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ABSTRACT

Local loss geometry in machine learning is fundamentally a two-operator con-
cept. When only a single loss is considered, geometry is fully summarized by the
Hessian spectrum; in practice, however, both training and test losses are relevant,
and the resulting geometry depends on their spectra together with the alignment
of their eigenspaces. We first establish general foundations for two-loss geometry
by formulating a universal local fluctuation law, showing that the expected test-
loss increment under small training perturbations is a trace that combines train
and test spectral data with a critical additional factor quantifying eigenspace over-
lap, and by proving a novel transfer law that describes how overlaps transform in
response to noise. As a solvable analytical model, we next apply these laws to
ridge regression with arbitrary covariate shift, where operator-valued free proba-
bility yields asymptotically exact overlap decompositions that reveal overlaps as
the natural quantities specifying shift and that resolve the puzzle of multiple de-
scent: peaks are controlled by eigenspace (mis-)alignment rather than by Hessian
ill-conditioning alone. Finally, for empirical validation and scalability, we confirm
the fluctuation law in multilayer perceptrons, develop novel algorithms based on
subspace iteration and kernel polynomial methods to estimate overlap functionals,
and apply them to a ResNet-20 trained on CIFAR10, showing that class imbalance
reshapes train—test loss geometry via induced misalignment. Together, these re-
sults establish overlaps as the critical missing ingredient for understanding local
loss geometry, providing both theoretical foundations and scalable estimators for
analyzing generalization in modern neural networks.

1 INTRODUCTION

Modern learning algorithms are inherently local, and sources of randomness (stochastic gradients,
finite-sample variability, and distributional drift) are often small relative to the underlying signal.
A local quadratic approximation to the loss thus provides a natural setting for analyzing learning.
This observation underpins the considerable literature studying loss geometry via Hessians, and in
particular Hessian spectra (see references below). When the focus is a single loss, local geometry
is indeed fully captured by the Hessian spectrum. Crucially, however, in machine learning contexts
there are (at least) rwo losses of interest - train and test - and so local loss geometry involves two
quadratic approximations. The joint geometry of these approximations is not captured by Hessian
spectra alone; it requires a critical additional ingredient: eigenvector alignment, or overlaps.

Despite the fundamental importance of eigenvector overlaps, most studies to date have centered on
Hessian eigenvalue distributions - often explicitly equating spectra with loss geometry. The litera-
ture is extensive and examines Hessians from several complementary angles, including: (i) empirical
measurement of eigenvalue distributions and their training-time evolution, with links to optimization
stability (Sagun et al., 2017} |Ghorbani et al., |2019; |Yao et al.l [2019); (ii) random-matrix-theoretic
and mean field models (Pennington & Bahri, |2017; |Pennington & Worah, 2018} 2019} |[Liao & Ma-
honeyl, 2021} [Karakida et al.l [2019); (iii) class- and layer-structured spectral phenomena, such as
identifiable outliers tied to data and architecture (Papyan| [2020; [Sankar et al.| [2021); and (iv) Hes-
sian/Fisher analyses relating sharpness (as measured by eigenvalue magnitude) to stability and gen-
eralization (Keskar et al., 2017; [Foret et al., |2021; Cohen et al., 2021} [Yao et al., [2019). These
studies give fundamental insight into aspects of loss curvature, but ignore directional information
that becomes relevant as soon as one compares two operators.
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The need to go beyond spectra is well understood in random matrix theory, where eigenvector con-
sistency and overlaps with population directions are central objects in spiked models and correlated
ensembles (Johnstone, 2001} |Paul, 2007; Nadler, |2008}; [Benaych-Georges & Nadakuditi,2011; Bun
et al., 2017} |Landau et al.,[2023)). There, eigenvalues alone do not determine statistical performance;
rather, risk depends on how sample and population eigenvectors align. Our perspective adapts this
principle to learning-theoretic questions by focusing on train—test alignment. We show that overlap
measures between the training fluctuations covariance (intimately related to the training Hessian;
see Results) and the test Hessian yield a decomposition of generalization error into components
associated with eigenvector alignment.

Applying this perspective to ridge regression resolves the puzzle of anisotropy-induced multiple de-
scent (see|Chen et al.|(2021); L1 & Wei|(2021); Mel & Ganguli|(2021);|Meng et al.| (2023) for several
distinct forms of multiple descent). High-dimensional analyses of double/multiple descent often fo-
cus on the connection between interpolation peaks and the eigenvalue distribution of the design
matrix (Singh et al.l 2022; |Chen & Mei, [2022). However, in anisotropic settings where error ex-
hibits multiple peaks despite monotonically decreasing minimum training eigenvalue, spectra alone
do not explain generalization. By making overlaps explicit, we show that the presence and location
of multiple descent peaks are governed by the alignment between train and test Hessian eigenspaces,
rather than by the monotone behavior of the smallest eigenvalue itself. This corrects interpretations
that implicitly attribute sample-wise multiple descent purely to spectrum ill-conditioning (Chen &
Mei, 2022;|Mel & Ganguli,2021; Mel & Pennington, |2022), and suggests a simple geometric picture
for anisotropy-induced generalization error that may prove useful for understanding more complex
models.

A second arena where eigenvector orientation matters is generalization under covariate shift. Recent
work derives high-dimensional risk formulas under shift for the random feature model (Tripuraneni
et al., [2021)) and proposes regularizers that encourage cross-domain invariance in gradient, Fisher,
or Hessian statistics (Rame et al.,|2022; |Hemati et al.,2023). Our analysis complements these views
by decomposing the effect of covariate shift into eigenvalue and eigenvector components. Holding
spectra fixed, changes in overlap structure alone can increase or decrease test risk; the formalism
therefore predicts when shift will help or hurt, and by how much, in a way that a spectrum-only
analysis cannot.

We next perform controlled experiments on multilayer perceptrons to probe the quadratic/noise
regime: near a minimizer, stochastic gradient fluctuations induce parameter perturbations that are
filtered by the (inverse) training Hessian, and the ensuing test-loss increment is determined by the
alignment between these fluctuations and the eigenspaces of the test Hessian. We directly observe
this “train-Hessian filtering” effect, validating the fluctuation-overlap formulas derived from the lo-
cal two-loss setting.

Translating our overlap-centric theory into practice at modern scale requires algorithms that go be-
yond spectral density estimation. A substantial literature has developed linear algebraic tools for
implicit matrices, including polynomial/quadrature approaches and stochastic trace methods such as
Hutchinson and Lanczos-based quadrature (Golub & Meurant, 2009; |Lin et al.,|2016; Ubaru et al.,
2017). These and related techniques have been adapted to deep learning to estimate Hessian spec-
tral densities and extremal eigenpairs efficiently (Adams et al., [2018}; |Papyan, 2019; Ghorbani et al.}
2019; |Yao et al.l 2019). Building on these foundations, we develop novel estimators for overlap
functionals between pairs of Hessians (train—test, population—sample), and apply these to demon-
strate how class imbalance impacts train-test loss geometry.

The resulting picture is that local geometry in machine learning is fundamentally bivariate - spectra
and overlaps: spectra characterize the curvatures of train and test losses, while eigenvector overlaps
determine how these curvatures combine to produce test error.

2 CONTRIBUTIONS

1. Two-loss theory of local geometry. We introduce a novel two-loss framework for lo-
cal loss geometry that incorporates both spectra and overlaps [3.1] rectifying a widespread
oversimplification that equates spectra with geometry.
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2. General foundations We derive and test a universal local fluctuation law showing how
overlaps impact generalization [3.1.1] and a general transfer law dictating how eigenvector
overlaps are transformed by noise[3.1.2]

3. Explicit formulas for high-dimensional ridge regression. Combining tools from random
matrix theory with our overlap transfer law, we provide closed-form expressions for the
overlap function between train and test Hessians in anisotropic ridge regression

4. Unified explanation of covariate shift and multiple descent. We show that covariate shift
is naturally quantified by eigenvector overlaps|3.2.1] and that overlaps analytically resolve
the puzzle of multiple descent[3.2.2]

5. Empirical validation in neural networks. We confirm our theoretical predictions in mul-
tilayer perceptrons, and use overlap machinery to show that the training Hessian acts as a
filter shaping optimization

6. Scalable algorithms for Hessian overlaps. We develop novel, scalable numerical methods
for estimating Hessian eigenvector overlaps in large-scale models, enabling practical use
of our theory in modern deep learning [3.4]

7. Train—test misalignment under class imbalance. We show that class imbalance in CI-
FAR induces misalignment between train and test Hessians, explaining the effects of class
imbalance in terms of train-test loss geometry.

3 RESULTS

3.1 THEORETICAL FOUNDATIONS

3.1.1 A UNIVERSAL LOCAL FLUCTUATION LAW

Let w € R? denote the d-dimensional parameter vector of a model f,,. The parameters are selected
by minimizing a training objective Ji;ain(w), while performance is measured by a test objective
Jiest (w). The local geometry is thus characterized by two local quadratic approximations, one for
Jtrain, Which determines optimization dynamics, and one for J.st, Which measures how changes to
w impact generalization.

How do these approximations combine to determine model performance? Consider a pretrained
model wo, fu, at the minimum of the unperturbed 10ss Jiyain(w, 0). Generically, the effect of a
perturbation to the loss, Jiain(w,€), will be to create a small gradient displacing the minimum.
Write 2 := d V Jiyain (wo, €) for the gradient and Hyyain := d V2 Jypain (w,0) for the Hessian. (These
scalings ensure relevant quantities are O(1).) Quadratic approximation of J,; i, gives

1 1
Jtrain (w, 6) ~ Jtrain (w(),E) + az ! (w - ’U.)o) + 27d (w - U)O)T Htrain (w - ’UJ()) . (1)
Minimizing the perturbed training objective yields a noise-induced fluctuation Aw = —H, L 2z, so
that retraining can be seen as filtering the perturbation by H;r;in. We will refer to the perturbation

gradient z as the injected noise and the post-learning fluctuation Aw as the filtered noise.
After retraining, loss is measured through the test loss Jiegt. Writing Hiest := d V2 Jiest (wp) for
the test Hessian, quadratic approximation of Jiest yields

1
Adest © —Viiest (wo) T H b 2+ —2  Ho b Hie H L 2 )

train 2d train train

Equation (2) represents the simplest model capturing the interaction of nontrivial train and test
geometry in the context of noisy learning. Of particular interest is the case of centered noise
Ez = 0, so that the mean AJi. reduces to the average of the quadratic term only. Writing
Cirain := EAwAw' =E (H t_r;inz) (Ht_mlinz)T for the covariance of the post-learning fluctuations,
we have EAJi ot = %dtr[HteSt Clrain]- This simple expression already suggests the importance of
alignment between directions of large training fluctuation and directions of large test Hessian eigen-

value. Writing AJ := EAJi, this last trace can be rewritten exactly as the integral

AJ = % / A1 A2 O()‘la /\2) ,ulest(d)\l) Nlrain(d)\2)7 3)
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where fityain, [test are the spectral measures of Hiest, Cirain, and O (A1, A2) is the average squared
overlap between eigenspaces at eigenvalues A1, Ay (see Appendix [B| for explicit formula). Equa-
tion [3] which puts training fluctuations Ao, test sensitivity A;, and overlaps of the corresponding
directions O(A1, A2), on equal footing, attests to the fundamental role of overlaps in loss geometry.

3.1.2 OVERLAP TRANSFER LAW

Often, in settings involving two population operators A, B, model behavior depends on the

eigenspace overlaps of A and a noisy sample operator B. Informally, one needs a way of combining
the given population overlaps O4 g with the noise, specified by OB’ 5. We prove the following

appealing transfer law in Appendix

Proposition 1 (Free transfer law for overlap functions). Ler B = F(B, X) be a matrix rational
expression. If X is free from A, B, then

0, 5(0.8) = [ 0an(a.5)0p (0.5 un (d0). @

Proposition |1] entails a simple overlap calculus that can be used to compute overlap functions of
complex matrix models from simpler ones. In Appendix [C| we use (@) to quickly derive expressions
for train-test Hessian overlap functions in anisotropic ridge regression.

3.2 HESSIAN OVERLAPS GOVERN GENERALIZATION IN LINEAR REGRESSION

Let training inputs x € R? have covariance ipain := E[ch], and let the ground-truth output be
linear with Gaussian label noise:

y(x) = julz + €& E~N(0,07).

We will also assume for convenience that w, ~ N (0,1), so that the signal to noise ratio is
it Xtrain/ (It Sirain + 02) (fr denotes the dimension normalized trace). Given a training set con-
sisting of X € R™*4 (rows ) and labels y € R™, ridge regression chooses w € R? to minimize

Jtrain(w) = ﬁ“y_ﬁXwH2+27)\d”wH27 )\20 (5)

The (excess) test loss is measured with test inputs with covariance Yes:
T 2 2 T
Jrest (W) := %Eaj’g [(ﬁw T — y(a:)) } — %0‘ = 2—1d(w — ) Biest (W — wy).

With the scalings of|3.1.1] the train and test Hessians are Hyyqin = A+ Al and Hiest = Jgest, Where
A := X T X/m is the training set sample covariance. (Note this approaches Y;,i, for large m/d.)

We now apply the local fluctuation formula (3), which in the setting of ridge regression is exact. Let-
ting the label noise supply the perturbation, the injected noise 2z := V, Jyain(wo, §) and parameter

- - o -1 S1NT
perturbation covariance Clyain := E (H, i, 2) (Hiain?) | are

2= —XT¢/mVd,  Ciain = 02qA(A+ )2, (6)

The test loss increment AJ is obtained by substituting into the overlap formula (3)). The training-
side operators A, Hyyain = A + Al and C,,i commute and share eigenvectors, so for simplicity all
formulas are written in terms of A’s eigenvalues and vectors:

a’q Ao
AJ = 5 // A1 mOO\h)\Q) szt(dAl)MA(d/\ﬂa )

where uy, ., and p4 are the empirical spectral measures of Yiesr and A, and O(A1, A2) is the
eigenvector-overlap function between their eigenbases (see (I3)). Since we will be interested pri-
marily in the ridgeless limit A — 0, we will loosely refer to A = %X T X as the train Hessian.

The fundamental conclusion from (/) that we will apply toward analyzing covariate shift and mul-
tiple descent is that error is amplified when there is significantly alignment O(\;, \2) between a
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high-variance direction of the learned parameters (small training eigenvalue \3) and a high-curvature
direction of the test loss (large test eigenvalue ).

In Appendix [C} we use techniques from operator-valued free probability to derive asymptotically
exact expressions for Jiest, AJiest and the overlap function Op,, .. H,.., in proportional asymptotics
where m,d — oo with ¢ := d/m fixed. The main conceptual contribution of this work is that while
the spectral densities of train/test operators set the relevant scales, it is their relative orientation
- as quantified by the overlap function - that determines how fluctuations translate into test loss.
We illustrate these points in two settings: first, a simple covariate shift experiment that provides
geometric intuition and positions Osx;, __, =.,... as the natural object quantifying shift; second, the
puzzle of multiple descent (cf. Mel & Ganguli| (2021))), where the overlap function allows a full
analytical account. For both settings, we use the simplest possible model of anisotropic data: the
“two-scale” covariance with spectral measure

pis; 7= P18z, + pades. ®)

3.2.1 COVARIATE SHIFT INCREASES LOSS THROUGH TRAIN-TEST MISALIGNMENT

a Parameter fluctuations b Fixed Hessian spectra c Overlaps and test loss
1.5 i Htrain P %
— Etest
. i 1{ ——0 _--"
= 0.4 1 o e
£ = -
o [ -
G 0.0 3 long/short_ =~ long/long
2 Q4 -=="
< . 0.2 8 1
Awo L e=ma " Brest
Ztrain § Jtest
~1.54 Ztest 0=n/2
' T T T 0.0 T 144 T T
-1.5 0.0 1.5 274 272 20 0 /4 /2
Aw (long) eigenvalue 0

Figure 1: Covariate shift and test error. a) Points: individual parameter fluctuations due to label
noise. Cyan lines: fluctuation covariance Ciyain &~ XL . Red lines: different test Hessians. ¢
measures the angle between the large test and training eigenspaces. b) Eigenspaces are rotated while
Hessian spectra are fixed. Blue line shows d,m — oo theory. c) For small 6, large fluctuations
in learned parameters are aligned with the low-eigenvalue directions of the test Hessian (aligned
ellipses at top left, and purple overlap traces), and error is small (black trace). For large 6, large
fluctuation directions are aligned with sensitive directions of the test loss and test error is large (black

trace). Traces: theory; crosses: average from simulations. d, o, A\, ¢ = 102,10,10=4,1071/2,

Equation (7) expresses AJ in terms of the overlap function Os;,, 4. Relative to the population
overlap Os, ., 5,....» this overlap is deformed by the finite sampling ratio of the training set a =
m/d, in a way that is captured exactly by the free transfer law of Proposition In Appendix we
use the transfer law to state an explicit formula for Oy, __, 4, and then show that A.J can be written

1 - Ay
AJ = — 0'2A/ / A ,.70 . A 7A d st A d ceai A , 9
2q ! ()\ + )\2)2 Ztesmztra"‘ ( 1 2) ’U/E es ( 1) IU/E rain ( 2) ( )

which parallels (7) but averages out the random training inputs and label noise to express A.J purely
in terms of the population operators i, 4in, Ltest (S€€ Appendix for definition of \). This ex-
pression illustrates how Os,, s,.... - as the only quantity in (9) that can change under isospectral
transformations to X1, Ltest - 1S the natural object for quantifying covariate shift.

To illustrate this point, we perform a simple experiment where both 3, .in, 2test have fixed two-
level spectra (equation (§)) with scales s1,s2 = 2°,27% and equal multiplicities. A = 10~* and
a =m/d = 10 so that Hyain = A & Zirain, While Hyest = Stest- Fig. shows the distribution
of learned parameters for different label noise realizations. As predicted, fluctuations have larger
variance along long directions of Clpain & o?q Et_r;in, corresponding to low-curvature directions of
the train Hessian. At the same time, the test loss contours are determined by the test Hessian Yot
We construct a controlled perturbation in which Xt is systematically rotated with respect to Xt ain
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while all spectra are kept fixed (panel b), isolating the effect of overlaps. Fig. [k demonstrates the
consequence of varying overlap. When the long directions of X;.,i, align with the long directions
of Xiest (0 = 0), fluctuations occur in directions where the test error is relatively flat, yielding low
excess test loss (Fig. [Tk, left column). In contrast, when the same train-long directions align with
test-short directions (6 = 7/2), the same magnitude of parameter fluctuation is heavily penalized,
and the test loss rises sharply (Fig. [Tk, right column). This simple experiment illustrates the central
role of eigenvector overlaps in the context of covariate shift.

3.2.2 MULTIPLE DESCENT IS EXPLAINED BY TRAIN-TEST OVERLAPS

b o d

2-scale data Jtest
1

a

3 scales 4 scales Spectrum and overlaps

-0.4

m/d

a

Nl

-0.2

Nl
Il
el
-
L

10t 10° 107! 1073 1077 10° 10° 1074 =53 1=s?
Jtest: DJtest, Bias A Jtest: DJtest, Bias Ay

Figure 2: Multiple descent in ridge regression. a) Jiain, AJtess and bias as a function of the mea-
surement density « = m/d for two-scale data. Note the peaks at critical values of « = 1/2, 1. Solid
traces: theory; crosses: simulations with d = 5000. Dashed, dotted, and dash-dotted lines show the-
ory error, error increment, and bias in the limit that the lower scale s, — 0, where bumps become
true singularities. b) Theory Jiest(cr, A). Traces in panel a) correspond to gold and blue lines. c)
3 and 4 scale data which exhibit 3 and 4 peaks; legend same as a). d) Green histogram: empirical
spectral density of the train Hessian X " X/m at o = 0.496; solid green line: theory. Purple line:
overlap function, O(s?, \2)/2, giving overlap between a train eigenspace at eigenvalue Ao with a
the entire large-eigenvalue test space (ie. s2). Note strong overlap for high train/test eigenspaces.

Double descent is a well-established phenomenon in machine learning in which test error exhibits
a non-monotonic dependence on model size. More recently, several authors have described an ex-
tension of this effect, termed multiple descent, which arises in settings where input data are highly
anisotropic and the covariance spectrum contains multiple separated scales (see introduction). Fig.
,b illustrate multiple descent for two-scale data with s1, s, = 1, 1072, while panel ¢ shows how a
larger number of separated scales can create additional peaks in test error (see caption for details).

For a two—level covariance, the overlap function is determined by the solution to a cubic polynomial
that is easily solved numerically (Appendix [C). Fig. [2d shows the spectrum of the train Hessian
(green histogram and theory line), and the overlap function (T3), indicating overlap of a training
eigenspace at eigenvalue \o with the large-eigenvalue (s?) eigenspace of the test Hessian. Theoreti-
cal and empirical overlaps are in excellent agreement (purple line and crosses).

The peaks of multiple descent are easily understood in terms of eigenvector overlaps. Fig. [3|reports
the error, training spectrum, and overlap map for the two-scale covariance model of Fig.E||2| The
test-loss curve shows two singularities at critical sampling densities &« = m/d (panel a). At the
same densities the training spectrum undergoes phase transitions: at « = 1/2 an initially unimodal
density splits into two bands centered near s7 and s3, and at @ = 1 the lower s3 band develops a
near-zero component (Fig. ). The corresponding overlap map O(\1, \2) is approximately block-
diagonal: modes near s? align predominantly with the s? test subspace, and modes near s3 with the
53 subspace (Fig. ). Thus, the first error spike occurs when near-null training directions overlap
the sharp test subspace, whereas the second arises when an even smaller training component overlaps
the flat subspace but with variance large enough to dominate its small curvature. Fig. B provides
a geometric cartoon of the alignment of top and bottom eigenspaces of Hiyain, Hiesy throughout
this sequence. Until line 5, the minimum eigenvalue of Hi,,jn always decreases as a function of
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Figure 3: Multiple descent is explained by train-test Hessians overlaps. a) AJ due to label noise
(A, 83 — 0 limits taken to illustrate true singularities; see Appendix for details). b) Spectral
density of Hy,,iy as a function of o (each density normalized to a maximum of 1). For high sampling
density «, the training density acquires two components roughly centered on the true underlying data
scales s2, 3. ¢) The overlap function of Hyyain, Hiest as a function of . For small «, all nonzero
H,ain spaces overlap strongly with the large eigenspace of Hiesi. As o approaches the first critical
value, a new spectral component appears, whose eigenspaces overlap almost entirely with the small
eigenspace of Hiest. d) Minimal model of train-test Hessian geometry. Cyan plane and ellipses
represent the top and bottom eigenspaces of Hi,.in. Red ellipsoid represents level sets of test error.
Error is controlled by both train fluctuation magnitude and overlap onto test spaces.

« - which, according to a spectrum-only analysis, should increase test error. Yet the error actually
decreases between horizontal lines 3 and 4, precisely because the lowest train eigenspaces begin to
overlap predominately with the low test eigenspace.

Summarizing, multiple descent arises from the interplay of (i) training components developing near-
zero eigenvalues as « varies, and (ii) which test directions these overlap with - sharp or flat, illus-
trating the potentially extreme impact of (mis-)aligned train and test loss geometry.

3.3 LOCAL THEORY PREDICTS MLP GENERALIZATION AND LEARNING DYNAMICS

To test the applicability of the quadratic two-loss theory to nonlinear networks, we trained small,
constant width multilayer perceptrons (MLPs) to reproduce the responses of an MLP teacher net-
work. Student networks were batch trained for a large number of iterations to ensure near conver-
gence to the noiseless training loss minimum. Noise was then added to the training set and the
network was trained further - beginning from the initial trained state to determine the effect of the
noise on the initial local minimum. After training, the training loss increment was computed and
compared to prediction of the local quadratic theory. Fig. a,b show the measured test loss incre-
ment against the local quadratic prediction for several orders of magnitude of input (a) and label (b)
noise strength. All later panels refer to the noise setting corresponding to the red point in (b).

Fig. [ illustrates inverse Hessian filtering due to training dynamics. The gradient noise induced
by the label noise has covariance E[22z"]. Purple scatter represents the overlap function of E[zz "]
and Hi;,in. Dot x, y position is given by Hiyain, ]E[zzT] eigenvalue and size is proportional to over-
lap. Note strong alignment between gradient noise and test Hessian. After trainin1g, the parameter
fluctuation covariance predicted by quadratic approximation is Ciyain := E (H, 5 2)(H L 2)T.
The overlap function of Hy,i, and the actual post-training covariance is plotted in red. Note how
in accordance with quadratic predictions, variance is strongly inflated/attenuated along low/high
eigendirections of Hy.,i, - 2 phenomenon we refer to as inverse Hessian filtering. The large fluctu-
ations do not translate into large test error since the train and test Hessians are well aligned (Fig. [6),
meaning fluctuations occur primarily along low test Hessian (loss-insensitive) directions.

Loss landscape slices are shown in Fig. Eh for Jirain(w, 0) (the unperturbed 10ss), Jirain(w, €) (the
perturbed loss), and Jiest. A single 2d slice was chosen to contain the unperturbed minimum wyg
(white crosses), perturbed minimum (white stars), and parameters predicted by the local quadratic
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Figure 4: Validation of local fluctuation law in MLPs. Layer widths for both student and teacher
were (5,5,5,1); nonlinearity: tanh; teacher network had gaussian weights with scale 4/ \d;, for
each layer; loss: MSE with /5 parameter A = 1. a,b) Predicted vs measured fluctuation-induced
AJest/ Jiest for increasing input (a) or label (b) noise amplitude o. c) Eigenvector overlap func-
tion between Hies; and the injected noise [zzT] (purple), and post-learning filtered noise Clyain
(red). Note how learning inflates/dampens variance along the low/high Hy.s eigenspaces. d) 2-
dimensional loss landscapes for 1 example simulation: noiseless Ji i, (left), perturbed Jipain (mid-
dle), and Jiest (right). Cross: noiseless training minimum; star: minimum of perturbed Jiyain (ie.
the new learned minimum); tri-star: parameters predicted by quadratic theory.

approximation (white “Y”’s). Local geometry also predicts local gradient descent dynamics well
(Appendix [E-T} Fig. [7). Together, these results validate the predictions of the two-loss local theory.

3.4 CALCULATION OF OVERLAP FUNCTIONS FOR LARGE SCALE NETWORKS

Applying our theory to modern networks requires estimating the overlap function between the train-
ing and test operators. These operators have dimension equal to the number of parameters - often
millions to billions - so any approach that forms them explicitly is infeasible.

Here we give a brief overview of our approach, deferring details to Appendix [F} We apply two
separate algorithms, one for computing overlaps among outlier eigenspaces and another for the
remaining “bulk” spaces. Outlier overlaps are straightforward to obtain using subspace iteration,
a generalization of power iteration wherein k vectors are repeatedly fed into the Hessian-vector
product and orthonormalized (Appendix [F.2} cf. (2019)). After sufficiently many iterations,
the vectors give a good approximation to the top k eigenvectors of the matrix. Overlaps can then
be computed directly. For the bulk eigenspaces, we generalize a well known approach to spectral
density estimation known as the kernel polynomial method (KPM; Algorithm[T]in Appendix [F:3).

Given self-adjoint matrices A, B € R?*¢ and smoothing kernels G (x; o) of width &, the smoothed
total eigenvector overlap of A, B at eigenvalues A1, Ay can be written

d
_ 1
tr [GA’)QGB’AQ] = ﬁ Z G ()\A,i — )\1; O’) G (/\B,j — )\2; 0) |:d ('UA,i . ’UB,j)Q] s (10)
ij=1
where G4 5, := G (A — M\1I;0) and similarly for G g ,. To obtain the normalized overlap function
treated above, one simply divides by the (smoothed) spectral densities of A, B at A1, As.
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Figure 5: Overlap function for Hiyain, Htest, and class imbalanced Hessian H{ ., for ResNet-20
trained on CIFAR10. Cyan/red data: spectra of Hy;ain, Hiest- Dashed lines indicate outlier eigen-
values. Purple scatters show overlap between each pair of eigenspaces/bulk spaces. Size and color
reflect overlap magnitude. Left: Hi qain, Hiest Overlaps. Note strong alignment indicated by large
overlaps along the diagonal. Right: Hiyain, H{., Overlaps. A large fraction of each Hessian’s outlier
energy is lost in low-outlier and bulk spaces of the other, indicating poor alignment.

Computing the trace in (I0) is prohibitively expensive for large A, B, and so we resort to Hutchinson
trace estimation, which approximates tr [X|] with the average of v Xv for several samples of v ~
N (0, I). To ensure the trace is positive, instead of approximating (I0), we use

T [Gan Gool = (G, GGy ] = B |G, G5, I (1n
The KPM proceeds by approximating the kernel functions GX 2/\1 , G}B/f\z using truncated Chebyshev
series. (Kernels and approximation degree must be chosen with care so that the truncated series
doesn’t allow “leakage” of extremely numerous near-0 eigenspaces; see Appendix [F.3]) Thus
can be evaluated in terms of the vectors 7; (B) Tj (A) v, where T}, is the k" Chebyshev polynomial.
These vectors in turn can be generated efficiently via Chebyshev recurrences using only matrix-
vector products.

Using these algorithms, we examined the effect of test-set class imbalance on train-test Hessian
alignment. A CIFAR10-trained ResNet-20 was obtained from |Chen|(top-1 test set accuracy: 92.6%).
5000 train and 5000 test examples were randomly selected to define train and test Hessians. Their
spectra, estimated using subspace iteration and the Lanczos algorithm, are shown in Fig. [5h (train
in cyan; test in red). Non-outlier eigenspaces were grouped into a single bulk space for ease of
visualization. Overlaps between train and test spaces obtained by subspace iteration are shown in
the purple scatter, exhibiting strong alignment (bulk overlaps shown in Fig. ). A class-imbalanced
test Hessian H{ . was defined by selecting only test images with class labels 0, 1, or 2. This leads to
significant misalignment with the leading eigenspaces of Hy,,in (Fig. [5p), explaining the deleterious
effects of class imbalance directly in terms of train-test loss geometry.

4 DISCUSSION

We show how, within a two-loss geometric framework, overlaps occupy a central role linking op-
timization geometry, random matrix theory, and practical machine learning phenomena. We derive
novel theoretical tools for computing overlaps, illustrate through several examples how spectra set
curvatures, while eigenvector overlaps route variance into error - unifying covariate shift and mul-
tiple descent - and develop scalable estimators for overlap analysis in large models. A natural next
step is to track Hessian overlaps through training time (and across phases like plateaus and edge-of-
stability) in large networks. Another direction ripe for exploration is overlap-aware regularizers and
data/architecture interventions that encourage strong eigenvector alignment between train and test
Hessians.
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B EIGENVECTOR OVERLAP FUNCTION

To connect the finite-d decomposition to random-matrix and free-probability tools, we now express
eigenvector overlaps in a kernelized trace form amenable to free-probabilistic methods. Let X, Y be
symmetric d X d matrices with eigendecompositions

d d
X:Z)\quiu;r, Y:Z)\}/vjv;r.
i=1 j=1
For bounded functions f, g,
) T
w[f(X)g()] = > > FOF) 90 [d(u]v)*]. (12)
i=1 j=1

If f and g are sharply peaked around A; and Ag, the sum concentrates on overlaps between eigen-
vectors with eigenvalues near (A1, A2).

A convenient choice is the Poisson kernel

K(zyp,0) = —
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with center 4+ and width o > 0. We define the overlap function

5 tr[K(X; A1, 01) K(Y; A2, 02)]
01,09 050 tr[K(X; A1, 01)] [ K(Y5A2,02)]

O(A1, A2) = (13)

The denominator normalizes the total weight in the sum to one, so O(Aq, \2) is the weighted
average of the (scaled) squared overlaps d (u; v;)? over eigenpairs near (A1, A2). Now (T2)) can be
rewritten

[/ (X)g (V)] = / / F () 9 (02) O (s Ao) dyix (A1) iy (Aa) (14)

In fact, another way to define the overlap function is to write ;1 x,y for the measure taking f,g —

tr[f (X) g (V)] and then defining O (A1, A2) to be the function making (I4) hold, ie. O = d;ll;(%:&/ .

B.1 FREE TRANSFER LAW

Here we prove the following free transfer law for overlap functions:

Proposition 2. Let B combine B with a source of noise X that is free from A, B. Then
04 5(a,b) = / O4,5(a,b)0p 5(b,b) g (db) . (15)

Note that despite its simple and appealing form, this relationship does not hold for general triples of
matrices A, B, C - it suffices to check on finite dimensional matrices with simple spectra. While the
coefficients of C’s eigenvectors in the eigenbases of A, B do follow a change of basis law resembling
formula (T3), recall that the overlap function encodes the squared coefficients rather than the raw
coefficients themselves. This relationship holds specifically because of the freeness relationship
we’ve assumed.

To prove (I5)), start by noting that all of the spectral and overlap information for two matrices A, B
is contained in the measure on R? corresponding to the functional

pas: frg=7(f (A)g(B)].
For example, setting ¢ — 1 and f () = a™ gives access to all moments of A, and therefore to

its spectrum, and similarly for B, while the overlap function is precisely O4.p = dZZ ‘2553, the
Radon-Nikodym derivative of the joint measure with respect to the marginals.

For the remainder of this section, we will work in an abstract free probability space rather than with
concrete matrices. Let (M, 7) be a W*-probability space (in our application this corresponds to the
space of d x d matrices with 7 = [E tr). SeeMingo & Speicher| (2017) for details.

Let A,B,B,X € M be random variables and consider the problem of determining the overlap
function O , 5, where B := F' (B, X)), where X is a source of noise that is free from A, B. As noted

above, all of the overlap information for the three possible pairs of variables A, B, B is contained in
the joint measures

Ha By HAB B B

supported on (some subset of) R2. We are free now to treat these measures as ordinary probability
measures of two scalar random variables. Denote by (-) these scalar expectations. We now make
use of the following two identities:

(F (@) 9 W) @ yymnxy = T (X)g (Y], (16)

and that for each g in a suitably broad class of functions (eg. at minimum all Poisson kernels), there
is another function L, depending linearly on g encoding the “expectation of g (B) =g(F (B, X))
over X, conditioned on B”, ie. such that

T |[F(AB)g(B)| =71f (A.B) L, (B)], an

13
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for all bounded borel f. This is Proposition[3] proved below using operator-valued free probability.

Combining these, we have <f (a)g <5)> = 7[f(A) Ly (B)]. Writing the right hand

(a.8)~pa.s
side as a scalar expectation and then conditioning on b,

F @0 somnn = @a, L),
— QM) L, (B,
where @ (b) := (f (a)>a~m|5:b' Applying (T6) and again,

(@90} 5700, =7 [0D19(5)]
=(Q®9 () .0
:<<f<a>>MB=b<g<5>>a~u,;3-b> ’

b~pp

which shows that a, b are independent conditioned on b:

Hap = //‘A\B:bMB?‘B:bd/LB ().

Applying, for example, classical e-gaussian smoothing to the measures of A, B, B, we can assume
that pxy < px ® py for any two of the three. Thus we are free to form the Radon-Nikodym

dZi g;y , which corresponds to the gaussian-smoothed overlap function Ox vy . (z,y).

Since Ox yc (z,y) px (dx) = prx|y =y (dr), we have that for any bounded measurable function

J o (@) dias = [[ o () ([ rantan) gy (a5) (a0
_ / / o (a.5) / (O e (,) pa (da)) (O s, (05 o (dB) ) s ()
- //¢ (a,é) (/ O e (4,0) Op 5., (b, 5) B (db)) pa(da) pp (C@ )

so the last quantity is exactly the Radon-Nikodym density O A

derivative

O 4 Bie (af?) = /OA,B;e (a,0) Op p.. (b, 13) wp (db).

Taking the smoothing to 0, one obtains the transfer law for the overlap function. Note that one may
have to interpret the Ox y as distributions (eg involving ¢ kernels) in case of degenerate overlap
between two of the matrices (eg. A = B).

Proposition 3. Let A, B be free from X, and let B = F (B, X) be a rational function of B, X.
Then there is a linear operator L on functions such that for arbitrary bounded borel H,

- [H (A,B) g (B)] — 7 [H (A, B)Lg] (B)].

Proof. Let B be a k x k linearization of B such that [Bfl}
its X-dependent and X -independent parts:

B = XBx + Bo.

w1 = 9(F (B, X)). Decompose B into

Now form the linearization matrix
-B 0
L(M):= ,
(M) ( J\Je;cr -1 )

14
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so that .
1 . -B~- 0
100 = _yarpt )

In particular, L} (M) = —g (F (B, X)) and L}, , (M) = —Mg (F (B, X)). So now

-1
[gL(H(A-,B)) (0)]k+1,1 =T H(_L (H (A, B))) }k-q—l J
=7[H (A B)g(F(B,X))].
As with B, decompose L into X -dependent and X -independent parts:
L(M)= XLx + L.

Assuming M is a function of A, B only, these two parts are operator-free (ie. with amalgamation
over the space of complex-entried (k + 1) x (k + 1) matrices). By the additive subordination law,

gL(m) (O> = 9L, (_RXLX (gL(M) (0))) :

From the linearization, gr,(as) (0) is block lower triangular, and X L x only has nonzero components
in the upper left block. This implies that R x1, (gL( M) (O)) is also confined to the upper left block,

and that this entry is simply R_xB (EB’l), where £ := 7 ® id is the expectation functional of
the operator-space. These imply

7[H (A, B)g(F (B, X)) = [grima,n) (0],
= [9r, (~Rxwy (9rimaz) (0))]41

—7 ( By~ R_xBy (EB™) 0 >—1]

_ T
I H(A,B)e, 1 Lk
__|{ Bo—R-xm, (€B7Y) 0"
o —H(A,B)e] 1
k+1,k

=7 [H(4,B) (Bo - R_xn, (€B7)), |-

The second factor can be regarded simply as a function of B (B is the non-X part of B and
EB7!: B+ EB!(B,X) € M (C). This proves that there is some operator L [g] as in the
statement of the proposition. L must obviously be linear in g, completing the proof. O

C TWwO0-LOSS GEOMETRY IN ANISOTROPIC RIDGE REGRESSION

We consider ridge regression on multivariate gaussian input data with train and test covariances
Ytrain, Stest and with linear ground truth, y (z) = ﬁw* - . We will assume for simplicity that

wy ~ N (0, I4). A noisy training set is generated by sampling inputs as follows. The training set
consists of

Ty ~ N(07 21;1rain) 5 Yi =Y (Iz) + fia fz ~ N (05 O—g) )
for i = 1,...,m. Using the framing of section we will regard the noise £ as perturbing a
noiseless training objective. The train and test losses are formulated as follows:

1 & 2
in1:6) = |23 (5 = g+ 2)”| + By P
i=1
2
Jrest (W) 1= % [EI (y(x) — ﬁw . Jc) ]

Note 1) we keep Jirain’s dependence on the perturbation £ explicit, and 2) the noise is not included
in the test loss (and when it is, after averaging, it changes the loss only by an additive constant).
Finally, let us write @ (§) := argmin,, Jirain (0, §) for the learned weights, ¢ (z) = %ﬁz - x for

the learned model, and Hirain := d V2Jirain a0d Hiest = d V2 Jyest for the train and test Hessians;
these scalings are chosen to keep spectra O (1).
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High-dimensional ridge regression has been studied extensively, so rather than rederiving published
formulas, as much as possible, we restrict attention to the novel focus of this article: overlap de-
compositions. We treat the label noise as a fluctuation of the training objective, and derive exact
asymptotic formulas for the needed train-test spectra and overlap functions that describing the effect
of the fluctuation on test error.

All formulas are obtainable from the general trace formula stated in the following two propositions,
which we prove in Appendix D}

Proposition 4. The equation

" -1
r= (1 - Q/ - — trdlu’ztrain (t)> ) (18)

has a unique solution v satisfying » € H* for z € HT and satisfying 0 < r < 1 for z < 0. This
defines a holomorphic function r () on all of C\RZ? that is obtainable for each z by fixed point
iteration of the right hand side of from an arbitrary initial point o satisfying ro € H* for
z€MHF and 0 <1y < 1for z <O.

Proposition 5. Let

ty (2) 1= 7 [ £ (Suests Surain) (21 = )], (19)
for bounded function f and complex scalar z € C\RZ°. As m,d — oo with ¢ = d/m fixed,
tr (2) = 17 [ (Srests Serain) (2 = 7 (2) Sorain) |
where 1 (z) is the solution of the self-consistent equation (T8).

Thus to perform the calculation we simply express all quantities in terms of traces of the form ¢ ¢ (2),
and then apply Propositions

C.1 TRAIN-TEST HESSIAN OVERLAP FUNCTION

Since we will be interested primarily in the ridgeless limit A — 0, and since the effect of nonzero
A is simply to shift the spectrum of Hyy,iy = %X TX + A, we will omit \ in the computation of
OH,ee, Herain (M1, A2), and will write Hipain = A = =X " X from now on unless explicitly stated
otherwise. Thus, we are interested in the overlap function of the matrices

Htest = Ztest; Htrain = ZEK;H%ZTZZEI/;H
The computation is simplified significantly by taking advantage of asymptotic freeness of iZ Tz
from X¢pain, Ltest- BY Proposition@], we have asymptotically

OHtestyHtrain (>‘th )\tr) = OztestyHtrain (Atcv )\tr)

= /Oztostyztrain (Atea /\) OztraimHtmin ()‘7 )‘tr) d/"[/Etrain ()‘) - (20

In particular this shows, somewhat intuitively, that the overlap function of the train/test Hessians
will itself depend on the overlap function of the population covariance matrices. Eq. (20) shows
the dependence is quite simple: One simply composes the overlap kernels taking an Hyain =

Z:!;H%Z Tz Etlr/,jin eigenspace to a M ,in One, and taking a Y,,i, eigenspace to a Yiegy one. The
overlap of the train and test population covariances, Oy, __, 5.....» iS part of the input data of the
problem and is therefore known. As for the second factor, Osx,, . H,,..n» this is simply the overlap
function of the population and sample covariance matrices for an anisotropic gaussian sample. For-
mulas for this quantity are known (see, eg. |Potters & Bouchaud! (2020)). To keep the presentation

self-contained we quickly derive an expression using operator-valued free probability.

Following Appendix [B] the train-test Hessian overlap function can be computed via

t_ KX rain; A ’ K(H rain;)\ ’
O3 iain Hirain (A1, A2) 1= lim = LR L,ou) K(F 2:7:)] ,
’ o—=0 tr [K(ztrain; )\la 01)] tr [K(H‘crain; )\2; 02)]

16
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where
1 o

K(zyp,0) = ———5——
is the Poisson kernel with center i and width o. Moving the first trace into the numerator trace and
cancelling a factor of 7 from top and bottom, we find that computing O, __, m,.... (A1, A2) requires
the numerator and denominator traces

g2
(A= XoI)? + 021
where h (Ztrain) = K(Ztrain; )\1; 01) /&[K(Ztrain; Alz Ul)] .

02
(A= XoI)? + 021

ﬁ' h (Etrain>

Using the definition of ¢; (z), and the resolvent form of the Poisson kernel,

K(z;p,0) = —LIm (p+ioc —z)7 !,

these become

—Imt, (/\Q—l—idg), —Imt; ()\2+i02).
Proposition [5]implies
tn (2) = & [B (Sirain) (21 = 7 (2) Serain) | @1
t(2) = & (2] =7 (2) Dorain) | (22)
$0

Im tr |:h (Etrain) (ZI T (Z) Etrain)il}
Ospuin Horars (A1, A2) = lim  lim

o1—0 z~>)\+1 Im tr |:(ZI -Tr (Z) zjtrain)il]

where limzﬁ)\y is shorthand for lim,_,g with z = Ay + i0. Taking o7 — 0 sends h (Xiain) to @

delta function and collapses the trace in the numerator to the \; eigenspace of Xy4ip, SO
1
Im z—r(z)\1
OzcraimHtram ()‘1’ )‘2) — hH:_ .
z—=A3 fIrn o 7(2))\d:u’2tr'nn ()

yields the overlap function Os, ., H,.oin = OHieor, Horain -

Composing with O, ...

C.2 OVERLAP DECOMPOSITION OF AJ

Trace integrals are written in terms of the spectra and overlaps of the matrices involved. To explicitly
determine the spectral density of Hi,,iy, note that it can be written in terms of the trace in equation

22). o
PHqrain (/\tr) = (PL% tr [K(Htrain; )‘trv U)] .

Using the same approach as above, we have the following for the o-Poisson-smoothed spectral
density of Hi ain:

1 ,
thrain§0' ()\tr) = _;Imtl (Atl‘ + 7/0-)

1 1
—— [ Im——d (A
> i )

Collecting the results of the previous section and the fluctuation formula (7)),

a’q Atr
AJtest - // )\ ¥ )\) OHtra:n;Htest ()‘t87 /\tr) H Hyest (d)‘te) HHirain (d)‘tr)
tr
teﬁt curvature \W—/ eigenspace overlap

train variance

(23)

where

OHtesthrain ()\te’ /\tr) = /Ozcesc,zcram (Atea A) OZcraichrain (/\7 )‘tf) dluztrain (/\) s (24)

17
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with )
. Im z—r(z)A\1
Oztrain7Htrain ()\1’ )\2) - ]‘1H1+ 1 :
ey Y
This provides a complete decomposition of the test loss fluctuation in terms of spectra and overlaps
of the train and test Hessian.

C.3 COVARIATE SHIFT

Formulas (23)) and (24)) show the effect of covariate shift in train/test sets is naturally expressed in
terms of the overlap function Oy, , 5.,,... (z,y) of the two population covariances. (Note that there
are two levels of overlap decomposition - that of the test loss fluctuation ([23), depending on the
train-test Hessian overlap function, and that of the train-test Hessian overlap function itself, which
unsurprisingly depends on the overlap of Xiest, 2train-)

We can equivalently start from explicit expressions for the fluctuation. We show in Appendix [C.4]
that

1 ,d

A
r(=A)’

Adopting the notation A=

~ ~ -1
Nig (=3) = =it {Em (AT + Zirain) ]

d - ~ -2
a/\tid (7>‘) — 7)\/tr [Ztestztrain ()\I + Etmin) :| )

meaning
1 - -2
AJ — §q0§k’tr |:Etestztrain (AI + Ztrain) ] ;
)

1 ~ Atr
AJ — Eqa-g)\/ / )\te%oxtest72train (Ate? Atr) dp“xtest ()‘te) dl’l'ztrain (Atr) ’
(o)

which parallels [23) but averages out the random training inputs and label noise to express A.J
purely in terms of the known objects i ain, Ltest- Lhis expression shows that label noise leads
to large increases in test loss when a direction of large training variance (small eigenvalue A, of
Ytrain) and a direction of large test curvature (large eigenvalue A\ of Yest) €Xperience significant
Oveﬂap (1arge Oztcstyztrain ()‘m? >\tr))~

C.4 EXPLICIT FORMULAS FOR TEST LOSS, FLUCTUATION

Here we derive explicit expressions for the full test loss and test loss fluctuation under general
covariate shift. Since these formulas and generalizations of them are already published, this section
is mostly for internal reference - especially for calculation of theoretical loss curves in Figs. 1 and
2.

Let X have rows x;r and & have components &;. Ji,in can be written

Tirain(w0,€) = g5 | 2 Xwi + € — G Xw|? + 5wl w.

Differentiating, we find

VJtrain(w7£) = éHtrainw - %%X—r (ﬁXU}* + 5)

Htrain = dVQJtrain = %XTX + M.

Similarly,

Jtest(w) = % ('w — U}*) Ztest (’LU — w*) .

Htest = dv2Jtest = Etest-

18
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Solving 0 = V, Jirain yields
W= Hh (EXTX) we 4 (Hyain) XX T¢.
Substituting into Jies¢ yields
qa5 2LXTX +A2T
(LXTX 4+ A1)’

Jtest (’UAJ (E)) = %{r [Ztest

Since (A + AI) "2 = —d(A+ A" we can write

(qagd)\)\ A2 ) a(=X) (25)

—= (g0 (tia (=A) = Atig (=N) + Nty (=X) (26)

Jrest (12) (5)) =

[\D\H [\3\»—~

Proposition [5]implies
tia (2) = @ [ St (21 = 7 (2) Sorain) ']
thy (2) = =8 [Stest (21 =7 (2) Serain) > (1 =7/ () Stram)|

which fully specifies Jiest (W (£)). The fluctuation is easily gotten by setting a? — 0 and subtracting
from Jiest (W (€)).

Reduction to published formulas Letting \ := ﬁ and substituting into (I8), we obtain
1 [ Xt

A=d- = . 27
St (t), 27N

which is eq. (8) of[Mel & Ganguli| (2021) for the “effective regularization”.
The fluctuation in (23)) is

1d
AJ = —qa£2d>\)\tld( A).
Since
A A -
)\ti -\ —tr [ X rain ——1 - rain
N g B (g~ ) ]
~ B -1
- _/\t_r |:Ztrain (AI + Ztrain) :l 9
we get

1-,_
AJ = qagg)\’tr

d\

are SO

The authors define % =

( z:train )2
S\I + Ztrain .
1 51

i ( Etra\in ) 2
2 Pf 5\] + Ztlrain 7

which matches the fluctuation term of their formula up to constant factors differing in the loss defi-
nitions. Next, the remaining term can be written

1 d
B= B (—)\tid (=) + /\a/\tid (—)\)> .

Using (23)) again,
22

train

(M + S )

XEtrain
S\I + Ztra»in

]—AXU

19
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Comparing to (27), the first term is « (5\ — )\) , and differentiating gives

N [0

N o= .
2
o — tr _ Ztrain
A+2train

Substituting and simplifying yields

«

2
o —tr [(S\ftzj ) }
1< Y by rain 2
= N(Aa—tu (t) —a|.
2 A + Ztrauin

Once again using equation (27), (5\ — )\) can be turned back into a trace:

1 -
B:§ aX — a\

Y 2
B — 1;, t_r _ Aztrain _ X <~ 2train )
2 A + ztrain A + Et]rai]ﬂ
1<,- ~22 rain
= —A/tr % ,
()\I + Etlrain)

which is equivalent to their second term.

C.5 k-LEVEL MODEL

At several points in the main text we refer to a k-level input covariance,

k
HSirain = E pidsi'
i=1

In this case the self-consistent equation for r (18]) becomes

k
S
r=\1-q) pi
( ;lz—sir)

which can be written as p (r, z) = 0 for some polynomial in r, z. Similarly, the overlap function
simplifies to a sum over the distinct eigenvalues of > ain:

-1

1
Im z—r(z)\1

Oztrain,Htmin ()‘1’ )‘2) - hn}r, k 1 )
2 Ag Zi:l plIm z—r(z)s;

C.5.1 SEPARATED SCALES LIMIT

We now assume the scales are widely separated: s;+1 < s;. We will also work with the ridgeless
formulas corresponding to A — 0 derived in Appendix For simplicity, assume s; = 1. We will
obtain leading order formulas for & («) as the ratio of successive scales is taken to 0. In Appendix
h is defined and found to satisfy the following self-consistent equation (equation (30)):

t
1= d o (t
[ s ©

The right hand side is a decreasing function of & and a decreasing function of «, we have that & is
a decreasing function of . Since the integral reduces to a sum over the k eigenvalues, and since all
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terms with ¢ < h do not contribute at leading order in s;41/s;, we assume that A ~ s; = 1 and

neglect all lower terms, giving
1

h+a’

l=p
soh=p; —aand AJ is

_0¢a[s0(s,1)dps,, (s)
2 pL— ’
the integral in the numerator can be written

AJ

1 _
/ S0 (3.1) it (5) = -1 [See Py
1

where P, ., —, is the projector onto Xrain’s a-eigenspace. In other words, the integral is simply
the normalized total overlap of X5 onto the strong training covariance space, and is equal to 1 for
Etrain = Etcst-

Now let us assume that A is near the scale s?. The self-consistent equation becomes

1 i 41 (> s7)
=, — — X s,
Y23 h+ asig aMZtram i
where uy, ... (>> 522) is the total probability mass of all scales greater than s?, ie Z;;ll p;. Solving
yields
as? B

fla = pspn (> 57)
which is consistent with the assumption that h ~ s?. Since h > 0, we only get a valid solution for
Q2 S, ain (>> s?) Substituting back into the error expression yields

1| =h,

AJ — O'g pia2 f (}H_sit)2 0o (57 t) duztrain (t) d/’l‘ztest (S)

2 (B0 (> 5741) — @) (@ = pmpn (> 57))
Evaluating the numerator generally requires a choice of Yest’s behavior in the limit s;41/s; — 0,
but note that the denominator has zeros at o = px, ... (>> 512) s M erain (>> s2 +1)’ and so the error

will generically become infinite whenever « is equal to the cumulative mass of some number of top
scales. As a simple special case, letting >test = Ztrain, this reduces to

AJ . 1? (a - /’('Ztrain (>> S?))Z +p7;lu’2train (>> 822)
2 (;U'Etmin (>> 812+1) - a) (04 — MS¢rain (>> 312)) .
Since under this assumption,
B = L1t [Suain (b + 08ua) | = 31

1 v
=3 {045? [Q#ZEPM - 1} B (> 87) < @ < sy (3 8741)

when we take s;41/s; — 0, B only contributes at the highest scale, so

1
B=§U+(p1—04)7

where o is the relu function.

C.6 RIDGELESS LIMIT

Here we simplify our formula for the test error in the ridgeless limit. From (23), we have
2778 d\

1
B:=J-AJ= —§A2t;d (=A).

AJ Mg (—A)

21



Under review as a conference paper at ICLR 2026

It will also be helpful to consult ¢4 and r’s explicit expressions as matrix traces (equations (T9) and

B4

ta(2) =t

1 -1

&&(A—ATX>], (28)
m

r(z)=1+qftr [(z—A)_1 A} . (29)

C.6.1 OVERSAMPLED REGIME
From (28), and since for a := m/d > 1, the limiting spectrum of -- X " X is bounded away from 0,
tia (—)) is analytic as A — 0T. Thus in the oversampled regime
1
AJ — *iqggtid (0) s B — 0.

From Propositions f] and 3]

tig (Z) - = z:testz_l ] ’ r (0) =1-g,

1 i [
[ .
r (O) train
so that

1, 1 _ i
AJ7 Jtest — *0’5 71111‘ [Ztestz ] .
o —

2 train

C.6.2 UNDERSAMPLED REGIME

Now assume o < 1. Now for A — 0, tig and 7’s explicit expressions in (Z8) and (34) suggest
tia (—A) = O (A7!) and r (=) = O ()). For convenience we will rewrite our formulas in terms

of h(z):=1 ( 2 — z) Substituting into the self-consistent equation for r (I8) and simplifying

g \r(—2)
gives
4
h(z) = (qgh —d L ().
() = (ah(2)+2) [ s, 0
Now differentiating and setting z — 0, we find
- / S (30)
=4q qh+t /’('Ztrain

2
(@) s ©
- 2
1= (35) " s ()

where we’ve suppressed the argument of 1, h'.

, 31)

We now write the error expressions in terms of these
_ L2l
2778 dX

d _ _
= Ja0? 7 (ah (V) + N it [zm ((gh (\) + ) T + Sorain) "

AJ Mg (—A)

fr Strain
r—0 1, tr [EteSt (qh1+2train)2i|
21%¢ ¢ )2
l—qf (m) Ao (1)
o2 O (o) s, () s, (9

2 . )2
l—q f (qh+t) A, (t)

)
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while
1
B= —§>\2t{d (=)

1 _ _
= §Qh tr |:2test (th + Etrain) !

1 s
= —qh O (s,t)d . (Hd .
0 [ 50 (s, dis, i, ()i 9
Finally, the total loss is just B + A.J.
D CHARACTERIZATION OF t; (2)
Here we derive an asymptotically exact expression for
tr (2) = B [ F (Stosts Stvain) (21 = 4)7]
Let us abbreviate F' := F (Xiain, Ltest ). First,
1 T 12 (1 1 1/2
A= EX X = Etr'o\in (mZ Z Etrain7

where Z has standard normal entries, so that

(32)

train train

—1
_ _ 1
tp(2) =1 lzm ry._1/?2 (zI - ztngTZ>
m

Now define B := I5 — E5 o, where Es 2 is a matrix whose (5, 2) entry is 1 and has all other entries
equal to 0, and let

0 0 0 0 0
Y= 0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
000 0 0
000 0 0
Q=000 =27 0
1
000 0 7
000 0 0

It is straightforward to verify that (B — (2 + Q)) ™' has as its (5, 1) block exactly the matrix in (32),
and so tp (2) = [gs+q (B)]5 ;» where gs ¢ is the operator-valued Cauchy transform of ¥ + Q.

By rotational invariance, X, () are asymptotically operator free, meaning we can apply the operator-
valued additive subordination relation (see, eg. Mingo & Speicher|(2017) Chapter 10), which yields
the self-consistent equation

95+ (B) = 95 (B = Rq (95+¢ (B))) -
The blocks of () are standard normal matrices, and so its R-transform is given by
Rq (M) =£€1QMQ],

where £ is the operator-valued expectation that takes normalized traces of all square blocks. Due to
the large number of zeros in (), only two entries of R (M) are nonzero:

[RQ (M)]375 = My
[RQ (M)]4,4 = qMs3.
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On the other hand, by definition g5, (M) = & [(M - E)fl} . Substituting back into the subordina-
tion relation and writing g for gs1¢ (B), we find

-1

1 0 0 0 0
_%E 1 _%Etrain 0 0
g=¢& 0 0 1 0 —9a4 ;
0 0 0 1—qgs3 0
0 -1 0 0 1

where to simplify notation we have written = := zifijz;;{j . The entries of the right side are

straightforward to compute using elementary row operations. Performing just enough such opera-
tions to determine the (5,1), (4,4), and (5, 3) entries, we obtain the closed system of equations

gs3 =1r |:Etrain (ZI - g442train)_1}
1

1—qgs

gs1 = fr {F (21 — 944Ztrain)71} :

ga4 =

We can eliminate gs3 entirely, giving our trace
ty (2) = gs1 = & | F (2] = 1 Zurain) |

in terms of the scalar r := g44 that satisfies

r= (1 —qfr [Etrain (ZI - thrain)il} ) h

A few remarks are in order. First, we note that we can rewrite this trace as an integral over the

spectrum of X ain:
-1
t
=11~ d (t . 33
r < Q/Z_tr Mzmm()) (33)

It is helpful to compare (33) to the explicit expressions for g4, g53 from the linearization before
applying the subordination relation, which are

944:1+qt‘r[(zfA)’1A} (34)
gss = r {(ZI - A Etrain] : (35)

Thus g44 (z) is analytic in z everywhere outside the spectrum of A, and g44 (H*) C HT and 0 <
gas (R<Y) < 1 (the first inequality is gotten most easily by using gs3 < 0 and ggs = (1 — a953) ).
In fact, these conditions along with the self-consistent equation (33) are enough to guarantee that
the solution is unique, holomorphic, and coincides with g44 throughout all of C\R=°.

Proposition 6. For z ¢ C\RZ", there is a unique solution v (z) to (B3) satisfying the conditions
r(H*) € HF and 0 < 7 (R<Y) < 1. 7 (2) depends holomorphically on z and can be obtained by
iteration of the right hand side of (33)) from an arbitrary initial point in C\R=°.

Proof. Assume z € H™. Let f (r, z) be the map defined by the right hand side of (33):

f(rz) = (1—q/z_ttrdugmm (t)>_1.

It is straightforward to check that f (-, z) : HT — HT. Furthermore, no point on the boundary
of H* is a fixed point of f (-, z), since f(R,z) C H*, and f (c0,z) = 1. The Denjoy-Wolff
theorem then guarantees that f (-, z) has a unique fixed point in H™ - and that this point is obtained
by iteration of f (-, z) from an arbitrary initial point in H*. Thus (33)) together with the condition
r € H* uniquely defines a function 7 (2) for all z € H~.
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Now fix zg € H™. Since f (-, 2) : HT — H* and f (-, z0) is not a Mbius transformation (it only
can be if Xypaiy 1S a scalar matrix), the Schwarz lemma implies }% f(r(z0), zo)‘ < 1, which means

o (r20) = )| = |7 20) 1

and so the implicit function theorem implies there is a holomorphic function solving (33)) on some
neighborhood of zg that coincides with 7 (2g) at zg. Since 7 (29) € H™T, this function must also stay
in H' in some (possibly smaller) neighborhood of 2, and by uniqueness of solutions to (33), this
implies that it coincides with r (z) on this neighborhood. Thus r (z) : H™ — H™ is holomorphic at
each point of H~. An identical argument proves the proposition for z € H*.

>0,

Now suppose z < 0. Conjugating the right hand side of (33) by the map x — 1/(1 — gz) gives a
self-consistent equation satisfied by gs3:

t
v= [ s, 0. (36)

The condition 0 < r (z) < 1 implies gs3 < 0. Now letting h (y, z) be the right hand side of (36)),
h (y,z) — y is convex in y and satisfies h (0,2) —0 < 0 and h (—o0, z) — (—00) = 00, so there is a
unique solution to with y < 0, and thus a unique solution to with0 < r (z) < 1.

Since a%h (y,z) > 0, and differentiating h at the fixed point gives

B} 0 t
ayh(y,Z) ay( ay) / TO—q) = S Ap i (1)

(1—qy)qt
+ Z/ (Z (1 _ qy) _ t)Qd:uztrain (t)

= 1 —

l—qy
<1,

y (z) is an attracting fixed point of & (-, z). Since h (-, z) is a conjugate of f (-, z), the unique solution

of (33) satisfying 0 < r(z) < 1 is an attracting fixed point of f (-, z). This implies that there is

a neighborhood of z that extends into the upper half plane whose iterates converge to r (2). But

since z < 0, f (H*,z) C H*, and so the Denjoy-Wolff theorem implies that all iterates of f (-, 2)

initialized in H™ converge to the same point, which therefore must be 7 (2).

Finally, % (h(y) —y) =k (y) — 1 < 0 implies that y (z) extends holomorphically to a solution of

(36) in an entire neighborhood of z. Since h (y (w) ,w) — y (w) = 0 for all w in this neighborhood,
at the solution point,

9 AN fﬁdu train (t)
Yy (2) = — 9 86Zh(y( )2) = a(qyﬂﬂ) - <0
oy (h(y(2),2) —y(2) 55 (h(y(2),2) —y(2))

A negative derivative implies that for sufficiently small neighborhood U of z, y (U NH™) C H™T.

Mapping back to r (z) := 1/(1 — qy(z)) yields a holomorphic function satisfying in a neigh-
borhood U of z < 0 such that for r (U NH™) C H*. By uniqueness of solutions in the upper half
plane, » must coincide with the function defined earlier on U NH ™. Thus r extends holomorphically
to the negative real axis. O

The subordination relation implies g44 () = 7 (z) in a neighborhood of oo, but both functions
extend holomorphically to all of C\R=?, implying they are equal throughout. This completes the
proof of Propositions ] and [3]

E LOCAL GEOMETRY OF MLPs

E.1 GRADIENT DESCENT DYNAMICS

The initial gradient at wy is z := dV Jirain (wo, €), and the Hessian is Hirain := dV2Jyain, 50 the
local approximation for the training loss is

1 1
Jtrain (w> ~ EZT (’LU - wO) + ﬁ (’U) - u]O)—r Htrain (’LU - U}()) )
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train-test Hessian overlaps

10! 4 4

100 4

Hiest €igenvalue

10714 "

1071 100 10t
Hirain €igenvalue

Figure 6: Eigenvector overlap function for one MLP simulation in the context of [3.3] A dot is plotted
for every pair of train and test eigenvalues, with dot size and opacity representing squared overlap of
the corresponding eigenvectors. Note the very strong train-test alignment indicated by the restriction
of almost all overlap to the diagonal.

Atest dynamics

—— simulation 1 ® r2=0.99
—— theory i r2=0.94 /
0.02 1 i /
2 0.015 - s Z
g 7 %
I v
o /‘."
< 4
3 y ~»
© e/
s AP
0 i
; 0.000 -
103 0.01 0.02
SGD steps Predicted Atest/Jtest

Figure 7: Learning dynamics predicted by local two-loss geometry. Left panel: Test loss trajectories
in response to different label noise realizations (individual trajectories shown as thin green traces;
average shown as thick green line). Noise amplitude corresponds to red dot in Fig. fp. To reduce
clutter, only theory average is shown (black trace; see (37)). Right panel: measured vs predicted
relative test loss increment at two times, corresponding to the vertical blue and gold lines in the left
panel. Points corresponding to the same trajectory are connected by gray lines. Horizontal blue and

gold lines show means.

where we’ve discarded additive constants. The gradient is then

1
vJtr'a»in (U}) ~ E (Z - Htrainwo + Htrainw) )
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so gradient descent does
w—w—1 (Z - Htrainwo + Htrainw)
= (I - 7]Htrain) w—n (Z - Htrainwo) .

Thus,
(I — nHtrain)t -1

Aw; = wy —wg =
w w o Htrain =
and so the test error satisfies
1 1
(Adtest); = ggTAwt + ﬂAthHtestAUJt 37
1 +(I=nHuain) =1 | 1 (I =0Hyaiw) =1, (I = nHyain)' — I
=7 a9 H S )
dg Htrain #F 2dz Htrain fest Htrain :
(38)

with g := dV Jiest (wo) and Hiesy := dV 2 Jiest (wp).
To compute the GD trajectory for a large network, it’s most efficient to precompute
g = grad (Jorain) (wo)
Hirainwo = hvp (Jirain, wo) ,
set vy := 2 — HirainWo, and simply iterate
w — w — 1 (vo + hvp (Jirain, ) ,

where grad, hvp compute function gradients and Hessian-vector products.

F EFFICIENT CALCULATION OF EIGENVECTOR OVERLAPS FOR LARGE
MATRICES

Here we describe the Overlap-KPM algorithm, which estimates the unnormalized or total eigenvec-
tor overlaps for two matrices. That is, for self-adjoint A, B € RI%4d_jt estimates the measure

1 d
pas =g 2 Snaney [0 0P)’]
0,j=1

)=

which accumulates all overlap of \; A-eigenspaces with all Ao B-eigenspaces. To obtain the nor-
malized overlap function treated in the main text (eg. equation (I3)), one simply divides by the
spectral densities of A, B at A1, A2. The problem of estimating spectral densities for large matrices
has already received significant attention (see Papyan| (2019) in machine learning context), so we
assume that one can practically transform back and forth between normalized and unnormalized
overlap functions.

F.1 RANK DEFLATION AND NORMALIZATION

As a preprocessing step, we remove the outlier eigenspaces from each matrix obtained via subspace
iteration (cf Fig. , and then normalize the spectra to the interval [—1, 1].

F.2 RANK DEFLATION VIA SUBSPACE ITERATION

The overlap plots of Fig. [5] were generated via Subspace Iteration (SI). SI is a well known method
that generalizes power iteration, so we review it only briefly here. See|Papyan|(2019) for an explicit
implementation in a machine learning context.

Let M be a self-adjoint operator with simple spectrum Ay, . . ., A, and take V' € R%** with standard
normal entries and then orthonormalize the columns. SI iterates

V- MV

V=V,
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where @ is the Gram-Schmidt orthonormalizing upper triangular matrix of V. Informally, each
application of M amplifies each i* eigenspace coefficient of the columns of V' by \;, which gener-
ically leads to exponentially greater weight on the leading eigenspaces. The orthonormalization )
prevents all eigenvectors from collapsing onto the same leading eigenvector. Since they are forced
to span an k-dimensional space, they must converge to the top k eigenvectors of M. Overlaps can
then be calculated direction by computing pairwise dot products of columns of V.

After convergence, outlier eigenspaces are removed from the matrices by replacing each matrix
vector product v — M (v) with

v Moy (v) = M (v) = VV .

F.2.1 SPECTRUM NORMALIZATION

After removing the outlier eigenvalues, one may obtain bounds for the remaining spectrum via
standard approches (eg. the Lanczos algorithm; cf Papyan| (2019)). Letting Apin, Amax denote the
minimum and maximum eigenvalue (in practice, with a small amount of padding added), we the
normalize the matrices to the interval [—1, 1] by replacing v — Mgy (v) with

>\max + )\min>
— |V

)\max - )\min

2
U Mnorm, (’U) =

Maey (v) — <

)\max - Ami]ﬂ

F.3 OVERLAP-KPM

We now assume the previous preprocessing steps have been performed and in particular that A, B’s
spectra lie inside [—1, 1].

First note that for kernel function G one can write the kernel-smoothed overlaps exactly as a trace:

d
_ 1
1[G (A~ M;0) G (B~ daio)] = > G(Aai—Mio)G (Mg — A2i0) |d(vas-vs,)°
i,j=1

(39)

Thus the goal will be to compute such traces for each (A1, A2) for some sufficiently small fixed
kernel width 0. Computing such traces directly is prohibitively expensive for very large matrices,
and so a standard approach is to use Hutchinson trace estimation, ie. to average v ' Mv over several
random samples of, say, standard normal v, since

E, [v' Mv] =0 [ME, [vv']] = tr [M].

Informal experiments suggested better stability for estimation of PSD traces, so we replace the trace
on the left side of (39) with

tr [Gl/Q (A= X;0)G (B —Xy;0)GY? (A - )\1;0)} .

Now applying the Hutchinson trick, we sample probes vy, . .., vp and approximate
P
r[G(A—A;0)G(B—Ayo Z "GY2 (A= X1;0)G (B = Ay;0) GY2 (A= \js0) v,

P
ZHGW‘ (B = 2a;0) G2 (A = Mo |||

To compute the summand, we generalize a standard approach known as the kernel polynomial
method. Practically speaking, this entails approximating the kernel functions G'/2 (z — X\;0) using
Chebyshev polynomials T (), which can be computed efficiently using Ty (z) = 1,7} (z) = «,
and the recurrence

Tj(x) = 22Ty () = Tj (), j=2
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Letting «, B be the Chebyshev coefficients of the kernel functions,
G1/2 ZE—>\1, ZO@ i

G2 (x — Ng;0 Zﬁj

we truncate to degree K and write

2
wi= |GV (B = 230) GV (A= i) | (40)
X 2
~ || BT (B)Ti (A) v, 41)
4,7=0
K
= Y aiBjarBe, T (A)T; (B) Ty (B) Ty (A) v, (42)
4,9,k =0
K
= Z aiﬁjakBZMi,j,k,Z,u~ (43)
,7,k,£=0

Thus for m probes and order-K Chebyshev truncation, by appropriate choice of the coefficients
a, 3, one can approximate a general function from the P (K + 1)4 dot products

M e = v, T (A) Ty (B) Te (B) T, (A)

This can be improved somewhat using the Chebyshev product identity

Tj () T (2) = 5 (Tjqe (2) + Tjj—g (z)) , (44)

DN |

so that
1
Mijken =5 (0 Ty (A) T (B) The (A) v+ v, Ti (A) Ty gy (B) T (A) )

and so all needed dot products can be obtained from the P (K + 1) (2K + 1) ~ 2PK? dot prod-
ucts

Mk =v,Ti(A)T;(B)Tx (A)v,, 0<ij<K, 0<j<2K, 1<pu<P

Algorithm I efficiently generates all such probe moments with ~ K? matrix vector products. Al-
gorlthm actually stores all 2P K? vectors T; (B) T}, (A) v, but in practice, our implementation is
significantly more memory efficient. We store all Ty, (A) v, but as B’s are added, one only needs
to store the current and previous power of B. This amounts to ~ K vectors in memory at once.

Once the J\Zfi, j.k,u are known, equation (#3) is used to estimate the trace for each value of A1, As,
yielding an approximation to the unnormalized overlap function of A, B.

Often in machine learning contexts, one or both of A, B has spectrum that is highly peaked around
a particular value. For the trace in (39) to accurately reflect the overlaps at Aq, Aa, the kernels -
more precisely, their finite K Chebyshev series - must decay sufficiently quickly away from A1, Ao
to prevent the spectral spikes from overlwhelming the overlap sum. Practically speaking, this can be
diagnosed by 1) forming an estimate of A, B’s spectral density, eg. using the Lanczos algorithm (see
Papyan| (2019) for implementation in ML context), 2) forming truncated Chebyshev series for the
kernels, and 3) comparing kernel decay to spike height. Insufficient decay usually requires either
decreased kernel width o, or increased Chebyshev degree K so that polynomial approximations
accurately approximate the small tails needed to dampen the spectral spikes.
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Algorithm 1: Overlap-KPM for Eigenvector Overlaps

Input: A(v), B(v) (normalized MVPs); degree K'; probes P

Output: Probe moments M; ;5 , for0 <i,k < K; 0<7j<2K; 1< u<P.
for 4y =1to P do

sample probe v, ~ N(0, 1)

V0,0, < Vs V0,1, < A(vp)
for i = 2 to K do
| v0,iu < AV0,i—1,4) = V0,i~2,u

for Kk =0to K do
U1,k,u — B(”O,k,u)
for j =2to 2K do
| ik = BUj—1kn) = Vj—2.hp
fori = 0to K do
for k =0to K do
for j = 2to 2K do
L L Mg 4 Voji Vg

F.4 APPLICATION OF OVERLAP-KPM

Algorithm [1] with gaussian kernel is applied to synthetic data in Fig. [§f A, B € R1000x1000 gre
generated according to

A=W, B =W, + A2, (45)

where W, W5 are independent Wishart matrices with aspect ratio o = 5. The left panel shows the
ground truth gaussian-smoothed overlap function of A, B. Note the nontrivial alignment due to B’s
dependence on A. The right panel shows the approximation generated via Overlap-KPM, showing
good qualitative match.

Actual Overlap-KPM

/\A /\A

Figure 8: Overlap-KPM algorithm recovers overlaps on synthetic data. A = Z, Z,/m and B =
Z3 Zy/m + A2, where Zy, Zo € R™ are independent matrices with iid. standard normal entries.
d = 1000,« := m/d = 5. Chebyshev degree: K = 45; number of probes P = 4. Left panel
shows actual eigenvector overlaps at eigenvalues A 4, Ap, smoothed with a gaussian kernel of with
1/3. Right panel shows approximation derived from the Overlap-KPM algorithm.

Finally, we apply Overlap-KPM to the deflated, normalized train and test Hessians of the ResNet-20
studied in [3.4) with degree ' = 45 and P = 4 probes. Jackson smoothing is applied to gaussian
kernel Chebyshev coefficients. The left panel shows the unnormalized or total overlap function
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that accumulates all overlap of Airain Hirain-€igenspaces with all Ayesy Hiest-€igenspaces (log color
scale). Due to the very large multiplicity of near-0 eigenspaces, total overlap is largest between
Atrain = 0 and A¢est = 0 eigenspaces. Individual spectral densities for Hypain (Hiest) are approx-
imated by summing over rows (columns), corresponding to integrating localized kernels over all
values of Atest (Atrain)-

Normalized overlaps, or overlap densities - ie. the overlap function (T3 studied in the text - are ob-
tained by dividing the total overlap by the product of the individual spectral densities, p,..... £ Hieu
(middle panel). (As a simple test of SNR, we confirmed that standard error of measurement estimates
for pH,,... PH.... Using the P = 4 independent probes were below means at each A¢rain, Atest.) Note
that overlap density is highest among the larger clusters of eigenvalues, and is roughly concentrated
along the diagonal, indicating rough overlap within the bulk.

Finally, we also normalize by the density of His only, effectively yielding the overlap profile of
single A¢est Hiest-€igenvectors onto entire Hy,,in €igenspaces as a function of A¢..i,. Here too one
sees a general pattern of low/high A5 eigenspaces overlapping with low/high A¢,.i, eigenspaces.

Total overlap Normalized overlap Htest Overlap

0 25 50 0 25 50
Atest Atest Atest

Figure 9: Overlap-KPM algorithm for overlaps of ResNet-20 train/test Hessians. Degree K = 45
and P = 4 probes. See text for details.
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