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ABSTRACT

Local loss geometry in machine learning is fundamentally a two-operator con-
cept. When only a single loss is considered, geometry is fully summarized by the
Hessian spectrum; in practice, however, both training and test losses are relevant,
and the resulting geometry depends on their spectra together with the alignment
of their eigenspaces. We first establish general foundations for two-loss geometry
by formulating a universal local fluctuation law, showing that the expected test-
loss increment under small training perturbations is a trace that combines train
and test spectral data with a critical additional factor quantifying eigenspace over-
lap, and by proving a novel transfer law that describes how overlaps transform in
response to noise. As a solvable analytical model, we next apply these laws to
ridge regression with arbitrary covariate shift, where operator-valued free proba-
bility yields asymptotically exact overlap decompositions that reveal overlaps as
the natural quantities specifying shift and that resolve the puzzle of multiple de-
scent: peaks are controlled by eigenspace (mis-)alignment rather than by Hessian
ill-conditioning alone. Finally, for empirical validation and scalability, we con-
firm the fluctuation law in multilayer perceptrons, develop novel algorithms based
on subspace iteration and kernel polynomial methods to estimate overlap func-
tionals, and apply them to a ResNet-20 trained on CIFAR10, showing that class
imbalance reshapes train-test loss geometry via induced misalignment. Together,
these results establish overlaps as the critical missing ingredient for understanding
local loss geometry, providing both theoretical foundations and scalable estima-
tors for analyzing generalization in modern neural networks.

1 INTRODUCTION

Modern learning algorithms are inherently local, and sources of randomness (stochastic gradients,
finite-sample variability, and distributional drift) are often small relative to the underlying signal.
A local quadratic approximation to the loss thus provides a natural setting for analyzing learning.
This observation underpins the considerable literature studying loss geometry via Hessians, and in
particular Hessian spectra (see references below). When the focus is a single loss, local geometry
is indeed fully captured by the Hessian spectrum. Crucially, however, in machine learning contexts
there are (at least) two losses of interest—train and test—and so local loss geometry involves two
quadratic approximations. The joint geometry of these approximations is not captured by Hessian
spectra alone; it requires a critical additional ingredient: eigenvector alignment, or overlaps.

Despite the fundamental importance of eigenvector overlaps, most studies to date have centered on
Hessian eigenvalue distributions—often explicitly equating spectra with loss geometry. The litera-
ture is extensive and examines Hessians from several complementary angles, including: (i) empirical
measurement of eigenvalue distributions and their training-time evolution, with links to optimization
stability (Sagun et al., 2017} |Ghorbani et al., |2019; |Yao et al.l [2019); (ii) random-matrix-theoretic
and mean field models (Pennington & Bahri, |2017; |Pennington & Worah, 2018} 2019} |[Liao & Ma-
honeyl, 2021} |[Karakida et al.l [2019); (iii) class- and layer-structured spectral phenomena, such as
identifiable outliers tied to data and architecture (Papyan| [2020; [Sankar et al.| [2021); and (iv) Hes-
sian/Fisher analyses relating sharpness (as measured by eigenvalue magnitude) to stability and gen-
eralization (Keskar et al.| 2017} |Cohen et al.| 2021} Yao et al.,[2019). These studies give fundamen-
tal insight into aspects of loss curvature, but ignore directional information that becomes relevant as
soon as one compares two operators.
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The need to go beyond spectra is well understood in random matrix theory, where eigenvector con-
sistency and overlaps with population directions are central objects in spiked models and correlated
ensembles (Johnstone, 2001} |Paul, 2007; Nadler, |2008}; [Benaych-Georges & Nadakuditi,2011; Bun
et al., 2017} |Landau et al.,[2023)). There, eigenvalues alone do not determine statistical performance;
rather, risk depends on how sample and population eigenvectors align. Related phenomena have also
been observed in machine learning, where eigenspace overlap has been used to characterize shared
Hessian structure across independently trained networks (Wu et al., 2022) and to predict the down-
stream performance of compressed word embeddings (May et al.,[2019). Our perspective adapts this
principle to learning-theoretic questions by focusing on train-test alignment. We show that overlap
measures between the training fluctuations covariance (intimately related to the training Hessian;
see Results) and the test Hessian yield a decomposition of generalization error into components
associated with eigenvector alignment.

Applying this perspective to ridge regression resolves the puzzle of anisotropy-induced multiple
descent (see [Chen et al.| (2021); IL1 & Wei| (2021); Mel & Ganguli| (2021); Meng et al.| (2023) for
several distinct forms of multiple descent). High-dimensional analyses of multiple descent often
focus on the connection between interpolation peaks and the eigenvalue distribution of the design
matrix (Singh et al.l 2022; |Chen & Mei, [2022). However, in anisotropic settings where error ex-
hibits multiple peaks despite monotonically decreasing minimum training eigenvalue, spectra alone
do not explain generalization. By making overlaps explicit, we show that the appearance of mul-
tiple descent peaks is governed by the alignment between train and test Hessian eigenspaces. This
corrects interpretations that implicitly attribute sample-wise multiple descent purely to spectrum ill-
conditioning (Chen & Mei, 2022} [Mel & Ganguli, [2021; [Mel & Pennington, 2022), and suggests
a simple geometric picture for anisotropy-induced generalization error that may prove useful for
understanding more complex models.

A second arena where eigenvector orientation matters is generalization under domain shift. Sev-
eral specific forms of domain shift have been considered, including covariate shift, where high-
dimensional risk formulas in random feature models (Tripuraneni et al., 2021)) can be naturally
interpreted in terms of train/test covariance spectra and overlaps. For more general kinds of do-
main invariance, several methods propose regularizers that encourage cross-domain invariance by
aligning gradients, Fisher information, or Hessian statistics across domains to promote consistent
behavior on unseen ones (Rame et al., [2022; Hemati et al., [2023} [Le & Woo, |2024). Another ap-
proach, Elliptic Loss Regularization (Hasan et al.l 2025) imposes an elliptic constraint on the loss as
a function of inputs, thereby encouraging smoothness and robustness to shifts in input distribution.
These approaches study explicit regularization schemes and are largely domain-agnostic: they aim
for broad robustness across many possible domains, with the hope that such invariance transfers to
any new or unspecified test domain. Our analysis is complementary: rather than enforcing invari-
ance across multiple domains, we derive explicit formulas that yield insight into how changes in
training affect performance on a specific new domain. For example, in the context of covariate shift,
we illustrate how, holding covariance spectra fixed, changes in overlap structure alone can increase
or decrease test risk; the formalism therefore predicts when a particular shift will help or hurt, and
by how much, in a way that domain-agnostic and spectrum-only analyses cannot.

Another important use of geometric ideas in learning is to understand generalization. Classical
asymptotic corrections such as the Takeuchi Information Criterion (TIC) express the generaliza-
tion gap in terms of the local curvature of the population loss (see, eg., [Thomas et al| (2020)). A
second line of work uses curvature information at training time: sharpness-aware and curvature-
regularized methods—including SAM (Foret et al., 2021} and its Fisher- and curvature-regularized
variants (Kim et al., [2022; [Wu et al., 2024)—modify the training objective to bias optimization
toward flatter regions of the training loss, motivated by the heuristic that such regions generalize
better. By contrast, our framework is explicitly two-loss: we do not assume any relationship be-
tween train and test losses. Given a training loss and a perturbation model, we analyze how the
resulting parameter fluctuations affect an arbitrary test loss—potentially defined on a different do-
main or distribution—through the joint spectra of the two Hessians and, critically, their eigenvector
overlap. This two-loss geometry recovers TIC as a limiting single-loss case, but goes beyond both
TIC and SAM-style approaches by revealing how eigenvector alignment governs generalization.

Translating our overlap-centric theory into practice at modern scale requires algorithms that go be-
yond spectral density estimation. A substantial literature has developed linear algebraic tools for
implicit matrices, including polynomial/quadrature approaches and stochastic trace methods such as
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Hutchinson and Lanczos-based quadrature (Golub & Meurant, 2009; Lin et al., 2016} [Ubaru et al.,
2017). These and related techniques have been adapted to deep learning to estimate Hessian spec-
tral densities and extremal eigenpairs efficiently (Adams et al., | 2018; |Papyan, [2019;|Ghorbani et al.,
2019; [Yao et al.l 2019). Building on these foundations, we develop novel estimators for overlap
functionals between pairs of Hessians (train-test, population-sample), and apply these to demon-
strate how class imbalance impacts train-test loss geometry.

The resulting picture is that local geometry in machine learning is fundamentally bivariate—spectra
and overlaps: spectra characterize the curvatures of train and test losses, while eigenvector overlaps
determine how these curvatures combine to produce test error.

2 CONTRIBUTIONS

1. Two-loss theory of local geometry. We introduce a novel two-loss framework for lo-
cal loss geometry that incorporates both spectra and overlaps rectifying a widespread
oversimplification that equates spectra with geometry.

2. General foundations We derive and test a universal local fluctuation law showing how
overlaps impact generalization [3.1.1} and a general transfer law dictating how eigenvector
overlaps are transformed by noise[3.1.2]

3. Explicit formulas for high-dimensional ridge regression. Combining tools from random
matrix theory with our overlap transfer law, we provide closed-form expressions for the
overlap function between train and test Hessians in anisotropic ridge regression[3.2]

4. Unified explanation of covariate shift and multiple descent. We show that covariate shift
is naturally quantified by eigenvector overlaps|3.2.1] and that overlaps analytically resolve
the puzzle of multiple descent

5. Empirical validation in neural networks. We confirm our theoretical predictions in mul-
tilayer perceptrons, and use overlap machinery to show that the training Hessian acts as a
filter shaping optimization [3.3]

6. Scalable algorithms for Hessian overlaps. We develop novel, scalable numerical methods
for estimating Hessian eigenvector overlaps in large-scale models, enabling practical use
of our theory in modern deep learning [3.4]

7. Train-test misalignment under class imbalance. We show that class imbalance in CI-
FAR induces misalignment between train and test Hessians, explaining the effects of class
imbalance in terms of train-test loss geometry. [3.4]

3 RESULTS

3.1 THEORETICAL FOUNDATIONS

Prior theoretical and empirical work frequently uses geometric descriptors of the loss landscape—
such as “sharp” versus “flat” minima or valley structures—yet the relationship between these geo-
metric notions and generalization remains imprecise. We begin by establishing general foundations
for two-loss geometry to formalize this connection, and then derive a fluctuation law that character-
izes how perturbations to the training loss propagate to changes in the test loss.

Let w € R? denote the d-dimensional parameter vector of a model f,,, and let L, ain (w, €), Liest (w)
be the (twice-differentiable) train and test loss functions. The train loss Li;,i, iS parameterized by a
small variable e representing a general training perturbation. We remain agnostic about the source of
the perturbation, which could be any combination of label/input noise, distributional drift, sampling
effects, etc. Throughout, we write wq for the minimum of the unperturbed loss Li;ain (w, 0).

By analogy with the one-loss case, we refer to the pair of quadratic approximations obtained by
second order expansion of Ly ain, Ltest around a point as the local two-loss geometry. Concretely,
we define the perturbation gradient, and train and test Hessians as follows:

2 1= d V. Lirain (U)O; 6) y Hivoin 1= dviﬁtrain (wOa 6)7 Hiest := dvi;ﬁtest (w0)7 ()
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(note the scalings, chosen for convenience) and introduce the quadratic surrogate losses:

E?;;g ( ) = ‘Ctrain (wOa 6) + éz “Aw + ﬁAwTHtrainAuﬂ (2)

LI (W) = Liest (w0) + 2 2test - Aw + 55 Aw T Hyes Aw, 3)

where ziest = d Vi Liest (wo) is the normalized test gradient and Aw := w — wy. Finally, we
define the unperturbed test loss and test loss increment as follows:

Lo =L (wo), AL = LEE (wo + Aw) — LEZ (wo). )

3.1.1 LOSS FLUCTUATIONS ARE GOVERNED BY EIGENVECTOR OVERLAPS

Generically, the effect of a perturbation is to induce a small gradient z at the unperturbed mini-
mum wy, yielding a new minimum of Egrugjg ata disp]acement Aw. Directly minimizing 2)) gives
the perturbation-induced displacement Aw = thramz We sometimes refer to the perturbation
gradient z as the injected noise and to Aw as the (inverse-Hessian) filtered noise. Substituting the
displacement into E?cusid yields the following expression for the test loss increment,

A[’ = ZtZstH HteSthraln (5)

train

zZ+ QdZ Htraln
Equation (5) represents the simplest model capturing the interaction of nontrivial train and test ge-
ometry in the context of noisy learning. The first-order effect is structurally simple—and, in sev-
eral natural cases (e.g., label noise under MSE, analyzed below), vanishes exactly in expectation.
The second order term, in contrast, involves interaction between train and test curvatures: letting
Cirain = E[AwAw"] = E[(H;, %, 2)(H. L 2) "] be the displacement covariance, its expectation
is %tr[HteStCtmin]. This simple trace expression suggests the importance of alignment between
directions of large training displacement and directions of large test Hessian eigenvalue. One of the
main theoretical contributions of this work is the following theorem making this intuition precise.

Theorem 1 (Overlap local fluctuation law). Let [itrain, htest De the spectral measures of
Clrain, Hiest, and deﬁne 3 O(A1, A2) as the mean squared cosine angle between eigenvectors of
Clrain, Htest at eigenvalues Ay, Aa. Assume E[Aw] = 0. Then

E[AL] = / / M As OO Az) Jitess (@01) frain (o). 6)

Equation [6] which puts training displacements o, test sensitivity A;, and eigenvector overlaps
O(A1, A2), on equal footing, attests to the fundamental role of overlaps in two-loss geometry.

Proof sketch. Letting (A¥S, ufest), ()\“‘“n, ulr*) be the eigenvalues/eigenvectors of Hiest, Ctrain,

J
d d
tr[HtestCtram _ %?12 Z Z )\test)\tram (ugest . u;rain)2]' (7)
i=1 j=1
Writing the double sum as an integral over the spectral measures of Hiest, Cirain yields (6). See
Appendix [B.2] for details.

While we do not treat stochastic optimization explicitly, in the same local quadratic regime, noisy
gradient descent yields a curvature-filtered steady-state covariance that, when substituted for Ct;ain,
yields the same overlap fluctuation law (see Appendix [B.2.7).

3.1.2 OVERLAP TRANSFER LAW

In many situations one must consider the overlaps between an operator A and a noisy transforma-

tion of another operator B, written B. For example, below in the context of ridge regression with
anisotropic gaussian inputs, we consider the case that A, B correspond to the population test and
train covariances, while B is the sample train covariance. More generally, A, B could represent the
population test and train Hessians, and B the empirical train Hessian. In such cases, one needs a
way of combining the population overlaps O 4, p with the noise, specified by O 5. We prove the
following appealing transfer law in Appendix ’
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Theorem 2 (Free transfer law for overlap functions). Let B = F (B, X) be a matrix rational
expression. If X is free from A, B, then

0, 5a.b) = / 0.1.5(,5)0p, 5(b,5) 1 (db) ®)

(Freeness is a notion of independence that is suited to large random matrices and holds asymptot-
ically for a wide range of common random matrix models; see Appendix [B.3]) Theorem [2] entails
a simple overlap calculus that can be used to compute overlap functions of complex matrix models
from simpler ones. In Appendix |C, we use (8) to quickly derive expressions for train-test Hessian
overlap functions in anisotropic ridge regression.

3.2 HESSIAN OVERLAPS GOVERN GENERALIZATION IN LINEAR REGRESSION
We now consider ridge regression, where the preceding theory is exact. Let training inputs z € R
have covariance Yt,qin := E[xxT}, and assume linear output with Gaussian label noise:

1T 2

We will also assume for convenience that w, ~ N(0,I), so that the signal to noise ratio is
tr Xtrain/ (It Strain + 02) (fr denotes the dimension normalized trace). Given a training set con-
sisting of X € R™*? (rows z ") and labels y € R™, ridge regression chooses w € R? to minimize

Livain(w) = 555 [lv = 75 + g lwl?, A>o. )

We write v := m/d for the sampling ratio. The (excess) test loss is measured with test inputs with
(possibly different) covariance Xqegy:

Etest(w) =1 Ez 3 |:(\/>U/T1' - y(x))ﬂ — %02 = 2—1d(w — w*)TEteSt (w — ’LU*)

With the scalings of one has Hiqin = f)train + A and Hiost = Ztest, Where f]train = XTX/m
is the training set sample covariance. Note Y ain — Sirain for large o = m/d.

We now apply the local fluctuation formula (6), which in the setting of ridge regression is exact.
Letting the label noise supply the perturbation, the injected noise z := dVy Lirain(wo, &) and dis-

placement covariance Ciyain = E [(H[, 5, 2)(H, L 2)T] are

tram
z = _%X—rfv Ctram - U o Ztram(ztram + /\I) (10)
where « := m/d is the sampling ratio. The test loss increment AL is obtalned by substituting

into the overlap formula (6). The training-side operators f]train, Hiroin = f]train + M and Clipain
commute and share eigenvectors, so for simplicity all formulas are written in terms of >, ain:

AL] A 720 A1, A dA dA 11
[ // 1 )\2 + A) Zteataztrdln( L 2) uzt%t( l)uztrdln( 2) ( )
where fi5;,,., and pg - are the empirical spectral measures, and Oy, Emmo‘l’)‘Q) is the

eigenvector-overlap functlon (see (18)). Since we will be interested primarily in the ridgeless limit
A — 0, we will loosely refer to Etram as the train Hessian. See Appendlxlfor detailed derivations.

The fundamental conclusion from (TT]) that we will apply toward analyzing covariate shift and mul-
tiple descent is that error is large when training perturbations induce large variance (small training
eigenvalue \2) in directions that align strongly (large O (A1, A2)) with directions of large test loss
sensitivity (large test eigenvalue ).

In Appendix [C] using techniques from operator-valued free probability we derive asymptotically
exact expressions for Licsr, AL and the overlap function Op,, .. H,... in proportional asymptotics
where m, d — oo with & := m/d fixed. The main conceptual contribution of this work is that while
the spectral densities of train/test operators set the relevant scales, it is their relative orientation—
as quantified by the overlap function—that determines how displacements translate into test loss.
We illustrate these points in two settings: first, a simple covariate shift experiment that provides
geometric intuition and positions Osx;, __, =.,... as the natural object quantifying shift; second, the
puzzle of multiple descent (cf. Mel & Ganguli| (2021)), where the overlap function allows a full
analytical account. For clarity, in both settings we use the simplest possible model of anisotropic
data: the “two-scale” covariance with spectral measure

Hy = plés% +p259% (12)
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3.2.1 COVARIATE SHIFT INCREASES LOSS THROUGH TRAIN-TEST MISALIGNMENT

a Parameter discplacements b Fixed Hessian spectra c Overlaps and test loss
157 Htrain
— ztest
_ 0.4
S r— i S S
B 007 --wemeats s ISR o P
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Figure 1: Covariate shift and test error. (a) Two-dimensional slice of parameter space. Points: indi-
vidual parameter displacements due to label noise. Lines show train (cyan) and test (red) hessians
with precisely controlled alignment 6. (b) Eigenspaces are rotated while Hessian spectra are fixed.
Blue line shows d, m — oo theory. (c) For small 6, large displacements in learned parameters are
aligned with the low-eigenvalue directions of the test Hessian (aligned ellipses at top left, and purple
overlap lines), and error is small (black line). For large 6, large displacement directions are aligned
with sensitive directions of the test loss and test error is large (black line). Lines: theory; crosses:
average from simulations. d, a, \, 0 = 10%,10,10~%,10~1/2.

Equation (TT) expresses AL in terms of the overlap function Oztemimm. Relative to the population
overlap Os,.., 5, this overlap is deformed by the finite sampling ratio of the training set (cf.
transfer law of Theorem [2). In Appendix [C.3|we use the transfer law to state an explicit formula for
OZtest,itman’ and then prove the following:

Theorem 3. As m,d — oo with « fixed, the asymptotic test loss increment satisfies

o2 d) Ao
BIAL) = 2008 [ N G O (0002 5 (A1) s (@), (13

where X is the effective regularization defined by the self-consistent equation:

A= T(%A) r(z) = (1 ~a / ﬁduzm (t))l. (14)

Equation (T3) parallels (TT)) but averages out all training randomness to express AL purely in terms
of the population operators X¢yain, Stest- Most importantly, (13) illustrates how Os, , 5,,..,—as
the only quantity that can change under isospectral transformations to Xt 4in, 2test—captures bona
fide two-loss geometric effects that are invisible from either loss geometry in isolation.

To illustrate this point, we perform a simple experiment where both 3,40, 2test have fixed two-
level spectra (T2)) with scales s%, s3 = 20,274 and equal multiplicities. A = 10~* and o = m/d =
10 so that Hy,q5n ~ f}train X Yirain, While Hiegt = Yiest- Fig. a) shows the distribution of
learned parameter displacements for different label noise realizations. As predicted, displacements
have larger variance along long directions of Ci;,i, = o2 Zt_r;in /., corresponding to low-curvature
directions of the train Hessian. At the same time, the test loss contours are determined by the test
Hessian Y¢cs¢. We construct a controlled perturbation in which Y. is systematically rotated with
respect to Xi..in While all spectra are kept fixed (b), isolating the effect of overlaps. Fig. Ekc)
demonstrates the consequence of varying overlap. When the long directions of ,,;, align with the
long directions of X5 (6 = 0), displacements occur in directions where the test error is relatively
flat, yielding low excess test loss (Fig. Ekc), left column). In contrast, when the same train-long
directions align with test-short directions (§ = 7/2), the same magnitude of parameter displacement
is heavily penalized, and the test loss rises sharply (Fig. [T{c), right column). This simple experiment
illustrates the central role of eigenvector overlaps in the context of covariate shift.
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Figure 2: Multiple descent in ridge regression. (a) Loss as a function of the measurement den-
sity @« = m/d for two-scale data. Note the peaks at critical values of & = 1/2,1. Solid lines:
theory; crosses: simulations with d = 5000. Dashed, dotted, and dash-dotted lines show theory
Liest, AL, Lo in the limit that the lower scale so — 0, where bumps become true singularities. (b)
Theory Liest (v, A). Gold and blue lines indicate slices shown in panel (a). (c) 3 and 4 scale data
which exhibit 3 and 4 peaks; legend same as (a). (d) Green histogram: empirical spectral density
of the train Hessian X ' X/m at o = 0.496; solid green line: theory. Purple line: overlap function,
O(s2,\2)/2, giving overlap between a train eigenspace at eigenvalue Ay with a the entire large-
eigenvalue test space (ie. s7). Note strong overlap for high train/test eigenspaces.

3.2.2 MULTIPLE DESCENT IS EXPLAINED BY TRAIN-TEST OVERLAPS

Double descent is a well-established phenomenon in machine learning in which test error exhibits
a non-monotonic dependence on model size. More recently, several authors have described an ex-
tension of this effect, termed multiple descent, which arises in settings where input data are highly
anisotropic and the covariance spectrum contains multiple separated scales (see introduction). Fig.
a,b) illustrate multiple descent for two-scale data with s1,s9 = 1, 1072, while panel ¢ shows how
a larger number of separated scales can create additional peaks in test error (see caption for details).

For a two-level covariance, the overlap function is determined by the solution to a cubic polynomial
that is easily solved numerically (Appendix [C). Fig. [2(d) shows the spectrum of the train Hessian
(green histogram and theory line), and the overlap function (T8), indicating overlap of a training
eigenspace at eigenvalue \o with the large-eigenvalue (s?) eigenspace of the test Hessian. Theoreti-
cal and empirical overlaps are in excellent agreement (purple line and crosses).

The peaks of multiple descent are easily understood in terms of eigenvector overlaps. Fig. [3]reports
the error, training spectrum, and overlap map for the two-scale covariance model of Fig. [2} The test-
loss curve shows two singularities at critical sampling densities & = m/d (a). At the same densities
the training spectrum undergoes phase transitions: at « = 1/2 an initially unimodal density splits into
two bands centered near s7 and s3, and at o = 1 the lower s3 band develops a near-zero component
(Fig. b)). The corresponding overlap map O(\1, A2) is approximately block-diagonal: modes
near s7 align predominantly with the s% test subspace, and modes near s3 with the s3 subspace
(Fig. Bfc)). Thus, the first error spike occurs when near-null training directions overlap the sharp
test subspace, whereas the second arises when an even smaller training component overlaps the
flat subspace but with variance large enough to dominate its small curvature. Fig. [3(d) provides
a geometric schematic of the alignment of top and bottom eigenspaces of Hi,ain, Hiest throughout
this sequence. Until line 5, the minimum eigenvalue of Hi,,;, always decreases as a function of
a—which, according to a spectrum-only analysis, should increase test error. Yet the error actually
decreases between horizontal lines 3 and 4, precisely because the lowest train eigenspaces begin to
overlap predominately with the low test eigenspace.

Summarizing, multiple descent arises from the interplay of (i) training components developing near-
zero eigenvalues as « varies, and (ii) which test directions these overlap with—sharp or flat, illus-
trating the potentially extreme impact of (mis-)aligned train and test loss geometry.
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(\, 83 — 0 limits taken to illustrate true singularities; see Appendix for details). (b) Spectral
density of Hy;ain as a function of «v (each density normalized to a maximum of 1 and quantized). For
high sampling density «, the training density acquires two components roughly centered on the true
underlying data scales s?, s3. (c) The overlap function of Hyyain, Hrest as a function of «v. For small
o, all nonzero Hy,,i, spaces overlap strongly with the large eigenspace of Hiesi. As o approaches
the first critical value, a new spectral component appears, whose eigenspaces overlap almost entirely
with the small eigenspace of Hiest. (d) Minimal model of train-test Hessian geometry. Cyan plane
and ellipses represent the top and bottom eigenspaces of Hy.,in. Red ellipsoid represents level sets
of test error. Error is controlled by both train variance magnitude and overlap onto test spaces.

Figure 3: Multiple descent is explained by train-test Hessians overlaps. (a) AL due to label noise
i

3.3 LOCAL THEORY PREDICTS MLP GENERALIZATION AND LEARNING DYNAMICS

To test the quantitative predictions of the quadratic two-loss theory in a controlled nonconvex setting,
we trained small, constant width multilayer perceptrons (MLPs) to reproduce the responses of an
MLP teacher network. Student networks were batch trained for a large number of iterations to ensure
near convergence to the noiseless training loss minimum. Noise was then added to the training set
and the network was trained further—beginning from the initial trained state to determine the effect
of the noise on the initial local minimum. After training, the training loss increment was computed
and compared to prediction of the local quadratic theory. Fig. f(a,b) show the measured test loss
increment against the local quadratic prediction for several orders of magnitude of input (a) and
label (b) noise strength. All later panels refer to the noise setting corresponding to the red point in

(b).

Fig. ffc) illustrates inverse Hessian filtering due to training dynamics. The gradient noise induced by
the label noise has covariance E[zz " ]. Purple scatter represents the overlap function of E[z2z "] and
Hiyain. Dot x, y position is given by Hyain, E[ZZT] eigenvalue and size is proportional to overlap.
Note strong alignment between gradient noise and test Hessian. After training, the parameter dis-
placement covariance predicted by quadratic approximation is Ciyain = E[(H L 2)(H 5 2)T].
The overlap function of Hy;,i, and the actual post-training covariance is plotted in red. Note how
in accordance with quadratic predictions, variance is strongly inflated/attenuated along low/high
eigendirections of Hi ,;,—a phenomenon we refer to as inverse Hessian filtering. The large dis-
placements do not translate into large test error since the train and test Hessians are well aligned
(Fig. [6), meaning displacements occur primarily along low test Hessian (loss-insensitive) direc-
tions.

To provide geometric intuition, loss landscape slices are shown in Fig. Ekd) for Lirain(w,0),
Lirain(w, €), and Liest. A single 2D slice was chosen to contain the unperturbed minimum wy
(white crosses), perturbed minimum (white stars), and parameters predicted by the local quadratic
approximation (white “Y”s). Local geometry also predicts local gradient descent dynamics well
(Appendix Fig. [7). Together, these results validate the predictions of the two-loss local theory.
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Figure 4: Validation of local fluctuation law in MLPs. Layer widths for both student and teacher
were (5,5,5,1); nonlinearity: tanh; teacher network has gaussian weights with scale 4/ Vd;y, for
each layer; loss: MSE with ¢ parameter A = 1. (a,b) Predicted vs measured perturbation-
induced AL/L, for increasing input (a) or label (b) noise amplitude o. (c) Eigenvector overlap
function between Hy,,i, and the injected noise ]E[zzT] (purple), and post-learning filtered noise
Clrain (red). Note how learning inflates/dampens variance along the low/high Hi.s eigenspaces.
(d) 2-dimensional loss landscapes for 1 example simulation: noiseless L¢;aiy (left), perturbed Liyqin
(middle), and Ly (right). Cross: noiseless training minimum; star: minimum of perturbed Ly, 4in
(ie. the new learned minimum); tri-star: parameters predicted by quadratic theory.

3.4 CALCULATION OF OVERLAP FUNCTIONS FOR LARGE SCALE NETWORKS

Applying our theory to modern networks requires estimating the overlap function between the train-
ing and test operators. These operators have dimension equal to the number of parameters—often
millions to billions—so any approach that forms them explicitly is infeasible.

Here we give a brief overview of our approach, deferring details to Appendix [F} We apply two sepa-
rate algorithms, one for computing overlaps among outlier eigenspaces and another for the remain-
ing “bulk” spaces. Outlier eigenvectors are straightforward to obtain using subspace iteration (Ap-
pendix cf. (2019)); overlaps can then be computed directly. For the bulk eigenspaces,
we generalize a well known approach to spectral density estimation known as the kernel polynomial
method (KPM; Algorithm|[T]in Appendix [F3).

Given self-adjoint matrices A, B € R*? and arbitrary smoothing kernels G (x; o) of width o, the
smoothed total eigenvector overlap of A, B at eigenvalues A1, Ao can be written

d
_ 1
tr[GaxGa ] = z Z G (A —A130)G (A — A2;0) [d (vai- 'UB,j)2] , o (15)
ij=1
where G4z, := G (A — A\1I; 0) and similarly for G g »,. To obtain the normalized overlap function
treated above, one simply divides by the (G-smoothed) spectral densities of A, B at A1, As.

Computing the trace in (T3)) is prohibitively expensive for large A, B, and so we resort to Hutchinson
trace estimation, which approximates tr [X] with the average of v Xv for several samples of v ~
N (0, I). To ensure the trace is positive, instead of approximating (13)), we use

©[GanGop] = 01GY3 G GYA ] = Eu[|GY3, G VI (16)
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Figure 5: Overlap function for Hiyain, Htest, and class imbalanced Hessian H{ ., for ResNet-20
trained on CIFAR10. Cyan/red data: spectra of Hy;ain, Hiest- Dashed lines indicate outlier eigen-
values. Purple scatters show overlap between each pair of eigenspaces/bulk spaces. Size and color
reflect overlap magnitude. (a) Hyyrain, Htest Overlaps. Note strong alignment indicated by large over-
laps along the diagonal. (b) Hyyain, Hi.s Overlaps. A large fraction of each Hessian’s outlier energy
is lost in low-outlier and bulk spaces of the other, indicating poor alignment.

The KPM proceeds by taking the smoothing kernel G(z;0) to be gaussian of width o, and then
approximates Gi‘/ ?\1 , Ggiz using truncated Chebyshev series. (Kernel width and approximation
degree K are chosen so that the truncated series sufficiently dampens the large-multiplicity near-0
eigenspaces; see Appendix[F.3]) Thus can be evaluated in terms of the vectors T; (B) Tj (A) v,
where T}, is the k*"* Chebyshev polynomial. These vectors in turn can be generated efficiently via
Chebyshev recurrences using only matrix-vector products (see Appendix [F] for detailed treatment
and application to synthetic data).

We ran a simple controlled experiment to demonstrate the scalability of our Hessian-overlap algo-
rithms on a modern network and to illustrate how a common form of domain shift—class imbalance
in the test set—produces a clear change in two-loss geometry. A CIFAR10-pretrained ResNet-20
was obtained from |Chen| (top-1 test accuracy: 92.6%). The train Hessian was estimated from 5000
examples and fixed throughout the experiment. Two-loss geometry was then compared between
two scenarios: a class-balanced test Hessian estimated from 5000 randomly selected test images,
and a class-imbalanced Hessian from images with class labels 0,1 and 2. Spectra, estimated using
subspace iteration and the Lanczos algorithm, are shown in Fig. [5(a) (train in cyan; test in red).
Non-outlier eigenspaces were grouped into a single bulk space for clarity. The strong alignment
observed between the train and balanced test Hessians largely disappears when the test set is made
unbalanced (purple scatters; bulk overlaps, omitted for space, exhibit similar pattern; Fig. [I0). All
Hessian-vector products were computed using standard PyTorch autograd on commodity hardware,
with total runtime of a few hours. Runtimes are essentially linear in the model size and number of
examples, underscoring the scalability of our method (see Appendix [F-3]for complexity analysis).

4 DISCUSSION

We show how, within a two-loss geometric framework, overlaps occupy a central role linking op-
timization geometry, random matrix theory, and practical machine learning phenomena. We derive
novel theoretical tools for computing overlaps, illustrate through several examples how spectra set
curvatures, while eigenvector overlaps route variance into error—unifying covariate shift and multi-
ple descent—and develop scalable estimators for overlap analysis in large models. A natural appli-
cation of two-loss geometry is as a diagnostic tool for explaining why some domain shifts are more
harmful than others. Promising future directions include tracking Hessian overlaps through train-
ing time, and alignment-aware optimization that attempts to improve generalization by encouraging
strong eigenvector alignment between, eg., train and validation Hessians.
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A STATEMENT ON LARGE LANGUAGE MODEL USE

Large language models were used to polish writing and in conjunction with other tools to discover
relevant published work.

B THEORETICAL FOUNDATIONS

B.1 EIGENVECTOR OVERLAP FUNCTION

To connect the finite-d decomposition to random-matrix and free-probability tools, we now express
eigenvector overlaps in a kernelized trace form amenable to free-probabilistic methods. Let X, Y be
symmetric d X d matrices with eigendecompositions

d d
X:Z)\f(uiuiT, Y:Z)\}/vjv;.
i=1 j=1
For bounded functions f, g,
;4
w[f(X)g(V)] = ZZf(A;X)g(A}”) [ (uv;)?] (17)
i=1 j=1

If f and g are sharply peaked around A; and A, the sum concentrates on overlaps between eigen-
vectors with eigenvalues near (A1, A2).
A convenient choice is the Poisson kernel
1 o
K(x; _=—_——

with center  and width o > 0. We define the overlap function

— 1 i [K(X;M,01) K(Y; A, 0)]
O(A1, A2) .—01,1(17I2n_>0tr[ KX, o0)] RV hy )] (18)

The denominator normalizes the total weight in the sum to one, so O(A1, A2) is the weighted
average of the (scaled) squared overlaps d (u, v;)? over eigenpairs near (A1, \2). Now can be
rewritten

[ (X)g (V)] = / F () 9 (02) O (s Ao) dyix (A1) iy (Ao) (19)

In fact, another way to define the overlap function is to write px y for the measure taking f,g —

tr[f (X) g (Y)] and then defining O (A1, A2) to be the function making hold, ie. O = dzi%:y )
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B.2 OVERLAP FLUCTUATION LAW

Here we prove the fluctuation law (6). Equation [5] which uses the quadratic surrogate losses

d d ,
Lo, Lde” to compute the test loss increment, reads

AL =— Zt—gsthraan + ZdZ HtralnHteSthraln (20)
Noting that Aw = —H,, %z, under the assumption that E[Aw] = 0, one clearly has
E[A‘C} = 1Etr[HtCSthram Hi;aluin] = %&[Htcstctrain} (21)

All that’s left is to show that the last trace can be expressed in the integral form (6). Letting

test , test train  trai : .
(Abest qbest)) ()\jmm, u ain) be the eigenvalues/eigenvectors of Hiest, Cirain,

d d
ﬁtr[HtestCtram — %?12 E E )\teit)\trun uzest 3 u;rain)Q]. (22)

i=1 j=1

Defining the overlap measure

d d
1 S rain 2
= 2 ) g -

equation (23) can be written

L e Hyot Cora] = & / / Mo (@A, dA) (24)

v is absolutely continuous with respect to fitest & fitrain, and so we may define the Radon-Nikodym
derivative O(\1, A2) = m()\l, A2) so that

tr[HtestCtrain] = %// )\1)\20()\17)‘2)Ntest (d)\l),u/train(d)\Q)~ (25)

test \train
On any atom (A;**, A7),

)\t.eSt7 )\train .
. ({t(esz . )}zest =d (u‘qest . upraln)2 ’ 26)
Prrest (A7 1) prarain ({AF})

? J

O()\,EeSt, A;rain) _

as desired.

B.2.1 SURROGATE-FREE FORMULATION

For completeness, we derive the fluctuation law without the use of quadratic surrogate losses by
making a minor modification to the train Hessian. As before, let Lipain(w, €) and Liest (w) denote
the train and test losses, assumed twice differentiable in w, and let wq be the unperturbed minimizer
of Lirain (w, 0). For small perturbation ¢, write Aw = w(e) — wq for the exact displacement. By the
fundamental theorem of calculus along the line segment wqy + tAw,

1
vuwctrain(wo + Aw, 6) = Vw‘Ctrain(u}m 6) + l:/ viyﬁtrain(wo + tva 6) dt A’LU
0

Define the effective train Hessian
1
Htegm . / V?U[/train (’U)o + tAw, 6) dt.
0

The perturbed optimality condition V., Liyain (wo + Aw; €) = 0 therefore yields the exact displace-
ment equation
Aw = —(H

tr'nn)il 2,

where z = Vo, Lirain (w0, €). Thus, Aw is obtained by the same inverse-Hessian filtering law as in
the quadratic case, with Hi, i, replaced by H, off

train*
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For the test-loss increment, apply an ordinary Taylor expansion at wy:
»Ctest(w() + A’LU) = ﬁtest(wo) + éztest - Aw + ﬁAwTHtestAw + O(”A’LU”?)),

where 2iest = d Vi Liest (wo) and Hiesy = d V2 Liest(wo) are evaluated at the unperturbed point
and are independent of €. Substituting the displacement equation, as in the surrogate case one
obtains:

rain rain rain

AL =~z (Hifn) " 2+ 552" (Hifn) ™ Heest (Hin) ™2 + O(Jle]®).

Taking expectations over the perturbation, the quadratic term has the same form as in Theorem
2tt[Hyest Cirain), Where Cipain = E [(Heﬂ Yl T(HE )], and so after replacing Hyain With

train train

HEf. | one obtains a formally identical overlap decomposition as in (G) in terms of test-(effective)

train eigenvector overlaps.

B.2.2 NOISY GRADIENT DESCENT

Consider gradient descent with small additive noise at each iteration, and take its continuum limit.
In the local quadratic regime, such noisy gradient descent can be modeled by the linear stochastic
differential equation (SDE)

dw; = —Hepainwedt + XY2dB;,

where ¥ is the noise covariance and B; is standard Brownian motion. Its stationary covariance
Crain satisfies the Lyapunov equation

Htrainctrain + CtrainHtrain =2.

This covariance is curvature-filtered—variance is suppressed along high-curvature directions and
amplified along shallow ones—similarly to the perturbation-induced Cj;,;, used in the main text.
Substituting this covariance into the trace formula yields the same overlap fluctuation law and the
same two-loss spectral-overlap decomposition, with no modifications to the framework required.

B.3 FREE TRANSFER LAW

Here we prove the following free transfer law for overlap functions:

Theorem 4. Let B combine B with a source of noise X that is free from A, B. Then
QM@Qz/%B@WhﬂMMMM. (27)

Note that despite its simple and appealing form, this relationship does not hold for general triples of
matrices A, B, C—it suffices to check on finite dimensional matrices with simple spectra. While the
coefficients of C’s eigenvectors in the eigenbases of A, B do follow a change of basis law resembling
formula (27), recall that the overlap function encodes the squared coefficients rather than the raw
coefficients themselves. This relationship holds specifically because of the freeness relationship
we’ve assumed.

To prove (27), start by noting that all of the spectral and overlap information for two matrices A, B
is contained in the measure on R? corresponding to the functional

pap: frge T[f(A)g(B)].

For example, setting ¢ — 1 and f () = a™ gives access to all moments of A, and therefore to

its spectrum, and similarly for B, while the overlap function is precisely O4.p = dZZ %53, the
Radon-Nikodym derivative of the joint measure with respect to the marginals.

For the remainder of this section, we will work in an abstract free probability space rather than with
concrete matrices. Let (M, 7) be a W*-probability space (in our application this corresponds to the
space of d x d matrices with 7 = [ tr). SeeMingo & Speicher; (2017) for details.

Let A, B,B,X ¢ M be random variables and consider the problem of determining the overlap
function O 4 3, where B := F (B, X), where X is a source of noise that is free from A, B. As noted

16
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above, all of the overlap information for the three possible pairs of variables A, B, B is contained in
the joint measures

HA)B’ ;U'A,BnuB,B7

supported on (some subset of) R?. We are free now to treat these measures as ordinary probability
measures of two scalar random variables. Denote by (-) these scalar expectations. We now make
use of the following two identities:

(F (@) 9 W) @ yymnxy = T X)g (V] (28)

and that for each g in a suitably broad class of functions (eg. at minimum all Poisson kernels), there
is another function L, depending linearly on g encoding the “expectation of g (B) =g(F(B,X))
over X, conditioned on B”, ie. such that

r £ (AB)g(B)| =71 (A, B) Ly (B)], (29)
for all bounded borel f. This is Proposition[I] proved below using operator-valued free probability.

Combining these, we have a)g (b ; =T . Writing the right han
bini h f b (ah) f(A) Ly (B h ht hand
a,b)~[1A B

side as a scalar expectation and then conditioning on b,

F@90)) iomns = @ay Lo ),
— QO L, (),
where Q (b) := (f (a)>a~MA|B:b' Applying and again,
@ () iy =7 @B (B)
- <Q ()9 (5)>(b,z)~u”

—<<f<a>>a~mb<9<5>>a~mb> ’

b~up

which shows that a, b are independent conditioned on b:

o = /NA\B:bMB\szd/“LB ().

Applying, for example, classical e-gaussian smoothing to the measures of A, B, B, we can assume
that uxy < pux ® py for any two of the three. Thus we are free to form the Radon-Nikodym

derivative dd“ ’é;yy which corresponds to the gaussian-smoothed overlap function Ox y .. (x,¥).

Since Ox yc (z,y) px (dx) = px|y—y (dx), we have that for any bounded measurable function

/¢ a, b d/uAB —/ ¢(ab </,UAB—b (da) pg p—s (dZ)) LB (db))
— //(b a,b /(OA,B:,G (a,0) pa (da)) (03,3;6 (b7 5) I (d‘;)) pu5 (db)
_ //¢ <a,é) (/ O (a,0) O 5. (b, 13) 1B (db)) pa(da) pg (dg) )

so the last quantity is exactly the Radon-Nikodym density O , z..:

O 5 (a, 13) - / On.3ic (a,0) O ., (b, 13) 1 (db) |
Taking the smoothing to 0, one obtains the transfer law for the overlap function. Note that one may

have to interpret the Ox y as distributions (eg involving ¢ kernels) in case of degenerate overlap
between two of the matrices (eg. A = B).

17
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Proposition 1. Let A, B be free from X, and let B = F (B, X) be a rational function of B, X.
Then there is a linear operator L on functions such that for arbitrary bounded borel H,

r [H (A,B) g (B)] = 7[H (A, B) Lg) (B)].

Proof. Let B be a k x k linearization of B such that [B~'], | = g (F (B, X)). Decompose B into
its X -dependent and X -independent parts:

B = XBx + Bo.

Now form the linearization matrix

-B 0
L(M):= ,
(M) ( Me;r -1 )
so that .
1 L -B~ 0
L™ (M) = < —MegB_l -1 )

In particular, L,:% (M)=—g(F (B, X)) and leil,l (M)=—-Mg(F(B,X)).Sonow

nriamy O, = | [T @),
— 7 [H (A, B) g (F (B, X))].
As with B, decompose L into X -dependent and X -independent parts:
L(M)= XLx + L.

Assuming M is a function of A, B only, these two parts are operator-free (ie. with amalgamation
over the space of complex-entried (k 4+ 1) x (k + 1) matrices). By the additive subordination law,

g (0) = gr, (~Rxrx (9n(m) (0))) -

From the linearization, gr,(as) (0) is block lower triangular, and X L x only has nonzero components
in the upper left block. This implies that R x1, (gL( M) (0)) is also confined to the upper left block,

and that this entry is simply R_xB (EB’l), where £ := 7 ® id is the expectation functional of
the operator-space. These imply

7T[H (A, B) g (F (B, X)) = [guin(an) 0],
= [9ro (~Rxrx (9rima,n) ()],

=7 ( By~ R_xByx (EB™) 0 >1]

—H (A,B)e] 1
( ’ )ek 1,k
__|( Bo-R xm, (6B7Y) 0"
o —H (A, B)e; 1
k+1,k

— 7 [H(4,B) (Bo - R-xg, (€B7)), ) -

The second factor can be regarded simply as a function of B (B is the non-X part of B and
EB™': B+ BT (B,X) € My (C). This proves that there is some operator L [g] as in the
statement of the proposition. L must obviously be linear in g, completing the proof. O

C TWwO0-LOSS GEOMETRY IN ANISOTROPIC RIDGE REGRESSION

In this appendix we derive equation (II), prove Theorem [3] and obtain formulas for the loss and
overlap functions that are used in figures 1-3. We consider ridge regression on multivariate gaussian
input data with train and test covariances Yiyain, Ltest and with linear ground truth, y (z) = %w* -X.

18
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We will assume for simplicity that w, ~ N (0, I). A noisy training set is generated by sampling
inputs as follows. The training set consists of

2 v N (0, Zpain) s 4 =y (@) + &, & ~ N (0,07),
fori =1,...,m. We define the sampling density o := m/d. It will occasionally be convenient to

state formulas in terms of «’s reciprocal, ¢ := d/m.

Using the framing of section |3.1.1} we will regard the noise £ as perturbing a noiseless training
objective. The train and test losses are formulated as follows:

m

1
Y (i Jgen)’] + A ll?

i=1

Ltrain (wv g) =

N[

Ltest (’LU) =

N[

[&@mﬁwwﬁ

Note 1) we keep Lirain’s dependence on the perturbation £ explicit, and 2) the noise is not included
in the test loss (and when it is, after averaging, it changes the loss only by an additive constant).
Finally, let us write w (§) := argmin,, Lipain (w, &) for the learned weights, § (x) := %uﬁ - x for
the learned model, and Hy,ain := d V2 Lirain and Hiest = d V2 Liest for the train and test Hessians;
these scalings are chosen to keep spectra O (1).

We begin by deriving equation () by applying the fluctuation law (6)). To do so, we first compute
2y Hirain, Htest, and Cipain. Differentiating, we find

Vi Losain(w,6) = 5 (3XTX + AN w— L LXT (%Xw + 5) (30)
Hirain = AV Lirain = =X ' X + AL (31)
Similarly,
Liest(w) = 55 (0 — ws) Siest (w0 — W) .

Hiest 1= dviﬁtest = Ytest-

Next, z := d Vi Lirain (W0, €) is the scaled train gradient evaluated at the unperturbed optimum wy.
Since, by definition, V., Lyain (wo, 0) = 0, substituting into (30) gives

zZ = deﬁtrain(w(),g) = (%XTX + )\I) Wo — %X—r (ﬁXU}* + 5) (32)
= _VAxTe, 33)
Finally,
C'trauin = E§ [(Htralnz)(H‘czilnz)T]
= 7Ef [HtralnXngTXHtxam]
= 2 d Htram( XTX)Htr;m

= O'gOé Ztram(ztram + )‘I)

where i qin = %X T X is the (uncentered) train covariance. Summarizing,

p=—YixTe (34)

Herain = Strain + A (35)

Hiest = Ztest (36)

Chrain = 030~ ! Sirain (Strain + M) 72 (37

Since E[¢] = 0, we have E[Aw] = —E[H,, ) 2] = 0, and so the conditoins of || are satisfied.
Plugging directly into (6)), we find

BIAL) = & [[ M0 0nronn (0 00) i (@) i (@) 09
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Since Yirain, Ctrain commute, they share eigenvectors and we are free to replace O, ., Cornin With
O HeowtSernin” Replacing the integral over Cl,,in’s spectrum with one over i, we find

o2 A
E[AE] - ﬁ // Al m Oztestvitrain (Al, AQ) 'U/Ete“ (dAl) 'U/iltrain (dA2)7 (39)

which is equation (TT).

High-dimensional ridge regression has been studied extensively, so rather than rederiving published
formulas, as much as possible, we restrict attention to the novel focus of this article: overlap de-
compositions. We treat the label noise as a fluctuation of the training objective, and derive exact
asymptotic formulas for the needed train-test spectra and overlap functions that describing the effect
of the fluctuation on test error.

All formulas are obtainable from the general trace formula stated in the following two propositions,
which we prove in Appendix D}

. -1
= <1 - Q/Edﬂzmm (t>) ; (40)

has a unique solution v satisfying r € H* for = € HT and satisfying 0 < r < 1 for z < 0. This
defines a holomorphic function r (z) on all of C\RZ" that is obtainable for each z by fixed point
iteration of the right hand side of [@0) from an arbitrary initial point ro satisfying ro € H* for
z€HF and 0 <1y < 1forz <O.

Proposition 3. Let

Proposition 2. The equation

ty (2) 1= 7 [f (Suests Suran) (:T = )] @n
for bounded function f and complex scalar z € C\R=°. As m,d — oo with ¢ = d/m fixed,
ty(z) —ir [f (Btests Strain) (21 — 7 (2) Etrain)_1:| )
where 1 (z) is the solution of the self-consistent equation [{@0).

Thus to perform the calculation we simply express all quantities in terms of traces of the form ¢ (z),
and then apply Propositions 2|3

C.1 TRAIN-TEST HESSIAN OVERLAP FUNCTION

Since we will be interested primarily in the ridgeless limit A — 0, and since the effect of nonzero
X is simply to shift the spectrum of Hy iy := — =X TX + M\, we will omit \ in the computation of
OH,ous, Hirain (A1, A2), and will write Hipain = A = LX T X from now on unless explicitly stated
otherwise. Thus, we are interested in the overlap function of the matrices

Htest = Ztestu Htrain = Ztlr/jm 717, ZTZZtlr/an
The computation is simplified significantly by taking advantage of asymptotic freeness of %Z Tz
from Yirain, Stest- By Theorem ] we have asymptotically

OHtcstyHtrain ()\te; )\tr) = OztcstyHtrain ()\te; )\tr)
= /Ozteshztrain ()\tea )‘) Oztraiantrain ()‘7 )‘tr) duztrain ()‘) . (42)

In particular this shows, somewhat intuitively, that the overlap function of the train/test Hessians
will itself depend on the overlap function of the population covariance matrices. Eq. (@2)) shows
the dependence is quite simple: One simply composes the overlap kernels taking an Hipain =
E:r/jm Tan Tz Etlr/am eigenspace to a My ,i, one, and taking a Y,,i, eigenspace to a Xieg one. The
overlap of the train and test population covariances, Oy, ., 5...... is part of the input data of the

problem and is therefore known. As for the second factor, Os;,, .. H,,.in» this is simply the overlap
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function of the population and sample covariance matrices for an anisotropic gaussian sample. For-
mulas for this quantity are known (see, eg. |Potters & Bouchaud! (2020)). To keep the presentation
self-contained we quickly derive an expression using operator-valued free probability.

Following Appendix [B.1] the train-test Hessian overlap function can be computed via

{ K 2 rain;>\ ) K Hrain;)\ )
O raims Hyrain (A1, A2) 1= lim = K (S - Ul)— (H, 2:72) ;
00 ir[K (Strain; M, 01)] [ K (Hirain; A2, 02)]

where
1 o

7 (@ —p)2 + o2’
is the Poisson kernel with center ;1 and width 0. Moving the first denominator trace into the numer-

ator and canceling a factor of 7 from top and bottom, we find that computing O, ., Hyuin (A1, A2)
requires the numerator and denominator traces

K(z;p,0) =

02
s tr

(A= XoI)* + 021

02

tr [h 2rain
(Bersin) (A—NoI)? + 021

where h (Ztrain) = K(Etrain; )\1; 01) / t_r[K(ztrain; >\17 01)] .

Using the definition of ¢; (z) @I, and the resolvent form of the Poisson kernel,

K(z;p,0) = —1Im (p + io — z)7,

these become

—Imt,, ()\24"502), —Imt; ()\2+i02).

Proposition [3]implies
th(2) — [h (Strain) (21 — 7 (2) ztrain)*l} 43)
i (2) = & [ (21 =7 (2) Soran) | (44)

SO
Im ir {h (Strain) (21 — 7 (2) ztrain)*l}

OztraimHtmin ()‘17 >\2) — lim lim

o1—0 z~>)\2+i' Im tr |:(ZI -Tr (Z) zDtrain)il] 7

where limzﬁ)\;i is shorthand for lim,_,g with z = Ay 4 i0. Taking o7 — 0 sends h (Xiain) to @
delta function and collapses the trace in the numerator to the \; eigenspace of Xy4ip, SO
Im

1
. —T‘(Z))\l
Oztrainthr'xin >‘17)\2 —  lim z .
ain (A1, 22) ot [Im —Asdps,, (V)

Composing with Ox, ., yields the overlap function Os, ., Hyin = OHiess, Herain -

Strain

C.2 OVERLAP DECOMPOSITION OF AL

Trace integrals are written in terms of the spectra and overlaps of the matrices involved. To explicitly
determine the spectral density of Hi,,in, note that it can be written in terms of the trace in equation

44, B
PHirain (/\tr) = (}IL% tr [K(Htrairﬁ At U)] .

Using the same approach as above, we have the following for the o-Poisson-smoothed spectral
density of Hiyain:

1 .
PHyrainio ()‘tr) = —;Im 131 ()‘tr + ’LO’)

1 1
2t (V).
— T / mZ _r (Z) )\duztraln ()\)
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Collecting the results of the previous section and the fluctuation formula (TT)),

Atr
T ] M G Ot O ) i ()i (). 45)
tr

te@t CUTVALUTE N— e’ eigenspace overlap
train variance

where

OHtcstaHtrain ()\tea )\tr) = /OztcstA,Ztrain ()\te; )‘) OEtraimHtrain ()‘7 )\tr) dp“zmnn ()‘) ) (46)

with
@) H ()\ A ) —  lim ! - r(12))\]
Strain; Htrain 1, A2 ; )\Jr f I d - ()\) :

This provides a complete decomposition of the test loss ﬂuctuatlon in terms of spectra and overlaps
of the train and test Hessian.

C.3 PROOF OF COVARIATE SHIFT THEOREM [3]

This subsection, together with the proofs of Propositions found in Appendix D] proves Theorem

Formulas (@3] and show the effect of covariate shift in train/test sets decomposes naturally in
terms of the overlap function Ox,__, x,..,. of the two population covariances. (Note that there are
two levels of overlap decomposition: the test loss increment is decomposed in terms of the train-test
Hessian overlap function (@3])), which in turn is decomposed in terms of the overlaps of Stest, Ytrain-)

We can equivalently start from explicit expressions for the fluctuation. Differentiating the loss and
solving for the optimal weights directly, one has

1

Liest (W (§)) = —5 (L2 (tia (—X) = Mg (=X)) + A2ty (=) , (47)

(equation of Appendix[C.4). Since AL = Liest — Lo, and Ly is obtained by simply setting the
perturbation strength o¢ — 0, we immediately find

AL = ———Atiq (=)). (48)

Adopting the notation A= T A L Propositionyields

~ ~ -1
/\tid (_>\) - _>\ﬁ' |:Etest (AI + Etrain) :|

4y, (=A) = =N | Siest Zirai (5\14—2 -)72
d\ id test ~train train .

Substituting into (48),
O'g Y ~ -2
AL — %)\ tr Etestztrain ()\I + Ztrauin) .
Writing the last trace as an integral over the spectral measures of Yicst, 2train, this becomes

o2 Air
AL = PN [ A O O i) s ) s O, 49
(A+ )\tr)

which completes the proof of Theorem [3] Equation (9) parallels (45) but averages out the random
training inputs and label noise to express AL purely in terms of the known objects Y ain, Stest. This
expression shows that label noise leads to large increases in test loss when a direction of large train-
ing variance (small eigenvalue Ay, of Y;4in) and a direction of large test curvature (large eigenvalue
Ate Of Liegt) experience significant overlap (large Os,... S (Ates Atr))-
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C.4 EXPLICIT FORMULAS FOR TEST LOSS, FLUCTUATION

Here we derive explicit expressions for the full test loss and test loss fluctuation under general
covariate shift. Since these formulas and generalizations of them are already published, this section
is mostly for internal reference—especially for calculation of theoretical loss curves in Figs. 1 and
2.

Let X have rows x;'— and & have components &;. Li,in can be written
Ltrain(wag) = QWH\wa* +€ XU)H2 2d wTw'
Differentiating, we find
VACtrain(u]v 6) = éHtrainw f mXT (%XU}* + g)
Hirgin i= AV Logain = = X T X + AL
Similarly,
Etest (w) = 2d (w w*) Etest (U_) ’lU*) .
Htcst = dv2£tcst = Etcst~
Solving 0 = V., Liyain yields
w=H!

train

(;XTX) Wy + (Htrain)71 %X—rg
Substituting into Lyest yields

N 1_ q0 mXTX + N1
»Ctest ('U} (5)) = ctr Ztest ¢
(LXTX 4+ AI)°

2
Since (A + \) > = —L(A+ M)~ we can write

Liest (0 (€)) = — (qag ddAA AQd) a (=) (50)

l\D\H l\DM—‘

(qffg (tia (—A) = Atig (X)) + Aty (=) (1)
Proposition [3]implies

tia (2) = @ [ S (21 = 7 (2) Sorain) ']

thy (2) = i [Stest (21 =7 (2) Serain) > (1 =7 (2) Train)|
which fully specifies Liest (W (£)). The fluctuation is easily gotten by setting ag — 0 and subtracting
from Liest (@ (£)).
Reduction to published formulas Letting A= ( by and substituting into (#0), we obtain

1 At

A=X-— W (t 52
31 (t), (52)

which is eq. (8) of[Mel & Ganguli| (2021) for the “effective regularization”.

The fluctuation in (50) is
21 d

~1985 5
A

o B (T E)]

A
-1
= —)\tI' |:Ztra1n >\I + Etram) :| )

AL = Mg (=A).

Since

tr

)\tid (7/\) —
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we get

1~,_
AL = qagi)\’tr

< 2tlrain ) 2
S\I + 2train .

( E‘crai]ﬂ ) 2
S\I + Etrauin 7

which matches the fluctuation term of their formula up to constant factors differing in the loss defi-
nitions. Next, the remaining term can be written

The authors define = := 22 5o
Pf dA

1 d
= Liost — AL = = [ =tig (=) + A== Mg (=) ] -
Lo = Liest L 2< a (=) + d\ af )>
Using (50) again,
1 _ 5\2 rain = 22 ai
Lo=5 |ur t} — W | Sy
by + Et1rain (AI + Etrain)

Comparing to (52)), the first term is « (5\ — A), and differentiating gives

(67

> 2
o — tr _ train
(>\+Etrain )

Y=

Substituting and simplifying yields

E():1 aX — a\ a

2 Ztraiu 2
a—u |:(5\+2train) :|
1- N by rain 2
=N Ala—t (J) —al\ .
2 A + Ztrain

Once again using equation (52), « (5\ — )\) can be turned back into a trace:

1- — 5\2 rain N 2 rain 2
Lo= x| Aemain (Nt)
2 M + 2:t;rain A + Etrain
1<, 5\22 rain
= iA/tI' % 5
()\I + Etrain)

which is equivalent to their second term.

C.5 k-LEVEL MODEL

At several points in the main text we refer to a k-level input covariance,

k
/“thrain = E plésb .
=1

In this case the self-consistent equation for r (40]) becomes

k -1
S
r= (1 —4)_pis _ZS,T> :
%

i=1
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which can be written as p (r,z) = 0 for some polynomial in r, z. Similarly, the overlap function
simplifies to a sum over the distinct eigenvalues of X¢,4in:

1
Im z—r(z)A\1

OztrainyHtrain ()‘h /\2) - hIIlM k I 1 ’
2=y Zi:l pilm z—r(z)s;

C.5.1 SEPARATED SCALES LIMIT

We now assume the scales are widely separated: s;+; < s;. We will also work with the ridgeless
formulas corresponding to A — 0 derived in Appendix[C.6 For simplicity, assume s; = 1. We will
obtain leading order formulas for h () as the ratio of successive scales is taken to 0. In Appendix
h is defined and found to satisfy the following self-consistent equation (equation (33)):

t
1= d o (t
[ s ©

The right hand side is a decreasing function of h and a decreasing function of «, we have that h is
a decreasing function of . Since the integral reduces to a sum over the k eigenvalues, and since all
terms with ¢ < h do not contribute at leading order in s;1/s;, we assume that h ~ s; = 1 and
neglect all lower terms, giving

soh =p; —aand AL is
2
_ %ea [s0(s, 1) dps,.., (5)
2 p1— @ ’
the integral in the numerator can be written

1_
/ SO (5,1) s (5) = -6 St P

where P, . -, is the projector onto Xyain’s a-eigenspace. In other words, the integral is simply
the normalized total overlap of X;.s; onto the strong training covariance space, and is equal to 1 for
Etrain = Etest~

AL

Now let us assume that  is near the scale s?. The self-consistent equation becomes

s2

.
pzh—i—asi2

s (55,
o

where us,... (>> 522) is the total probability mass of all scales greater than s?, ie 23;11 p;. Solving
yields

Pi _
O = i ain (> 57)
which is consistent with the assumption that A ~ 322 Since h > 0, we only get a valid solution for
Q2> S, ain (>> sf) Substituting back into the error expression yields

OAS2

= h,

O'g pia2 f ﬁo (57 t) d:uzcx-ain (t) dﬂZtest (S)

AL=— 5 IV

2 (Mztrain (>> Si+1) - a) (Oé — MS¢rain (>> S ))
Evaluating the numerator generally requires a choice of Yies;’s behavior in the limit s;1/s; — 0,
but note that the denominator has zeros at o = sy, (>> 8?) s S rain (>> 52 +1), and so the error
will generically become infinite whenever « is equal to the cumulative mass of some number of top
scales. As a simple special case, letting Y5t = Zgrain, this reduces to

2
AE — Oj (a - uztrain (>> 822)) +piluztrain (>> S’LQ)

2 (:U’Etrain (>> 812+1) - a) (a — MS¢rain (>> 812))

Since under this assumption,

1 _
Lo = 5hir {ztmin (hI + 0 Srain) 1} _ 2

1 v
By {04512 [QHEPM - 1} i (3 87) < @ < sy (> 5714)
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when we take s;11/s; — 0, Lo only contributes at the highest scale, so

1
Ly = §U+ (p1— ),

where o is the relu function.

C.6 RIDGELESS LIMIT

Here we simplify our formula for the test error in the ridgeless limit. From (50), we have

1 ,d
1
Lo = Liest — AL = —§>\2ti’d (=N).

It will also be helpful to consult ¢i4 and r’s explicit expressions as matrix traces (equations (1)) and

M)

tia(z) =1tr

-1
tost (z[ - 1XU() ] , (53)
m
r(z) =1+qit|(z— 4)7 4], (54)

C.6.1 OVERSAMPLED REGIME

From (53), and since for a := m/d > 1, the limiting spectrum of -- X " X is bounded away from 0,
tia (—A) is analytic as A — 0T. Thus in the oversampled regime

1
AL — —§q0'§tid (0) s £() — 0.
From Propositions 2]and 3]
1 _ _
tia (z) — —@u [StestSpraim] » 7(0)=1—g¢,

so that
1 1 _ -1
AL, Lest — 50'?;“ [EteStEtrain] :

C.6.2 UNDERSAMPLED REGIME

Now assume @ < 1. Now for A\ — 0, tjq and r’s explicit expressions in (33) and (39) suggest
tia (—A) = O (A7!) and r (=) = O ()). For convenience we will rewrite our formulas in terms

of h(z) := % ( r(fz) — z) Substituting into the self-consistent equation for r (@0) and simplifying

gives
t
h(z) = (qgh(2) + /7d ceain (F) -
(2) = (qh(2) + 2) Gt tl HStrain (1)
Now differentiating and setting z — 0, we find
- / S (55)
=q qh+t /’('Ztrain

2
(@) s ©
= 2
1=af (5i5) disin

where we’ve suppressed the argument of 1, b/,

, (56)
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We now write the error expressions in terms of these
d

2
= ——(QO0¢ —
277 ax

= 2002 (g () + ) [Seat (08 ) +0) T+ Sirain) ]

AL At (=)

o Strain
r—0 1, “[Zmﬂ<mu¥inw04
21%¢ ¢ )2
L= qf (qh+t> A, rain (t)
024 GO (5. 0) s, (D diis.c ()

2 ¢ )2
1= af (35) A )

)

while

1
Ly = _§>‘2ti/d (=)

1 _ _
§qh tr |:Etest (QhI + Etrain) 1}

1 s
§qh/ mo (5,1) dpisy o (1) dpis,.., (5) -

Finally, the total loss is just Lo + AL.

D CHARACTERIZATION OF tf (2)
Here we derive an asymptotically exact expression for
e (2) i= & [F (Siests Strain) (2 = 4)7].
Let us abbreviate F' := F (Xiain, Ltest ). First,
A= xTx =5l (£272) 2,
m m

where Z has standard normal entries, so that

train train

_ _ 1 -1
tp(z) =1 lzm ry_ 1?2 (zI - ztminZTZ>
m

(57)

Now define B := I5 — Es o, where Es o is a matrix whose (5, 2) entry is 1 and has all other entries

equal to 0, and let

0 0 0 00
%Etlr/ainFZt;;]/f 0 %Etrain 0 0
Y= 0 0 0 00
0 0 0 00
0 0 0 00
00 0 0 0
00 0 0 0
=000 ﬁZT 0
1
00 0 0 7
00 0 0 0

It is straightforward to verify that (B — (X + Q)) " has as its (5, 1) block exactly the matrix in (57),
and so tr (2) = [gs4q (B)]5 ;» Where gs 1 ¢ is the operator-valued Cauchy transform of ¥ + Q.
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By rotational invariance, 3, () are asymptotically operator free, meaning we can apply the operator-
valued additive subordination relation (see, eg. Mingo & Speicher|(2017) Chapter 10), which yields
the self-consistent equation

9s+@ (B) = 92 (B = Rq (95+¢ (B))) -
The blocks of () are standard normal matrices, and so its R-transform is given by
Rq (M) =£[QMQ],

where & is the operator-valued expectation that takes normalized traces of all square blocks. Due to
the large number of zeros in @), only two entries of R¢ (M) are nonzero:

[RQ (M)]375 = M4,4
[RQ (M)]4,4 =qMs3.

On the other hand, by definition g5, (M) = £ [(M - 2)71} . Substituting back into the subordina-
tion relation and writing ¢ for gs1¢ (B), we find

-1

1 0 0 0 0
- %E 1 - % Ztrain 0 0
g=¢& 0 0 1 0 —Ja4 ,
0 0 0 1—qgss 0
0 -1 0 0 1
where to simplify notation we have written = := Z:!;HFE;;{I? . The entries of the right side are

straightforward to compute using elementary row operations. Performing just enough such opera-
tions to determine the (5,1), (4,4), and (5, 3) entries, we obtain the closed system of equations

gs3 = tr {Etrain (21 — 944Etrain)71}

We can eliminate g53 entirely, giving our trace
- -1
ty (Z) =gs51 =t [F (ZI - thrain) ] )
in terms of the scalar r := g44 that satisfies
-1

r= (1 —qtr {Ztrain (2 - rztrain)il})

A few remarks are in order. First, we note that we can rewrite this trace as an integral over the

spectrum of Xy ain:
-1
t
=(1- d (t . 58
r ( Q/Z_tr uzmm()) (58)

It is helpful to compare (58) to the explicit expressions for g4, gs3 from the linearization before
applying the subordination relation, which are

gua=1+qir[(z - 4) " 4] (59)

gs3 =1r {(ZI -A)7! Etrain] : (60)

Thus g44 (2) is analytic in z everywhere outside the spectrum of A, and g44 (H*) C HT and 0 <

g4 (]R<O) < 1 (the first inequality is gotten most easily by using gs3 < 0 and g44 = (1 — qg53)71).
In fact, these conditions along with the self-consistent equation (58)) are enough to guarantee that
the solution is unique, holomorphic, and coincides with g44 throughout all of (C\]RZO.
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Proposition 4. For = € C\R=Y, there is a unique solution r (z) to (58) satisfying the conditions
r(H*) € HF and 0 < 7 (R<Y) < 1. 7 (2) depends holomorphically on z and can be obtained by
iteration of the right hand side of (58) from an arbitrary initial point in C\R=°.

Proof. Assume z € H™. Let f (r, z) be the map defined by the right hand side of (38):

Fr2) = (1 fq/z_ittrd,ugmm (t))_l.

It is straightforward to check that f (-,z) : HT — HT. Furthermore, no point on the boundary
of H" is a fixed point of f (-, z), since f (R, z) C H", and f(co0,z) = 1. The Denjoy-Wolff
theorem then guarantees that f (-, z) has a unique fixed point in H™ - and that this point is obtained
by iteration of f (-, z) from an arbitrary initial point in H*. Thus together with the condition
r € H uniquely defines a function r () for all z € H~.

Now fix zg € H™. Since f (-,20) : H" — H* and f (-, z0) is not a M6bius transformation (it only
can be if Xy, 18 a scalar matrix), the Schwarz lemma implies ‘ % f(r(z0), zo)‘ < 1, which means

AP ICEn

= ‘grf(r,zo) — 1‘ > 0,
and so the implicit function theorem implies there is a holomorphic function solving on some
neighborhood of z that coincides with 7 (z0) at zo. Since r (zo) € H™, this function must also stay
in H' in some (possibly smaller) neighborhood of z¢, and by uniqueness of solutions to (38)), this
implies that it coincides with r (z) on this neighborhood. Thus r (z) : H™ — H™ is holomorphic at
each point of H™. An identical argument proves the proposition for z € H.

Now suppose z < 0. Conjugating the right hand side of by the map  — 1/(1 — gz) gives a
self-consistent equation satisfied by gs3:

——t
1—qy

t
y= / Z_ildﬂzmm (t). (61)
The condition 0 < r (z) < 1 implies gs3 < 0. Now letting h (y, z) be the right hand side of (61)),
h (y,z) — y is convex in y and satisfies h (0,z) —0 < 0 and h (—o0, z) — (—00) = 00, so there is a
unique solution to (6I) with y < 0, and thus a unique solution to (38) with 0 < r (z) < 1.

o)

Since a—yh (y,z) > 0, and differentiating h at the fixed point gives

0 0 t
a—yh(y,z) = 3y (1-qy) / mdﬂzmm (t)

1— t
+ z/ %dﬂzmm (t)

- G—qy) 17

C1l-gqy
<1,

y (z) is an attracting fixed point of & (-, z). Since h (-, z) is a conjugate of f (-, z), the unique solution
of satisfying 0 < 7 (z) < 1 is an attracting fixed point of f (-, z). This implies that there is
a neighborhood of z that extends into the upper half plane whose iterates converge to r (2). But
since z < 0, f (H',z) C H*, and so the Denjoy-Wolff theorem implies that all iterates of f (-, 2)
initialized in H™ converge to the same point, which therefore must be 7 (2).

Finally, % (h(y) —y) =k (y) — 1 < 0 implies that y (z) extends holomorphically to a solution of

(61) in an entire neighborhood of z. Since h (y (w) ,w) — y (w) = 0 for all w in this neighborhood,
at the solution point,

—t—=d (T
%h(y (2),2 J [—— USrain ()

)
2y ()2 -y() & h(y(E).2) -y ()

A negative derivative implies that for sufficiently small neighborhood U of z, y (U NH™) C H™T.

Yy (2) = — <0.
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Mapping back to r (z) := 1/(1 — qy(z)) yields a holomorphic function satisfying (38) in a neigh-
borhood U of z < 0 such that for » (U NH~) C H*. By uniqueness of solutions in the upper half
plane, r must coincide with the function defined earlier on U NH ™. Thus 7 extends holomorphically
to the negative real axis. O

The subordination relation implies g44 (2) = 7 (z) in a neighborhood of oo, but both functions
extend holomorphically to all of C\R=?, implying they are equal throughout. This completes the
proof of Propositions 2]and 3]

E LOCAL GEOMETRY OF MLPS

train-test Hessian overlaps

10" L
4
o ®
=3 .
©
2
o 10°
=] ¢
K7}
< 4
o
¥
.
10—1 4
107! 10° 10!

Hirain €igenvalue

Figure 6: Eigenvector overlap function for one MLP simulation in the context of[3.3] A dot is plotted
for every pair of train and test eigenvalues, with dot size and opacity representing squared overlap of
the corresponding eigenvectors. Note the very strong train-test alignment indicated by the restriction
of almost all overlap to the diagonal.

E.1 GRADIENT DESCENT DYNAMICS

The initial gradient at wg is 2z := dV Lirain (wo, €), and the Hessian is Hyyain := dV?Liyain, S0 the
local approximation for the training loss is

(w - wa)T Htrain (w - U}()) )

2d

where we’ve discarded additive constants. The gradient is then

1
Lirain (w) ~ ng (w — wo) +

V Lirain (w) = é (2 = Hirainwo + Hirainw)
so gradient descent does
w = w —1N(2 = Hiainwo + Hizainw)
= (I — nHrain) W — 1 (2 — HirainWo) -
Thus,

(I - 77Htrain)t -1
Htrain

Awy == wy — wg = z,
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AL dynamics
—— simulation » r’=0.99
—— theory r’=0.94 /
0.02 4 /
9 %
= 0.015 -
5 A
S — -
5 /
g
2 7~
g y
= V.4
/
0 -
0.000 -
103 0.01 0.02
SGD steps Predicted frac |AL|

Figure 7: Learning dynamics predicted by local two-loss geometry. Left panel: Test loss trajectories
in response to different label noise realizations (individual trajectories shown as thin green lines;
average shown as thick green line). Noise amplitude corresponds to red dot in Fig. (b). To reduce
clutter, only theory average is shown (black line; see (62)). Right panel: measured vs predicted
relative test loss increment at two times, corresponding to the vertical blue and gold lines in the left
panel. Points corresponding to the same trajectory are connected by gray lines. Horizontal blue and
gold lines show means.

and so the test error satisfies

1 1
(Aﬁtest)t = EgTAwt + ﬁAwg—HtestAwt (62)
LU nHuan) =11 (L= nHiain)' =1 (L= nHiain)' = T
dg Htrain 2d Htrain rest Htrain ’
(63)

with g := dV Liest (wo) and Hiegy 1= dV? Liest (wo).
To compute the GD trajectory for a large network, it’s most efficient to precompute
g = grad (Lirain) (wo)
Hiyainwo = hvp (Lirain, Wo) ,
set vy 1= z — Hyrainwo, and simply iterate
w — w — 1 (vg + hvp (Lirain, w)) ,
where grad, hvp compute function gradients and Hessian-vector products.

F EFFICIENT CALCULATION OF EIGENVECTOR OVERLAPS FOR LARGE
MATRICES

Here we describe the Overlap-KPM algorithm, which estimates the unnormalized or total eigenvec-
tor overlaps for two matrices. That is, for self-adjoint A, B € R*9, it estimates the measure

1 < 2
as = 3 dona [102 )],
which accumulates all overlap of \; A-eigenspaces with all A\ B-eigenspaces. To obtain the nor-
malized overlap function treated in the main text (eg. equation (I8))), one simply divides by the
spectral densities of A, B at A1, A2. The problem of estimating spectral densities for large matrices
has already received significant attention (see [Papyan| (2019) in machine learning context), so we
assume that one can practically transform back and forth between normalized and unnormalized
overlap functions.
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F.1 RANK DEFLATION AND NORMALIZATION

As a preprocessing step, we remove the outlier eigenspaces from each matrix obtained via subspace
iteration (cf Fig. , and then normalize the spectra to the interval [—1, 1].

F.2 RANK DEFLATION VIA SUBSPACE ITERATION

The overlap plots of Fig. [5| were generated via Subspace Iteration (SI). SI is a well known method
that generalizes power iteration, so we review it only briefly here. See |Papyan|(2019) for an explicit
implementation in a machine learning context.

Let M be a self-adjoint operator with simple spectrum Ap, . . ., g, and take V € R?** with standard
normal entries and then orthonormalize the columns. SI iterates

V- MV

V ->VaQ,

where () is the Gram-Schmidt orthonormalizing upper triangular matrix of V. Informally, each
application of M amplifies each i*" eigenspace coefficient of the columns of V by \;, which gener-
ically leads to exponentially greater weight on the leading eigenspaces. The orthonormalization )
prevents all eigenvectors from collapsing onto the same leading eigenvector. Since they are forced
to span an k-dimensional space, they must converge to the top & eigenvectors of M. Overlaps can
then be calculated direction by computing pairwise dot products of columns of V.

After convergence, outlier eigenspaces are removed from the matrices by replacing each matrix
vector product v — M (v) with

v Moy (v) = M (v) = VV .

F.2.1 SPECTRUM NORMALIZATION

After removing the outlier eigenvalues, one may obtain bounds for the remaining spectrum via
standard approches (eg. the Lanczos algorithm; cf Papyan| (2019)). Letting Apin, Amax denote the
minimum and maximum eigenvalue (in practice, with a small amount of padding added), we the
normalize the matrices to the interval [—1, 1] by replacing v — M. (v) with

>\max + )\min>
EEE——— )

)\max - )\min

U= Mnorm (U) = #Mdef (U) - <

)\max - Amin

F.3 OVERLAP-KPM

We now assume the previous preprocessing steps have been performed and in particular that A, B’s
spectra lie inside [—1, 1].

First note that for kernel function G one can write the kernel-smoothed overlaps exactly as a trace:

d
_ 1
1[G (A= \i50) G (B = Xai0)] = > G(Aai—Mio)G(Apy — A2;0) |d(va-vs,)°
i,j=1

(64)

Thus the goal will be to compute such traces for each (A1, A2) for some sufficiently small fixed
kernel width 0. Computing such traces directly is prohibitively expensive for very large matrices,
and so a standard approach is to use Hutchinson trace estimation, ie. to average v ' Mwv over several
random samples of, say, standard normal v, since

E, [v" Mv] = tr [ME, [v0"]] = tr [M].

Informal experiments suggested better stability for estimation of PSD traces, so we replace the trace
on the left side of with

0 {GW (A= ;o) G (B = Aayo) GV/2 (A — )\1;0)} .
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Now applying the Hutchinson trick, we sample probes vy, ..., vp and approximate
P

_ 1
TG (A= Ai;0)G (B = Mso)] ~ 5 D 0, GV (A= Ai30) G (B = Mg;0) G2 (A= M\jjo) v,

p=1

1 < 2
=2 HGW (B — o3 0) GY2 (A — \1:0) qu :

p=1
To compute the summand, we generalize a standard approach known as the kernel polynomial
method. Practically speaking, this entails approximating the kernel functions G/ (z — \; o) using
Chebyshev polynomials 7; (), which can be computed efficiently using Ty (z) = 1,7} (z) = x,
and the recurrence

Tj ({E) = 2{ETj,1 ({E) — Tj (l’), ] Z 2.

Letting «, 5 be the Chebyshev coefficients of the kernel functions,

Gl/Qxf)\la Zal J

G (z — Moo Z@

we truncate to degree K and write

2
= HG1/2 (B — s 0) G2 (A—/\l;O')UMH (65)
% 2
~ || BT (B)Ti (A) v, (66)
4,7=0
K
= Y aiBjorBew,T; (A)T; (B)T; (B) Ty (A) v, (67)
i,5,k,0=0
K
= Z o; B0, 80 M; 5 1.0,y (68)
i,7,k, =0

Thus for P probes and order- K Chebyshev truncation, by appropriate choice of the coefficients «, /3,
one can approximate a general function from the P (K + 1)4 dot products

Mi ke = v T; (A) Tj (B) Ty (B) Ty (A) vy

This can be improved somewhat using the Chebyshev product identity

T (2) T2 (2) = 5 (Tyee (2) + Ty (2)), (69)
so that

% (0 T; (A) T (B) The (A) v+ v, Ti (A) Ty (B) T (A) )

and so all needed dot products can be obtained from the P (K + 1)2 (2K + 1) ~ 2PK?3 dot prod-
ucts

Mi iy =v,Ti(A)T; (B) T (A) vy, 0<ij<K, 0<j<2K, 1<u<P

M jken =

Algorithm [1| efficiently generates all such probe moments with ~ PK? matrix vector products.
Algorithm|1]actually stores all 2P K? vectors T; (B) T, (A) v,,, but in practice, our implementation
is significantly more memory efficient. We store all T}, (A) v,,, but as B’s are added, one only needs
to store the current and previous power of B. This amounts to ~ K vectors in memory at once.

Once the M; ; 1, are known, equation is used to estimate the trace for each value of A1, Ao,
Tk q
yielding an approximation to the unnormalized overlap function of A, B.
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Often in machine learning contexts, one or both of A, B has spectrum that is highly peaked around a
particular value. For the trace in to accurately reflect the overlaps at A1, Ao, the kernels—more
precisely, their finite K Chebyshev series—must decay sufficiently quickly away from Ap, A2 to
prevent the spectral spikes from overlwhelming the overlap sum. Practically speaking, this can be
diagnosed by 1) forming an estimate of A, B’s spectral density, eg. using the Lanczos algorithm (see
Papyan| (2019) for implementation in ML context), 2) forming truncated Chebyshev series for the
kernels, and 3) comparing kernel decay to spike height. Insufficient decay usually requires either
decreased kernel width o, or increased Chebyshev degree K so that polynomial approximations
accurately approximate the small tails needed to dampen the spectral spikes.

Algorithm 1| evaluates O(P K ?) matrix vector products. When these correspond to hessian vector
products for a model with d parameters evaluated on m examples, this equates to a total runtime
complexity of O(PK?md). The number of probes P and the Chebyshev degree K are usually
small and can be taken to be fixed relative to m, d, so runtime is essentially linear in the number
of parameters and number of examples. Similarly, Algorithmonly requires keeping O(K') matrix
vector products in memory at once, for a memory footprint of O (K d).

Overlap-KMP combines two standard components—Chebyshev polynomial approximation of
smooth spectral kernels and Hutchinson trace estimation—and therefore its hyperparameter behav-
ior is straightforward. The truncation order K controls only the polynomial approximation error of
the Gaussian kernel; because the kernel is analytic, this error decays exponentially fast in K (Boyd,
1989), and in practice the estimate stabilizes rapidly once K exceeds a modest threshold. The num-
ber of probes P affects only the Monte-Carlo variance, which decreases at the usual O(1/+/P) rate.
Empirically, we observe that the estimator is stable over wide ranges of K, P (see tests on synthetic

data in[F4).

Algorithm 1: Overlap-KPM for Eigenvector Overlaps

Input: A(v), B(v) (normalized MVPs); degree K ; probes P

Output: Probe moments M; ;5 , for0 <i,k < K; 0<j<2K; 1< pu<P.
for 1 =1to P do

sample probe v, ~ N (0, I)

V0,0, < Ui V0,1, < A(vy)
fori =2to K do
L V0,i,u < A(UO,ifl,u) —V0,i—2,u

for k = 0to K do
V1,k,p < B(onk#)
for j =2to 2K do
| e ¢ B0j—1,k,0) = Vj—2,ku
for i = 0 to K do
for k = 0to K do
for j = 2to 2K do
| Mi ke ¢ V0ip Uk

F.4 TESTS ON SYNTHETIC DATA

Algorithm [I| with gaussian kernel is applied to synthetic data in Fig. |8} A, B € R000x1000 gre
generated according to

A=Wy, B =W, + A2, (70)

where Wy, Wy are independent Wishart matrices with aspect ratio & = 5. The left panel shows the
ground truth gaussian-smoothed overlap function of A, B. Note the nontrivial alignment due to B’s
dependence on A. The right panel shows the approximation generated via Overlap-KPM, showing
good qualitative match.

We performed informal experiments varying K, P to test the robustness of Algorithm [I] (Figure[9).
As expected, accuracy quickly improves and eventually saturates as the Chebyshev approximation
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order K is increased. The variance of the estimator as a function of P decays as O(1/v/P) with a
constant of proportionality that depends on the input matrices. As figure[9]shows, even for a modest
number of probes (eg., P = 4), results can be quite accurate.

Actual Overlap-KPM

/\A /\A

Figure 8: Overlap-KPM algorithm recovers overlaps on synthetic data. A = Z,/ Z,/m and B =
Z3 Zy/m + A2, where Zy, Zo € R™ are independent matrices with iid. standard normal entries.
d = 1000, a := m/d = 5. Chebyshev degree: K = 45; number of probes P = 4. Left panel shows
actual eigenvector overlaps at eigenvalues A 4, Ap, smoothed with a gaussian kernel of with 1/16.
Right panel shows approximation derived from the Overlap-KPM algorithm.

Figure 9: Varying K, P in overlap-KPM. Gaussian kernel with of 1/32. Matrices A, B were gener-
ated as in
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F.5 HESSIAN OVERLAPS OF RESNET-20

'
H test test
8
Normalized £
overlap density < ,
0
8
test — train £
sectional density < ,
0 | —
0 25 50 0 40
At‘esi‘ Ail’est

Figure 10: Overlap-KPM algorithm for Hessian overlaps of CIFAR-10-trained ResNet-20. De-
gree K = 45 and P = 4 probes with Jackson smoothing applied to gaussian kernel Cheby-
shev coefficients. Left column shows overlaps for Hiyain, Hiest (ie. balanced test set), while
right column shows overlaps for Hiyain, H{.s (imbalanced test set). Top row shows normalized
overlap functions Opg,,;.. Hyeo, (Atrain, Atest) and O, Hl... (Atrains Miest)- For ease of visualiza-
tion, bottom row shows test, train sectional densities O, H ... (Atrain, Atest) train (Atrain) and
OH,uin, 1., (Atrain, Mfest) Hirain (Atrain)—the average overlap of 1-D Hiest / H{o, eigenspaces onto
full eigenspaces of Hyain. In both rows, strong diagonal overlaps are visible in the left column that
are reduced or absent in the right column. Note also in the bottom row that the tail of the A¢yain ~ 0
band extends significantly further for H{ , than for Hy.s, indicating significant loss of high H{
eigenspace energy into the low-eigenvalue band of Hy, iy -

est
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