio, which defines the quantity of injecting noise.

5 GAN TRAINING

In this section we describe how we prepare clear/noisy pairs to train GAN. All steps are shown on
the Figure 4. We also highlight in this section the training details.

3D Figure

Rendering 3D Figures NeRF output Sample point cloudFit meshes

Original mesh

...

Figure 4: All steps of clear/noisy pairs preparation to train GAN. A mesh is rendered from 100
points of view. The renders are given to NeRF. The reconstructed mesh is fitted to the original mesh.
Further, each mesh is used to sample point clouds.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.1 CLEAR/NOISY PAIRS PREPARING

We select meshes from objaverse-XL that satisfy the following conditions: they must be water-
tight and textured, have Euler-Poincar´e characteristic not greater than 10, and must have not less
than 500 and not greater than 250 000 vertices. Each mesh is rendered 100 times from different
viewpoints using our renderer based on the bpy library in Blender (2018).

The rendered images are used as input for the NeRF. As NeRF produce a radiance field which is
a raw data for 3D-reconstruction algorithms we extract meshes with Differentiable Poisson Sur-
face Reconstruction (DPSR) Peng et al. (2021) (which calculates Signed Distance Function (SDF)
Slavcheva et al. (2016)) and Marching Cubes (MC) Lorensen & Cline (1998).

Further we fit mesh pairs using a rigid point-set registration approach (Myronenko & Song (2010)).
Let us define a transformation function T (p, v) = SAv− b for each pair that transforms the original
mesh vertices, which depends on parameters p defined as follows: b = (b1, b2, b3) is a displacement
vector, A = A(ψ, θ, ϕ) is a rotation matrix defined by three independent parameters (Euler angles)
and S = diag(s1, s2, s3) is a diagonal matrix defined by three scale factors. The parameters p are
found as the argmin of the functional:

F (p) =
1

|V |
∑
v∈V

min
v′∈V ′

||T (p, v)− v
′
||,

where V and V
′

are sets of vertices of original mesh and noised mesh respectively. The result of
optimal transformation application is depicted in Figure 5a.

To create a pair of noisy and clear point clouds, we uniformly sample 10 000 points on clear mesh.
Then we project these points onto the noisy mesh along each point normal, which is calculated as
the interpolation of facets vertices normals, for a facet that contains the corresponding point. You
can see the visualization of this process in Figure 5b. Thus, we obtain two point clouds of the same
size and we can build a bijection from points sampled on original mesh and ones sampled on noisy
mesh.

(a) Pair of meshes before alignment and after
alignment.

n1

n2 n3

(b) Points sampling process. Original mesh is
dark gray and the noisy mesh is light gray.

Figure 5: The rigid point-set registration performance and points sampling illustration.

5.2 TRAINING DETAILS

We have trained the GAN minimizing the binary cross entropy (BCE) loss and the maximum of the
offsets magnitudes. The second term in the loss is needed to deal with outliers. We use the batch
size of 16 and the learning rate of 2× 10−4. The experiments conducted on NVIDIA A100 80 GB
GPUs, the training process with such settings requires approximately 8 gigabytes of GPU memory,
training takes about 30 minutes on a dataset with 856 objects.

We use the Adam optimization algorithm with β1 = 0.5 and β2 = 0.999. We use LambdaLR with
λ = 0.986epoch to schedule a learning rate. We conduct the hyperparameter search via Optuna Akiba
et al. (2019), we investigate random noise ratio, dropout probability and latent dimensionality.

The training scheme is depicted on Figure 6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Point cloud

Point cloud normals

KNN-graph
Generator

Discriminator× [0, 1]

Loss

Magnitudes

Offsets

Noisy point cloud+

Figure 6: Scheme of the training and inference pipeline. The gray area represents the result of the
data preparation pipeline.

6 EXPERIMENTS

We conduct a series of experiments to verify that our pipeline can produce a realistic NeRF-like
noise.

We select 6 shapes from our primary set for the training and testing domains: bird, bottle, key,
sphere, doll and spiral. More details about these shapes can be found in Appendix 2. Each shape was
rendered and processed with instant-ngp 1000 times. Each shape was reconstructed after instant-ngp
application. We split the shapes to training and testing domains: the bird, bottle, key and sphere are
in the train domain and doll and spiral are in the test domain.

We collect offsets in the interval [−0.004, 0.004] to compare the noise distribution histograms.
We have defined experimentally that most of the offsets belong to this interval. The code and all
clear/noisy pairs are available in our repository1.

6.1 MAIN RESULT

Five types of GAN have been trained: four on one shape – bird, bottle, key, sphere and one on all
four train shapes together. Each generator was tested on five train shapes and two test shapes. There
are three types of tests we perform:

• In domain (ID) – testing only on the shape that was used for train;

• Out of domain (OOD) – testing on all train shapes except the one that was used for train;

• Test domain (TD) – testing on testing shapes;

The target distribution and target MTPH that we measure distance to are always calculated for the
shapes that we test on. The GAN training results are shown in Appendix 3.

6.2 ABLATION STUDY

Our main goal is to build a learning-based pipeline that outperforms the baseline method based on
DPSR + MC. Furthermore, we compare our GAN results with simple noise generators. The first one
is a KNN-regressor, where we choose the number of neighbors of 10. The second one is a simple
multilayer perceptron network with four layers (3 to 32, 32 to 16, 16 to 8, 8 to 1), Leaky ReLU
activations and batch normalization.

Another baseline for comparison is U-Net, which was also trained in a supervised manner. We reim-
plement the original architecture presented in Ronneberger et al. (2015) to process 1-dimensional
point cloud data instead of 2-dimensional pictures. The baseline is as follows. First, we process raw
point cloud with its normals and the knn-graph through PointNet-like encoder, then we feed points’
embeddings into reimplemented U-Net, finally the processed embeddings are transformed through
two fully connected layers.

You can see the performance of these pipelines in Appendix 3.

1https://anonymous.4open.science

7

https://anonymous.4open.science/r/mesh_noise_generation_using_point_clouds-EEC7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

6.3 DISCUSSION

We use our new analysis approach based on MTPH to compare the performance of pipelines. The
Table 1 shows the top results by each metric for each test shape. This table includes all rows with
at least one top result for any metric for the specified test shape. Moreover, we highlight the best
results over all test shapes for each metric.

We see that our GAN-based approach outperforms other pipelines 2-6 times according to MTPH
difference metrics: Cosine distance, Linear distance, Manhattan distance and Nuclear norm. At the
same time, other methods surpass GAN in KL-divergence very insignificantly (the difference is seen
only in the second or third decimal place), so this metric is almost equal.

Three of the six best GANs have been trained on a sphere shape. It has a consistent surface and
consistent curvature, so this could provide better results. Moreover, the GAN tested on the sphere
shows the best result on three out of five metrics, despite the large number of polygons on the
sphere’s surface.

We see that all pipelines tested on the key shape show better KL-divergence values than on other
shapes. The key is the only mesh with a significant portion of flat elements. It could be easier to
reproduce the offset distribution on flat surfaces.

You can see the examples of noise generated by our GAN in Appendix 4. It is compared with real
NeRF noise.

Table 1: Top training results. The best results for a specific test shape are highlighted in green. The
best metrics for all shapes are highlighted with dark green. The GAN results for the KL div. are
slightly lower, however they are comparable to the rest of the approaches. The GAN results for other
metrics are significantly better than others.

Pipeline Train on Test on Metrics
KL div. ↓ Cosine ↓ Linear ↓ Manh. ↓ Nuclear ↓

GAN

Sphere Bird 0.45269 0.00251 0.10487 2.84228 0.32697
All Bottle 0.49770 0.00951 0.21888 5.25660 0.68357
Key Key 0.06589 0.01937 0.32343 5.68141 1.17867
Bird Sphere 0.35944 0.00183 0.09029 2.37248 0.32119
Sphere Doll 0.53638 0.00625 0.16130 4.68518 0.46974
Sphere Spiral 0.49742 0.00368 0.12526 3.60572 0.31796

KNN Reg. Bird Bird 0.44349 0.01495 0.24551 6.37309 0.59441
U-Net All Bottle 0.48909 0.05028 0.56939 10.86997 1.68377

DPSR + MC
– Key 0.06330 0.06551 0.63861 13.24510 2.26182
– Sphere 0.35360 0.13064 0.69201 20.95043 1.80963
– Doll 0.52423 0.09685 0.62921 19.19287 1.61193

KNN Reg. Spiral Spiral 0.48815 0.00552 0.14572 3.93982 0.44374

7 OUR DATASET EVALUATION

In the previous section we show that our pipeline can add a realistic NeRF-like noise on the mesh sur-
face. Here we show that our pipeline can be used to produce a dataset which can upgrade learning-
based denoising models. We demonstrate that learning-based denoising models can more effectively
remove NeRF noise when trained on our dataset.

7.1 EVALUATION DATASET PREPARATION

The denoising models we have tested can only be trained on noisy-GT pairs with the same number
of facets, so we prepare an evaluation dataset using the pipeline described below. The GT mesh is
prepared by transformation of original mesh via DPSR + MC, as described in Section 6.

The GAN model produces a point cloud, which we label as P . This point cloud should be converted
to a mesh with the same number of vertices as in the GT mesh. The conversion process is depicted
in the Figure 7. We calculate a normal vector n(v) for each vertex v in GT mesh. For each v we find

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

a point p ∈ P the closest to the line Lv defined by vertex v and its normal n(v). We find the point v
′

that is closest to v from line Lv . The v
′

is supposed to be a point from a noisy mesh corresponding
to v point from the original mesh.

(a) The closest points to normals (red vectors) of
original mesh vertices are found. These points are
drawn with blue.

(b) The closest points are connected with the same
edges as original mesh vertices.

Figure 7: Evaluation dataset preparation. The original mesh transformed via DPSR + MC is black.
The point cloud produced by GAN is purple.

7.2 EVALUATION RESULTS

The GeoBi-GNN and Cascaded Regression are tested on our dataset. We train both models on six
types of datasets: Synthetic only, Synthetic + GAN, Synthetic + Noisemaker3D, GAN + Noise-
maker3D, GAN only and KNN-Regression only. Noisemaker3D (NM3D) is the library with a set of
methods for generating node and topology noise. In addition, we prepare a dataset to be denoised by
these models and measured the denoising metrics. The metrics we use for comparison are: Chamfer
Distance (CD), Mean Cosine Distance of Normals (NCD), Absolute Area Difference (ADA), Mean
Squared Error (MSE), and Hausdorff Distance (HD). The results are shown in the Table 2.

Table 2: Denoising metrics of GeoBi-GNN and Cascaded Regression trained with a dataset gen-
erated by our GAN and KNN-regression models. All denoising experiments are performed on
NeRF-like noised meshes. The best metrics for all shapes are highlighted with dark green. The
first, second and third best results shown by each model are labeled by dark green, green and light
green respectively.

Model Train on
Metrics

CD ↓ NCD ↓ ADA ↓ MSE ↓ HD ↓
×10−6 ×10−2 ×10−2 ×10−6 ×10−2

GeoBi-GNN

Synthetic 6.65 1.322 0.972 2.978 1.304
Synthetic + GAN 8.72 1.141 1.263 3.899 0.920
Synthetic + NM3D 6.73 1.217 0.991 3.019 1.320
GAN + NM3D 7.86 1.534 1.233 3.546 0.906
GAN 10.95 1.164 1.637 4.978 0.938
KNN-Regression 6.58 1.753 1.228 3.142 0.921

Cascaded Regression

Synthetic 6.97 2.237 1.296 3.180 1.708
Synthetic + GAN 6.77 2.126 1.198 3.051 1.683
Synthetic + NM3D 6.96 2.129 1.295 3.167 1.734
GAN + NM3D 6.82 2.172 1.226 3.073 1.572
GAN 6.36 1.994 0.911 2.807 1.027
KNN-Regression 6.42 1.996 0.896 2.844 0.980

The Cascaded Regression shows better results on the most of metrics being trained on our GAN-
based dataset or infused with it. In particular it outperforms all other training datasets in denoising
task on CD, NCD and MSE metrics. The ADA and HD metrics are comparable to KNN-based
dataset. The denoising results are illustrated in Appendix 5.

9

https://anonymous.4open.science/r/NoiseMaker3D-424D/

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

7.3 LIMITATIONS

Besides a generative model the dataset generation pipeline includes the DPSR + MC part. Preparing
the dataset for the noise generation model involves solving optimization problems, which requires a
lot of time for complicated shapes with large amounts of tiny elements.

Due to the benchmark denoising models, it is necessary to use a dataset with the same number of
vertices. For this reason, the preparation of the evaluation dataset requires a special transformation
procedure that converts the point cloud into a mesh with the same number of vertices as the original
clear mesh. This procedure is described in 7.1. This process can result in artifacts on the surface
with tiny parts like birds.

The NeRF noise is determined not only by the shape topology but also by the shape texture. It is
necessary to select shapes with textures that will not cause abnormal convex or concave bumps on
the mesh surface after NeRF application.

8 CONCLUSION

In this article, we present a NeRF-like noise generation pipeline based on GAN and includes graph
convolutional blocks to address challenges faced by providing reliable NeRF datasets for denois-
ing tasks. Experimental results prove the better performance of using generated dataset for mesh
denoising tasks over existing synthetic datasets. We have shown that datasets generated with our
pipeline improve learning-based denoising models when used for training. The most significant
improvement show the mean cosine distance and the absolute area difference of the metric normals.

Another important result is a new analysis of mesh noise that is suitable for complicated noise. Our
analysis approach assumes a special heatmap calculation for vertex offsets, which has a meaning of
transition probability matrix.

In future work, we want to investigate other types of mesh noise, including topology noise.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and
Pratul P Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864,
2021.

Abdelkrim Belhaoua, Sophie Kohler, and Ernest Hirsch. Estimation of 3d reconstruction errors in
a stereo-vision system. In Modeling aspects in optical metrology II, volume 7390, pp. 319–328.
SPIE, 2009.

Blender. Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. URL http://www.blender.org.

Jan Botsch, Hardik Jain, and Olaf Hellwich. Imd-net: A deep learning-based icosahedral mesh
denoising network. IEEE Access, 10:38635–38649, 2022.

Shaked Brody, Uri Alon, and Eran Yahav. How attentive are graph attention networks? In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=F72ximsx7C1.

Ke-Chi Chang, Ren Wang, Hung-Jin Lin, Yu-Lun Liu, Chia-Ping Chen, Yu-Lin Chang, and Hwann-
Tzong Chen. Learning camera-aware noise models. In European Conference on Computer Vision,
pp. 343–358. Springer, 2020.

Benjamin Choo, Michael Landau, Michael DeVore, and Peter A Beling. Statistical analysis-based
error models for the microsoft kinect™ depth sensor. Sensors, 14(9):17430–17450, 2014.

10

http://www.blender.org
https://openreview.net/forum?id=F72ximsx7C1
https://openreview.net/forum?id=F72ximsx7C1

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Matt Deitke, Ruoshi Liu, Matthew Wallingford, Huong Ngo, Oscar Michel, Aditya Kusupati, Alan
Fan, Christian Laforte, Vikram Voleti, Samir Yitzhak Gadre, et al. Objaverse-xl: A universe of
10m+ 3d objects. arXiv preprint arXiv:2307.05663, 2023.

Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. Depth-supervised nerf: Fewer views
and faster training for free. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12882–12891, 2022.

Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 5501–5510, 2022.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Azmi Haider and Hagit Hel-Or. What can we learn from depth camera sensor noise? Sensors, 22
(14), 2022.

Bernardo Henz, Eduardo SL Gastal, and Manuel M Oliveira. Synthesizing camera noise using
generative adversarial networks. IEEE Transactions on Visualization and Computer Graphics, 27
(3):2123–2135, 2020.

Sadat Hossain and Bumshik Lee. Ng-gan: A robust noise-generation generative adversarial network
for generating old-image noise. Sensors, 23(1):251, 2022.

Ajay Jain, Matthew Tancik, and Pieter Abbeel. Putting nerf on a diet: Semantically consistent few-
shot view synthesis. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5885–5894, 2021.

Yoonwoo Jeong, Seokjun Ahn, Christopher Choy, Anima Anandkumar, Minsu Cho, and Jaesik Park.
Self-calibrating neural radiance fields. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 5846–5854, 2021.

Dong-Wook Kim, Jae Ryun Chung, and Seung-Won Jung. Grdn: Grouped residual dense net-
work for real image denoising and gan-based real-world noise modeling. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

Xianzhi Li, Ruihui Li, Lei Zhu, Chi-Wing Fu, and Pheng-Ann Heng. Dnf-net: A deep normal fil-
tering network for mesh denoising. IEEE Transactions on Visualization and Computer Graphics,
27(10):4060–4072, 2020.

William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d surface construction
algorithm. In Seminal graphics: pioneering efforts that shaped the field, pp. 347–353. 1998.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

Andriy Myronenko and Xubo Song. Point set registration: Coherent point drift. IEEE transactions
on pattern analysis and machine intelligence, 32(12):2262–2275, 2010.

Chuong V Nguyen, Shahram Izadi, and David Lovell. Modeling kinect sensor noise for improved 3d
reconstruction and tracking. In 2012 second international conference on 3D imaging, modeling,
processing, visualization & transmission, pp. 524–530. IEEE, 2012.

Songyou Peng, Chiyu Jiang, Yiyi Liao, Michael Niemeyer, Marc Pollefeys, and Andreas Geiger.
Shape as points: A differentiable poisson solver. Advances in Neural Information Processing
Systems, 34:13032–13044, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceed-
ings, Part III 18, pp. 234–241. Springer, 2015.

Yuefan Shen, Hongbo Fu, Zhongshuo Du, Xiang Chen, Evgeny Burnaev, Denis Zorin, Kun Zhou,
and Youyi Zheng. Gcn-denoiser: mesh denoising with graph convolutional networks. ACM
Transactions on Graphics (TOG), 41(1):1–14, 2022.

Miroslava Slavcheva, Wadim Kehl, Nassir Navab, and Slobodan Ilic. Sdf-2-sdf: Highly accurate 3d
object reconstruction. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam,
The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pp. 680–696. Springer, 2016.

Mingyang Song, Yang Zhang, Tunç O Aydın, Elham Amin Mansour, and Christopher Schroers. A
generative model for digital camera noise synthesis. arXiv preprint arXiv:2303.09199, 2023.

Xianfang Sun, Paul L Rosin, Ralph R Martin, and Frank C Langbein. Noise in 3d laser range scanner
data. In 2008 IEEE International Conference on Shape Modeling and Applications, pp. 37–45.
IEEE, 2008.

Linh Duy Tran, Son Minh Nguyen, and Masayuki Arai. Gan-based noise model for denoising real
images. In Proceedings of the Asian Conference on Computer Vision, 2020.

Can Wang, Menglei Chai, Mingming He, Dongdong Chen, and Jing Liao. Clip-nerf: Text-and-
image driven manipulation of neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3835–3844, 2022.

Peng-Shuai Wang, Yang Liu, and Xin Tong. Mesh denoising via cascaded normal regression. ACM
Trans. Graph., 35(6):232–1, 2016.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for
real-time rendering of neural radiance fields. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 5752–5761, 2021.

Yingkui Zhang, Guibao Shen, Qiong Wang, Yinling Qian, Mingqiang Wei, and Jing Qin. Geobi-
gnn: geometry-aware bi-domain mesh denoising via graph neural networks. Computer-Aided
Design, 144:103154, 2022.

Wenbo Zhao, Xianming Liu, Yongsen Zhao, Xiaopeng Fan, and Debin Zhao. Normalnet: learning-
based mesh normal denoising via local partition normalization. IEEE Transactions on Circuits
and Systems for Video Technology, 31(12):4697–4710, 2021.

Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place scene la-
belling and understanding with implicit scene representation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 15838–15847, 2021.

Chen Zong, Jiacheng Xu, Jiantao Song, Shuangmin Chen, Shiqing Xin, Wenping Wang, and
Changhe Tu. P2m: a fast solver for querying distance from point to mesh surface. ACM Transac-
tions on Graphics (TOG), 42(4):1–13, 2023.

A APPENDIX

A.1 CALCULATE DISTANCE BETWEEN POINT AND MESH

In this section we present an algorithm for quick calculation of distance between point and triangle
mesh. The three-dimensional space around a mesh is described as a Voronoi diagram constructed
for different classes of geometric primitives that mesh consists of: facets, edges, and vertices.

Consider the point Q and calculate the distance from Q to the mesh. The algorithm consists of the
following steps:

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

• Find a vertex of the mesh A closest to the point Q. This can be done, for example, using
a kd-tree calculated previously for all vertices of the mesh. We denote by V1, . . . , Vn the
vertices that are adjacent to vertex A. We also denote by C1, . . . , Cn the centroids of facets
adjacent to the vertex A.

• Denote vectorAQ by ā. Next vectorsAV 1, . . . , AV n we denote by v̄1, . . . , v̄n. Finally we
denote vectors AC1, . . . , ACn by c̄1, . . . , c̄n.

• First we should check if point Q is in the reference cone of A.

The article clearly describes that the three-dimensional space above/below a mesh can be described
as a Voronoi diagram constructed for different classes of geometric primitives. The classical Voronoi
diagram is a partition of space into regions, where each region of it forms a set of points closer to
one of the elements of a certain set than to any other element of the set. A mesh consists of three
types of geometric primitives: facet, edge, and vertex.

The space in which the mesh is represented is transformed into a Voronoi diagram for the facets,
edges, and vertices of the mesh. Drawing from the article:

In the figure, red indicates the areas where the points are closest to one of the facets than to any other
facet or any of the edges or vertices. Similarly, blue indicates the areas where the points are closest
to some edge, and yellow indicates some vertex.

If you want to find the shortest distance from an arbitrarily taken point to the mesh surface, then you
need to take into account this feature of dividing the space around the mesh, since the distance from
a point to a flat triangle in 3D is not calculated in the same way as the distance from a point to a
segment or from a point to a point. It is important to understand which of the geometric primitives
is closest to the point before calculating the distance.

The algorithm for finding the shortest distance can be implemented without constructing a Voronoi
diagram, but with the assumption that the surface to which the distance needs to be calculated is
sufficiently convex.

Suppose you want to calculate the distance from the point Q to the mesh. The algorithm consists of
the following steps:

1. Search for the vertex of the mesh A closest to the point Q. This can be done, for example, using a
kd-tree calculated previously for all vertices of the mesh. Denote by V1, . . . , Vn the vertices that are
adjacent to vertex A. We also denote by C1, . . . , Cn the centroids of facets adjacent to the vertex A;
2. Check whether the point Q lies in the reference cone of this vertex (in the figure these cones are
indicated in yellow). To do this, take the vector connecting vertexA and pointQ, that is, vectorAQ.
Next, you need to calculate the scalar products of the vector AQ with the vectors AC1, . . . , ASp. If
all these scalar products are strictly less than zero, then the point Q belongs to the support cone. In
this case, the desired distance is the length of the vector AQ. If at least one of the scalar products is
greater than or equal to zero, then the distance is calculated according to the algorithm in paragraph
3; 3. For each facet k adjacent to vertex A, calculate the vectors L1Ck, L2Ck, L3Ck, where L1,
L2, L3 are the midpoints of the facet edges. We also calculate the vectors L1Q, L2Q, L3Q, then
calculate the scalar products (LiCk, LiQ), i = 1, 2, 3. If all three scalar products are greater than
or equal to zero, then the minimum distance from the point Q to the mesh is equal to the distance
to the facet k. If otherwise, the distance is calculated according to the algorithm in paragraph 4; 4.
Calculate the scalar product of the vector (AQ,AVk), k = 1, . . . , n. Important: each of the vectors
Vk must be normalized before calculating the scalar products. Let’s define k for which the scalar
product (AQ,AVk) is maximal. An edge with index k is the nearest edge to the point Q. In this
case, the minimum distance from the point Q to the mesh is equal to the distance to the edge k.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 OBJAVERSE-XL SHAPES HASHES

Table 3: Each objaverse-XL shape has a unique hash that identifies it in this dataset.

Name Train or test Objaverse ID
bottle Train 00b2c8c60d2f45a893ee73fd1f107e27
bird Train 02c81d18c4f04b9b9275fde41d0e715b
sphere Train f8c97f11180440ccae5bc156ef087014
key Train 4bdab6b1e3194045ab6362e4c6cda222
doll Test 0e30fca3637e4083863e1240d6d1f1bf
spiral Test 1d6ad3e20daa4873a3b1a0ab6c0ea8d1

A.3 FULL RESULTS

Table 4: Basic models results: DPSR + MC, KNN, MLP, U-Net. Experiments show the best results
in KL div. for a specific test shape and all shapes highlighted in green and dark green, respectively.
Our GAN-based approach performs significantly better for the rest of the metrics which are shown
in Table 5.

Test shape Metrics
KL div. ↓ Cosine ↓ Linear ↓ Manh. ↓ Nuclear ↓

D
PS

R
+

M
C

Bird 0.44385 0.02214 0.29057 8.13646 0.79620
Bottle 0.49276 0.05177 0.57202 9.93406 1.60127
Key 0.06330 0.06551 0.63861 13.24510 2.26182
Sphere 0.35360 0.13064 0.69201 20.95043 1.80963
Doll 0.52423 0.09685 0.62921 19.19287 1.61193
Spiral 0.49276 0.07408 0.52683 15.96581 1.38656

K
N

N
-r

eg
re

ss
or Bird 0.44349 0.01495 0.24551 6.37309 0.59441

Bottle 0.48912 0.03381 0.44590 9.42089 1.32781
Key 0.06630 0.04790 0.48711 11.63991 1.53463
Sphere 0.35994 0.08495 0.56878 16.45870 1.43616
Doll 0.52934 0.03354 0.38112 10.68838 1.02367
Spiral 0.48815 0.00552 0.14572 3.93982 0.44374

M
L

P

Bird 0.45572 0.05788 0.59004 14.28690 2.03749
Bottle 0.50096 0.16061 1.43471 30.53953 5.69239
Key 0.06677 0.04867 0.61003 12.47303 2.51558
Sphere 0.36640 0.11959 1.04522 25.71050 3.72137
Doll 0.54231 0.16903 0.80894 23.71446 3.58923
Spiral 0.50105 0.06661 0.61870 14.49724 2.14522

U
-N

et

Bird 0.45791 0.12729 0.94130 18.56488 3.52717
Bottle 0.48909 0.05028 0.56939 10.86997 1.68377
Key 0.07039 0.27131 2.28507 40.40780 11.84921
Sphere 0.36845 0.08761 0.73039 14.87120 2.56812
Doll 0.54249 0.13434 1.06966 22.07343 4.16051
Spiral 0.50067 0.13567 1.06968 24.73850 4.13640

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 5: GAN training results. Five train datasets: bird, bottle, key, sphere, all. Two test datasets:
doll, spiral. The best results for a specific test shape are highlighted in green. The best metrics
for all shapes are highlighted with dark green. The GAN results for the KL div. are slightly lower,
however they are comparable to the rest of the approaches. The GAN results for other metrics are
significantly better than others.

Train shape Test shape Metrics
KL div. ↓ Cosine ↓ Linear ↓ Manh. ↓ Nuclear ↓

In
do

m
ai

n Bird Bird 0.45106 0.00597 0.18472 5.28831 0.60968
Bottle Bottle 0.49516 0.01402 0.26539 5.96482 0.79997
Key Key 0.06589 0.01937 0.32343 5.68141 1.17867
Sphere Sphere 0.35953 0.00557 0.15620 3.67948 0.47831

O
ut

of
do

m
ai

n

Bottle Bird 0.45183 0.00671 0.17695 4.63796 0.55543
Key Bird 0.45828 0.02109 0.32092 7.61674 1.07289
Sphere Bird 0.45269 0.00251 0.10487 2.84228 0.32697
All Bird 0.45327 0.00601 0.16738 4.50107 0.53778
Bird Bottle 0.49573 0.01846 0.32097 6.18145 1.00624
Key Bottle 0.50158 0.03387 0.43412 8.31266 1.36748
Sphere Bottle 0.49697 0.01151 0.24423 5.57860 0.79836
All Bottle 0.49770 0.00951 0.21888 5.25660 0.68357
Bird Key 0.06479 0.02679 0.37076 6.79448 1.27395
Bottle Key 0.06527 0.06527 0.34457 6.19686 1.22980
Sphere Key 0.06415 0.03881 0.44968 8.66565 1.49396
All Key 0.06473 0.03096 0.40012 7.69379 1.39265
Bird Sphere 0.35944 0.00183 0.09029 2.37248 0.32119
Bottle Sphere 0.36089 0.00613 0.17313 4.32524 0.51328
Key Sphere 0.36573 0.01888 0.32437 8.69921 0.97167
All Sphere 0.36108 0.00282 0.10764 2.65000 0.36230

Te
st

do
m

ai
n

Bird Doll 0.53548 0.01027 0.22929 5.39447 0.67479
Bottle Doll 0.53560 0.01730 0.28424 7.04564 0.79888
Key Doll 0.54289 0.02074 0.32903 7.94347 1.14373
Sphere Doll 0.53638 0.00625 0.16130 4.68518 0.46974
All Doll 0.53805 0.00936 0.19859 5.59246 0.55628
Bird Spiral 0.49832 0.00642 0.18521 5.28779 0.51220
Bottle Spiral 0.49747 0.01647 0.29413 7.96902 0.83973
Key Spiral 0.50192 0.03417 0.44514 11.57165 1.42135
Sphere Spiral 0.49742 0.00368 0.12526 3.60572 0.31796
All Spiral 0.49609 0.00976 0.21889 6.00135 0.60933

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.4 NERF-LIKE NOISE EXAMPLES

(a) Artificial NeRF noise (b) Real NeRF noise

Figure 8: The real NeRF noise is compared to artificial noise generated by our pipeline.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A.5 DENOISING ILLUSTRATION

(a) GT (b) GAN-based noisy (c) Trained on Syn-
thetic

(d) Trained on Ours

Figure 9: GT and noisy meshes are prepared for denoising tests as explained in Section 7.1. The
denoising was performed by the Cascaded Regression model which was trained on the dataset pro-
duced by our GAN-based pipeline. We have trained Cascaded Regression on the dataset produced
by KNN-based pipeline for comparison to our method. It can be seen that Cascaded Regression
trained on GAN-based dataset performs better.

17

	Introduction
	Related work
	Non-learning-based noise models
	Learning-based noise models

	Mesh noise analysis
	Full pipeline
	GAN architecture

	GAN training
	Clear/noisy pairs preparing
	Training details

	Experiments
	Main result
	Ablation study
	Discussion

	Our dataset evaluation
	Evaluation dataset preparation
	Evaluation results
	Limitations

	Conclusion
	Appendix
	Calculate distance between point and mesh
	Objaverse-XL shapes hashes
	Full results
	NeRF-like noise examples
	Denoising illustration

