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Abstract

Despite the recent successes of multi-agent re-
inforcement learning (MARL) algorithms, effi-
ciently adapting to co-players in mixed-motive en-
vironments remains a significant challenge. One
feasible approach is to hierarchically model co-
players’ behavior based on inferring their charac-
teristics. However, these methods often encounter
difficulties in efficient reasoning and utilization
of inferred information. To address these issues,
we propose Hierarchical Opponent modeling and
Planning (HOP), a novel multi-agent decision-
making algorithm that enables few-shot adapta-
tion to unseen policies in mixed-motive environ-
ments. HOP is hierarchically composed of two
modules: an opponent modeling module that in-
fers others’ goals and learns corresponding goal-
conditioned policies, and a planning module that
employs Monte Carlo Tree Search (MCTS) to
identify the best response. Our approach improves
efficiency by updating beliefs about others’ goals
both across and within episodes and by using in-
formation from the opponent modeling module
to guide planning. Experimental results demon-
strate that in mixed-motive environments, HOP
exhibits superior few-shot adaptation capabilities
when interacting with various unseen agents, and
excels in self-play scenarios. Furthermore, the
emergence of social intelligence during our exper-
iments underscores the potential of our approach
in complex multi-agent environments.
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1. Introduction
Constructing agents being able to rapidly adapt to previously
unseen agents is a longstanding challenge for Artificial Intel-
ligence. We refer to this ability as few-shot adaptation. Pre-
vious work has proposed well-performed MARL algorithms
to study few-shot adaptation in zero-sum games (Vinyals
et al., 2019; Vezhnevets et al., 2020) and common-interest
environments (Barrett et al., 2011; Hu et al., 2020; Maha-
jan et al., 2022; Mirsky et al., 2022; Bauer et al., 2023).
These environments involve a predefined competitive or
cooperative relationship between agents. However, the ma-
jority of realistic multi-agent decision-making scenarios are
not confined to these situations and should be abstracted
as mixed-motive environments (Komorita & Parks, 1995;
Dafoe et al., 2020), where the relationships between agents
are non-deterministic, and the best responses of an agent
may change with others’ behavior. A policy, that is unable
to quickly adapt to co-players, may harm not only the focal
agent’s interest but also the entire group’s benefit. Therefore,
fast adapting to new co-players in mixed-motive environ-
ments warrants significant attention, but there has been little
focus on this aspect.

In this paper, we focus on the few-shot adaptation to unseen
agents in mixed-motive environments. Many algorithms
struggle to perform well in mixed-motive environments
despite success in zero-sum and pure-cooperative environ-
ments, because they use efficient techniques specific to re-
ward structures, such as minimax (Littman, 1994; Li et al.,
2019), Double Oracle (McMahan et al., 2003; Balduzzi
et al., 2019) or IGM condition (Sunehag et al., 2017; Son
et al., 2019; Rashid et al., 2020), which are not applica-
ble in mixed-motive environments. The non-deterministic
relationships between agents and the general-sum reward
structure make decision-making and few-shot adaptation
more challenging in mixed-motive environments compared
with zero-sum and pure-cooperative environments.

According to cognitive psychology and related disciplines,
humans’ ability to rapidly solve previously unseen prob-
lems depends on hierarchical cognitive mechanisms (Butz
& Kutter, 2016; Kleiman-Weiner et al., 2016; Eppe et al.,
2022). This hierarchical structure unifies high-level goal
reasoning with low-level action planning. Meanwhile, re-
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search on machine learning also emphasizes the importance
and effectiveness of hierarchical goal-directed planning for
few-shot problem-solving (Eppe et al., 2022). Inspired by
the hierarchical structure, we propose an algorithm, named
Hierarchical Opponent modeling and Planning (HOP), for
tackling few-shot adaptation in mixed-motive environments.
HOP hierarchically consists of two modules: an opponent
modeling module and a planning module. The opponent
modeling module infers co-players’ goals and learns their
goal-conditioned policies, based on Theory of Mind (ToM)
- the ability to understand others’ mental states (like goals
and beliefs) from their actions (Baker et al., 2017). More
specifically, to improve inference efficiency, beliefs about
others’ goals are updated both between and within episodes.
Then, the information from the opponent modeling module
is sent to the planning module, which is based on Monte
Carlo Tree Search (MCTS), to compute the next action.

To assess the few-shot adaptation ability of HOP, we con-
duct experiments in Markov Stag-Hunt (MSH) and Markov
Snowdrift Game (MSG), which spatially and temporally
extend two classic paradigms in game theory: the Stag-Hunt
game (Rousseau, 1999) and the Snowdrift game(also known
as the game of chicken or hawk-dove game) (Rapoport &
Chammah, 1966). Both of the two games illustrate how the
best response in a mixed-motive environment is influenced
by the strategy of co-players. Experimental results illustrate
that in these environments, HOP exhibits superior few-shot
adaptation ability compared with baselines, including the
well-established MARL algorithms LOLA, social influence,
A3C, prosocial-A3C, PR2, and a model-based algorithm
direct-OM. Meanwhile, HOP achieves high rewards in self-
play, showing its exceptional decision-making ability in
mixed-motive games. In addition, we observe the emer-
gence of social intelligence from the interaction between
multiple HOP agents, such as self-organized cooperation
and alliance of the disadvantaged.

2. Related Work
MARL has explored multi-agent decision-making in mixed-
motive games. One approach is to add intrinsic rewards to
incentivize collaboration and consideration of the impact
on others, alongside maximizing extrinsic rewards. Notable
examples include ToMAGA (Nguyen et al., 2020), MARL
with inequity aversion (Hughes et al., 2018), and prosocial
MARL (Peysakhovich & Lerer, 2018). However, many
of these algorithms rely on hand-crafted intrinsic rewards
and assume access to rewards of co-players, which can
make them exploitable by self-interested algorithms and
less effective in realistic scenarios where others’ rewards
are not visible (Komorita & Parks, 1995). To address these
issues, Jaques et al. (2019) have included intrinsic social
influence reward that use counterfactual reasoning to assess

the effect of an agent’s actions on its co-players’ behavior.

LOLA (Foerster et al., 2018) and its extension (such as
POLA (Zhao et al., 2022), M-FOS (Lu et al., 2022)) con-
sider the impact of one agent’s learning process, rather than
treating them as a static part of the environment. However,
LOLA requires knowledge of co-players’ network parame-
ters, which may not be feasible in many scenarios. LOLA
with opponent modeling relaxes this requirement, but scal-
ing problems may arise in complex sequential environments
that require long action sequences for rewards.

Our work relates to opponent modeling (see (Albrecht &
Stone, 2018) for a comprehensive review). I-POMDP (Gmy-
trasiewicz & Doshi, 2005) is a typical opponent modeling
and planning framework, which maintains dynamic beliefs
over the physical environment and beliefs over co-players’
beliefs. It maximizes a value function of the beliefs to deter-
mine the next action. However, the nested belief inference
suffers from serious computational complexity problems,
which makes it impractical in complex environments. Un-
like I-POMDP and its approximation methods (Doshi &
Perez, 2008; Doshi & Gmytrasiewicz, 2009; Hoang & Low,
2013; Han & Gmytrasiewicz, 2018; 2019; Zhang & Doshi,
2022), HOP explicitly uses beliefs over co-players’ goals
and policies to learn a neural network model of co-players,
which guides an MCTS planner to compute next actions.
HOP avoids nested belief inference and performs sequential
decision-making more efficiently.

Theory of mind (ToM), originally a concept of cognitive
science and psychology (Baron-Cohen et al., 1985), has
been transformed into computational models over the past
decade and used to infer agents’ mental states such as goals
and desires. Bayesian inference has been a popular tech-
nique used to make ToM computational (Baker et al., 2011;
Pöppel & Kopp, 2018; Wu et al., 2021; Zhi-Xuan et al.,
2022). With the rapid development of the neural network,
some recent work has attempted to achieve ToM using neu-
ral networks (Rabinowitz et al., 2018; Shu & Tian, 2018;
Wen et al., 2019; Moreno et al., 2021). HOP gives a practi-
cal and effective framework to utilize ToM, and extend its
application scenarios to mixed-motive environments, where
both competition and cooperation are involved and agents’
goals are private and volatile.

Monte Carlo Tree Search (MCTS) is a widely adopted plan-
ning method for optimal decision-making. Recent work,
such as AlphaZero (Silver et al., 2018) and MuZero (Schrit-
twieser et al., 2020) have used MCTS as a general policy
improvement operator over the base policy learned by neu-
ral networks. However, MCTS is limited in multi-agent
environments, where the joint action space grows rapidly
with the number of agents (Choudhury et al., 2022). We
avoid this problem by estimating the policies of co-players
and planning only for the focal agent’s actions.
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BAMDP (Duff, 2002) is a principled framework for han-
dling uncertainty in dynamic environments. It maintains a
posterior distribution over the transition probabilities, which
is updated using Bayes’ rule as new data becomes avail-
able. Several algorithms (Guez et al., 2012; Zintgraf et al.,
2019; Rigter et al., 2021) have been developed based on
BAMDP, but they are designed for single-agent environ-
ments. BA-MCP (Guez et al., 2012) employs the Monte
Carlo Tree Search (MCTS) method to provide a sample-
based approach grounded in BAMDP. However, it assumes
a fixed transition function distribution to be learned inter-
actively, posing challenges in multi-agent scenarios due
to the co-player’s strategy under an unknown distribution.
(Ng et al., 2012) combines BAMDP with I-POMDP in an
attempt to address multi-agent problems. However, this
integration introduces computational complexity issues sim-
ilar to those of I-POMDP, as previously discussed. In con-
trast, HOP efficiently handles both reward and transition
uncertainties, and extends MCTS to multi-agent scenarios,
offering a scalable solution for multi-agent environments.

Numerous real-world scenarios, including autonomous driv-
ing, human-machine interaction and multi-player sports, can
be effectively modeled as mixed-motive games. Existing
research (Fisac et al., 2018; Nakamura & Bansal, 2023; Hu
et al., 2023) has explored planning and controlling robots in
these real multi-agent environments, relying on predictions
of other agents’ behavior within the scene. These studies
primarily concentrate on robot control within specific sce-
narios. In contrast, our environment abstracts the mixed
motivation factors inherent in these scenarios, enabling rep-
resentation of a broader range of scenarios and facilitating
the development of more general algorithms. We believe
HOP holds significant potential for application in various
real-life scenarios.

3. Problem Formulation
We consider multi-agent hierarchical decision-making in
mixed-motive environments, which can be described as a
Markov game (Littman, 1994) with goals, specified by a
tuple < N,S,A, T,R, γ, Tmax,G >.

Here, agent i ∈ N = {1, 2, · · · , n} chooses action from
action space Ai = {ai}. A = A1 × A2 × · · · × An is
the joint action space. The joint action a1:n ∈ A will lead
to a state transition based on the transition function T :
S×A×S → [0, 1]. Specifically, after agents take the joint
action a1:n the state of the environment will transit from
s to s′ with probability T (s′|s,a1:n). The reward function
Ri : S×A → R denotes the immediate reward received by
agent i after joint action a1:n is taken on state s ∈ S. The
discount factor for future rewards is denoted as γ. Tmax is
the maximum length of an episode. πi : S × Ai → [0, 1]
denotes agent i’s policy, specifying the probability πi(ai|s)

that agent i chooses action ai at state s.

The environments we study have a set of goals, denoted by
G = G1 ×G2 × · · · ×Gn, where Gi = {gi,1, · · · , gi,|Gi|}
represents the set of goals for agent i. gi,k is a set of states,
where gi,k ∩ gi,k′ = ∅,∀ k ̸= k′. We would say agent
i’s goal is gi,k0 at time t, if ∃t′ ≥ 0, st+t′ ∈ gi,k0 and
∀ 0 ≤ t′′ < t′, 0 ≤ k ≤ |Gi|, st+t′′ /∈ gi,k. For any two
agents i and j, i can infer j’s goal based on its trajectory.
Specifically, i maintains a belief over j’s goals, bij : Gj →
[0, 1], which is a probability distribution over Gj .

Here, algorithms are evaluated in terms of self-play and
few-shot adaptation to unseen policies in mixed-motive en-
vironments. Self-play involves multiple agents using the
same algorithm to undergo training from scratch. The per-
formance of algorithms in self-play is evaluated by their
expected reward after convergence. Self-play performance
demonstrates the algorithm’s ability to make autonomous
decisions in mixed-motive environments. Few-shot adap-
tation refers to the capability to recognize and respond ap-
propriately to unknown policies within a limited number
of episodes. The performance of algorithms in few-shot
adaptation is measured by the rewards they achieve after
engaging in these brief interactions.

4. Methodology
In this section, we propose Hierarchical Opponent model-
ing and Planning (HOP), a novel algorithm for multi-agent
decision-making in mixed-motive environments. HOP con-
sists of two main modules: an opponent modeling module to
infer co-players’ goals and predict their behavior and a plan-
ning module to plan the focal agent’s best response guided
by the inferred information from the opponent modeling
module.

Based on the hypothesis in cognitive psychology that agents’
behavior is goal-directed (Gergely et al., 1995; Buresh &
Woodward, 2007), and that agents behave stably for a spe-
cific goal (Warren, 2006), the opponent modeling module
models behavior of co-players with two levels of hierarchy.
At the high-level, the module infers co-players’ internal
goals by analyzing their action sequences. Based on the
inferred goals and the current state of the environment, the
low-level component learns goal-conditioned policies to
model the atomic actions of co-players.

In the planning module, MCTS is used to plan for the best
response of the focal agent based on the inferred co-players’
policies. To handle the uncertainty over co-players’ goals,
we sample multiple goal combinations of all co-players from
the current belief and return the action that maximizes the
average return over the sampled configurations. Following
AlphaZero (Silver et al., 2018) and MuZero (Schrittwieser
et al., 2020), we maintain a policy and a value network to
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Figure 1. Overview of HOP. HOP consists of an opponent modeling module and a planning module. The opponent modeling module
models the behavior of co-players by inferring co-players’ goals and learning their goal-conditioned policies. Estimated behavior is then
fed to the planning module to select a rewarding action for the focal agent.

boost MCTS planning and in turn use the planned action
and its value to update the neural network.

Figure 1 gives an overview of HOP, and the pseudo-code of
HOP is provided in Appendix A.

4.1. Opponent Modeling with Efficient Adaptation

In goal-inference (as the light yellow component shown
in Figure 1), HOP summarizes the co-players’ objectives
based on the interaction history. However, it faces the chal-
lenge of the co-player’s goals potentially changing within
episodes. To solve these issues, we propose two update pro-
cedures based on ToM: intra opponent modeling (intra-OM),
which infers the co-player’s immediate goals within a single
episode, and inter opponent modeling (inter-OM), which
summarizes the co-player’s goals based on their historical
episodes. Intra-OM reasons about the goal of co-player j
in the current episode K according to j’s past trajectory in
episode K. It ensures that HOP is able to quickly respond
to in-episode behavior changes of co-players. Specifically,
in episode K, agent i’s belief about agent j’s goals at time
t, bK,t

ij (gj), is updated according to:

bK,t+1
ij (gj) = Pr(gj |sK,0:t+1, aK,0:t

j )

= Pr(gj |sK,0:t, aK,0:t−1
j )

· Pri(a
K,t
j |sK,0:t, aK,0:t−1

j , gj)

·
Pr(sK,t+1|sK,0:t, aK,0:t

j , gj)

Pri(sK,t+1, aK,t
j |sK,0:t, aK,0:t−1

j )

=
1

Z1
bK,t
ij (gj)Pri(a

K,t
j |sK,t, gj),

(1)

where we follow the Markov assumption
Pr(sK,t+1|sK,0:t, aK,0:t

j , gj) = Pr(sK,t+1|sK,t, aK,t
j )

and model the co-player j to maintain a Markov pol-
icy Pri(a

K,t
j |sK,t, gj) = Pri(a

K,t
j |sK,0:t, gj), and

Z1 =
Pri(s

K,t+1,aK,t
j |sK,t)

Pr(sK,t+1|sK,t,aK,t)
is the normalization factor

that makes
∑

gj∈Gj
bK,t+1
ij (gj) = 1. The likelihood term

Pri(a
K,t
j |sK,t, gj) is provided by the estimated goal-

conditioned policies of co-players, which are described in
the following.

However, intra-OM may suffer from inaccuracy of the prior
(i.e., bK,0

ij (gj)) when past trajectories are not long enough
for updates. Inter-OM makes up for this by calculating a
precise prior based on past episodes. Belief update between
two adjacent episodes is defined as:

bK,0
ij (gj) =

1

Z2
[αbK−1,0

ij (gj) + (1− α)1(gK−1
j = gj)],

(2)
where α ∈ [0, 1] is the horizon weight, which controls the
importance of the history. As α decreases, agents attach
greater importance to recent episodes. 1(·) is the indicator
function. Z2 is the normalization factor. The equation is
equivalent to a time-discounted modification of the Monte
Carlo estimate. Inter-OM summarizes co-players’ goals
according to all the previous episodes, which is of great help
when playing with the same agents in a series of episodes.

The goal-conditioned policy (as the light orange compo-
nent shown in Figure 1) πω(a

K,t
j |sK,t, gj) is obtained

through a neural network ω. To train the network, a set
of (sK,t, aK,t

j , gK,t
j ) is collected from episodes and sent to

the replay buffer. ω is updated at intervals to minimize the
negative log-likelihood:

L(ω)=E[− log(πω(a
K,t
j |sK,t, gK,t

j ))]. (3)

4.2. Planning under Uncertain Co-player Models

Given the policies of co-players estimated by the opponent
modeling module, we can leverage planning algorithms
such as MCTS to compute an advantageous action. How-
ever, a key obstacle to applying MCTS is that co-player
policies estimated by the opponent modeling module con-
tain uncertainty over co-players’ goals. Naively adding such
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uncertainty as part of the environment would add a large
bias to the simulation and degrade planning performance.
To overcome this problem, we propose to sample co-players’
goal combinations according to the belief maintained by the
opponent modeling module, and then estimate action value
by MCTS based on the samples. To balance the trade-off be-
tween computational complexity and planning performance,
we repeat the process multiple times and choose actions
according to the average action value. In the following, we
first introduce the necessary background of MCTS. We then
proceed to introduce how we plan for a rewarding action
under the uncertainty over co-player policies.

MCTS Monte Carlo Tree Search (MCTS) is a type of tree
search that plans for the best action at each time step (Silver
& Veness, 2010; Liu et al., 2020). MCTS uses the envi-
ronment to construct a search tree (right side of Figure 1)
where nodes correspond to states and edges refer to actions.
Specifically, each edge transfers the environment from its
parent state to its child state. MCTS expands the search
tree in ways (such as pUCT) that properly balance explo-
ration and exploitation. Value and visit of every state-action
(node-edge) pair are recorded during expansion (Silver et al.,
2016). Finally, the action with the highest value (or highest
visit) of the root state (node) is returned and executed in the
environment.

Planning under uncertain co-player policies Based on
beliefs over co-players’ goals and their goal-conditioned
policies from the opponent modeling module, we run MCTS
for Ns rounds. In each round, co-players’ goals are sampled
according to the focal agent’s belief over co-players’ goals
bij(gj). Specifically, at time t in episode K, we sample the
goal combination g−i = {gj ∼ bK,t

ij (·), j ̸= i}. Then at
every state s̃k in the MCTS tree of this round, co-players’
actions ã−i are determined by ã−i ∼ πω(·|s̃k,g−i) from
the goal-conditioned policy.

In each round, MCTS gives the estimated action value of the
current state Q(sK,t, a,g−i) = V (s̃′(a)) (a ∈ Ai), where
s̃′(a) is the next state after taking ã0−i ∪ a from s̃0 = sK,t.

We average the estimated action value from MCTS in all
Ns rounds:

Qavg(s
K,t, a) =

∑Ns

l=1
Ql(s

K,t, a,gl
−i). (4)

Agent i’s policy follows Boltzmann rationality model (Baker
et al., 2017):

πMCTS(a|sK,t) =
exp(βQavg(s

K,t, a))∑
a′∈Ai

exp(βQavg(sK,t, a′))
, (5)

where β ∈ [0,∞) is rationality coefficient. As β increases,
the policy gets more rational. We choose our action at time
t of the episode K based on πMCTS(a|sK,t).

Note that the effectiveness of MCTS is highly associated
with the default policies and values provided to MCTS.
When they are close to the optimal ones, they can offer
an accurate estimate of state value, guiding MCTS search
in the right direction. Therefore, following Silver et al.
(2018), we train a neural network θ to predict the policy
and value functions at every state following the supervision
provided by MCTS. Specifically, the policy target is the
policy generated by MCTS, while the value target is the true
discounted return of the state in this episode.

As for state s̃k in the MCTS, the policy function provides a
prior distribution over actions πk

θ(·|s̃k). Actions with high
prior probabilities are assigned high pUCT scores, prioritiz-
ing their exploration during the search process. However, as
the exploration progresses, the influence of this prior grad-
ually diminishes (see details in Appendix E.1). The value
function vkθ estimates the return and provides the initial
value of s̃k when s̃k is first reached.

The network θ is updated based on the overall loss:

L(θ) = Lp(πMCTS , πθ) + Lv(ri, vθ), (6)

where

Lp(π1, π2) = E[−
∑

a∈Ai

π1(a|sK,t) log(π2(a|sK,t)],

Lv(ri, v) = E[(v(sK,t)−
∑∞

l=t
γl−trK,l

i )2].

5. Experiments
5.1. Experimental Setup

Agents are tested in Markov Stag-Hunt (MSH) and Markov
Snowdrift Game (MSG).

MSH expands the environment in Peysakhovich & Lerer
(2018) in terms of the number of agents. In MSH, 4 agents
are rewarded for hunting prey. As shown in Figure 2(a), each
agent has six actions: idle, move left, move right, move up,
move down, and hunt. If there are obstacles or boundaries
in an agent’s moving direction, its position stays unchanged.
Agents can hunt prey in their current grid. There are two
types of prey: stags and hares. A stag provides a reward
of 10, and requires at least two agents located at its grid to
execute “hunt” together. These cooperating agents will split
the reward evenly. A hare, which an agent can catch alone,
provides a reward of 1. After a successful hunt, both the
hunters and the prey disappear from the environment. The
game terminates when the timestep reaches Tmax = 30.

We conducted experiments in two different settings of MSH.
In the first setting, there are 4 hares and 1 stag (MSH-4h1s).
In this scenario, agents can cooperate in hunting the stag to
maximize their profits, while also competing with co-players
for the opportunity to hunt. The second setting contains 4
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hares and 2 stags (MSH-4h2s). There are sufficient stags
for agents to cooperate, but the environment will end 5
timesteps after the first successful hunting in each episode.
This setup maintains the tension between payoff-dominant
cooperation and risk-dominant defection, highlighting the
dilemma inherent in the Stag-Hunt game.

(a) MSH (b) MSG

Figure 2. Overview of Markov
Stag-Hunt and Markov Snowdrift.
There are four agents, repre-
sented by colored circles, in each
paradigm. (a) Agents catch prey
for reward. A stag with a reward
of 10 requires at least two agents
to hunt together. One agent can
hunt a hare with a reward of 1.
(b) Everyone gets a reward of 6
when an agent removes a snowdrift.
When a snowdrift is removed,
removers share the cost of 4 evenly.

In MSG (Figure 2(b)),
there are six snowdrifts
located randomly in an
8 × 8 grid. Simi-
lar to MSH, at every
time step the agent can
stay idle or move one
step in any direction.
Agents are additionally
equipped with a “re-
move a snowdrift” ac-
tion, which removes
the snowdrift in the
same cell as the agent.
When a snowdrift is re-
moved, removers share
the cost of 4 evenly,
and every agent gets a
reward of 6. The game
ends when all the snow-
drifts are removed or
the time Tmax = 50 runs out. The game’s essential dilemma
arises from the fact that an agent can obtain a higher reward
by free-riding, i.e., waiting for co-players to remove the
snowdrifts, than by removing a snowdrift themselves. How-
ever, if all agents take free rides, no snowdrift is removed,
and agents will not receive any reward. On the other hand, if
any agent is satisfied with a suboptimal strategy and chooses
to remove snowdrifts, both the group benefit and individual
rewards increase.

In both environments, four agents have no access to each
other’s parameters, and communication is not allowed. Ap-
pendix C introduces the goal definition of these games.

Schelling diagrams Game types are determined by the rel-
ative values of elements in the payoff matrix. The Schelling
diagram (Schelling, 1973; Hughes et al., 2018) is a natural
generalization of the payoff matrix for two-player games
to multi-player settings. As shown in Figure 3, Schelling
diagrams validate our temporal and spatial extension of
the matrix-form games, which maintains the dilemmas de-
scribed by matrix-form games (see a detailed discussion in
Appendix D). Moreover, across these three Schelling dia-
grams, the lines of cooperation and defection intersect. This
implies that best responses change with co-players’ behav-
ior, rendering few-shot adaptation in these environments
inherently challenging.
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Figure 3. Schelling diagrams for (a) MSH-4h1s, (b) MSH-4h2s,
and (c) MSG.

Baselines Here, some baseline algorithms are introduced
to evaluate the performance of HOP. During the evaluation
of few-shot adaptation, baseline algorithms serve a dual
purpose. Firstly, they act as unfamiliar co-players during
the evaluation process to test the few-shot adaptation abil-
ity of HOP. Secondly, we evaluate the few-shot adaptation
ability of the baseline algorithms to demonstrate HOP’s su-
periority. LOLA (Foerster et al., 2018; Zhao et al., 2022)
agents consider a 1-step look-ahead update of co-players,
and update their own policies according to the updated poli-
cies of co-players. SI (Jaques et al., 2019) agents have an
intrinsic reward term that incentivizes actions maximizing
their influence on co-players’ actions. The influence is ac-
cessed by counterfactual reasoning. A3C (Mnih et al., 2016)
agents are trained using the Asynchronous Advantage Actor-
Critic method, a well-established reinforcement learning
(RL) technique. Prosocial-A3C (PS-A3C) (Peysakhovich
& Lerer, 2018) agents are trained using A3C but share re-
wards between players during training, so they optimize the
per-capita reward instead of the individual reward, empha-
sizing cooperation between players. PR2 (Wen et al., 2019)
agents model how the co-players would react to their poten-
tial behavior, based on which agents find the best response.
The ablated version of HOP, direct-OM, retains the plan-
ning module, but uses neural networks to model co-players
directly (see details in Appendix F.2). In addition, we con-
struct some rule-based strategies. Random policy takes a
valid action randomly at each step. An agent that consis-
tently adopts cooperative behavior is called cooperator, and
an agent that consistently adopts exploitative behavior is
called defector. In MSH, the goals of cooperators and de-
fectors are hunting the nearest stag and hare, respectively.
In MSG, cooperators keep moving to remove the nearest
snowdrift, and defectors randomly take actions other than
”remove a snowdrift”. When evaluating few-shot adaptation,
the set of unfamiliar co-players includes LOLA, A3C, and
PS-A3C, serving as representatives of learning agents with
explicit opponent modeling module, self-interest purpose,
and prosocial purpose, respectively. The co-players also
include rule-based agents: random, cooperator and defector.

5.2. Performance

The experiment consists of two phases. The first phase fo-
cuses on self-play, where agents using the same algorithm
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are trained until convergence. Self-play performance, show-
ing the ability to achieve cooperation, is measured by the
algorithm’s average reward after convergence. The sec-
ond phase evaluates the few-shot adaptation ability of HOP.
Specifically, a focal agent interacts with three co-players
using a different algorithm for 2400 steps. The focal agent’s
average reward during the final 600 steps is used to measure
its algorithm’s few-shot adaptation ability. At the start of
the adaptation phase, any policy’s parameters are the conver-
gent parameters derived from the corresponding algorithms
in self-play. During this phase, policies can update their
parameters if possible. Implementation details are given in
Appendix E. The results of self-play and few-shot adaptation
are displayed in Figure 4 and Table 1, respectively.
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Figure 4. Self-play performance of HOP and baseline algorithms.
Shown is the average reward in the self-play training phase.

MSH-4h1s In MSH-4h1s, only HOP, direct-OM, and PS-
A3C learn the strategy of hunting stags (Figure 4). How-
ever, since PS-A3C can get rewards without hunting by
itself, it may not effectively learn the relationship between
hunting and receiving rewards, leading to a ”lazy agent”
problem (Sunehag et al., 2017) for PS-A3C. This results
in the overall reward of PS-A3C being inferior to HOP
and direct-OM. LOLA swings between hunting stags and
hunting hares. SI and A3C primarily learn the strategy of
hunting hares, resulting in low rewards. PR2 fails to work
in MSH. In this environment, the number of agents may be
reduced due to the successful hunting of agents, and this is
not supported by PR2. Despite attempts to modify the al-
gorithm accordingly, the modified version ultimately failed
to learn a decent policy. As a result, the relevant results of
PR2 in MSH are not shown in Figure 4 and Table 1.

HOP learns the stag hunting strategy through self-play, en-
abling seamless cooperation with agents like PS-A3C and
cooperators, which similarly prioritize stag hunting (Ta-
ble 1(a)). This compatibility stems from the fact that in
the Stag-Hunt game, the best response of cooperation is
cooperation. Thus, direct-OM and PS-A3C agents, who
are equipped with learned cooperative strategies, also at-
tain relatively high rewards when playing with cooperative
co-players. When confronted with co-players with fluctu-
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Figure 5. Visualization of HOP’s belief in adaptation to three de-
fectors in MSH. Every blue-filled circle represents HOP’s inferred
probability (i.e., belief) that a co-player hunts stags.

ating strategies such as LOLA or random agents lacking
fixed objectives, HOP seeks out opportunities for heightened
returns through cooperation. Furthermore, when encoun-
tering co-players like A3C and defectors, known for their
inclination towards hunting hares, HOP adjusts to these non-
cooperative scenarios within a small amount of interaction.
HOP and direct-OM achieve substantially greater rewards
when confronting defectors compared to PS-A3C, who also
favors cooperation. This observation highlights the pivotal
role of the planning module in efficient adaptation.

MSH-4h2s As depicted in Figure 4, in MSH-4h2s, all
algorithms have learned the strategy of cooperatively hunt-
ing stags, among which HOP and A3C are more stable and
yield higher returns. PS-A3C tends to delay hunting, as
early hunting results in leaving the environment and failing
to obtain the group reward from subsequent hunting. This
may lead PS-A3C to suboptimal actions in the last few steps
and thus fail to hunt under the 5-step termination rule.

The adaptation performance in MSH-4h2s is presented in
Table 1(b). When facing with the cooperator, the best re-
sponse is to hunt stags, which requires minimal adjustments
to each algorithm’s policies, so their returns are compara-
ble to the Orcale reward. Similarly, when encountering
learning co-players who have adopted the cooperation pol-
icy, HOP and most baselines yield high rewards. However,
given that learning agents may dynamically adjust their
goals, it becomes essential to discern the real-time goals of
the co-players in order to find the best response. In these
scenarios, HOP’s performance surpasses that of other algo-
rithms, approaching the Orcale reward. When playing with
non-cooperative co-players such as random and defectors,
significant strategy adjustments are necessary for each al-
gorithm to achieve high returns. Therefore, the returns for
all algorithms are notably diminished. HOP demonstrates
superior adaptability compared to the other algorithms, ex-
hibiting its ability to make substantial strategic adjustments.

We would like to provide further intuition on why HOP is
capable of efficiently adapting its policy to unseen agents.
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Table 1. Few-shot adaptation performance of HOP and baselines in (a) MSH-4h1s, (b) MSH-4h2s, and (c) MSG. The interaction happens
between 1 agent using the row policy and 3 co-players using the column policy. Shown are the min-max normalized rewards, with
normalization bounds set by the rewards of Orcale and the lowest rewards among all baselines and random policy. See detailed description
and analysis of Orcale in Appendix F.1. The results are depicted for the row policy from 1800 to 2400 step. Overall best adaptation
percentage shows the proportion of scenarios in which the algorithm performs optimally, while accounting for standard deviation.

(a) Performance in MSH-4h1s
learning co-players rule-based co-players Overall best

LOLA A3C PS-A3C random cooperator defector adaptation percentage
HOP 0.97± 0.06 0.80± 0.15 0.93± 0.04 0.96± 0.07 0.74± 0.06 0.51± 0.02 83.3%

direct-OM 0.64± 0.05 0.57± 0.07 0.79± 0.04 0.91± 0.10 0.56± 0.04 0.44± 0.04 16.7%
LOLA - 0.55± 0.07 0.38± 0.04 0.45± 0.06 0.46± 0.03 0.41± 0.02 0.0%
A3C 0.35± 0.01 - 0.24± 0.02 0.85± 0.01 0.31± 0.02 1.00± 0.01 20.0%

PS-A3C 0.85± 0.05 0.60± 0.11 - 0.64± 0.06 0.55± 0.05 0.09± 0.04 0.0%
SI 0.32± 0.01 0.95± 0.04 0.22± 0.02 0.81± 0.01 0.28± 0.02 0.89± 0.04 16.7%

(b) Performance in MSH-4h2s
learning co-players rule-based co-players Overall best

LOLA A3C PS-A3C random cooperator defector adaptation percentage
HOP 0.97± 0.02 0.99± 0.02 0.88± 0.02 0.78± 0.07 1.00± 0.01 0.36± 0.02 100.0%

direct-OM 0.95± 0.01 0.85± 0.02 0.74± 0.03 0.62± 0.04 0.96± 0.02 0.31± 0.02 16.7%
LOLA - 0.92± 0.04 0.82± 0.02 0.75± 0.04 1.00± 0.03 0.28± 0.03 40.0%
A3C 0.91± 0.02 - 0.87± 0.02 0.55± 0.05 0.98± 0.02 0.25± 0.02 40.0%

PS-A3C 0.24± 0.03 0.18± 0.02 - 0.29± 0.02 0.38± 0.01 0.06± 0.02 0.0%
SI 0.77± 0.02 0.83± 0.01 0.74± 0.01 0.52± 0.03 0.87± 0.03 0.27± 0.02 0.0%

(c) Performance in MSG
learning co-players rule-based co-players Overall best

LOLA A3C PS-A3C random cooperator defector adaptation percentage
HOP 0.78± 0.04 0.39± 0.09 0.65± 0.08 0.44± 0.03 0.48± 0.05 0.55± 0.01 83.3%

direct-OM 0.31± 0.11 0.12± 0.05 0.55± 0.04 0.38± 0.04 0.67± 0.05 0.34± 0.05 50.0%
LOLA - 0.33± 0.07 0.55± 0.06 0.25± 0.08 0.43± 0.04 0.18± 0.01 40.0%
A3C 0.33± 0.04 - 0.52± 0.09 0.30± 0.04 0.33± 0.03 0.14± 0.01 20.0%

PS-A3C 0.67± 0.05 0.35± 0.04 - 0.33± 0.04 0.00± 0.08 0.38± 0.02 20.0%
SI 0.74± 0.08 0.00± 0.05 0.33± 0.08 0.00± 0.04 0.24± 0.07 0.24± 0.03 16.7%

PR2 0.00± 0.13 0.00± 0.08 0.58± 0.05 0.16± 0.05 0.43± 0.02 0.14± 0.01 16.7%

Take the experiment facing three defectors (always attempt-
ing to hunt the nearest hare) as an example. There are two
goals here: hunting stags or hunting hares. At the start of
the evaluation phase, HOP holds the belief that every co-
player is more likely to hunt a stag because HOP has seen
its co-players hunt stags more than hares during self-play.
This false belief for defectors degrades HOP’s performance.
Both intra-OM and inter-OM correct this false belief by
updating during the intereactions with defectors (see visu-
alization of belief update in Figure 5). Intra-OM provides
the ability to correct the belief of hunting stags within an
episode. Specifically, as a co-player keeps moving closer
to a hare, intra-OM will update the belief of the co-player
toward the goal “hare”, leading to accurate opponent mod-
els. In Figure 5, there are many points with values near 0,
showing that HOP infers that the agent’s goal is unlikely
to be a stag through intra-OM. Taking these accurate co-
player policies as input, the planning module can output
advantageous actions. Inter-OM further accelerates the con-
vergence towards true belief by updating the inter-episode

belief, which is used as a prior for intra-OM at the start of
every episode. A declining line, formed by the points from
initial steps of each episode, appears in both sub-figures
of Figure 5, which reflects that HOP gradually reduces the
prior of the co-player hunting a stag through inter-OM.

MSG As shown in Figure 4, HOP achieves the highest
reward during self-play and it is close to the theoretically
optimal average reward in this environment (i.e. when all
snowdrifts are removed, resulting in a group average re-
ward of 30.0). This outcome is a remarkable achievement
in a fully decentralized learning setting and highlights the
high propensity of HOP to cooperate. In contrast, LOLA,
A3C, SI, and PR2 prioritize maximizing their individual
profits, which leads to inferior outcomes due to their failure
to coordinate and cooperate effectively. PS-A3C performs
exceptionally well in self-play, ranking second only to HOP.
Like in MSH, it fails to achieve the maximum average re-
ward due to the coordination problem, which is prominent
when only one snowdrift is left. This issue highlights the in-
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stability of the policy due to the absence of action planning.

HOP demonstrates the most effective few-shot adaptation
performance (Table 1(c)). Specifically, when adapting to
three defectors, HOP receives substantially higher rewards
than other policies. This highlights the effectiveness of HOP
in quickly adapting to non-cooperative behavior, which dif-
fers entirely from behavior of co-players in HOP’s self-play.
In contrast, A3C and PS-A3C do not explicitly consider
co-players. They have learned the strategies tending to ex-
ploit and cooperate, respectively. Therefore, A3C performs
effectively against agents that have a higher tendency to co-
operate, such as the cooperator. However, its performance
is relatively poor when facing non-cooperative agents. Con-
versely, PS-A3C exhibits the opposite behavior.

Overall, the above experiments demonstrate the remarkable
adaptation ability of HOP across all environments (see last
columns in Table 1). Other algorithms can only achieve the
best adaptation performance when facing some specific co-
players, to whom the best response is close to the policies
learned by the algorithms in self-play. HOP can achieve the
best adaptation level in most test scenarios, where co-players
perform either familiar or completely unfamiliar behavior.
Meanwhile, HOP exhibits advantages during self-play.

Ablation study indicates that inter-OM and intra-OM play
crucial roles in adapting to agents with fixed goals and
agents with dynamic goals, respectively. Moreover, if oppo-
nent modeling is not conditioned on goals, the self-play and
few-shot adaptation abilities are greatly weakened. Further
details are provided in Appendix F.2.

We observe the emergence of social intelligence, including
self-organized cooperation and an alliance of the disadvan-
taged, during the interaction of multiple HOP agents in
mixed-motive environments. Further details can be found
in Appendix G.

6. Conclusion and Discussion
We propose Hierarchical Opponent modeling and Planning
(HOP), a hierarchical algorithm for few-shot adaptation
to unseen co-players in mixed-motive environments. It
consists of an opponent modeling module for inferring co-
players’ goals and behavior and a planning module guided
by the inferred information to output the focal agent’s best
response. Empirical results show that HOP performs better
than state-of-the-art MARL algorithms, in terms of dealing
with mixed-motive environments in the self-play setting and
few-shot adaptation to previously unseen co-players.

Whilst HOP exhibits superior abilities, there are several
limitations illumining our future work. First, in any en-
vironment, a clear definition of goals is needed for HOP.
To enhance HOP’s ability to generalize to various environ-

ments, a technique that can autonomously abstract goal
sets in various scenarios is needed, which (Ashwood et al.,
2022) has attempted to explore. Second, we use Level-0
ToM, which involves ”think of what they think.” However,
a more complex form of ToM, such as Level-1 ToM that
considers ”what I think they think about me,” has the po-
tential to improve our predictions about co-players. Never-
theless, incorporating nested inference introduces a higher
computational cost. Consequently, it becomes imperative
to develop advanced planning methods that can effectively
and rapidly leverage the insights provided by high-order
ToM. Third, we investigate mix-motive environments with
the expectation that HOP can facilitate effective decision-
making and adaptation in human society. Despite selecting
diverse well-established algorithms as co-players, none of
them adequately model human behavior. It would be in-
teresting to explore how HOP can perform in a few-shot
adaptation scenario involving human participants. As HOP
is self-interested, it may not always align with the best inter-
est of humans. One way to mitigate this risk is leveraging
HOP’s ability to infer and optimize for human values and
preferences during interactions, thereby assisting humans in
complex environments.
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A. Pseudo Code of HOP

Algorithm 1 HOP
Input: Number of MCTS tree Ns, update interval Tu, capacity of the trajectory buffer L, goal set Gj (j ̸= i), initial
belief of agents’ goals b0,0ij (gj).
Output: Actions aK,t

i , planning module network θ, goal-conditioned policy network ω.
for each episode K do

generate initial state of this episode sK,0 randomly
for t = 0 to Tmax − 1 do

repeat
sample gl

−i from bK,t
ij (gj)(j ̸= i)

get Ql(s
K,t, a,gl

−i) (∀a) via MCTS
until Ns times
calculate Qavg(s

K,t, a) (∀a) [Equation (4)]
choose action aK,t

i from πMCTS(a|sK,t) [Equation (5)]
intra-OM update bK,t+1

ij [Equation (1)]
collect data of this step to the trajectory buffer

end for
if the trajectory buffer is full then

update ω [Equation (3)]
end if
if K × Tmax ≡ 0 (mod Tu) then

update θ [Equation (6)]
end if
inter-OM update bK+1,0

ij [Equation (2)]
end for

B. Theoretical Analysis
We aim to offer a concise theoretical analysis. Due to the complexity of environments characterized by both temporal and
spatial structures, attaining theoretical guarantees in such environments can be inherently challenging. To strike a balance,
we have undertaken a verification of the theoretical guarantee associated with HOP in the matrix games. These games
encapsulate the same dilemma of sequential games. For clarity, our analysis will be conducted in the context of a two-player
game, and the analysis can be extended to games involving a greater number of agents. Consider a two-player game where
both players have two goals: “Cooperate” and “Defect,” resulting in a utility matrix shown in Table 2.

Table 2. Utility matrix for a two-player game. Each element in the table represents the utility of the row player (first value) and the utility
of the column player (second value). The utility values R, S, T , and P determine different game paradigms.

Cooperate Defect
Cooperate R,R S, T

Defect T, S P, P

Suppose HOP is the row player. At a certain timestep, the column player selects its goal gcolumn to be “Cooperate” with a
probability of p and to be “efect” with a probability of 1− p. We sample the co-player’s goal to simulate using Monte Carlo
Tree Search (MCTS), with a frequency of p+ ϵ to “Cooperate” and a frequency of 1− p− ϵ to “Defect.”

In the current state s, we have two possible actions: a1 for cooperation and a2 for defection. During the MCTS planning
process, when the co-player aims to “Cooperate,” we have:

Q(s, a1|gcolumn = “Cooperate”) = R(1 + ϵR)

Q(s, a2|gcolumn = “Cooperate”) = T (1 + ϵT )

13



Efficient Adaptation in Mixed-Motive Environments via Hierarchical Opponent Modeling and Planning

When the co-player aims to “Defect,” we have:

Q(s, a1|gcolumn = “Defect”) = S(1 + ϵS)

Q(s, a2|gcolumn = “Defect”) = P (1 + ϵP )

Thus, we can calculate the overall Q-values as follows:

Q(s, a1) = (p+ ϵ)R(1 + ϵR) + (1− p− ϵ)S(1 + ϵS)

Q(s, a2) = (p+ ϵ)T (1 + ϵT ) + (1− p− ϵ)P (1 + ϵP )

In the learning process, the goal-conditioned policy network is trained using supervised learning, and its accuracy significantly
improves with sufficient rounds of observation. Consequently, the accuracy of the environment simulation within the Monte
Carlo Tree Search (MCTS) algorithm becomes exceedingly high. In such a scenario, the convergence guarantee of MCTS
remains intact, resulting in a final precision of MCTS that is remarkably high. Specifically, we have |ϵR|, |ϵS |, |ϵT |, |ϵP | ≪
|ϵ|, and these small error terms can be safely ignored.

Then, when
T + S −R− P

p(R− T ) + (1− p)(S − P )
ϵ < 1,

the optimal strategy that HOP obtains is consistent with the true optimal strategy. Two factors affect the size of |ϵ|: the
accuracy in inferring the co-player’s goals and the deviation between frequency and probability when sampling the goal. To
address the accuracy issue, we employ two layers of modules, intra-OM and inter-OM, to make accurate predictions as early
as possible in each episode. For the deviation between frequency and probability, we increase the value of Ns to reduce this
deviation. In practical applications, the choice of an appropriate Ns depends on the trade-off between computational speed
and sampling accuracy.

C. Goal Definition
In MSH, we define two goals: gC as hunting stags and gD as hunting hares.

In MSG, we define two goals: gC as removing the drifts, and gD as staying lazy (i.e. not attempting to remove any
snowdrifts). For inter-OM, the goal gC is decomposed into 6 parts: gCk (1 ≤ k ≤ 6), where gCk represents removing k

snowdrift(s) in one episode. bK,0
ij (gCk) and bK,0

ij (gD) will be updated according to Equation (2). During an episode, if the
co-player j has removed m snowdrift(s) at time t of the episode K, our belief bK,t

ij (gCj ) =
∑6

k=m+1 b
K,0
ij (gCk

j ).

For intra-OM, each snowdrift s is defined as a subgoal gC[s]. We use Equation (1) conditioned on gC to update our belief:

bK,t+1
ij (g

C[s]
j |gCj ) =

1

Z1
bK,t
ij (g

C[s]
j |gCj )Pri(a

K,t
j |sK,0:t, g

C[s]
j ),

where Z1 is the normalization factor. We can update our belief of an agent removing a snowdrift s:

bK,t
ij (gC[s]) = bK,t

ij (g
C[s]
j |gCj )b

K,t
ij (gCj ).

At the start of an episode, bK,0
ij (g

C[s]
j |gCj ) is set to be uniform, which means bK,0

ij (g
C[s]
j |gCj ) = 1

6 . We train the goal-
conditioned policy network ω conditioned on gC[s].

D. Schelling Diagram
The Schelling diagram compares the rewards of different potential strategies (i.e., cooperation and defection here) given a
fixed number of other cooperators. It is a natural generalization of the payoff matrix for two-player games to multi-player
settings. Here, we use Schelling diagrams to validate our temporal and spatial extension of the matrix-form games.

Figure 3(a) and Figure 3(b) show the Schelling diagrams of MSH. Defection (i.e., hunting hare) is a safe strategy as a
reasonable reward is guaranteed independent of the co-players’ strategies. Cooperation (i.e., hunting stag) poses the risk
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of being left with nothing (when there are no others hunting stag), but is more rewarding if at least one co-player hunts
stag. That is to say, hunting hare is risk dominant, and hunting stag is reward dominant. This is consistent with the dilemma
described by the matrix-form stag-hunt game (Bloembergen et al., 2011). In the “4h1s” setting, when there are more than
two cooperators, the choice to act as a cooperator carries the risk of not being able to successfully hunt. In the “4h2s”
setting, the income of cooperators increases with the number of cooperators, resulting in a lower risk of choosing to hunt
stag compared to the “4h1s” setting.

In the matrix-form snowdrift game, cooperation incurs a cost to the cooperator and accrues benefits to both players regardless
of whether they cooperate or not (Souza et al., 2009). There are two pure-strategy Nash equilibria: player 1 cooperates and
player 2 defects; player 1 defects and player 2 cooperates. That is, the best response is playing the opposite strategy from
what the coplayer adopts. As shown in Figure 3(c), in MSG, one agent’s optimal strategy is cooperation (i.e., removing
snowdrifts) when no co-players cooperate, but when there are other cooperators, the optimal strategy is defection (i.e.,
free-riding). Our MSG is an appropriate extension of the matrix-form snowdrift game.

E. Implementation Details
E.1. MCTS Simulation Details

As introduced in Section 4.2, we run MCTS for Ns rounds. In each round, we run Ni search iterations (see Browne et al.
(2012) for details of each iteration). The score of an action a at state s̃k is:

Score(s̃k, a) = Q(s̃k, a) + cπθ(a|s̃k)
√∑

a′ N(s̃k, a′)

1 +N(s̃k, a)

where Q(s̃k, a) denotes the average return obtained by selecting action a at state s̃k in the previous search iterations.
N(s̃k, a) represents the number of times action a has been selected at state s̃k in the previous search iterations. πθ(a|s̃k)
refers to the policy provided by the network θ. c is the exploration coefficient. We select the action which has the highest
score when reaching s̃k at the selection phase of one search iteration.

E.2. Network Architecture

The goal-conditioned policy network ω and the policy-value network for MCTS θ both start with three convolutional
layers with the kernel size 3 and the stride size 1. Three layers have 16, 32, and 32 output channels, respectively. They are
connected to two fully connected layers. The first layer has an output of size 512, and the second layer gives the final output.

E.3. Hyperparameters

For each result in Figure 4, Table 1, Table 4 and Table 5, we performed 10 independent experiments using different random
seeds. The left-hand side of ± represents the average reward of the 10 trials, and the right-hand side represents the standard
error.

Hyperparameters for HOP are listed in Table 3(a). α and Tu are tuned in the adaptation phase to achieve fast adaptation. As
α decreases, agents attach greater importance to recent episodes, which will speed up the adaptation to new behaviors of the
co-players. It is not advisable to adjust α too small, otherwise the update may be unstable due to the randomness of the
co-player’s strategy.

Hyperparameters for baselines are listed in Table 3. Some hyperparameters are tuned in the adaptation phase to achieve fast
adaptation.

F. Supplementary Results
F.1. Orcale Agents

To compare and evaluate the performance of few-shot adaptation between HOP and learning baselines, we train an Orcale
agent to see how well a well-established RL agent can perform in adaptation to co-players through extensive interactions

Specifically, for every type of co-players, one Orcale agent interacts with them and is trained via A3C to converge from
scratch. During the training phase, co-players’ parameters are fixed, which are the convergent parameters in their self-play.
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In the subsequent adaptation phase, the trained Orcale agent is tested in the same way as HOP and baseline algorithms.
This process ensures that the Orcale agent engages in extensive interactions with the agents it would encounter during the
adaptation phase. Over an extended duration of interaction, Orcale effectively acquires a robust and high-quality policy. We
use the Orcale agent’s performance in the adaptation phase as a reference point to explain HOP’s performance.

F.2. Ablation Study

To test the importance and necessity of each component in HOP, we construct three partially ablated versions of HOP.
The agent without inter-OM (w/o inter-OM) does not execute the inter-episode update expressed as Equation (2). W/o
inter-OM begins each episode with a uniform belief prior. The agent without intra-OM (w/o intra-OM) does not execute the
intra-episode update expressed as Equation (1). That is, for w/o intra-OM, bK,t

ij (gj) = bK,0
ij (gj),∀t. The direct-OM agent

removes the whole opponent modeling module of HOP, and utilizes neural networks to model co-players directly. The
co-player policies are mappings from states to actions, and not conditioned on goals. Experimental results for HOP and its
three ablation versions in MSH-4h2s are shown in Table 5.

In self-play, HOP have an advantage over direct-OM agents. It suggests that utilizing a goal as a high-level representation
of agents’ behavior is beneficial to opponent modeling in complex environments. On the other hand, compared with w/o
inter-OM and w/o intra-OM, HOP does not exhibit a significant advantage in self-play. The inter-OM and intra-OM modules
may not be effective in the self-play setting, where a large number of interactions happen.

In the experiments testing few-shot adaptation, HOP outperforms its ablation versions. W/o inter-OM agents struggle when
facing agents with fixed goals, such as cooperators and defectors. As the goals of cooperators and defectors are fixed, correct
actions can be taken immediately if the focal agent has accurate goal priors. W/o inter-OM agents lack accurate goal priors
at the beginning of an episode. In every episode, they have to use multiple interactions to infer co-players’ goals and thus
miss out on early opportunities to maximize their interests.

W/o intra-OM agents exhibit poor performance when facing agents with dynamic behavior such as LOLA, PS-A3C, and
random. These co-players have multiple goals. But in a given episode, the specific goals of a co-player can be gradually
determined by analyzing its trajectory in this episode. However, w/o intra-OM agents can only count on inter-OM, which
only takes the past episodes into account, but does not consider the information from the current episode. It results in
inaccurate goal estimates in a given episode, which hurts the performance in few-shot adaptation.

Direct-OM agents are at an overall disadvantage. Their opponent modeling solely relies on the neural network, which makes
it challenging to obtain significant updates during a short interaction. This leads to inaccurate opponent modeling during the
adaptation phase. Furthermore, direct-OM agents utilize end-to-end opponent modeling, which introduces a higher degree
of uncertainty compared to the goal-conditioned policy. This uncertainty can reduce the precision of the simulated co-player
behavior during planning.

G. Emergence of Social Intelligences
There are two kinds of social intelligence, self-organized cooperation and the alliance of the disadvantaged, emerging from
the interaction between multiple HOP agents in MSH. We make a minor modification to the game: the game terminates only
when the time Tmax = 30 runs out.

Self-organized cooperation. As shown in Figure 6(a), at the start of the game, three agents (blue, yellow, and purple) are
two steps away from the stag at the bottom-right side, and the last agent (green) is spawned alone in the upper left corner.
One simple strategy for the three agents located at the bottom-right corner is to hunt the nearby stag together. Although
this is a riskless strategy, the three agents each only obtain a reward of 10/3. Instead, if one agent chooses to collaborate
with the green agent at the top-left corner, all four agents each get a reward of 5. This strategy is riskier since if the green
agent chooses to hunt a nearby hare, the collaborative agent will not be able to catch any stag. We show that HOP is able to
achieve the aforementioned risky but rewarding collective strategy. Specifically, the green agent refuses to catch the hare
at his feet and shows the intention of cooperating with others (see screenshots at step 3 and step 8 in Figure 6(a)). The
yellow agent refuses to catch the stag at the bottom-right corner and chooses to collaborate with the green agent to hunt
the stag in the top-left corner. In this process, all four agents receive the maximum profit. Here, agents achieve pairwise
cooperation through independent decision-making, without centralized assignment of goals. Thus, we call this phenomenon
self-organized cooperation.
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(a) Self-organized cooperation

(b) Alliance of the disadvantaged

Figure 6. Screenshots for the emergence of (a) self-organized cooperation and (b) alliance of the disadvantaged. Each panel shows agents’
locations at the current step and the trajectories between the current step and the previously stated step.

Alliance of the disadvantaged. In addition to the aforementioned game rules, we assume agents are heterogeneous.
Specifically, the yellow agent (Y) is three times greedier than the blue agent (B) and the green agent (G). That is, when the
three agents cooperate to hunt a stag successfully, Y will get a reward of 6, and the others get 2 each. When Y cooperates
with one of B and G, Y will obtain 7.5, the other one gets 2.5. As shown in Figure 6(b), at the start of the game, Y locates
between B and G. Neither B nor G would like to cooperate with Y. Hence they need to move past Y to cooperate with each
other. To achieve this, agents B and G first move closer to each other in the first few steps. However, to maximize its own
profit, agent Y also moves toward B and G and hopes to hunt a stag with them. To avoid collaboration with agent Y, after
agents B and G are close enough to each other, they move back and forth to mislead Y (see step 3 of Figure 6(b)). Once
agent Y makes a wrong guess of the directions agents B and G move, B and G will get rid of Y, and move to the nearest stag
to achieve cooperation (see Step 4 and 6 of Figure 6(b)), which maximizes the profit of agents B and G.

From the above two cases, we find that although HOP aims to maximize self-interest, cooperation emerges from the
interaction between multiple HOP agents in mixed-motive environments. This shows that it may be helpful in solving
mixed-motive environments by equipping agents with the ability to infer others’ goals and behavior and the ability to fast
adjust their own responses.
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Table 3. Hyperparameters
(a) HOP

self-play phase adaptation phase

MSH MSG MSH MSG
horizon weight α 0.99 0.99 0.95 0.95

rationality coefficient β 2 2 5 5
discount factor γ 0.95 0.95 0.95 0.95

update interval Tu 2000 2000 200 200
capacity of the trajectory buffer L 5000 5000 5000 5000

number of MCTS rounds Ns 8 5 8 5
number of search iterations for each MCTS Ni 200 200 200 200

exploration coefficient c 2 12 2 12
learning rate 10−4 10−4 5× 10−4 5× 10−4

OM learning rate 5× 10−4 5× 10−4 5× 10−4 5× 10−4

(b) A3C and PS-A3C

self-play phase adaptation phase

MSH MSG MSH MSG
learning rate 10−4 10−4 5× 10−4 5× 10−4

batch size 2000 2000 200 200
discount factor 0.99 0.99 0.99 0.99

value function loss coefficient 0.5 0.5 0.5 0.5
gradient clip 40 40 40 40

entropy coefficient 0.01 0.01 0.01 0.01

(c) LOLA

self-play phase adaptation phase

MSH MSG MSH MSG
learning rate 10−4 10−4 5× 10−4 5× 10−4

OM learning rate 5× 10−4 5× 10−4 5× 10−4 5× 10−4

batch size 2000 2000 200 200
discount factor 0.99 0.99 0.99 0.99

(d) Social Influence

self-play phase adaptation phase

MSH MSG MSH MSG
learning rate 10−4 10−4 5× 10−4 5× 10−4

batch size 2000 2000 200 200
Influence weight 1.0 1.0 1.0 1.0
MOA loss weight 3.0 3.0 10.0 10.0
entropy coefficient 0.01 0.01 0.01 0.01

(e) PR2

self-play phase adaptation phase

MSH MSG MSH MSG
learning rate 10−4 10−4 5× 10−4 5× 10−4

batch size 2000 2000 200 200
soft update parameter 0.99 0.99 0.99 0.99
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Table 4. Few-shot adaptation performance of Orcale in all three sequential social dilemma paradigms. The interaction happens between 1
Orcale agent and 3 co-players using the column policy. Shown is the average reward for Orcale from 1800 to 2400 step.

learning co-players rule-based co-players

LOLA A3C PS-A3C random cooperator defector
MSH-4h1s 2.44± 0.03 0.88± 0.01 3.57± 0.03 1.10± 0.00 2.73± 0.02 0.93± 0.01

MSH-4h2s 3.23± 0.02 3.46± 0.01 3.97± 0.02 1.22± 0.01 3.42± 0.02 0.70± 0.01

MSG 20.9± 0.12 22.7± 0.17 32.5± 0.12 16.0± 0.08 36.0± 0.00 12.0± 0.00

Table 5. Performance of HOP and its ablation versions in MSH-4h2s. In (a) self-play, 4 agents of the same kind are trained to converge.
Shown is the normalized score after convergence. In (b) few-shot adaptation, the interaction happens between 1 agent using the row policy
and 3 co-players using the column policy. Shown are the min-max normalized scores, with normalization bounds set by the rewards of
Orcale and the random policy. The results are depicted for the row policy from 1800 to 2400 step.

(a) Self-play performance

HOP w/o inter-OM w/o intra-OM direct-OM
0.9767± 0.0117 0.9708± 0.0146 0.9738± 0.0117 0.9417± 0.0146

(b) Few-shot adaptation performance

learning co-players rule-based co-players

LOLA A3C PS-A3C random cooperator defector
HOP 0.97± 0.02 0.99± 0.02 0.88± 0.02 0.78± 0.07 1.00± 0.01 0.36± 0.02

w/o inter-OM 0.97± 0.02 0.92± 0.03 0.87± 0.02 0.78± 0.03 0.96± 0.02 0.31± 0.02

w/o intra-OM 0.95± 0.02 0.98± 0.02 0.84± 0.01 0.65± 0.04 0.99± 0.02 0.34± 0.03

direct-OM 0.95± 0.01 0.85± 0.02 0.74± 0.03 0.62± 0.04 0.96± 0.02 0.31± 0.02

19


