

000 BEYOND SPECTRA: EIGENVECTOR OVERLAPS IN 001 002 LOSS GEOMETRY 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010 Local loss geometry in machine learning is fundamentally a two-operator concept.
011 When only a single loss is considered, geometry is fully summarized by the
012 Hessian spectrum; in practice, however, both training and test losses are relevant,
013 and the resulting geometry depends on their spectra together with the alignment
014 of their eigenspaces. We first establish general foundations for two-loss geometry
015 by formulating a universal local fluctuation law, showing that the expected test-
016 loss increment under small training perturbations is a trace that combines train
017 and test spectral data with a critical additional factor quantifying eigenspace over-
018 lap, and by proving a novel transfer law that describes how overlaps transform in
019 response to noise. As a solvable analytical model, we next apply these laws to
020 ridge regression with arbitrary covariate shift, where operator-valued free proba-
021 bility yields asymptotically exact overlap decompositions that reveal overlaps as
022 the natural quantities specifying shift and that resolve the puzzle of multiple de-
023 scent: peaks are controlled by eigenspace (mis-)alignment rather than by Hessian
024 ill-conditioning alone. Finally, for empirical validation and scalability, we con-
025 firm the fluctuation law in multilayer perceptrons, develop novel algorithms based
026 on subspace iteration and kernel polynomial methods to estimate overlap func-
027 tionals, and apply them to a ResNet-20 trained on CIFAR10, showing that class
028 imbalance reshapes train-test loss geometry via induced misalignment. Together,
029 these results establish overlaps as the critical missing ingredient for understanding
030 local loss geometry, providing both theoretical foundations and scalable estima-
031 tors for analyzing generalization in modern neural networks.

032 1 INTRODUCTION

033 Modern learning algorithms are inherently local, and sources of randomness (stochastic gradients,
034 finite-sample variability, and distributional drift) are often small relative to the underlying signal.
035 A local quadratic approximation to the loss thus provides a natural setting for analyzing learning.
036 This observation underpins the considerable literature studying loss geometry via Hessians, and in
037 particular Hessian spectra (see references below). When the focus is a single loss, local geometry
038 is indeed fully captured by the Hessian spectrum. Crucially, however, in machine learning contexts
039 there are (at least) *two* losses of interest—train and test—and so local loss geometry involves two
040 quadratic approximations. The joint geometry of these approximations is not captured by Hessian
041 spectra alone; it requires a critical additional ingredient: *eigenvector alignment*, or overlaps.

042 Despite the fundamental importance of eigenvector overlaps, most studies to date have centered on
043 Hessian eigenvalue distributions—often explicitly equating spectra with loss geometry. The litera-
044 ture is extensive and examines Hessians from several complementary angles, including: (i) empirical
045 measurement of eigenvalue distributions and their training-time evolution, with links to optimization
046 stability (Sagun et al., 2017; Ghorbani et al., 2019; Yao et al., 2019); (ii) random-matrix-theoretic
047 and mean field models (Pennington & Bahri, 2017; Pennington & Worah, 2018; 2019; Liao & Ma-
048 haney, 2021; Karakida et al., 2019); (iii) class- and layer-structured spectral phenomena, such as
049 identifiable outliers tied to data and architecture (Papyan, 2020; Sankar et al., 2021); and (iv) Hes-
050 sian/Fisher analyses relating sharpness (as measured by eigenvalue magnitude) to stability and gen-
051 eralization (Keskar et al., 2017; Cohen et al., 2021; Yao et al., 2019). These studies give fundamen-
052 tal insight into aspects of loss curvature, but ignore directional information that becomes relevant as
053 soon as one compares two operators.

054 The need to go beyond spectra is well understood in random matrix theory, where eigenvector consistency and overlaps with population directions are central objects in spiked models and correlated
 055 ensembles (Johnstone, 2001; Paul, 2007; Nadler, 2008; Benaych-Georges & Nadakuditi, 2011; Bun
 056 et al., 2017; Landau et al., 2023). There, eigenvalues alone do not determine statistical performance;
 057 rather, risk depends on how sample and population eigenvectors align. Related phenomena have also
 058 been observed in machine learning, where eigenspace overlap has been used to characterize shared
 059 Hessian structure across independently trained networks (Wu et al., 2022) and to predict the down-
 060 stream performance of compressed word embeddings (May et al., 2019). Our perspective adapts this
 061 principle to learning-theoretic questions by focusing on train-test alignment. We show that overlap
 062 measures between the training fluctuations covariance (intimately related to the training Hessian;
 063 see Results) and the test Hessian yield a decomposition of generalization error into components
 064 associated with eigenvector alignment.
 065

066 Applying this perspective to ridge regression resolves the puzzle of anisotropy-induced multiple
 067 descent (see Chen et al. (2021); Li & Wei (2021); Mel & Ganguli (2021); Meng et al. (2023) for
 068 several distinct forms of multiple descent). High-dimensional analyses of multiple descent often
 069 focus on the connection between interpolation peaks and the eigenvalue distribution of the design
 070 matrix (Singh et al., 2022; Chen & Mei, 2022). However, in anisotropic settings where error ex-
 071 hibits multiple peaks despite monotonically decreasing minimum training eigenvalue, spectra alone
 072 do not explain generalization. By making overlaps explicit, we show that the appearance of mul-
 073 tiple descent peaks is governed by the alignment between train and test Hessian eigenspaces. This
 074 corrects interpretations that implicitly attribute sample-wise multiple descent purely to spectrum ill-
 075 conditioning (Chen & Mei, 2022; Mel & Ganguli, 2021; Mel & Pennington, 2022), and suggests
 076 a simple geometric picture for anisotropy-induced generalization error that may prove useful for
 077 understanding more complex models.

078 A second arena where eigenvector orientation matters is generalization under domain shift. Sev-
 079 eral specific forms of domain shift have been considered, including covariate shift, where high-
 080 dimensional risk formulas in random feature models (Tripuraneni et al., 2021) can be naturally
 081 interpreted in terms of train/test covariance spectra and overlaps. For more general kinds of do-
 082 main invariance, several methods propose regularizers that encourage cross-domain invariance by
 083 aligning gradients, Fisher information, or Hessian statistics across domains to promote consistent
 084 behavior on unseen ones (Rame et al., 2022; Hemati et al., 2023; Le & Woo, 2024). Another ap-
 085 proach, Elliptic Loss Regularization (Hasan et al., 2025) imposes an elliptic constraint on the loss as
 086 a function of inputs, thereby encouraging smoothness and robustness to shifts in input distribution.
 087 These approaches study explicit regularization schemes and are largely domain-agnostic: they aim
 088 for broad robustness across many possible domains, with the hope that such invariance transfers to
 089 any new or unspecified test domain. Our analysis is complementary: rather than enforcing invari-
 090 ance across multiple domains, we derive explicit formulas that yield insight into how changes in
 091 training affect performance on a *specific* new domain. For example, in the context of covariate shift,
 092 we illustrate how, holding covariance spectra fixed, changes in overlap structure alone can increase
 093 or decrease test risk; the formalism therefore predicts when a particular shift will help or hurt, and
 094 by how much, in a way that domain-agnostic and spectrum-only analyses cannot.

095 Another important use of geometric ideas in learning is to understand generalization. Classical
 096 asymptotic corrections such as the Takeuchi Information Criterion (TIC) express the generaliza-
 097 tion gap in terms of the local curvature of the population loss (see, eg., Thomas et al. (2020)). A
 098 second line of work uses curvature information at training time: sharpness-aware and curvature-
 099 regularized methods—including SAM (Foret et al., 2021) and its Fisher- and curvature-regularized
 100 variants (Kim et al., 2022; Wu et al., 2024)—modify the training objective to bias optimization
 101 toward flatter regions of the training loss, motivated by the heuristic that such regions generalize
 102 better. By contrast, our framework is explicitly two-loss: we do not assume any relationship be-
 103 tween train and test losses. Given a training loss and a perturbation model, we analyze how the
 104 resulting parameter fluctuations affect an arbitrary test loss—potentially defined on a different do-
 105 main or distribution—through the joint spectra of the two Hessians and, critically, their eigenvector
 106 overlap. This two-loss geometry recovers TIC as a limiting single-loss case, but goes beyond both
 107 TIC and SAM-style approaches by revealing how eigenvector alignment governs generalization.

108 Translating our overlap-centric theory into practice at modern scale requires algorithms that go be-
 109 yond spectral density estimation. A substantial literature has developed linear algebraic tools for
 110 implicit matrices, including polynomial/quadrature approaches and stochastic trace methods such as

108 Hutchinson and Lanczos-based quadrature (Golub & Meurant, 2009; Lin et al., 2016; Ubaru et al.,
 109 2017). These and related techniques have been adapted to deep learning to estimate Hessian spec-
 110 tral densities and extremal eigenpairs efficiently (Adams et al., 2018; Papyan, 2019; Ghorbani et al.,
 111 2019; Yao et al., 2019). Building on these foundations, we develop novel estimators for overlap
 112 functionals between pairs of Hessians (train-test, population-sample), and apply these to demon-
 113 strate how class imbalance impacts train-test loss geometry.

114 The resulting picture is that local geometry in machine learning is fundamentally bivariate—spectra
 115 and overlaps: spectra characterize the curvatures of train and test losses, while eigenvector overlaps
 116 determine how these curvatures combine to produce test error.
 117

118 2 CONTRIBUTIONS

- 121 **Two-loss theory of local geometry.** We introduce a novel two-loss framework for lo-
 122 cal loss geometry that incorporates both spectra and overlaps 3.1, rectifying a widespread
 123 oversimplification that equates spectra with geometry.
- 124 **General foundations** We derive and test a universal local fluctuation law showing how
 125 overlaps impact generalization 3.1.1, and a general transfer law dictating how eigenvector
 126 overlaps are transformed by noise 3.1.2.
- 127 **Explicit formulas for high-dimensional ridge regression.** Combining tools from random
 128 matrix theory with our overlap transfer law, we provide closed-form expressions for the
 129 overlap function between train and test Hessians in anisotropic ridge regression 3.2.
- 130 **Unified explanation of covariate shift and multiple descent.** We show that covariate shift
 131 is naturally quantified by eigenvector overlaps 3.2.1, and that overlaps analytically resolve
 132 the puzzle of multiple descent 3.2.2.
- 133 **Empirical validation in neural networks.** We confirm our theoretical predictions in mul-
 134 tilayer perceptrons, and use overlap machinery to show that the training Hessian acts as a
 135 filter shaping optimization 3.3.
- 136 **Scalable algorithms for Hessian overlaps.** We develop novel, scalable numerical methods
 137 for estimating Hessian eigenvector overlaps in large-scale models, enabling practical use
 138 of our theory in modern deep learning 3.4.
- 139 **Train-test misalignment under class imbalance.** We show that class imbalance in CI-
 140 FAR induces misalignment between train and test Hessians, explaining the effects of class
 141 imbalance in terms of train-test loss geometry. 3.4.

144 3 RESULTS

146 3.1 THEORETICAL FOUNDATIONS

148 Prior theoretical and empirical work frequently uses geometric descriptors of the loss landscape—
 149 such as “sharp” versus “flat” minima or valley structures—yet the relationship between these geo-
 150 metric notions and generalization remains imprecise. We begin by establishing general foundations
 151 for two-loss geometry to formalize this connection, and then derive a fluctuation law that character-
 152 izes how perturbations to the training loss propagate to changes in the test loss.

153 Let $w \in \mathbb{R}^d$ denote the d -dimensional parameter vector of a model f_w , and let $\mathcal{L}_{\text{train}}(w, \epsilon), \mathcal{L}_{\text{test}}(w)$
 154 be the (twice-differentiable) train and test loss functions. The train loss $\mathcal{L}_{\text{train}}$ is parameterized by a
 155 small variable ϵ representing a general training perturbation. We remain agnostic about the source of
 156 the perturbation, which could be any combination of label/input noise, distributional drift, sampling
 157 effects, etc. Throughout, we write w_0 for the minimum of the unperturbed loss $\mathcal{L}_{\text{train}}(w, 0)$.

158 By analogy with the one-loss case, we refer to the pair of quadratic approximations obtained by
 159 second order expansion of $\mathcal{L}_{\text{train}}, \mathcal{L}_{\text{test}}$ around a point as the *local two-loss geometry*. Concretely,
 160 we define the perturbation gradient, and train and test Hessians as follows:

$$161 z := d \nabla_w \mathcal{L}_{\text{train}}(w_0, \epsilon), \quad H_{\text{train}} := d \nabla_w^2 \mathcal{L}_{\text{train}}(w_0, \epsilon), \quad H_{\text{test}} := d \nabla_w^2 \mathcal{L}_{\text{test}}(w_0), \quad (1)$$

(note the scalings, chosen for convenience) and introduce the quadratic surrogate losses:

$$\mathcal{L}_{\text{train}}^{\text{quad}}(w) = \mathcal{L}_{\text{train}}(w_0, \epsilon) + \frac{1}{d}z \cdot \Delta w + \frac{1}{2d}\Delta w^\top H_{\text{train}}\Delta w, \quad (2)$$

$$\mathcal{L}_{\text{test}}^{\text{quad}}(w) = \mathcal{L}_{\text{test}}(w_0) + \frac{1}{d}z_{\text{test}} \cdot \Delta w + \frac{1}{2d}\Delta w^\top H_{\text{test}}\Delta w, \quad (3)$$

where $z_{\text{test}} := d\nabla_w \mathcal{L}_{\text{test}}(w_0)$ is the normalized test gradient and $\Delta w := w - w_0$. Finally, we define the unperturbed test loss and test loss increment as follows:

$$\mathcal{L}_0 := \mathcal{L}_{\text{test}}^{\text{quad}}(w_0), \quad \Delta \mathcal{L} := \mathcal{L}_{\text{test}}^{\text{quad}}(w_0 + \Delta w) - \mathcal{L}_{\text{test}}^{\text{quad}}(w_0). \quad (4)$$

3.1.1 LOSS FLUCTUATIONS ARE GOVERNED BY EIGENVECTOR OVERLAPS

Generically, the effect of a perturbation is to induce a small gradient z at the unperturbed minimum w_0 , yielding a new minimum of $\mathcal{L}_{\text{train}}^{\text{quad}}$ at a displacement Δw . Directly minimizing (2) gives the perturbation-induced displacement $\Delta w = -H_{\text{train}}^{-1}z$. We sometimes refer to the perturbation gradient z as the *injected noise* and to Δw as the (*inverse-Hessian*) *filtered noise*. Substituting the displacement into $\mathcal{L}_{\text{test}}^{\text{quad}}$ yields the following expression for the test loss increment,

$$\Delta \mathcal{L} = -\frac{1}{d}z_{\text{test}}^\top H_{\text{train}}^{-1}z + \frac{1}{2d}z^\top H_{\text{train}}^{-1}H_{\text{test}}H_{\text{train}}^{-1}z. \quad (5)$$

Equation (5) represents the simplest model capturing the interaction of nontrivial train and test geometry in the context of noisy learning. The first-order effect is structurally simple—and, in several natural cases (e.g., label noise under MSE, analyzed below), vanishes exactly in expectation. The second order term, in contrast, involves interaction between train and test curvatures: letting $C_{\text{train}} := \mathbb{E}[\Delta w \Delta w^\top] = \mathbb{E}[(H_{\text{train}}^{-1}z)(H_{\text{train}}^{-1}z)^\top]$ be the displacement covariance, its expectation is $\frac{1}{2d}\text{tr}[H_{\text{test}}C_{\text{train}}]$. This simple trace expression suggests the importance of alignment between directions of large training displacement and directions of large test Hessian eigenvalue. One of the main theoretical contributions of this work is the following theorem making this intuition precise.

Theorem 1 (Overlap local fluctuation law). *Let $\mu_{\text{train}}, \mu_{\text{test}}$ be the spectral measures of $C_{\text{train}}, H_{\text{test}}$, and define $\frac{1}{d}O(\lambda_1, \lambda_2)$ as the mean squared cosine angle between eigenvectors of $C_{\text{train}}, H_{\text{test}}$ at eigenvalues λ_1, λ_2 . Assume $\mathbb{E}[\Delta w] = 0$. Then*

$$\mathbb{E}[\Delta \mathcal{L}] = \frac{1}{2} \int \int \lambda_1 \lambda_2 O(\lambda_1, \lambda_2) \mu_{\text{test}}(d\lambda_1) \mu_{\text{train}}(d\lambda_2). \quad (6)$$

Equation 6, which puts training displacements λ_2 , test sensitivity λ_1 , and eigenvector overlaps $O(\lambda_1, \lambda_2)$, on equal footing, attests to the fundamental role of overlaps in two-loss geometry.

Proof sketch. Letting $(\lambda_i^{\text{test}}, u_i^{\text{test}}), (\lambda_j^{\text{train}}, u_j^{\text{train}})$ be the eigenvalues/eigenvectors of $H_{\text{test}}, C_{\text{train}}$,

$$\frac{1}{2d}\text{tr}[H_{\text{test}}C_{\text{train}}] = \frac{1}{2} \frac{1}{d^2} \sum_{i=1}^d \sum_{j=1}^d \lambda_i^{\text{test}} \lambda_j^{\text{train}} [d(u_i^{\text{test}} \cdot u_j^{\text{train}})^2]. \quad (7)$$

Writing the double sum as an integral over the spectral measures of $H_{\text{test}}, C_{\text{train}}$ yields (6). See Appendix B.2 for details. \square

While we do not treat stochastic optimization explicitly, in the same local quadratic regime, noisy gradient descent yields a curvature-filtered steady-state covariance that, when substituted for C_{train} , yields the same overlap fluctuation law (see Appendix B.2.2).

3.1.2 OVERLAP TRANSFER LAW

In many situations one must consider the overlaps between an operator A and a noisy transformation of another operator B , written \hat{B} . For example, below in the context of ridge regression with anisotropic gaussian inputs, we consider the case that A, B correspond to the population test and train covariances, while \hat{B} is the *sample* train covariance. More generally, A, B could represent the population test and train Hessians, and \hat{B} the empirical train Hessian. In such cases, one needs a way of combining the population overlaps $O_{A,B}$ with the noise, specified by $O_{B,\hat{B}}$. We prove the following appealing transfer law in Appendix B.3:

216 **Theorem 2** (Free transfer law for overlap functions). *Let $\hat{B} = F(B, X)$ be a matrix rational
217 expression. If X is free from A, B , then*

$$219 \quad O_{A, \hat{B}}(a, \hat{b}) = \int O_{A, B}(a, b) O_{B, \hat{B}}(b, \hat{b}) \mu_B(db). \quad (8)$$

221 (Freeness is a notion of independence that is suited to large random matrices and holds asymptotically
222 for a wide range of common random matrix models; see Appendix B.3.) Theorem 2 entails
223 a simple overlap calculus that can be used to compute overlap functions of complex matrix models
224 from simpler ones. In Appendix C, we use (8) to quickly derive expressions for train-test Hessian
225 overlap functions in anisotropic ridge regression.

226 3.2 HESSIAN OVERLAPS GOVERN GENERALIZATION IN LINEAR REGRESSION

228 We now consider ridge regression, where the preceding theory is exact. Let training inputs $x \in \mathbb{R}^d$
229 have covariance $\Sigma_{\text{train}} := \mathbb{E}[xx^\top]$, and assume linear output with Gaussian label noise:

$$230 \quad y(x) = \frac{1}{\sqrt{d}} w_*^\top x + \xi, \quad \xi \sim \mathcal{N}(0, \sigma^2).$$

232 We will also assume for convenience that $w_* \sim \mathcal{N}(0, I)$, so that the signal to noise ratio is
233 $\text{tr } \Sigma_{\text{train}} / (\text{tr } \Sigma_{\text{train}} + \sigma^2)$ (tr denotes the dimension normalized trace). Given a training set consisting of
234 $X \in \mathbb{R}^{m \times d}$ (rows x^\top) and labels $y \in \mathbb{R}^m$, ridge regression chooses $w \in \mathbb{R}^d$ to minimize

$$235 \quad \mathcal{L}_{\text{train}}(w) = \frac{1}{2m} \|y - \frac{1}{\sqrt{d}} Xw\|^2 + \frac{\lambda}{2d} \|w\|^2, \quad \lambda \geq 0. \quad (9)$$

236 We write $\alpha := m/d$ for the sampling ratio. The (excess) test loss is measured with test inputs with
237 (possibly different) covariance Σ_{test} :

$$238 \quad \mathcal{L}_{\text{test}}(w) := \frac{1}{2} \mathbb{E}_{x, \xi} \left[\left(\frac{1}{\sqrt{d}} w^\top x - y(x) \right)^2 \right] - \frac{1}{2} \sigma^2 = \frac{1}{2d} (w - w_*)^\top \Sigma_{\text{test}} (w - w_*).$$

240 With the scalings of 3.1, one has $H_{\text{train}} = \hat{\Sigma}_{\text{train}} + \lambda I$ and $H_{\text{test}} = \Sigma_{\text{test}}$, where $\hat{\Sigma}_{\text{train}} := X^\top X/m$
241 is the training set sample covariance. Note $\hat{\Sigma}_{\text{train}} \rightarrow \Sigma_{\text{train}}$ for large $\alpha = m/d$.

243 We now apply the local fluctuation formula (6), which in the setting of ridge regression is exact.
244 Letting the label noise supply the perturbation, the injected noise $z := d\nabla_w \mathcal{L}_{\text{train}}(w_0, \xi)$ and dis-
245 placement covariance $C_{\text{train}} := \mathbb{E}[(H_{\text{train}}^{-1} z)(H_{\text{train}}^{-1} z)^\top]$ are

$$246 \quad z = -\frac{\sqrt{d}}{m} X^\top \xi, \quad C_{\text{train}} = \sigma^2 \alpha^{-1} \hat{\Sigma}_{\text{train}} (\hat{\Sigma}_{\text{train}} + \lambda I)^{-2}, \quad (10)$$

247 where $\alpha := m/d$ is the sampling ratio. The test loss increment $\Delta \mathcal{L}$ is obtained by substituting
248 into the overlap formula (6). The training-side operators $\hat{\Sigma}_{\text{train}}$, $H_{\text{train}} = \hat{\Sigma}_{\text{train}} + \lambda I$ and C_{train}
249 commute and share eigenvectors, so for simplicity all formulas are written in terms of $\hat{\Sigma}_{\text{train}}$:

$$251 \quad \mathbb{E}[\Delta \mathcal{L}] = \frac{\sigma^2}{2\alpha} \iint \lambda_1 \frac{\lambda_2}{(\lambda_2 + \lambda)^2} O_{\Sigma_{\text{test}}, \hat{\Sigma}_{\text{train}}}(\lambda_1, \lambda_2) \mu_{\Sigma_{\text{test}}}(d\lambda_1) \mu_{\hat{\Sigma}_{\text{train}}}(d\lambda_2), \quad (11)$$

253 where $\mu_{\Sigma_{\text{test}}}$ and $\mu_{\hat{\Sigma}_{\text{train}}}$ are the empirical spectral measures, and $O_{\Sigma_{\text{test}}, \hat{\Sigma}_{\text{train}}}(\lambda_1, \lambda_2)$ is the
254 eigenvector-overlap function (see (18)). Since we will be interested primarily in the ridgeless limit
255 $\lambda \rightarrow 0$, we will loosely refer to $\hat{\Sigma}_{\text{train}}$ as the train Hessian. See Appendix C for detailed derivations.

256 The fundamental conclusion from (11) that we will apply toward analyzing covariate shift and
257 multiple descent is that error is large when training perturbations induce large variance (small training
258 eigenvalue λ_2) in directions that align strongly (large $O(\lambda_1, \lambda_2)$) with directions of large test loss
259 sensitivity (large test eigenvalue λ_1).

260 In Appendix C, using techniques from operator-valued free probability we derive asymptotically
261 exact expressions for $\mathcal{L}_{\text{test}}$, $\Delta \mathcal{L}$ and the overlap function $O_{H_{\text{train}}, H_{\text{test}}}$ in proportional asymptotics
262 where $m, d \rightarrow \infty$ with $\alpha := m/d$ fixed. The main conceptual contribution of this work is that while
263 the spectral densities of train/test operators set the relevant scales, it is their relative orientation—
264 as quantified by the overlap function—that determines how displacements translate into test loss.
265 We illustrate these points in two settings: first, a simple covariate shift experiment that provides
266 geometric intuition and positions $O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}$ as the natural object quantifying shift; second, the
267 puzzle of multiple descent (cf. Mel & Ganguli (2021)), where the overlap function allows a full
268 analytical account. For clarity, in both settings we use the simplest possible model of anisotropic
269 data: the “two-scale” covariance with spectral measure

$$270 \quad \mu_\Sigma := p_1 \delta_{s_1^2} + p_2 \delta_{s_2^2}. \quad (12)$$

270 3.2.1 COVARIATE SHIFT INCREASES LOSS THROUGH TRAIN-TEST MISALIGNMENT
271

284
285 Figure 1: Covariate shift and test error. (a) Two-dimensional slice of parameter space. Points: individual
286 parameter displacements due to label noise. Lines show train (cyan) and test (red) Hessians
287 with precisely controlled alignment θ . (b) Eigenspaces are rotated while Hessian spectra are fixed.
288 Blue line shows $d, m \rightarrow \infty$ theory. (c) For small θ , large displacements in learned parameters are
289 aligned with the low-eigenvalue directions of the test Hessian (aligned ellipses at top left, and purple
290 overlap lines), and error is small (black line). For large θ , large displacement directions are aligned
291 with sensitive directions of the test loss and test error is large (black line). Lines: theory; crosses:
292 average from simulations. $d, \alpha, \lambda, \sigma = 10^2, 10, 10^{-4}, 10^{-1/2}$.

293 Equation (11) expresses $\Delta\mathcal{L}$ in terms of the overlap function $O_{\Sigma_{\text{test}}, \hat{\Sigma}_{\text{train}}}$. Relative to the population
294 overlap $O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}$, this overlap is deformed by the finite sampling ratio of the training set (cf.
295 transfer law of Theorem 2). In Appendix C.3 we use the transfer law to state an explicit formula for
296 $O_{\Sigma_{\text{test}}, \hat{\Sigma}_{\text{train}}}$, and then prove the following:

297 **Theorem 3.** *As $m, d \rightarrow \infty$ with α fixed, the asymptotic test loss increment satisfies*

$$300 \quad \mathbb{E}[\Delta\mathcal{L}] \rightarrow \frac{\sigma^2}{2\alpha} \frac{d\tilde{\lambda}}{d\lambda} \iint \lambda_1 \frac{\lambda_2}{(\lambda_2 + \tilde{\lambda})^2} O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}(\lambda_1, \lambda_2) \mu_{\Sigma_{\text{test}}}(d\lambda_1) \mu_{\Sigma_{\text{train}}}(d\lambda_2), \quad (13)$$

302 where $\tilde{\lambda}$ is the effective regularization defined by the self-consistent equation:

$$305 \quad \tilde{\lambda} := \frac{\lambda}{r(-\lambda)}, \quad r(z) = \left(1 - \frac{1}{\alpha} \int \frac{t}{z - t r(z)} d\mu_{\Sigma_{\text{train}}}(t)\right)^{-1}. \quad (14)$$

307 Equation (13) parallels (11) but averages out all training randomness to express $\Delta\mathcal{L}$ purely in terms
308 of the population operators $\Sigma_{\text{train}}, \Sigma_{\text{test}}$. Most importantly, (13) illustrates how $O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}$ —as
309 the only quantity that can change under isospectral transformations to $\Sigma_{\text{train}}, \Sigma_{\text{test}}$ —captures bona
310 fide two-loss geometric effects that are invisible from either loss geometry in isolation.

311 To illustrate this point, we perform a simple experiment where both $\Sigma_{\text{train}}, \Sigma_{\text{test}}$ have fixed two-
312 level spectra (12) with scales $s_1^2, s_2^2 = 2^0, 2^{-4}$ and equal multiplicities. $\lambda = 10^{-4}$ and $\alpha = m/d =$
313 10 so that $H_{\text{train}} \approx \hat{\Sigma}_{\text{train}} \approx \Sigma_{\text{train}}$, while $H_{\text{test}} = \Sigma_{\text{test}}$. Fig. 1(a) shows the distribution of
314 learned parameter displacements for different label noise realizations. As predicted, displacements
315 have larger variance along long directions of $C_{\text{train}} \approx \sigma^2 \Sigma_{\text{train}}^{-1}/\alpha$, corresponding to low-curvature
316 directions of the train Hessian. At the same time, the test loss contours are determined by the test
317 Hessian Σ_{test} . We construct a controlled perturbation in which Σ_{test} is systematically rotated with
318 respect to Σ_{train} while all spectra are kept fixed (b), isolating the effect of overlaps. Fig. 1(c) demon-
319 strates the consequence of varying overlap. When the long directions of Σ_{train} align with the
320 long directions of Σ_{test} ($\theta = 0$), displacements occur in directions where the test error is relatively
321 flat, yielding low excess test loss (Fig. 1(c), left column). In contrast, when the same train-long
322 directions align with test-short directions ($\theta = \pi/2$), the same magnitude of parameter displacement
323 is heavily penalized, and the test loss rises sharply (Fig. 1(c), right column). This simple experiment
324 illustrates the central role of eigenvector overlaps in the context of covariate shift.

Figure 2: Multiple descent in ridge regression. (a) Loss as a function of the measurement density $\alpha = m/d$ for two-scale data. Note the peaks at critical values of $\alpha = 1/2, 1$. Solid lines: theory; crosses: simulations with $d = 5000$. Dashed, dotted, and dash-dotted lines show theory $\mathcal{L}_{\text{test}}, \Delta\mathcal{L}, \mathcal{L}_0$ in the limit that the lower scale $s_2 \rightarrow 0$, where bumps become true singularities. (b) Theory $\mathcal{L}_{\text{test}}(\alpha, \lambda)$. Gold and blue lines indicate slices shown in panel (a). (c) 3 and 4 scale data which exhibit 3 and 4 peaks; legend same as (a). (d) Green histogram: empirical spectral density of the train Hessian $X^\top X/m$ at $\alpha = 0.496$; solid green line: theory. Purple line: overlap function, $O(s_1^2, \lambda_2)/2$, giving overlap between a train eigenspace at eigenvalue λ_2 with the entire large-eigenvalue test space (ie. s_1^2). Note strong overlap for high train/test eigenspaces.

3.2.2 MULTIPLE DESCENT IS EXPLAINED BY TRAIN-TEST OVERLAPS

Double descent is a well-established phenomenon in machine learning in which test error exhibits a non-monotonic dependence on model size. More recently, several authors have described an extension of this effect, termed multiple descent, which arises in settings where input data are highly anisotropic and the covariance spectrum contains multiple separated scales (see introduction). Fig. 2(a,b) illustrate multiple descent for two-scale data with $s_1, s_2 = 1, 10^{-2}$, while panel c shows how a larger number of separated scales can create additional peaks in test error (see caption for details).

For a two-level covariance, the overlap function is determined by the solution to a cubic polynomial that is easily solved numerically (Appendix C). Fig. 2(d) shows the spectrum of the train Hessian (green histogram and theory line), and the overlap function (18), indicating overlap of a training eigenspace at eigenvalue λ_2 with the large-eigenvalue (s_1^2) eigenspace of the test Hessian. Theoretical and empirical overlaps are in excellent agreement (purple line and crosses).

The peaks of multiple descent are easily understood in terms of eigenvector overlaps. Fig. 3 reports the error, training spectrum, and overlap map for the two-scale covariance model of Fig. 2. The test-loss curve shows two singularities at critical sampling densities $\alpha = m/d$ (a). At the same densities the training spectrum undergoes phase transitions: at $\alpha = 1/2$ an initially unimodal density splits into two bands centered near s_1^2 and s_2^2 , and at $\alpha = 1$ the lower s_2^2 band develops a near-zero component (Fig. 3(b)). The corresponding overlap map $O(\lambda_1, \lambda_2)$ is approximately block-diagonal: modes near s_1^2 align predominantly with the s_1^2 test subspace, and modes near s_2^2 with the s_2^2 subspace (Fig. 3(c)). Thus, the first error spike occurs when near-null training directions overlap the sharp test subspace, whereas the second arises when an even smaller training component overlaps the flat subspace but with variance large enough to dominate its small curvature. Fig. 3(d) provides a geometric schematic of the alignment of top and bottom eigenspaces of $H_{\text{train}}, H_{\text{test}}$ throughout this sequence. Until line 5, the minimum eigenvalue of H_{train} always decreases as a function of α —which, according to a spectrum-only analysis, should increase test error. Yet the error actually *decreases* between horizontal lines 3 and 4, precisely because the lowest train eigenspaces begin to overlap predominately with the low test eigenspace.

Summarizing, multiple descent arises from the interplay of (i) training components developing near-zero eigenvalues as α varies, and (ii) which test directions these overlap with—sharp or flat, illustrating the potentially extreme impact of (mis-)aligned train and test loss geometry.

Figure 3: Multiple descent is explained by train-test Hessians overlaps. (a) $\Delta \mathcal{L}$ due to label noise ($\lambda, s_2^2 \rightarrow 0$ limits taken to illustrate true singularities; see Appendix C.5.1 for details). (b) Spectral density of H_{train} as a function of α (each density normalized to a maximum of 1 and quantized). For high sampling density α , the training density acquires two components roughly centered on the true underlying data scales s_1^2, s_2^2 . (c) The overlap function of $H_{\text{train}}, H_{\text{test}}$ as a function of α . For small α , all nonzero H_{train} spaces overlap strongly with the large eigenspace of H_{test} . As α approaches the first critical value, a new spectral component appears, whose eigenspaces overlap almost entirely with the small eigenspace of H_{test} . (d) Minimal model of train-test Hessian geometry. Cyan plane and ellipses represent the top and bottom eigenspaces of H_{train} . Red ellipsoid represents level sets of test error. Error is controlled by both train variance magnitude and overlap onto test spaces.

3.3 LOCAL THEORY PREDICTS MLP GENERALIZATION AND LEARNING DYNAMICS

To test the quantitative predictions of the quadratic two-loss theory in a controlled nonconvex setting, we trained small, constant width multilayer perceptrons (MLPs) to reproduce the responses of an MLP teacher network. Student networks were batch trained for a large number of iterations to ensure near convergence to the noiseless training loss minimum. Noise was then added to the training set and the network was trained further—beginning from the initial trained state to determine the effect of the noise on the initial local minimum. After training, the training loss increment was computed and compared to prediction of the local quadratic theory. Fig. 4(a,b) show the measured test loss increment against the local quadratic prediction for several orders of magnitude of input (a) and label (b) noise strength. All later panels refer to the noise setting corresponding to the red point in (b).

Fig. 4(c) illustrates inverse Hessian filtering due to training dynamics. The gradient noise induced by the label noise has covariance $\mathbb{E}[zz^\top]$. Purple scatter represents the overlap function of $\mathbb{E}[zz^\top]$ and H_{train} . Dot x, y position is given by $H_{\text{train}}, \mathbb{E}[zz^\top]$ eigenvalue and size is proportional to overlap. Note strong alignment between gradient noise and test Hessian. After training, the parameter displacement covariance predicted by quadratic approximation is $C_{\text{train}} := \mathbb{E}[(H_{\text{train}}^{-1}z)(H_{\text{train}}^{-1}z)^\top]$. The overlap function of H_{train} and the actual post-training covariance is plotted in red. Note how in accordance with quadratic predictions, variance is strongly inflated/attenuated along low/high eigendirections of H_{train} —a phenomenon we refer to as inverse Hessian filtering. The large displacements do not translate into large test error since the train and test Hessians are well aligned (Fig. 6), meaning displacements occur primarily along low test Hessian (loss-insensitive) directions.

To provide geometric intuition, loss landscape slices are shown in Fig. 4(d) for $\mathcal{L}_{\text{train}}(w, 0)$, $\mathcal{L}_{\text{train}}(w, \epsilon)$, and $\mathcal{L}_{\text{test}}$. A single 2D slice was chosen to contain the unperturbed minimum w_0 (white crosses), perturbed minimum (white stars), and parameters predicted by the local quadratic approximation (white ‘Y’s). Local geometry also predicts local gradient descent dynamics well (Appendix E.1; Fig. 7). Together, these results validate the predictions of the two-loss local theory.

Figure 4: Validation of local fluctuation law in MLPs. Layer widths for both student and teacher were (5,5,5,1); nonlinearity: tanh; teacher network has gaussian weights with scale $4/\sqrt{d_{in}}$ for each layer; loss: MSE with ℓ_2 parameter $\lambda = 1$. (a,b) Predicted vs measured perturbation-induced $\Delta\mathcal{L}/\mathcal{L}_0$ for increasing input (a) or label (b) noise amplitude σ . (c) Eigenvector overlap function between H_{train} and the injected noise $\mathbb{E}[zz^\top]$ (purple), and post-learning filtered noise C_{train} (red). Note how learning inflates/dampens variance along the low/high H_{test} eigenspaces. (d) 2-dimensional loss landscapes for 1 example simulation: noiseless $\mathcal{L}_{\text{train}}$ (left), perturbed $\mathcal{L}_{\text{train}}$ (middle), and $\mathcal{L}_{\text{test}}$ (right). Cross: noiseless training minimum; star: minimum of perturbed $\mathcal{L}_{\text{train}}$ (ie. the new learned minimum); tri-star: parameters predicted by quadratic theory.

3.4 CALCULATION OF OVERLAP FUNCTIONS FOR LARGE SCALE NETWORKS

Applying our theory to modern networks requires estimating the overlap function between the training and test operators. These operators have dimension equal to the number of parameters—often millions to billions—so any approach that forms them explicitly is infeasible.

Here we give a brief overview of our approach, deferring details to Appendix F. We apply two separate algorithms, one for computing overlaps among outlier eigenspaces and another for the remaining “bulk” spaces. Outlier eigenvectors are straightforward to obtain using subspace iteration (Appendix F.2; cf. Papyan (2019)); overlaps can then be computed directly. For the bulk eigenspaces, we generalize a well known approach to spectral density estimation known as the kernel polynomial method (KPM; Algorithm 1 in Appendix F.3).

Given self-adjoint matrices $A, B \in \mathbb{R}^{d \times d}$ and arbitrary smoothing kernels $G(x; \sigma)$ of width σ , the smoothed total eigenvector overlap of A, B at eigenvalues λ_1, λ_2 can be written

$$\bar{\text{tr}}[G_{A, \lambda_1} G_{B, \lambda_2}] = \frac{1}{d^2} \sum_{i,j=1}^d G(\lambda_{A,i} - \lambda_1; \sigma) G(\lambda_{B,j} - \lambda_2; \sigma) \left[d(v_{A,i} \cdot v_{B,j})^2 \right], \quad (15)$$

where $G_{A, \lambda_1} := G(A - \lambda_1 I; \sigma)$ and similarly for G_{B, λ_2} . To obtain the normalized overlap function treated above, one simply divides by the (G-smoothed) spectral densities of A, B at λ_1, λ_2 .

Computing the trace in (15) is prohibitively expensive for large A, B , and so we resort to Hutchinson trace estimation, which approximates $\text{tr}[X]$ with the average of $v^\top X v$ for several samples of $v \sim \mathcal{N}(0, I)$. To ensure the trace is positive, instead of approximating (15), we use

$$\bar{\text{tr}}[G_{A, \lambda_1} G_{B, \lambda_2}] = \bar{\text{tr}}[G_{A, \lambda_1}^{1/2} G_{B, \lambda_2} G_{A, \lambda_1}^{1/2}] = \mathbb{E}_v \|G_{B, \lambda_2}^{1/2} G_{A, \lambda_1}^{1/2} v\|^2. \quad (16)$$

Figure 5: Overlap function for H_{train} , H_{test} , and class imbalanced Hessian H'_{test} for ResNet-20 trained on CIFAR10. Cyan/red data: spectra of H_{train} , H_{test} . Dashed lines indicate outlier eigenvalues. Purple scatters show overlap between each pair of eigenspaces/bulk spaces. Size and color reflect overlap magnitude. (a) H_{train} , H_{test} overlaps. Note strong alignment indicated by large overlaps along the diagonal. (b) H_{train} , H'_{test} overlaps. A large fraction of each Hessian’s outlier energy is lost in low-outlier and bulk spaces of the other, indicating poor alignment.

The KPM proceeds by taking the smoothing kernel $G(x; \sigma)$ to be gaussian of width σ , and then approximates $G_{A, \lambda_1}^{1/2}, G_{B, \lambda_2}^{1/2}$ using truncated Chebyshev series. (Kernel width and approximation degree K are chosen so that the truncated series sufficiently dampens the large-multiplicity near-0 eigenspaces; see Appendix F.3.) Thus (16) can be evaluated in terms of the vectors $T_i(B)T_j(A)v$, where T_k is the k^{th} Chebyshev polynomial. These vectors in turn can be generated efficiently via Chebyshev recurrences using only matrix-vector products (see Appendix F for detailed treatment and application to synthetic data).

We ran a simple controlled experiment to demonstrate the scalability of our Hessian-overlap algorithms on a modern network and to illustrate how a common form of domain shift—class imbalance in the test set—produces a clear change in two-loss geometry. A CIFAR10-pretrained ResNet-20 was obtained from Chen (top-1 test accuracy: 92.6%). The train Hessian was estimated from 5000 examples and fixed throughout the experiment. Two-loss geometry was then compared between two scenarios: a class-balanced test Hessian estimated from 5000 randomly selected test images, and a class-imbalanced Hessian from images with class labels 0, 1 and 2. Spectra, estimated using subspace iteration and the Lanczos algorithm, are shown in Fig. 5(a) (train in cyan; test in red). Non-outlier eigenspaces were grouped into a single bulk space for clarity. The strong alignment observed between the train and balanced test Hessians largely disappears when the test set is made unbalanced (purple scatters; bulk overlaps, omitted for space, exhibit similar pattern; Fig. 10). All Hessian-vector products were computed using standard PyTorch autograd on commodity hardware, with total runtime of a few hours. Runtimes are essentially linear in the model size and number of examples, underscoring the scalability of our method (see Appendix F.3 for complexity analysis).

4 DISCUSSION

We show how, within a two-loss geometric framework, overlaps occupy a central role linking optimization geometry, random matrix theory, and practical machine learning phenomena. We derive novel theoretical tools for computing overlaps, illustrate through several examples how spectra set curvatures, while eigenvector overlaps route variance into error—unifying covariate shift and multiple descent—and develop scalable estimators for overlap analysis in large models. A natural application of two-loss geometry is as a diagnostic tool for explaining why some domain shifts are more harmful than others. Promising future directions include tracking Hessian overlaps through training time, and *alignment-aware optimization* that attempts to improve generalization by encouraging strong eigenvector alignment between, eg., train and validation Hessians.

540 REFERENCES
541

542 Ryan P. Adams, Jeffrey Pennington, Matthew J. Johnson, Jamie Smith, Yaniv Ovadia, Brian Patton,
543 and James Saunderson. Estimating the spectral density of large implicit matrices, 2018. URL
544 <https://arxiv.org/abs/1802.03451>.

545 Florent Benaych-Georges and Raj Rao Nadakuditi. The eigenvalues and eigenvectors of finite,
546 low rank perturbations of large random matrices. *Advances in Mathematics*, 227(1):494–521,
547 2011. ISSN 0001-8708. doi: <https://doi.org/10.1016/j.aim.2011.02.007>. URL <https://www.sciencedirect.com/science/article/pii/S0001870811000570>.

549

550 John P Boyd. *Chebyshev & Fourier Spectral Methods*. Lecture Notes in Engineering. Springer,
551 Berlin, Germany, September 1989.

552

553 Joël Bun, Jean-Philippe Bouchaud, and Marc Potters. Cleaning large correlation matrices: Tools
554 from random matrix theory. *Physics Reports*, 666:1–109, January 2017. ISSN 0370-1573. doi: 10.
555 1016/j.physrep.2016.10.005. URL <http://dx.doi.org/10.1016/j.physrep.2016.10.005>.

556

557 Lin Chen and Song Mei. Spectral multiplicity entails sample-wise multiple descent, 2022. URL
558 <https://openreview.net/forum?id=qaQ8kUBYhEK>.

559

560 Lin Chen, Yifei Min, Mikhail Belkin, and Amin Karbasi. Multiple descent: Design your own
561 generalization curve, 2021. URL <https://arxiv.org/abs/2008.01036>.

562

563 Yaofu Chen. Pytorch cifar models. <https://github.com/chenyaofu/pytorch-cifar-models>. Accessed: 2025-5-17.

564

565 Jeremy Cohen, Simran Kaur, Yuanzhi Li, J Zico Kolter, and Ameet Talwalkar. Gradient descent on
566 neural networks typically occurs at the edge of stability. In *International Conference on Learning
567 Representations*, 2021. URL <https://openreview.net/forum?id=jh-rTtvkGeM>.

568

569 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
570 tion for efficiently improving generalization. In *International Conference on Learning Represen-
571 tations*, 2021. URL <https://openreview.net/forum?id=6Tm1mposlrM>.

572

573 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net opti-
574 mization via hessian eigenvalue density. In Kamalika Chaudhuri and Ruslan Salakhutdinov
575 (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of
576 *Proceedings of Machine Learning Research*, pp. 2232–2241. PMLR, 09–15 Jun 2019. URL
577 <https://proceedings.mlr.press/v97/ghorbani19b.html>.

578

579 Gene H Golub and Gerard Meurant. *Matrices, moments and quadrature with applications*. Princeton
Series in Applied Mathematics. Princeton University Press, Princeton, NJ, December 2009.

580

581 Ali Hasan, Haoming Yang, Yuting Ng, and Vahid Tarokh. Elliptic loss regularization. In
582 *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=YwzxpZW3p7>.

583

584 Sobhan Hemati, Guojun Zhang, Amir Estiri, and Xi Chen. Understanding hessian alignment for
585 domain generalization, 2023. URL <https://arxiv.org/abs/2308.11778>.

586

587 Iain M. Johnstone. On the distribution of the largest eigenvalue in principal components analysis.
588 *The Annals of Statistics*, 29(2), April 2001. ISSN 0090-5364. doi: 10.1214/aos/1009210544.
589 URL <http://dx.doi.org/10.1214/aos/1009210544>.

590

591 Ryo Karakida, Shotaro Akaho, and Shun-ichi Amari. Universal statistics of fisher information in
592 deep neural networks: Mean field approach. In Kamalika Chaudhuri and Masashi Sugiyama
593 (eds.), *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics*, volume 89 of *Proceedings of Machine Learning Research*, pp. 1032–1041. PMLR, 16–
18 Apr 2019. URL <https://proceedings.mlr.press/v89/karakida19a.html>.

594 Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
 595 ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. In
 596 *International Conference on Learning Representations*, 2017. URL <https://openreview.net/forum?id=H1oyR1Ygg>.
 597

598 Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher SAM: Information geom-
 599 etry and sharpness aware minimisation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
 600 Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International
 601 Conference on Machine Learning*, volume 162 of *Proceedings of Machine Learning Research*,
 602 pp. 11148–11161. PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/kim22f.html>.
 603

604 Itamar D. Landau, Gabriel C. Mel, and Surya Ganguli. Singular vectors of sums of rectangular
 605 random matrices and optimal estimation of high-rank signals: The extensive spike model. *Phys.
 606 Rev. E*, 108:054129, Nov 2023. doi: 10.1103/PhysRevE.108.054129. URL <https://link.aps.org/doi/10.1103/PhysRevE.108.054129>.
 607

608 Binh M Le and Simon S Woo. Gradient alignment for cross-domain face anti-spoofing. In *Proceed-
 609 ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 188–199,
 610 2024.
 611

612 Yue Li and Yuting Wei. Minimum ℓ_1 -norm interpolators: Precise asymptotics and multiple descent,
 613 2021. URL <https://arxiv.org/abs/2110.09502>.
 614

615 Zhenyu Liao and Michael W. Mahoney. Hessian eigenspectra of more realistic nonlinear models.
 616 In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in Neu-
 617 ral Information Processing Systems*, 2021. URL <https://openreview.net/forum?id=o-RYNV0lxA8>.
 618

619 Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices. *SIAM
 620 Review*, 58(1):34–65, 2016. doi: 10.1137/130934283. URL <https://doi.org/10.1137/130934283>.
 621

622 Avner May, Jian Zhang, Tri Dao, and Christopher Ré. On the downstream performance of com-
 623 pressed word embeddings. *Advances in neural information processing systems*, 32:11782–11793,
 624 2019. URL <https://api.semanticscholar.org/CorpusID:202538924>.
 625

626 Gabriel Mel and Surya Ganguli. A theory of high dimensional regression with arbitrary correlations
 627 between input features and target functions: sample complexity, multiple descent curves and
 628 a hierarchy of phase transitions. In Marina Meila and Tong Zhang (eds.), *Proceedings of the
 629 38th International Conference on Machine Learning*, volume 139 of *Proceedings of Machine
 630 Learning Research*, pp. 7578–7587. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/mel21a.html>.
 631

632 Gabriel Mel and Jeffrey Pennington. Anisotropic random feature regression in high dimensions. In
 633 *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=JfaWawZ8BmX>.
 634

635 Xuran Meng, Jianfeng Yao, and Yuan Cao. Multiple descent in the multiple random feature model,
 636 2023. URL <https://arxiv.org/abs/2208.09897>.
 637

638 James A. Mingo and Roland Speicher. *Free Probability and Random Matrices*. Springer New York,
 639 2017. ISBN 9781493969425. doi: 10.1007/978-1-4939-6942-5. URL <http://dx.doi.org/10.1007/978-1-4939-6942-5>.
 640

641 Boaz Nadler. Finite sample approximation results for principal component analysis: A matrix per-
 642 turbation approach. *The Annals of Statistics*, 36(6), December 2008. ISSN 0090-5364. doi:
 643 10.1214/08-aos618. URL <http://dx.doi.org/10.1214/08-AOS618>.
 644

645 Vardan Papyan. The full spectrum of deepnet Hessians at scale: Dynamics with SGD training and
 646 sample size, 2019. URL <https://arxiv.org/abs/1811.07062>.
 647

648 Vardan Petyan. Traces of class/cross-class structure pervade deep learning spectra. *Journal of*
 649 *Machine Learning Research*, 21(252):1–64, 2020. URL <http://jmlr.org/papers/v21/20-933.html>.
 650

651 Debashis Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance
 652 model. *Statistica Sinica*, 17(4):1617–1642, 2007. ISSN 10170405, 19968507. URL <http://www.jstor.org/stable/24307692>.
 653

654 Jeffrey Pennington and Yasaman Bahri. Geometry of neural network loss surfaces via random
 655 matrix theory. In Doina Precup and Yee Whye Teh (eds.), *Proceedings of the 34th International*
 656 *Conference on Machine Learning*, volume 70 of *Proceedings of Machine Learning Research*, pp.
 657 2798–2806. PMLR, 06–11 Aug 2017. URL <https://proceedings.mlr.press/v70/pennington17a.html>.
 658

659 Jeffrey Pennington and Pratik Worah. The spectrum of the fisher information matrix of a single-
 660 hidden-layer neural network. In *Neural Information Processing Systems*, 2018. URL <https://api.semanticscholar.org/CorpusID:53410991>.
 661

662 Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning. *Journal*
 663 *of Statistical Mechanics: Theory and Experiment*, 2019(12):124005, December 2019. ISSN
 664 1742-5468. doi: 10.1088/1742-5468/ab3bc3. URL <http://dx.doi.org/10.1088/1742-5468/ab3bc3>.
 665

666 Marc Potters and Jean-Philippe Bouchaud. *A First Course in Random Matrix Theory: for Physi-
 667 cists, Engineers and Data Scientists*. Cambridge University Press, November 2020. ISBN
 668 9781108488082. doi: 10.1017/9781108768900. URL <http://dx.doi.org/10.1017/9781108768900>.
 669

670 Alexandre Rame, Corentin Dancette, and Matthieu Cord. Fishr: Invariant gradient variances for out-
 671 of-distribution generalization. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepes-
 672 vari, Gang Niu, and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Ma-
 673 chine Learning*, volume 162 of *Proceedings of Machine Learning Research*, pp. 18347–18377.
 674 PMLR, 17–23 Jul 2022. URL <https://proceedings.mlr.press/v162/rame22a.html>.
 675

676 Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning: Singu-
 677 larity and beyond, 2017. URL <https://openreview.net/forum?id=B186cP9gx>.
 678

679 Adepu Ravi Sankar, Yash Khasbage, Rahul Vigneswaran, and Vineeth N Balasubramanian. A
 680 deeper look at the hessian eigenspectrum of deep neural networks and its applications to reg-
 681 ularization. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(11):9481–9488,
 682 May 2021. doi: 10.1609/aaai.v35i11.17142. URL <https://ojs.aaai.org/index.php/AAAI/article/view/17142>.
 683

684 Sidak Pal Singh, Aurelien Lucchi, Thomas Hofmann, and Bernhard Schölkopf. Phenomenology of
 685 double descent in finite-width neural networks. In *International Conference on Learning Re-
 686 presentations*, 2022. URL <https://openreview.net/forum?id=1TqGXfn9Tv>.
 687

688 Valentin Thomas, Fabian Pedregosa, Bart van Merriënboer, Pierre-Antoine Manzagol, Yoshua Ben-
 689 gio, and Nicolas Le Roux. On the interplay between noise and curvature and its effect on op-
 690 timization and generalization. In Silvia Chiappa and Roberto Calandra (eds.), *Proceedings of*
 691 *the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108
 692 of *Proceedings of Machine Learning Research*, pp. 3503–3513. PMLR, 26–28 Aug 2020. URL
 693 <https://proceedings.mlr.press/v108/thomas20a.html>.
 694

695 Nilesh Tripuraneni, Ben Adlam, and Jeffrey Pennington. Covariate shift in high-dimensional random
 696 feature regression, 2021. URL <https://arxiv.org/abs/2111.08234>.
 697

698 Shashanka Ubaru, Yousef Saad, and Abd-Krim Seghouane. Fast estimation of approximate matrix
 699 ranks using spectral densities. *Neural Computation*, 29(5):1317–1351, 05 2017. ISSN 0899-7667.
 700 doi: 10.1162/NECO_a_00951. URL https://doi.org/10.1162/NECO_a_00951.
 701

702 Tao Wu, Tie Luo, and Donald C. Wunsch II. Cr-sam: Curvature regularized sharpness-aware
 703 minimization. *Proceedings of the AAAI Conference on Artificial Intelligence*, 38(6):6144–6152,
 704 Mar. 2024. doi: 10.1609/aaai.v38i6.28431. URL <https://ojs.aaai.org/index.php/AAAI/article/view/28431>.

705
 706 Yikai Wu, Xingyu Zhu, Chenwei Wu, Annie Wang, and Rong Ge. Dissecting hessian: Understanding
 707 common structure of hessian in neural networks, 2022. URL <https://arxiv.org/abs/2010.04261>.

708
 709 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W. Mahoney. Pyhessian: Neural
 710 networks through the lens of the hessian. *2020 IEEE International Conference on Big Data (Big
 711 Data)*, pp. 581–590, 2019. URL <https://api.semanticscholar.org/CorpusID:209376531>.

715 A STATEMENT ON LARGE LANGUAGE MODEL USE

716 Large language models were used to polish writing and in conjunction with other tools to discover
 717 relevant published work.

721 B THEORETICAL FOUNDATIONS

722 B.1 EIGENVECTOR OVERLAP FUNCTION

723 To connect the finite- d decomposition to random-matrix and free-probability tools, we now express
 724 eigenvector overlaps in a kernelized trace form amenable to free-probabilistic methods. Let X, Y be
 725 symmetric $d \times d$ matrices with eigendecompositions

$$726 X = \sum_{i=1}^d \lambda_i^X u_i u_i^\top, \quad Y = \sum_{j=1}^d \lambda_j^Y v_j v_j^\top.$$

727 For bounded functions f, g ,

$$728 \bar{\text{tr}}[f(X) g(Y)] = \frac{1}{d^2} \sum_{i=1}^d \sum_{j=1}^d f(\lambda_i^X) g(\lambda_j^Y) [d(u_i^\top v_j)^2]. \quad (17)$$

729 If f and g are sharply peaked around λ_1 and λ_2 , the sum concentrates on overlaps between eigen-
 730 vectors with eigenvalues near (λ_1, λ_2) .

731 A convenient choice is the Poisson kernel

$$732 K(x; \mu, \sigma) := \frac{1}{\pi} \frac{\sigma}{(x - \mu)^2 + \sigma^2},$$

733 with center μ and width $\sigma > 0$. We define the overlap function

$$734 O(\lambda_1, \lambda_2) := \lim_{\sigma_1, \sigma_2 \rightarrow 0} \frac{\bar{\text{tr}}[K(X; \lambda_1, \sigma_1) K(Y; \lambda_2, \sigma_2)]}{\bar{\text{tr}}[K(X; \lambda_1, \sigma_1)] \bar{\text{tr}}[K(Y; \lambda_2, \sigma_2)]}. \quad (18)$$

735 The denominator normalizes the total weight in the sum (17) to one, so $O(\lambda_1, \lambda_2)$ is the weighted
 736 average of the (scaled) squared overlaps $d(u_i^\top v_j)^2$ over eigenpairs near (λ_1, λ_2) . Now (17) can be
 737 rewritten

$$738 \bar{\text{tr}}[f(X) g(Y)] = \iint f(\lambda_1) g(\lambda_2) O(\lambda_1, \lambda_2) d\mu_X(\lambda_1) d\mu_Y(\lambda_2). \quad (19)$$

739 In fact, another way to define the overlap function is to write $\mu_{X,Y}$ for the measure taking $f, g \mapsto$
 740 $\bar{\text{tr}}[f(X) g(Y)]$ and then defining $O(\lambda_1, \lambda_2)$ to be the function making (19) hold, ie. $O = \frac{d\mu_{X,Y}}{d\mu_X \otimes \mu_Y}$.

756 B.2 OVERLAP FLUCTUATION LAW
757

758 Here we prove the fluctuation law (6). Equation 5, which uses the quadratic surrogate losses
759 $\mathcal{L}_{\text{train}}^{\text{quad}}, \mathcal{L}_{\text{test}}^{\text{quad}}$ to compute the test loss increment, reads
760

$$761 \Delta \mathcal{L} = -\frac{1}{d} z_{\text{test}}^{\top} H_{\text{train}}^{-1} z + \frac{1}{2d} z^{\top} H_{\text{train}}^{-1} H_{\text{test}} H_{\text{train}}^{-1} z. \quad (20)$$

762 Noting that $\Delta w = -H_{\text{train}}^{-1} z$, under the assumption that $\mathbb{E}[\Delta w] = 0$, one clearly has
763

$$764 \mathbb{E}[\Delta \mathcal{L}] = \frac{1}{2} \mathbb{E} \bar{\text{tr}}[H_{\text{test}} H_{\text{train}}^{-1} z z^{\top} H_{\text{train}}^{-1}] = \frac{1}{2} \bar{\text{tr}}[H_{\text{test}} C_{\text{train}}]. \quad (21)$$

765 All that's left is to show that the last trace can be expressed in the integral form (6). Letting
766 $(\lambda_i^{\text{test}}, u_i^{\text{test}}), (\lambda_j^{\text{train}}, u_j^{\text{train}})$ be the eigenvalues/eigenvectors of $H_{\text{test}}, C_{\text{train}}$,
767

$$768 \frac{1}{2d} \bar{\text{tr}}[H_{\text{test}} C_{\text{train}}] = \frac{1}{2} \frac{1}{d^2} \sum_{i=1}^d \sum_{j=1}^d \lambda_i^{\text{test}} \lambda_j^{\text{train}} [d (u_i^{\text{test}} \cdot u_j^{\text{train}})^2]. \quad (22)$$

769 Defining the overlap measure
770

$$771 \nu := \frac{1}{d^2} \sum_{i=1}^d \sum_{j=1}^d [d (u_i^{\text{test}} \cdot u_j^{\text{train}})^2] \delta_{(\lambda_i^{\text{test}}, \lambda_j^{\text{test}})}, \quad (23)$$

772 equation (25) can be written
773

$$774 \frac{1}{2d} \bar{\text{tr}}[H_{\text{test}} C_{\text{train}}] = \frac{1}{2} \iint \lambda_1 \lambda_2 \nu(d\lambda_1, d\lambda_2). \quad (24)$$

775 ν is absolutely continuous with respect to $\mu_{\text{test}} \otimes \mu_{\text{train}}$, and so we may define the Radon-Nikodym
776 derivative $O(\lambda_1, \lambda_2) = \frac{d\nu}{d\mu_{\text{test}} \otimes \mu_{\text{train}}}(\lambda_1, \lambda_2)$ so that
777

$$778 \frac{1}{2d} \bar{\text{tr}}[H_{\text{test}} C_{\text{train}}] = \frac{1}{2} \iint \lambda_1 \lambda_2 O(\lambda_1, \lambda_2) \mu_{\text{test}}(d\lambda_1) \mu_{\text{train}}(d\lambda_2). \quad (25)$$

779 On any atom $(\lambda_i^{\text{test}}, \lambda_j^{\text{train}})$,
780

$$781 O(\lambda_i^{\text{test}}, \lambda_j^{\text{train}}) = \frac{\nu(\{(\lambda_i^{\text{test}}, \lambda_j^{\text{train}})\})}{\mu_{\text{test}}(\{\lambda_i^{\text{test}}\}) \mu_{\text{train}}(\{\lambda_j^{\text{test}}\})} = d (u_i^{\text{test}} \cdot u_j^{\text{train}})^2, \quad (26)$$

782 as desired.
783

784 B.2.1 SURROGATE-FREE FORMULATION
785

786 For completeness, we derive the fluctuation law without the use of quadratic surrogate losses by
787 making a minor modification to the train Hessian. As before, let $\mathcal{L}_{\text{train}}(w, \epsilon)$ and $\mathcal{L}_{\text{test}}(w)$ denote
788 the train and test losses, assumed twice differentiable in w , and let w_0 be the unperturbed minimizer
789 of $\mathcal{L}_{\text{train}}(w, 0)$. For small perturbation ϵ , write $\Delta w = w(\epsilon) - w_0$ for the exact displacement. By the
790 fundamental theorem of calculus along the line segment $w_0 + t\Delta w$,
791

$$792 \nabla_w \mathcal{L}_{\text{train}}(w_0 + \Delta w, \epsilon) = \nabla_w \mathcal{L}_{\text{train}}(w_0, \epsilon) + \left[\int_0^1 \nabla_w^2 \mathcal{L}_{\text{train}}(w_0 + t\Delta w, \epsilon) dt \right] \Delta w.$$

800 Define the *effective train Hessian*
801

$$802 H_{\text{train}}^{\text{eff}} := \int_0^1 \nabla_w^2 \mathcal{L}_{\text{train}}(w_0 + t\Delta w, \epsilon) dt.$$

803 The perturbed optimality condition $\nabla_w \mathcal{L}_{\text{train}}(w_0 + \Delta w, \epsilon) = 0$ therefore yields the exact displacement
804 equation
805

$$806 \Delta w = -(H_{\text{train}}^{\text{eff}})^{-1} z,$$

807 where $z = \nabla_w \mathcal{L}_{\text{train}}(w_0, \epsilon)$. Thus, Δw is obtained by the same inverse-Hessian filtering law as in
808 the quadratic case, with H_{train} replaced by $H_{\text{train}}^{\text{eff}}$.
809

810 For the test-loss increment, apply an ordinary Taylor expansion at w_0 :
 811

$$812 \quad \mathcal{L}_{\text{test}}(w_0 + \Delta w) = \mathcal{L}_{\text{test}}(w_0) + \frac{1}{d} z_{\text{test}} \cdot \Delta w + \frac{1}{2d} \Delta w^\top H_{\text{test}} \Delta w + O(\|\Delta w\|^3),$$

813 where $z_{\text{test}} = d \nabla_w \mathcal{L}_{\text{test}}(w_0)$ and $H_{\text{test}} = d \nabla_w^2 \mathcal{L}_{\text{test}}(w_0)$ are evaluated at the unperturbed point
 814 and are independent of ϵ . Substituting the displacement equation, as in the surrogate case one
 815 obtains:
 816

$$817 \quad \Delta \mathcal{L} = -\frac{1}{d} z_{\text{test}}^\top (H_{\text{train}}^{\text{eff}})^{-1} z + \frac{1}{2d} z^\top (H_{\text{train}}^{\text{eff}})^{-1} H_{\text{test}} (H_{\text{train}}^{\text{eff}})^{-1} z + O(\|\epsilon\|^3).$$

818 Taking expectations over the perturbation, the quadratic term has the same form as in Theorem 1,
 819 $\frac{1}{2} \bar{\text{tr}}[H_{\text{test}} C_{\text{train}}]$, where $C_{\text{train}} = \mathbb{E}[(H_{\text{train}}^{\text{eff}})^{-1} z z^\top (H_{\text{train}}^{\text{eff}})^{-1}]$, and so after replacing H_{train} with
 820 $H_{\text{train}}^{\text{eff}}$, one obtains a formally identical overlap decomposition as in (6) in terms of test-(effective)
 821 train eigenvector overlaps.
 822

823 B.2.2 NOISY GRADIENT DESCENT

825 Consider gradient descent with small additive noise at each iteration, and take its continuum limit.
 826 In the local quadratic regime, such noisy gradient descent can be modeled by the linear stochastic
 827 differential equation (SDE)

$$828 \quad dw_t = -H_{\text{train}} w_t dt + \Sigma^{1/2} dB_t,$$

829 where Σ is the noise covariance and B_t is standard Brownian motion. Its stationary covariance
 830 C_{train} satisfies the Lyapunov equation

$$831 \quad H_{\text{train}} C_{\text{train}} + C_{\text{train}} H_{\text{train}} = \Sigma.$$

833 This covariance is curvature-filtered—variance is suppressed along high-curvature directions and
 834 amplified along shallow ones—similarly to the perturbation-induced C_{train} used in the main text.
 835 Substituting this covariance into the trace formula yields the same overlap fluctuation law and the
 836 same two-loss spectral-overlap decomposition, with no modifications to the framework required.
 837

838 B.3 FREE TRANSFER LAW

840 Here we prove the following free transfer law for overlap functions:

841 **Theorem 4.** *Let \tilde{B} combine B with a source of noise X that is free from A, B . Then*

$$843 \quad O_{A, \tilde{B}}(a, \tilde{b}) = \int O_{A, B}(a, b) O_{B, \tilde{B}}(b, \tilde{b}) \mu_B(db). \quad (27)$$

845 Note that despite its simple and appealing form, this relationship does not hold for general triples of
 846 matrices A, B, C —it suffices to check on finite dimensional matrices with simple spectra. While the
 847 coefficients of C ’s eigenvectors in the eigenbases of A, B do follow a change of basis law resembling
 848 formula (27), recall that the overlap function encodes the squared coefficients rather than the raw
 849 coefficients themselves. This relationship holds specifically because of the freeness relationship
 850 we’ve assumed.

851 To prove (27), start by noting that all of the spectral and overlap information for two matrices A, B
 852 is contained in the measure on \mathbb{R}^2 corresponding to the functional

$$854 \quad \mu_{A, B} : f, g \mapsto \tau[f(A) g(B)].$$

855 For example, setting $g \rightarrow 1$ and $f(x) = x^m$ gives access to all moments of A , and therefore to
 856 its spectrum, and similarly for B , while the overlap function is precisely $O_{A, B} = \frac{d\mu_{A, B}}{d\mu_A \otimes \mu_B}$, the
 857 Radon-Nikodym derivative of the joint measure with respect to the marginals.

858 For the remainder of this section, we will work in an abstract free probability space rather than with
 859 concrete matrices. Let (\mathcal{M}, τ) be a W^* -probability space (in our application this corresponds to the
 860 space of $d \times d$ matrices with $\tau = \mathbb{E} \bar{\text{tr}}$). See Mingo & Speicher (2017) for details.

861 Let $A, B, \tilde{B}, X \in \mathcal{M}$ be random variables and consider the problem of determining the overlap
 862 function $O_{A, \tilde{B}}$, where $\tilde{B} := F(B, X)$, where X is a source of noise that is free from A, B . As noted

above, all of the overlap information for the three possible pairs of variables A, B, \tilde{B} is contained in the joint measures

$$\mu_{A, \tilde{B}}, \mu_{A, B}, \mu_{B, \tilde{B}},$$

supported on (some subset of) \mathbb{R}^2 . We are free now to treat these measures as ordinary probability measures of two scalar random variables. Denote by $\langle \cdot \rangle$ these scalar expectations. We now make use of the following two identities:

$$\langle f(x) g(y) \rangle_{(x, y) \sim \mu_{X, Y}} = \tau[f(X) g(Y)], \quad (28)$$

and that for each g in a suitably broad class of functions (eg. at minimum all Poisson kernels), there is another function L_g depending linearly on g encoding the “expectation of $g(\tilde{B}) = g(F(B, X))$ over X , conditioned on B ”, ie. such that

$$\tau[f(A, B) g(\tilde{B})] = \tau[f(A, B) L_g(B)], \quad (29)$$

for all bounded borel f . This is Proposition 1, proved below using operator-valued free probability.

Combining these, we have $\langle f(a) g(\tilde{b}) \rangle_{(a, \tilde{b}) \sim \mu_{A, B}} = \tau[f(A) L_g(B)]$. Writing the right hand side as a scalar expectation and then conditioning on b ,

$$\begin{aligned} \langle f(a) g(\tilde{b}) \rangle_{(a, \tilde{b}) \sim \mu_{A, B}} &= \langle \langle f(a) \rangle_{a \sim \mu_{A|B=b}} L_g(b) \rangle_{b \sim \mu_B} \\ &= \langle Q(b) L_g(b) \rangle_{b \sim \mu_B}, \end{aligned}$$

where $Q(b) := \langle f(a) \rangle_{a \sim \mu_{A|B=b}}$. Applying (28) and (29) again,

$$\begin{aligned} \langle f(a) g(\tilde{b}) \rangle_{(a, \tilde{b}) \sim \mu_{A, B}} &= \tau[Q(B) g(\tilde{B})] \\ &= \langle Q(b) g(\tilde{b}) \rangle_{(b, \tilde{b}) \sim \mu_{B, \tilde{B}}} \\ &= \left\langle \langle f(a) \rangle_{a \sim \mu_{A|B=b}} \langle g(\tilde{b}) \rangle_{\tilde{b} \sim \mu_{\tilde{B}|B=b}} \right\rangle_{b \sim \mu_B}, \end{aligned}$$

which shows that a, \tilde{b} are independent conditioned on b :

$$\mu_{A, \tilde{B}} = \int \mu_{A|B=b} \mu_{\tilde{B}|B=b} d\mu_B(b).$$

Applying, for example, classical ϵ -gaussian smoothing to the measures of A, B, \tilde{B} , we can assume that $\mu_{X, Y} \ll \mu_X \otimes \mu_Y$ for any two of the three. Thus we are free to form the Radon-Nikodym derivative $\frac{d\mu_{X, Y}}{d\mu_X \otimes \mu_Y}$, which corresponds to the gaussian-smoothed overlap function $O_{X, Y; \epsilon}(x, y)$. Since $O_{X, Y; \epsilon}(x, y) \mu_X(dx) = \mu_{X|Y=y}(dx)$, we have that for any bounded measurable function

$$\begin{aligned} \int \phi(a, \tilde{b}) d\mu_{A, \tilde{B}} &= \iint \phi(a, \tilde{b}) \left(\int \mu_{A|B=b}(da) \mu_{\tilde{B}|B=b}(d\tilde{b}) \mu_B(db) \right) \\ &= \iint \phi(a, \tilde{b}) \int (O_{A, B; \epsilon}(a, b) \mu_A(da)) (O_{B, \tilde{B}; \epsilon}(b, \tilde{b}) \mu_{\tilde{B}}(d\tilde{b})) \mu_B(db) \\ &= \iint \phi(a, \tilde{b}) \left(\int O_{A, B; \epsilon}(a, b) O_{B, \tilde{B}; \epsilon}(b, \tilde{b}) \mu_B(db) \right) \mu_A(da) \mu_{\tilde{B}}(d\tilde{b}), \end{aligned}$$

so the last quantity is exactly the Radon-Nikodym density $O_{A, \tilde{B}; \epsilon}$:

$$O_{A, \tilde{B}; \epsilon}(a, \tilde{b}) = \int O_{A, B; \epsilon}(a, b) O_{B, \tilde{B}; \epsilon}(b, \tilde{b}) \mu_B(db).$$

Taking the smoothing to 0, one obtains the transfer law for the overlap function. Note that one may have to interpret the $O_{X, Y}$ as distributions (eg involving δ kernels) in case of degenerate overlap between two of the matrices (eg. $A = B$).

918 **Proposition 1.** Let A, B be free from X , and let $\tilde{B} = F(B, X)$ be a rational function of B, X .
 919 Then there is a linear operator L on functions such that for arbitrary bounded borel H ,

$$921 \quad \tau \left[H(A, B) g(\tilde{B}) \right] = \tau [H(A, B) L[g](B)].$$

923 *Proof.* Let \mathbf{B} be a $k \times k$ linearization of \tilde{B} such that $[\mathbf{B}^{-1}]_{k,1} = g(F(B, X))$. Decompose \mathbf{B} into
 924 its X -dependent and X -independent parts:
 925

$$926 \quad \mathbf{B} = X\mathbf{B}_X + \mathbf{B}_0.$$

928 Now form the linearization matrix

$$929 \quad \mathbf{L}(M) := \begin{pmatrix} -\mathbf{B} & 0 \\ M\mathbf{e}_k^\top & -1 \end{pmatrix},$$

932 so that

$$933 \quad \mathbf{L}^{-1}(M) := \begin{pmatrix} -\mathbf{B}^{-1} & 0 \\ -M\mathbf{e}_k^\top \mathbf{B}^{-1} & -1 \end{pmatrix}.$$

935 In particular, $\mathbf{L}_{k,1}^{-1}(M) = -g(F(B, X))$ and $\mathbf{L}_{k+1,1}^{-1}(M) = -Mg(F(B, X))$. So now

$$937 \quad [g_{\mathbf{L}(H(A, B))}(0)]_{k+1,1} = \tau \left[\left[(-\mathbf{L}(H(A, B)))^{-1} \right]_{k+1,1} \right] \\ 938 \quad = \tau [H(A, B) g(F(B, X))].$$

940 As with \mathbf{B} , decompose \mathbf{L} into X -dependent and X -independent parts:

$$942 \quad \mathbf{L}(M) = X\mathbf{L}_X + \mathbf{L}_0.$$

944 Assuming M is a function of A, B only, these two parts are operator-free (ie. with amalgamation
 945 over the space of complex-entried $(k+1) \times (k+1)$ matrices). By the additive subordination law,

$$946 \quad g_{\mathbf{L}(M)}(0) = g_{\mathbf{L}_0}(-\mathcal{R}_{X\mathbf{L}_X}(g_{\mathbf{L}(M)}(0))).$$

948 From the linearization, $g_{\mathbf{L}(M)}(0)$ is block lower triangular, and $X\mathbf{L}_X$ only has nonzero components
 949 in the upper left block. This implies that $\mathcal{R}_{X\mathbf{L}_X}(g_{\mathbf{L}(M)}(0))$ is also confined to the upper left block,
 950 and that this entry is simply $\mathcal{R}_{-X\mathbf{B}_X}(\mathcal{E}\mathbf{B}^{-1})$, where $\mathcal{E} := \tau \otimes \text{id}$ is the expectation functional of
 951 the operator-space. These imply

$$952 \quad \tau [H(A, B) g(F(B, X))] = [g_{\mathbf{L}(H(A, B))}(0)]_{k+1,k} \\ 953 \quad = [g_{\mathbf{L}_0}(-\mathcal{R}_{X\mathbf{L}_X}(g_{\mathbf{L}(H(A, B))}(0)))]_{k+1,k} \\ 954 \quad = \tau \left[\begin{pmatrix} \mathbf{B}_0 - \mathcal{R}_{-X\mathbf{B}_X}(\mathcal{E}\mathbf{B}^{-1}) & 0 \\ -H(A, B)\mathbf{e}_k^\top & 1 \end{pmatrix}^{-1} \right]_{k+1,k} \\ 955 \quad = \tau \left[\begin{pmatrix} \mathbf{B}_0 - \mathcal{R}_{-X\mathbf{B}_X}(\mathcal{E}\mathbf{B}^{-1}) & 0 \\ -H(A, B)\mathbf{e}_k^\top & 1 \end{pmatrix}^{-1} \right]_{k+1,k} \\ 956 \quad = \tau \left[H(A, B) (\mathbf{B}_0 - \mathcal{R}_{-X\mathbf{B}_X}(\mathcal{E}\mathbf{B}^{-1}))^{-1} \right]_{k,1}.$$

963 The second factor can be regarded simply as a function of B (\mathbf{B}_0 is the non- X part of \mathbf{B} and
 964 $\mathcal{E}\mathbf{B}^{-1} : B \mapsto \mathcal{E}\mathbf{B}^{-1}(B, X) \in M_k(\mathbb{C})$). This proves that there is some operator $L[g]$ as in the
 965 statement of the proposition. L must obviously be linear in g , completing the proof. \square

967 C TWO-LOSS GEOMETRY IN ANISOTROPIC RIDGE REGRESSION

970 In this appendix we derive equation (11), prove Theorem 3, and obtain formulas for the loss and
 971 overlap functions that are used in figures 1-3. We consider ridge regression on multivariate gaussian
 972 input data with train and test covariances $\Sigma_{\text{train}}, \Sigma_{\text{test}}$ and with linear ground truth, $y(x) = \frac{1}{\sqrt{d}}w_* \cdot x$.

We will assume for simplicity that $w_* \sim \mathcal{N}(0, I_d)$. A noisy training set is generated by sampling inputs as follows. The training set consists of

$$x_i \sim \mathcal{N}(0, \Sigma_{\text{train}}), \quad y_i = y(x_i) + \xi_i, \quad \xi_i \sim \mathcal{N}(0, \sigma_\xi^2),$$

for $i = 1, \dots, m$. We define the sampling density $\alpha := m/d$. It will occasionally be convenient to state formulas in terms of α 's reciprocal, $q := d/m$.

Using the framing of section 3.1.1, we will regard the noise ξ as perturbing a noiseless training objective. The train and test losses are formulated as follows:

$$\begin{aligned} \mathcal{L}_{\text{train}}(w, \xi) &:= \frac{1}{2} \left[\frac{1}{m} \sum_{i=1}^m (y_i - \frac{1}{\sqrt{d}} w \cdot x_i)^2 \right] + \frac{\lambda}{2d} \|w\|^2 \\ \mathcal{L}_{\text{test}}(w) &:= \frac{1}{2} \left[\mathbb{E}_x (y(x) - \frac{1}{\sqrt{d}} w \cdot x)^2 \right]. \end{aligned}$$

Note 1) we keep $\mathcal{L}_{\text{train}}$'s dependence on the perturbation ξ explicit, and 2) the noise is not included in the test loss (and when it is, after averaging, it changes the loss only by an additive constant). Finally, let us write $\hat{w}(\xi) := \operatorname{argmin}_w \mathcal{L}_{\text{train}}(w, \xi)$ for the learned weights, $\hat{y}(x) := \frac{1}{\sqrt{d}} \hat{w} \cdot x$ for the learned model, and $H_{\text{train}} := d \nabla^2 \mathcal{L}_{\text{train}}$ and $H_{\text{test}} := d \nabla^2 \mathcal{L}_{\text{test}}$ for the train and test Hessians; these scalings are chosen to keep spectra $O(1)$.

We begin by deriving equation (11) by applying the fluctuation law (6). To do so, we first compute $z, H_{\text{train}}, H_{\text{test}}$, and C_{train} . Differentiating, we find

$$\nabla_w \mathcal{L}_{\text{train}}(w, \xi) = \frac{1}{d} \left(\frac{1}{m} X^\top X + \lambda I \right) w - \frac{1}{\sqrt{d}} \frac{1}{m} X^\top \left(\frac{1}{\sqrt{d}} X w_* + \xi \right) \quad (30)$$

$$H_{\text{train}} := d \nabla_w^2 \mathcal{L}_{\text{train}} = \frac{1}{m} X^\top X + \lambda I. \quad (31)$$

Similarly,

$$\mathcal{L}_{\text{test}}(w) = \frac{1}{2d} (w - w_*) \Sigma_{\text{test}} (w - w_*).$$

$$H_{\text{test}} := d \nabla_w^2 \mathcal{L}_{\text{test}} = \Sigma_{\text{test}}.$$

Next, $z := d \nabla_w \mathcal{L}_{\text{train}}(w_0, \xi)$ is the scaled train gradient evaluated at the unperturbed optimum w_0 . Since, by definition, $\nabla_w \mathcal{L}_{\text{train}}(w_0, 0) = 0$, substituting into (30) gives

$$z = d \nabla_w \mathcal{L}_{\text{train}}(w_0, \xi) = \left(\frac{1}{m} X^\top X + \lambda I \right) w_0 - \frac{\sqrt{d}}{m} X^\top \left(\frac{1}{\sqrt{d}} X w_* + \xi \right) \quad (32)$$

$$= -\frac{\sqrt{d}}{m} X^\top \xi. \quad (33)$$

Finally,

$$\begin{aligned} C_{\text{train}} &= \mathbb{E}_\xi [(H_{\text{train}}^{-1} z)(H_{\text{train}}^{-1} z)^\top] \\ &= \frac{d}{m^2} \mathbb{E}_\xi [H_{\text{train}}^{-1} X^\top \xi \xi^\top X H_{\text{train}}^{-1}] \\ &= \sigma_\xi^2 \frac{d}{m} H_{\text{train}}^{-1} \left(\frac{1}{m} X^\top X \right) H_{\text{train}}^{-1} \\ &= \sigma_\xi^2 \alpha^{-1} \hat{\Sigma}_{\text{train}} (\hat{\Sigma}_{\text{train}} + \lambda I)^{-2}, \end{aligned}$$

where $\hat{\Sigma}_{\text{train}} := \frac{1}{m} X^\top X$ is the (uncentered) train covariance. Summarizing,

$$z = -\frac{\sqrt{d}}{m} X^\top \xi \quad (34)$$

$$H_{\text{train}} = \hat{\Sigma}_{\text{train}} + \lambda I \quad (35)$$

$$H_{\text{test}} = \Sigma_{\text{test}} \quad (36)$$

$$C_{\text{train}} = \sigma_\xi^2 \alpha^{-1} \hat{\Sigma}_{\text{train}} (\hat{\Sigma}_{\text{train}} + \lambda I)^{-2}. \quad (37)$$

Since $\mathbb{E}[\xi] = 0$, we have $\mathbb{E}[\Delta w] = -\mathbb{E}[H_{\text{train}}^{-1} z] = 0$, and so the conditions of 1 are satisfied. Plugging directly into (6), we find

$$\mathbb{E}[\Delta \mathcal{L}] = \frac{1}{2} \iint \lambda_1 \lambda_2 O_{H_{\text{test}}, C_{\text{train}}}(\lambda_1, \lambda_2) \mu_{H_{\text{test}}}(d\lambda_1) \mu_{C_{\text{train}}}(d\lambda_2). \quad (38)$$

1026 Since $\hat{\Sigma}_{\text{train}}, C_{\text{train}}$ commute, they share eigenvectors and we are free to replace $O_{H_{\text{test}}, C_{\text{train}}}$ with
 1027 $O_{H_{\text{test}}, \hat{\Sigma}_{\text{train}}}$. Replacing the integral over C_{train} 's spectrum with one over $\hat{\Sigma}_{\text{train}}$, we find
 1028

$$1029 \mathbb{E}[\Delta \mathcal{L}] = \frac{\sigma_\xi^2}{2\alpha} \iint \lambda_1 \frac{\lambda_2}{(\lambda_2 + \lambda)^2} O_{\Sigma_{\text{test}}, \hat{\Sigma}_{\text{train}}}(\lambda_1, \lambda_2) \mu_{\Sigma_{\text{test}}} (d\lambda_1) \mu_{\hat{\Sigma}_{\text{train}}} (d\lambda_2), \quad (39)$$

1031 which is equation (11).

1033 High-dimensional ridge regression has been studied extensively, so rather than rederiving published
 1034 formulas, as much as possible, we restrict attention to the novel focus of this article: overlap de-
 1035 compositions. We treat the label noise as a fluctuation of the training objective, and derive exact
 1036 asymptotic formulas for the needed train-test spectra and overlap functions that describing the effect
 1037 of the fluctuation on test error.

1038 All formulas are obtainable from the general trace formula stated in the following two propositions,
 1039 which we prove in Appendix D.

1040 **Proposition 2.** *The equation*

$$1042 \quad 1043 \quad r = \left(1 - q \int \frac{t}{z - tr} d\mu_{\Sigma_{\text{train}}} (t) \right)^{-1}, \quad (40)$$

1044 has a unique solution r satisfying $r \in \mathbb{H}^\pm$ for $z \in \mathbb{H}^\mp$ and satisfying $0 < r < 1$ for $z < 0$. This
 1045 defines a holomorphic function $r(z)$ on all of $\mathbb{C} \setminus \mathbb{R}^{\geq 0}$ that is obtainable for each z by fixed point
 1046 iteration of the right hand side of (40) from an arbitrary initial point r_0 satisfying $r_0 \in \mathbb{H}^\pm$ for
 1047 $z \in \mathbb{H}^\mp$ and $0 < r_0 < 1$ for $z < 0$.

1048 **Proposition 3.** *Let*

$$1050 \quad t_f(z) := \bar{t}r \left[f(\Sigma_{\text{test}}, \Sigma_{\text{train}}) (zI - A)^{-1} \right], \quad (41)$$

1052 for bounded function f and complex scalar $z \in \mathbb{C} \setminus \mathbb{R}^{\geq 0}$. As $m, d \rightarrow \infty$ with $q = d/m$ fixed,

$$1054 \quad t_f(z) \rightarrow \bar{t}r \left[f(\Sigma_{\text{test}}, \Sigma_{\text{train}}) (zI - r(z) \Sigma_{\text{train}})^{-1} \right],$$

1056 where $r(z)$ is the solution of the self-consistent equation (40).

1057 Thus to perform the calculation we simply express all quantities in terms of traces of the form $t_f(z)$,
 1058 and then apply Propositions 2,3.

1060 C.1 TRAIN-TEST HESSIAN OVERLAP FUNCTION

1062 Since we will be interested primarily in the ridgeless limit $\lambda \rightarrow 0$, and since the effect of nonzero
 1063 λ is simply to shift the spectrum of $H_{\text{train}} := \frac{1}{m} X^\top X + \lambda I$, we will omit λ in the computation of
 1064 $O_{H_{\text{test}}, H_{\text{train}}}(\lambda_1, \lambda_2)$, and will write $H_{\text{train}} = A = \frac{1}{m} X^\top X$ from now on unless explicitly stated
 1065 otherwise. Thus, we are interested in the overlap function of the matrices

$$1067 \quad H_{\text{test}} = \Sigma_{\text{test}}, \quad H_{\text{train}} = \Sigma_{\text{train}}^{1/2} \frac{1}{m} Z^\top Z \Sigma_{\text{train}}^{1/2}.$$

1068 The computation is simplified significantly by taking advantage of asymptotic freeness of $\frac{1}{m} Z^\top Z$
 1069 from $\Sigma_{\text{train}}, \Sigma_{\text{test}}$. By Theorem 4, we have asymptotically

$$1071 \quad O_{H_{\text{test}}, H_{\text{train}}}(\lambda_{\text{te}}, \lambda_{\text{tr}}) = O_{\Sigma_{\text{test}}, H_{\text{train}}}(\lambda_{\text{te}}, \lambda_{\text{tr}}) \\ 1072 \quad = \int O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}(\lambda_{\text{te}}, \lambda) O_{\Sigma_{\text{train}}, H_{\text{train}}}(\lambda, \lambda_{\text{tr}}) d\mu_{\Sigma_{\text{train}}}(\lambda). \quad (42)$$

1075 In particular this shows, somewhat intuitively, that the overlap function of the train/test Hessians
 1076 will itself depend on the overlap function of the population covariance matrices. Eq. (42) shows
 1077 the dependence is quite simple: One simply composes the overlap kernels taking an $H_{\text{train}} =$
 1078 $\Sigma_{\text{train}}^{1/2} \frac{1}{m} Z^\top Z \Sigma_{\text{train}}^{1/2}$ eigenspace to a Σ_{train} one, and taking a Σ_{train} eigenspace to a Σ_{test} one. The
 1079 overlap of the train and test population covariances, $O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}$, is part of the input data of the
 problem and is therefore known. As for the second factor, $O_{\Sigma_{\text{train}}, H_{\text{train}}}$, this is simply the overlap

function of the population and sample covariance matrices for an anisotropic gaussian sample. Formulas for this quantity are known (see, eg. Potters & Bouchaud (2020)). To keep the presentation self-contained we quickly derive an expression using operator-valued free probability.

Following Appendix B.1, the train-test Hessian overlap function can be computed via

$$O_{\Sigma_{\text{train}}, H_{\text{train}}}(\lambda_1, \lambda_2) := \lim_{\sigma \rightarrow 0} \frac{\bar{\text{tr}}[K(\Sigma_{\text{train}}; \lambda_1, \sigma_1) K(H_{\text{train}}; \lambda_2, \sigma_2)]}{\bar{\text{tr}}[K(\Sigma_{\text{train}}; \lambda_1, \sigma_1)] \bar{\text{tr}}[K(H_{\text{train}}; \lambda_2, \sigma_2)]},$$

where

$$K(x; \mu, \sigma) := \frac{1}{\pi} \frac{\sigma}{(x - \mu)^2 + \sigma^2},$$

is the Poisson kernel with center μ and width σ . Moving the first denominator trace into the numerator and canceling a factor of π from top and bottom, we find that computing $O_{H_{\text{test}}, H_{\text{train}}}(\lambda_1, \lambda_2)$ requires the numerator and denominator traces

$$\bar{\text{tr}} \left[h(\Sigma_{\text{train}}) \frac{\sigma_2}{(A - \lambda_2 I)^2 + \sigma_2^2 I} \right], \quad \bar{\text{tr}} \left[\frac{\sigma_2}{(A - \lambda_2 I)^2 + \sigma_2^2 I} \right],$$

where $h(\Sigma_{\text{train}}) := K(\Sigma_{\text{train}}; \lambda_1, \sigma_1) / \bar{\text{tr}}[K(\Sigma_{\text{train}}; \lambda_1, \sigma_1)]$.

Using the definition of $t_f(z)$ (41), and the resolvent form of the Poisson kernel,

$$K(x; \mu, \sigma) = -\frac{1}{\pi} \text{Im}(\mu + i\sigma - x)^{-1},$$

these become

$$-\text{Im} t_h(\lambda_2 + i\sigma_2), \quad -\text{Im} t_1(\lambda_2 + i\sigma_2).$$

Proposition 3 implies

$$t_h(z) \rightarrow \bar{\text{tr}} \left[h(\Sigma_{\text{train}}) (zI - r(z) \Sigma_{\text{train}})^{-1} \right] \quad (43)$$

$$t_1(z) \rightarrow \bar{\text{tr}} \left[(zI - r(z) \Sigma_{\text{train}})^{-1} \right], \quad (44)$$

so

$$O_{\Sigma_{\text{train}}, H_{\text{train}}}(\lambda_1, \lambda_2) \rightarrow \lim_{\sigma_1 \rightarrow 0} \lim_{z \rightarrow \lambda_2^{+i}} \frac{\text{Im} \bar{\text{tr}} \left[h(\Sigma_{\text{train}}) (zI - r(z) \Sigma_{\text{train}})^{-1} \right]}{\text{Im} \bar{\text{tr}} \left[(zI - r(z) \Sigma_{\text{train}})^{-1} \right]},$$

where $\lim_{z \rightarrow \lambda_2^{+i}}$ is shorthand for $\lim_{\sigma \rightarrow 0}$ with $z = \lambda_2 + i\sigma$. Taking $\sigma_1 \rightarrow 0$ sends $h(\Sigma_{\text{train}})$ to a delta function and collapses the trace in the numerator to the λ_1 eigenspace of Σ_{train} , so

$$O_{\Sigma_{\text{train}}, H_{\text{train}}}(\lambda_1, \lambda_2) \rightarrow \lim_{z \rightarrow \lambda_2^{+i}} \frac{\text{Im} \frac{1}{z - r(z) \lambda_1}}{\int \text{Im} \frac{1}{z - r(z) \lambda} d\mu_{\Sigma_{\text{train}}}(\lambda)}.$$

Composing with $O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}$ yields the overlap function $O_{\Sigma_{\text{test}}, H_{\text{train}}} = O_{H_{\text{test}}, H_{\text{train}}}$.

C.2 OVERLAP DECOMPOSITION OF $\Delta\mathcal{L}$

Trace integrals are written in terms of the spectra and overlaps of the matrices involved. To explicitly determine the spectral density of H_{train} , note that it can be written in terms of the trace in equation (44),

$$\rho_{H_{\text{train}}}(\lambda_{\text{tr}}) = \lim_{\sigma \rightarrow 0} \bar{\text{tr}}[K(H_{\text{train}}; \lambda_{\text{tr}}, \sigma)].$$

Using the same approach as above, we have the following for the σ -Poisson-smoothed spectral density of H_{train} :

$$\begin{aligned} \rho_{H_{\text{train}}; \sigma}(\lambda_{\text{tr}}) &= -\frac{1}{\pi} \text{Im} t_1(\lambda_{\text{tr}} + i\sigma) \\ &\rightarrow -\frac{1}{\pi} \int \text{Im} \frac{1}{z - r(z) \lambda} d\mu_{\Sigma_{\text{train}}}(\lambda). \end{aligned}$$

1134 Collecting the results of the previous section and the fluctuation formula (11),
 1135

$$1136 \Delta\mathcal{L} = \frac{\sigma^2}{2\alpha} \iint \underbrace{\lambda_{\text{te}}}_{\text{test curvature}} \underbrace{\frac{\lambda_{\text{tr}}}{(\lambda_{\text{tr}} + \lambda)^2}}_{\text{train variance}} \underbrace{O_{H_{\text{train}}, H_{\text{test}}}(\lambda_{\text{te}}, \lambda_{\text{tr}})}_{\text{eigenspace overlap}} \mu_{H_{\text{test}}}(d\lambda_{\text{te}}) \mu_{H_{\text{train}}}(d\lambda_{\text{tr}}), \quad (45)$$

1139

1140 where

$$1141 O_{H_{\text{test}}, H_{\text{train}}}(\lambda_{\text{te}}, \lambda_{\text{tr}}) = \int O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}(\lambda_{\text{te}}, \lambda) O_{\Sigma_{\text{train}}, H_{\text{train}}}(\lambda, \lambda_{\text{tr}}) d\mu_{\Sigma_{\text{train}}}(\lambda), \quad (46)$$

1143 with

$$1144 O_{\Sigma_{\text{train}}, H_{\text{train}}}(\lambda_1, \lambda_2) \rightarrow \lim_{z \rightarrow \lambda_2^{+i}} \frac{\text{Im} \frac{1}{z - r(z)\lambda_1}}{\int \text{Im} \frac{1}{z - r(z)\lambda} d\mu_{\Sigma_{\text{train}}}(\lambda)}.$$

1145 This provides a complete decomposition of the test loss fluctuation in terms of spectra and overlaps
 1146 of the train and test Hessian.
 1147

1148 C.3 PROOF OF COVARIATE SHIFT THEOREM 3

1149 This subsection, together with the proofs of Propositions 2, 3 found in Appendix D, proves Theorem
 1150 3.

1151 Formulas (45) and (46) show the effect of covariate shift in train/test sets decomposes naturally in
 1152 terms of the overlap function $O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}$ of the two population covariances. (Note that there are
 1153 two levels of overlap decomposition: the test loss increment is decomposed in terms of the train-test
 1154 Hessian overlap function (45), which in turn is decomposed in terms of the overlaps of $\Sigma_{\text{test}}, \Sigma_{\text{train}}$.)

1155 We can equivalently start from explicit expressions for the fluctuation. Differentiating the loss and
 1156 solving for the optimal weights directly, one has

$$1157 \mathcal{L}_{\text{test}}(\hat{w}(\xi)) = -\frac{1}{2} \left(\frac{1}{\alpha} \sigma_\xi^2 (t_{\text{id}}(-\lambda) - \lambda t'_{\text{id}}(-\lambda)) + \lambda^2 t'_{\text{id}}(-\lambda) \right), \quad (47)$$

1158 (equation (51) of Appendix C.4). Since $\Delta\mathcal{L} = \mathcal{L}_{\text{test}} - \mathcal{L}_0$, and \mathcal{L}_0 is obtained by simply setting the
 1159 perturbation strength $\sigma_\xi \rightarrow 0$, we immediately find

$$1160 \Delta\mathcal{L} = -\frac{\sigma_\xi^2}{2\alpha} \frac{d}{d\lambda} \lambda t_{\text{id}}(-\lambda). \quad (48)$$

1161 Adopting the notation $\tilde{\lambda} := \frac{\lambda}{r(-\lambda)}$, Proposition 3 yields

$$1162 \lambda t_{\text{id}}(-\lambda) \rightarrow -\tilde{\lambda} \bar{\text{tr}} \left[\Sigma_{\text{test}} \left(\tilde{\lambda} I + \Sigma_{\text{train}} \right)^{-1} \right]$$

$$1163 \frac{d}{d\lambda} \lambda t_{\text{id}}(-\lambda) \rightarrow -\tilde{\lambda}' \bar{\text{tr}} \left[\Sigma_{\text{test}} \Sigma_{\text{train}} \left(\tilde{\lambda} I + \Sigma_{\text{train}} \right)^{-2} \right].$$

1164 Substituting into (48),

$$1165 \Delta\mathcal{L} \rightarrow \frac{\sigma_\xi^2}{2\alpha} \tilde{\lambda}' \bar{\text{tr}} \left[\Sigma_{\text{test}} \Sigma_{\text{train}} \left(\tilde{\lambda} I + \Sigma_{\text{train}} \right)^{-2} \right].$$

1166 Writing the last trace as an integral over the spectral measures of $\Sigma_{\text{test}}, \Sigma_{\text{train}}$, this becomes

$$1167 \Delta\mathcal{L} \rightarrow \frac{\sigma_\xi^2}{2\alpha} \tilde{\lambda}' \int \lambda_{\text{te}} \frac{\lambda_{\text{tr}}}{(\tilde{\lambda} + \lambda_{\text{tr}})^2} O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}(\lambda_{\text{te}}, \lambda_{\text{tr}}) d\mu_{\Sigma_{\text{test}}}(\lambda_{\text{te}}) d\mu_{\Sigma_{\text{train}}}(\lambda_{\text{tr}}), \quad (49)$$

1168 which completes the proof of Theorem 3. Equation (49) parallels (45) but averages out the random
 1169 training inputs and label noise to express $\Delta\mathcal{L}$ purely in terms of the known objects $\Sigma_{\text{train}}, \Sigma_{\text{test}}$. This
 1170 expression shows that label noise leads to large increases in test loss when a direction of large training
 1171 variance (small eigenvalue λ_{tr} of Σ_{train}) and a direction of large test curvature (large eigenvalue
 1172 λ_{te} of Σ_{test}) experience significant overlap (large $O_{\Sigma_{\text{test}}, \Sigma_{\text{train}}}(\lambda_{\text{te}}, \lambda_{\text{tr}})$).

1188
1189

C.4 EXPLICIT FORMULAS FOR TEST LOSS, FLUCTUATION

1190
1191
1192
1193

Here we derive explicit expressions for the full test loss and test loss fluctuation under general covariate shift. Since these formulas and generalizations of them are already published, this section is mostly for internal reference—especially for calculation of theoretical loss curves in Figs. 1 and 2.

1194
1195
1196

Let X have rows x_i^\top and ξ have components ξ_i . $\mathcal{L}_{\text{train}}$ can be written

$$\mathcal{L}_{\text{train}}(w, \xi) := \frac{1}{2m} \left\| \frac{1}{\sqrt{d}} X w_* + \xi - \frac{1}{\sqrt{d}} X w \right\|^2 + \frac{\lambda}{2d} w^\top w.$$

1197
1198
1200
1201

Differentiating, we find

$$\begin{aligned} \nabla \mathcal{L}_{\text{train}}(w, \xi) &= \frac{1}{d} H_{\text{train}} w - \frac{1}{\sqrt{d}} \frac{1}{m} X^\top \left(\frac{1}{\sqrt{d}} X w_* + \xi \right) \\ H_{\text{train}} &:= d \nabla^2 \mathcal{L}_{\text{train}} = \frac{1}{m} X^\top X + \lambda I. \end{aligned}$$

1202
1203
1204
1205

Similarly,

$$\begin{aligned} \mathcal{L}_{\text{test}}(w) &= \frac{1}{2d} (w - w_*) \Sigma_{\text{test}} (w - w_*) \\ H_{\text{test}} &:= d \nabla^2 \mathcal{L}_{\text{test}} = \Sigma_{\text{test}}. \end{aligned}$$

1206
1207

Solving $0 = \nabla_w \mathcal{L}_{\text{train}}$ yields

$$\hat{w} = H_{\text{train}}^{-1} \left(\frac{1}{m} X^\top X \right) w_* + (H_{\text{train}})^{-1} \frac{\sqrt{d}}{m} X^\top \xi.$$

1209
1210

Substituting into $\mathcal{L}_{\text{test}}$ yields

$$\mathcal{L}_{\text{test}}(\hat{w}(\xi)) = \frac{1}{2} \bar{\text{tr}} \left[\Sigma_{\text{test}} \frac{q \sigma_\xi^2 \frac{1}{m} X^\top X + \lambda^2 I}{\left(\frac{1}{m} X^\top X + \lambda I \right)^2} \right].$$

1214
1215
1216
1217
1218
1219

Since $(A + \lambda I)^{-2} = -\frac{d}{d\lambda} (A + \lambda I)^{-1}$, we can write

$$\mathcal{L}_{\text{test}}(\hat{w}(\xi)) = -\frac{1}{2} \left(q \sigma_\xi^2 \frac{d}{d\lambda} \lambda - \lambda^2 \frac{d}{d\lambda} \right) t_{\text{id}}(-\lambda) \quad (50)$$

$$= -\frac{1}{2} (q \sigma_\xi^2 (t_{\text{id}}(-\lambda) - \lambda t'_{\text{id}}(-\lambda)) + \lambda^2 t'_{\text{id}}(-\lambda)) \quad (51)$$

1220
1221
1222
1223
1224
1225
1226

Proposition 3 implies

$$\begin{aligned} t_{\text{id}}(z) &\rightarrow \bar{\text{tr}} \left[\Sigma_{\text{test}} (zI - r(z) \Sigma_{\text{train}})^{-1} \right] \\ t'_{\text{id}}(z) &\rightarrow -\bar{\text{tr}} \left[\Sigma_{\text{test}} (zI - r(z) \Sigma_{\text{train}})^{-2} (I - r'(z) \Sigma_{\text{train}}) \right], \end{aligned}$$

which fully specifies $\mathcal{L}_{\text{test}}(\hat{w}(\xi))$. The fluctuation is easily gotten by setting $\sigma_\xi^2 \rightarrow 0$ and subtracting from $\mathcal{L}_{\text{test}}(\hat{w}(\xi))$.

1227
1228
1229
1230
1231

Reduction to published formulas Letting $\tilde{\lambda} := \frac{\lambda}{r(-\lambda)}$ and substituting into (40), we obtain

$$\lambda = \tilde{\lambda} - \frac{1}{\alpha} \int \frac{\tilde{\lambda} t}{\tilde{\lambda} + t} d\mu_{\Sigma_{\text{train}}}(t), \quad (52)$$

1232
1233
1234

which is eq. (8) of Mel & Ganguli (2021) for the “effective regularization”.

The fluctuation in (50) is

$$\Delta \mathcal{L} = -q \sigma_\xi^2 \frac{1}{2} \frac{d}{d\lambda} \lambda t_{\text{id}}(-\lambda).$$

1235
1236
1237

Since

$$\begin{aligned} \lambda t_{\text{id}}(-\lambda) &\rightarrow \frac{\lambda}{r(-\lambda)} \bar{\text{tr}} \left[\Sigma_{\text{train}} \left(-\frac{\lambda}{r(-\lambda)} I - \Sigma_{\text{train}} \right)^{-1} \right] \\ &= -\tilde{\lambda} \bar{\text{tr}} \left[\Sigma_{\text{train}} \left(\tilde{\lambda} I + \Sigma_{\text{train}} \right)^{-1} \right], \end{aligned}$$

1242 we get

$$1243 \Delta \mathcal{L} = q\sigma_\xi^2 \frac{1}{2} \tilde{\lambda}' \bar{\text{tr}} \left[\left(\frac{\Sigma_{\text{train}}}{\tilde{\lambda}I + \Sigma_{\text{train}}} \right)^2 \right].$$

1246 The authors define $\frac{1}{\rho_f} := \frac{d\tilde{\lambda}}{d\lambda}$, so

$$1248 \Delta \mathcal{L} = \frac{1}{2} q\sigma_\xi^2 \frac{1}{\rho_f} \bar{\text{tr}} \left[\left(\frac{\Sigma_{\text{train}}}{\tilde{\lambda}I + \Sigma_{\text{train}}} \right)^2 \right],$$

1250 which matches the fluctuation term of their formula up to constant factors differing in the loss definitions. Next, the remaining term can be written

$$1253 \mathcal{L}_0 = \mathcal{L}_{\text{test}} - \Delta \mathcal{L} = \frac{1}{2} \left(-\lambda t_{\text{id}}(-\lambda) + \lambda \frac{d}{d\lambda} \lambda t_{\text{id}}(-\lambda) \right).$$

1256 Using (50) again,

$$1257 \mathcal{L}_0 = \frac{1}{2} \left(\bar{\text{tr}} \left[\frac{\tilde{\lambda} \Sigma_{\text{train}}}{\tilde{\lambda}I + \Sigma_{\text{train}}} \right] - \lambda \tilde{\lambda}' \bar{\text{tr}} \left[\frac{\Sigma_{\text{train}}^2}{(\tilde{\lambda}I + \Sigma_{\text{train}})^2} \right] \right)$$

1261 Comparing to (52), the first term is $\alpha (\tilde{\lambda} - \lambda)$, and differentiating gives

$$1263 \tilde{\lambda}' = \frac{\alpha}{\alpha - \bar{\text{tr}} \left[\left(\frac{\Sigma_{\text{train}}}{\tilde{\lambda} + \Sigma_{\text{train}}} \right)^2 \right]}.$$

1266 Substituting and simplifying yields

$$1268 \mathcal{L}_0 = \frac{1}{2} \left(\alpha \tilde{\lambda} - \alpha \lambda \frac{\alpha}{\alpha - \bar{\text{tr}} \left[\left(\frac{\Sigma_{\text{train}}}{\tilde{\lambda} + \Sigma_{\text{train}}} \right)^2 \right]} \right)$$

$$1273 = \frac{1}{2} \tilde{\lambda}' \left(\tilde{\lambda} \left(\alpha - \bar{\text{tr}} \left[\left(\frac{\Sigma_{\text{train}}}{\tilde{\lambda} + \Sigma_{\text{train}}} \right)^2 \right] \right) - \alpha \lambda \right).$$

1275 Once again using equation (52), $\alpha (\tilde{\lambda} - \lambda)$ can be turned back into a trace:

$$1278 \mathcal{L}_0 = \frac{1}{2} \tilde{\lambda}' \left(\bar{\text{tr}} \left[\frac{\tilde{\lambda} \Sigma_{\text{train}}}{\tilde{\lambda}I + \Sigma_{\text{train}}} \right] - \tilde{\lambda} \bar{\text{tr}} \left[\left(\frac{\Sigma_{\text{train}}}{\tilde{\lambda} + \Sigma_{\text{train}}} \right)^2 \right] \right)$$

$$1282 = \frac{1}{2} \tilde{\lambda}' \bar{\text{tr}} \left[\frac{\tilde{\lambda}^2 \Sigma_{\text{train}}}{(\tilde{\lambda}I + \Sigma_{\text{train}})^2} \right],$$

1284 which is equivalent to their second term.

1286 C.5 k -LEVEL MODEL

1288 At several points in the main text we refer to a k -level input covariance,

$$1290 \mu_{\Sigma_{\text{train}}} = \sum_{i=1}^k p_i \delta_{s_i}.$$

1293 In this case the self-consistent equation for r (40) becomes

$$1294 r = \left(1 - q \sum_{i=1}^k p_i \frac{s_i}{z - s_i r} \right)^{-1},$$

which can be written as $p(r, z) = 0$ for some polynomial in r, z . Similarly, the overlap function simplifies to a sum over the distinct eigenvalues of Σ_{train} :

$$O_{\Sigma_{\text{train}}, H_{\text{train}}}(\lambda_1, \lambda_2) \rightarrow \lim_{z \rightarrow \lambda_2^{+i}} \frac{\text{Im} \frac{1}{z - r(z)\lambda_1}}{\sum_{i=1}^k p_i \text{Im} \frac{1}{z - r(z)s_i}}.$$

C.5.1 SEPARATED SCALES LIMIT

We now assume the scales are widely separated: $s_{i+1} \ll s_i$. We will also work with the ridgeless formulas corresponding to $\lambda \rightarrow 0$ derived in Appendix C.6. For simplicity, assume $s_1 = 1$. We will obtain leading order formulas for $h(\alpha)$ as the ratio of successive scales is taken to 0. In Appendix C.6, h is defined and found to satisfy the following self-consistent equation (equation (55)):

$$1 = \int \frac{t}{h + \alpha t} d\mu_{\Sigma_{\text{train}}}(t)$$

The right hand side is a decreasing function of h and a decreasing function of α , we have that h is a decreasing function of α . Since the integral reduces to a sum over the k eigenvalues, and since all terms with $t \ll h$ do not contribute at leading order in s_{i+1}/s_i , we assume that $h \approx s_1 = 1$ and neglect all lower terms, giving

$$1 = p_1 \frac{1}{h + \alpha},$$

so $h = p_1 - \alpha$ and $\Delta\mathcal{L}$ is

$$\Delta\mathcal{L} = \frac{\sigma_\xi^2}{2} \frac{\alpha \int s O(s, 1) d\mu_{\Sigma_{\text{test}}}(s)}{p_1 - \alpha},$$

the integral in the numerator can be written

$$\int s O(s, 1) d\mu_{\Sigma_{\text{test}}}(s) = \frac{1}{p_1} \bar{\text{tr}} [\Sigma_{\text{test}} P_{\Sigma_{\text{train}}=1}],$$

where $P_{\Sigma_{\text{train}}=a}$ is the projector onto Σ_{train} 's a -eigenspace. In other words, the integral is simply the normalized total overlap of Σ_{test} onto the strong training covariance space, and is equal to 1 for $\Sigma_{\text{train}} = \Sigma_{\text{test}}$.

Now let us assume that h is near the scale s_i^2 . The self-consistent equation becomes

$$1 = p_i \frac{s_i^2}{h + \alpha s_i^2} + \frac{1}{\alpha} \mu_{\Sigma_{\text{train}}}(\gg s_i^2),$$

where $\mu_{\Sigma_{\text{train}}}(\gg s_i^2)$ is the total probability mass of all scales greater than s_i^2 , ie $\sum_{j=1}^{i-1} p_j$. Solving yields

$$\alpha s_i^2 \left[\frac{p_i}{\alpha - \mu_{\Sigma_{\text{train}}}(\gg s_i^2)} - 1 \right] = h,$$

which is consistent with the assumption that $h \sim s_i^2$. Since $h \geq 0$, we only get a valid solution for $\alpha \geq \mu_{\Sigma_{\text{train}}}(\gg s_i^2)$. Substituting back into the error expression yields

$$\Delta\mathcal{L} = \frac{\sigma_\xi^2}{2} \frac{p_i \alpha^2 \int \frac{st}{(h+\alpha t)^2} O(s, t) d\mu_{\Sigma_{\text{train}}}(t) d\mu_{\Sigma_{\text{test}}}(s)}{(\mu_{\Sigma_{\text{train}}}(\gg s_{i+1}^2) - \alpha)(\alpha - \mu_{\Sigma_{\text{train}}}(\gg s_i^2))}.$$

Evaluating the numerator generally requires a choice of Σ_{test} 's behavior in the limit $s_{i+1}/s_i \rightarrow 0$, but note that the denominator has zeros at $\alpha = \mu_{\Sigma_{\text{train}}}(\gg s_i^2), \mu_{\Sigma_{\text{train}}}(\gg s_{i+1}^2)$, and so the error will generically become infinite whenever α is equal to the cumulative mass of some number of top scales. As a simple special case, letting $\Sigma_{\text{test}} = \Sigma_{\text{train}}$, this reduces to

$$\Delta\mathcal{L} = \frac{\sigma_\xi^2}{2} \frac{(\alpha - \mu_{\Sigma_{\text{train}}}(\gg s_i^2))^2 + p_i \mu_{\Sigma_{\text{train}}}(\gg s_i^2)}{(\mu_{\Sigma_{\text{train}}}(\gg s_{i+1}^2) - \alpha)(\alpha - \mu_{\Sigma_{\text{train}}}(\gg s_i^2))}.$$

Since under this assumption,

$$\begin{aligned} \mathcal{L}_0 &= \frac{1}{2} h \bar{\text{tr}} [\Sigma_{\text{train}} (hI + \alpha \Sigma_{\text{train}})^{-1}] = \frac{1}{2} h \\ &= \frac{1}{2} \left\{ \alpha s_i^2 \left[\frac{p_i}{\alpha - \mu_{\Sigma_{\text{train}}}(\gg s_i^2)} - 1 \right] \right\} \quad \mu_{\Sigma_{\text{train}}}(\gg s_i^2) < \alpha \leq \mu_{\Sigma_{\text{train}}}(\gg s_{i+1}^2), \end{aligned}$$

1350 when we take $s_{i+1}/s_i \rightarrow 0$, \mathcal{L}_0 only contributes at the highest scale, so
 1351

$$1352 \quad \mathcal{L}_0 = \frac{1}{2} \sigma_+ (p_1 - \alpha), \\ 1353$$

1354 where σ_+ is the relu function.
 1355

1356 C.6 RIDGELESS LIMIT

1358 Here we simplify our formula for the test error in the ridgeless limit. From (50), we have
 1359

$$1360 \quad \Delta \mathcal{L} = -\frac{1}{2} q \sigma_\xi^2 \frac{d}{d\lambda} \lambda t_{\text{id}}(-\lambda) \\ 1361 \\ 1362 \quad \mathcal{L}_0 := \mathcal{L}_{\text{test}} - \Delta \mathcal{L} = -\frac{1}{2} \lambda^2 t'_{\text{id}}(-\lambda). \\ 1363$$

1364 It will also be helpful to consult t_{id} and r 's explicit expressions as matrix traces (equations (41) and
 1365 (59)):
 1366

$$1367 \quad t_{\text{id}}(z) = \bar{\text{tr}} \left[\Sigma_{\text{test}} \left(zI - \frac{1}{m} X^\top X \right)^{-1} \right], \quad (53) \\ 1368$$

$$1369 \\ 1370 \quad r(z) = 1 + q \bar{\text{tr}} \left[(z - A)^{-1} A \right]. \quad (54) \\ 1371$$

1372 C.6.1 OVERSAMPLED REGIME

1374 From (53), and since for $\alpha := m/d > 1$, the limiting spectrum of $\frac{1}{m} X^\top X$ is bounded away from 0,
 1375 $t_{\text{id}}(-\lambda)$ is analytic as $\lambda \rightarrow 0^+$. Thus in the oversampled regime

$$1377 \quad \Delta \mathcal{L} \rightarrow -\frac{1}{2} q \sigma_\xi^2 t_{\text{id}}(0), \quad \mathcal{L}_0 \rightarrow 0. \\ 1378$$

1379 From Propositions 2 and 3,

$$1380 \\ 1381 \quad t_{\text{id}}(z) \rightarrow -\frac{1}{r(0)} \bar{\text{tr}} \left[\Sigma_{\text{test}} \Sigma_{\text{train}}^{-1} \right], \quad r(0) = 1 - q, \\ 1382$$

1383 so that

$$1384 \quad \Delta \mathcal{L}, \mathcal{L}_{\text{test}} \rightarrow \frac{1}{2} \sigma_\xi^2 \frac{1}{\alpha - 1} \bar{\text{tr}} \left[\Sigma_{\text{test}} \Sigma_{\text{train}}^{-1} \right]. \\ 1385$$

1387 C.6.2 UNDERSAMPLED REGIME

1389 Now assume $\alpha < 1$. Now for $\lambda \rightarrow 0$, t_{id} and r 's explicit expressions in (53) and (59) suggest
 1390 $t_{\text{id}}(-\lambda) = O(\lambda^{-1})$ and $r(-\lambda) = O(\lambda)$. For convenience we will rewrite our formulas in terms
 1391 of $h(z) := \frac{1}{q} \left(\frac{z}{r(-z)} - z \right)$. Substituting into the self-consistent equation for r (40) and simplifying
 1392 gives

$$1393 \quad h(z) = (qh(z) + z) \int \frac{t}{qh(z) + z + t} d\mu_{\Sigma_{\text{train}}}(t). \\ 1394$$

1395 Now differentiating and setting $z \rightarrow 0$, we find

$$1397 \quad 1 = q \int \frac{t}{qh + t} d\mu_{\Sigma_{\text{train}}}(t) \quad (55) \\ 1398$$

$$1399 \\ 1400 \quad h' = \frac{\int \left(\frac{t}{qh+t} \right)^2 d\mu_{\Sigma_{\text{train}}}(t)}{1 - q \int \left(\frac{t}{qh+t} \right)^2 d\mu_{\Sigma_{\text{train}}}(t)}, \quad (56) \\ 1401 \\ 1402$$

1403 where we've suppressed the argument of h, h' .

1404 We now write the error expressions in terms of these
 1405

$$\begin{aligned}
 \Delta \mathcal{L} &= -\frac{1}{2} q \sigma_\xi^2 \frac{d}{d\lambda} \lambda t_{\text{id}}(-\lambda) \\
 &= \frac{1}{2} q \sigma_\xi^2 \frac{d}{d\lambda} (q h(\lambda) + \lambda) \bar{\text{tr}} \left[\Sigma_{\text{test}} ((q h(\lambda) + \lambda) I + \Sigma_{\text{train}})^{-1} \right] \\
 &\xrightarrow{\lambda \rightarrow 0} \frac{1}{2} q \sigma_\xi^2 \frac{\bar{\text{tr}} \left[\Sigma_{\text{test}} \frac{\Sigma_{\text{train}}}{(q h I + \Sigma_{\text{train}})^2} \right]}{1 - q \int \left(\frac{t}{q h + t} \right)^2 d\mu_{\Sigma_{\text{train}}}(t)} \\
 &= \frac{\sigma_\xi^2}{2} \frac{q \int \frac{st}{(q h + t)^2} O(s, t) d\mu_{\Sigma_{\text{train}}}(t) d\mu_{\Sigma_{\text{test}}}(s)}{1 - q \int \left(\frac{t}{q h + t} \right)^2 d\mu_{\Sigma_{\text{train}}}(t)},
 \end{aligned}$$

1417 while
 1418

$$\begin{aligned}
 \mathcal{L}_0 &= -\frac{1}{2} \lambda^2 t'_{\text{id}}(-\lambda) \\
 &= \frac{1}{2} q h \bar{\text{tr}} \left[\Sigma_{\text{test}} (q h I + \Sigma_{\text{train}})^{-1} \right] \\
 &= \frac{1}{2} q h \int \frac{s}{q h + t} O(s, t) d\mu_{\Sigma_{\text{train}}}(t) d\mu_{\Sigma_{\text{test}}}(s).
 \end{aligned}$$

1425 Finally, the total loss is just $\mathcal{L}_0 + \Delta \mathcal{L}$.
 1426

1427 D CHARACTERIZATION OF $t_f(z)$

1429 Here we derive an asymptotically exact expression for
 1430

$$t_F(z) := \bar{\text{tr}} \left[F(\Sigma_{\text{test}}, \Sigma_{\text{train}}) (z I - A)^{-1} \right].$$

1434 Let us abbreviate $F := F(\Sigma_{\text{train}}, \Sigma_{\text{test}})$. First,

$$A = \frac{1}{m} X^\top X = \Sigma_{\text{train}}^{1/2} \left(\frac{1}{m} Z^\top Z \right) \Sigma_{\text{train}}^{1/2},$$

1438 where Z has standard normal entries, so that
 1439

$$t_F(z) = \bar{\text{tr}} \left[\Sigma_{\text{train}}^{1/2} F \Sigma_{\text{train}}^{-1/2} \left(z I - \Sigma_{\text{train}} \frac{1}{m} Z^\top Z \right)^{-1} \right]. \quad (57)$$

1443 Now define $B := I_5 - E_{5,2}$, where $E_{5,2}$ is a matrix whose (5, 2) entry is 1 and has all other entries
 1444 equal to 0, and let
 1445

$$\begin{aligned}
 \Sigma &= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ \frac{1}{z} \Sigma_{\text{train}}^{1/2} F \Sigma_{\text{train}}^{-1/2} & 0 & \frac{1}{z} \Sigma_{\text{train}} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \\
 Q &= \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{\sqrt{m}} Z^\top & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{m}} Z \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.
 \end{aligned}$$

1456 It is straightforward to verify that $(B - (\Sigma + Q))^{-1}$ has as its (5, 1) block exactly the matrix in (57),
 1457 and so $t_F(z) = [g_{\Sigma+Q}(B)]_{5,1}$, where $g_{\Sigma+Q}$ is the operator-valued Cauchy transform of $\Sigma + Q$.

1458 By rotational invariance, Σ, Q are asymptotically operator free, meaning we can apply the operator-
 1459 valued additive subordination relation (see, eg. Mingo & Speicher (2017) Chapter 10), which yields
 1460 the self-consistent equation

$$1461 \quad 1462 \quad g_{\Sigma+Q}(B) = g_{\Sigma}(B - \mathcal{R}_Q(g_{\Sigma+Q}(B))).$$

1463 The blocks of Q are standard normal matrices, and so its \mathcal{R} -transform is given by

$$1464 \quad 1465 \quad \mathcal{R}_Q(M) = \mathcal{E}[QM],$$

1466 where \mathcal{E} is the operator-valued expectation that takes normalized traces of all square blocks. Due to
 1467 the large number of zeros in Q , only two entries of $\mathcal{R}_Q(M)$ are nonzero:

$$1468 \quad 1469 \quad [\mathcal{R}_Q(M)]_{3,5} = M_{4,4}$$

$$1470 \quad [\mathcal{R}_Q(M)]_{4,4} = qM_{5,3}.$$

1471 On the other hand, by definition $g_{\Sigma}(M) = \mathcal{E}[(M - \Sigma)^{-1}]$. Substituting back into the subordi-
 1472 nation relation and writing g for $g_{\Sigma+Q}(B)$, we find

$$1473 \quad g = \mathcal{E} \left[\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ -\frac{1}{z}\Xi & 1 & -\frac{1}{z}\Sigma_{\text{train}} & 0 & 0 \\ 0 & 0 & 1 & 0 & -g_{44} \\ 0 & 0 & 0 & 1 - qg_{53} & 0 \\ 0 & -1 & 0 & 0 & 1 \end{pmatrix}^{-1} \right],$$

1474 where to simplify notation we have written $\Xi := \Sigma_{\text{train}}^{1/2} F \Sigma_{\text{train}}^{-1/2}$. The entries of the right side are
 1475 straightforward to compute using elementary row operations. Performing just enough such opera-
 1476 tions to determine the $(5, 1), (4, 4)$, and $(5, 3)$ entries, we obtain the closed system of equations

$$1477 \quad g_{53} = \bar{\text{tr}} \left[\Sigma_{\text{train}} (zI - g_{44}\Sigma_{\text{train}})^{-1} \right]$$

$$1478 \quad g_{44} = \frac{1}{1 - qg_{53}}$$

$$1479 \quad g_{51} = \bar{\text{tr}} \left[F (zI - g_{44}\Sigma_{\text{train}})^{-1} \right].$$

1480 We can eliminate g_{53} entirely, giving our trace

$$1481 \quad t_f(z) = g_{51} = \bar{\text{tr}} \left[F (zI - r\Sigma_{\text{train}})^{-1} \right],$$

1482 in terms of the scalar $r := g_{44}$ that satisfies

$$1483 \quad r = \left(1 - q \bar{\text{tr}} \left[\Sigma_{\text{train}} (zI - r\Sigma_{\text{train}})^{-1} \right] \right)^{-1}$$

1484 A few remarks are in order. First, we note that we can rewrite this trace as an integral over the
 1485 spectrum of Σ_{train} :

$$1486 \quad 1487 \quad r = \left(1 - q \int \frac{t}{z - tr} d\mu_{\Sigma_{\text{train}}}(t) \right)^{-1}. \quad (58)$$

1488 It is helpful to compare (58) to the explicit expressions for g_{44}, g_{53} from the linearization before
 1489 applying the subordination relation, which are

$$1490 \quad g_{44} = 1 + q \bar{\text{tr}} \left[(z - A)^{-1} A \right] \quad (59)$$

$$1491 \quad g_{53} = \bar{\text{tr}} \left[(zI - A)^{-1} \Sigma_{\text{train}} \right]. \quad (60)$$

1492 Thus $g_{44}(z)$ is analytic in z everywhere outside the spectrum of A , and $g_{44}(\mathbb{H}^{\pm}) \subset \mathbb{H}^{\mp}$ and $0 <$
 1493 $g_{44}(\mathbb{R}^{<0}) < 1$ (the first inequality is gotten most easily by using $g_{53} < 0$ and $g_{44} = (1 - qg_{53})^{-1}$).
 1494 In fact, these conditions along with the self-consistent equation (58) are enough to guarantee that
 1495 the solution is unique, holomorphic, and coincides with g_{44} throughout all of $\mathbb{C} \setminus \mathbb{R}^{\geq 0}$.

1512 **Proposition 4.** For $z \in \mathbb{C} \setminus \mathbb{R}^{\geq 0}$, there is a unique solution $r(z)$ to (58) satisfying the conditions
 1513 $r(\mathbb{H}^\pm) \subset \mathbb{H}^\mp$ and $0 < r(\mathbb{R}^{<0}) < 1$. $r(z)$ depends holomorphically on z and can be obtained by
 1514 iteration of the right hand side of (58) from an arbitrary initial point in $\mathbb{C} \setminus \mathbb{R}^{\geq 0}$.
 1515

1516 *Proof.* Assume $z \in \mathbb{H}^-$. Let $f(r, z)$ be the map defined by the right hand side of (58):
 1517

$$1518 \quad 1519 \quad 1520 \quad f(r, z) := \left(1 - q \int \frac{t}{z - tr} d\mu_{\Sigma_{\text{train}}}(t) \right)^{-1}.$$

1521 It is straightforward to check that $f(\cdot, z) : \mathbb{H}^+ \rightarrow \mathbb{H}^+$. Furthermore, no point on the boundary
 1522 of \mathbb{H}^+ is a fixed point of $f(\cdot, z)$, since $f(\mathbb{R}, z) \subset \mathbb{H}^+$, and $f(\infty, z) = 1$. The Denjoy-Wolff
 1523 theorem then guarantees that $f(\cdot, z)$ has a unique fixed point in \mathbb{H}^+ - and that this point is obtained
 1524 by iteration of $f(\cdot, z)$ from an arbitrary initial point in \mathbb{H}^+ . Thus (58) together with the condition
 1525 $r \in \mathbb{H}^+$ uniquely defines a function $r(z)$ for all $z \in \mathbb{H}^-$.

1526 Now fix $z_0 \in \mathbb{H}^-$. Since $f(\cdot, z_0) : \mathbb{H}^+ \rightarrow \mathbb{H}^+$ and $f(\cdot, z_0)$ is not a Möbius transformation (it only
 1527 can be if Σ_{train} is a scalar matrix), the Schwarz lemma implies $|\frac{\partial}{\partial r} f(r(z_0), z_0)| < 1$, which means
 1528

$$1529 \quad 1530 \quad \left| \frac{\partial}{\partial r} (f(r, z_0) - r) \right| = \left| \frac{\partial}{\partial r} f(r, z_0) - 1 \right| > 0,$$

1531 and so the implicit function theorem implies there is a holomorphic function solving (58) on some
 1532 neighborhood of z_0 that coincides with $r(z_0)$ at z_0 . Since $r(z_0) \in \mathbb{H}^+$, this function must also stay
 1533 in \mathbb{H}^+ in some (possibly smaller) neighborhood of z_0 , and by uniqueness of solutions to (58), this
 1534 implies that it coincides with $r(z)$ on this neighborhood. Thus $r(z) : \mathbb{H}^- \rightarrow \mathbb{H}^+$ is holomorphic at
 1535 each point of \mathbb{H}^- . An identical argument proves the proposition for $z \in \mathbb{H}^+$.

1536 Now suppose $z < 0$. Conjugating the right hand side of (58) by the map $x \mapsto 1/(1 - qx)$ gives a
 1537 self-consistent equation satisfied by g_{53} :

$$1539 \quad 1540 \quad y = \int \frac{t}{z - \frac{1}{1-qy}t} d\mu_{\Sigma_{\text{train}}}(t). \quad (61)$$

1542 The condition $0 < r(z) < 1$ implies $g_{53} < 0$. Now letting $h(y, z)$ be the right hand side of (61),
 1543 $h(y, z) - y$ is convex in y and satisfies $h(0, z) - 0 < 0$ and $h(-\infty, z) - (-\infty) = \infty$, so there is a
 1544 unique solution to (61) with $y < 0$, and thus a unique solution to (58) with $0 < r(z) < 1$.

1545 Since $\frac{\partial}{\partial y} h(y, z) > 0$, and differentiating h at the fixed point gives
 1546

$$1547 \quad 1548 \quad \frac{\partial}{\partial y} h(y, z) = \frac{\partial}{\partial y} (1 - qy) \int \frac{t}{z(1 - qy) - t} d\mu_{\Sigma_{\text{train}}}(t) \\ 1549 \quad 1550 \quad = 1 - \frac{1}{1 - qy} + z \int \frac{(1 - qy) qt}{(z(1 - qy) - t)^2} d\mu_{\Sigma_{\text{train}}}(t) \\ 1551 \quad 1552 \quad < 1,$$

1553 $y(z)$ is an attracting fixed point of $h(\cdot, z)$. Since $h(\cdot, z)$ is a conjugate of $f(\cdot, z)$, the unique solution
 1554 of (58) satisfying $0 < r(z) < 1$ is an attracting fixed point of $f(\cdot, z)$. This implies that there is
 1555 a neighborhood of z that extends into the upper half plane whose iterates converge to $r(z)$. But
 1556 since $z < 0$, $f(\mathbb{H}^+, z) \subset \mathbb{H}^+$, and so the Denjoy-Wolff theorem implies that all iterates of $f(\cdot, z)$
 1557 initialized in \mathbb{H}^+ converge to the same point, which therefore must be $r(z)$.

1558 Finally, $\frac{d}{dy} (h(y) - y) = h'(y) - 1 < 0$ implies that $y(z)$ extends holomorphically to a solution of
 1559 (61) in an entire neighborhood of z . Since $h(y(w), w) - y(w) = 0$ for all w in this neighborhood,
 1560 at the solution point,

$$1562 \quad 1563 \quad 1564 \quad y'(z) = - \frac{\frac{\partial}{\partial z} h(y(z), z)}{\frac{\partial}{\partial y} (h(y(z), z) - y(z))} = \frac{\int \frac{t}{(\frac{t}{qy-1} + z)^2} d\mu_{\Sigma_{\text{train}}}(t)}{\frac{\partial}{\partial y} (h(y(z), z) - y(z))} < 0.$$

1565 A negative derivative implies that for sufficiently small neighborhood U of z , $y(U \cap \mathbb{H}^-) \subset \mathbb{H}^+$.

1566 Mapping back to $r(z) := 1/(1 - qy(z))$ yields a holomorphic function satisfying (58) in a neighbor-
 1567 hood U of $z < 0$ such that for $r(U \cap \mathbb{H}^-) \subset \mathbb{H}^+$. By uniqueness of solutions in the upper half
 1568 plane, r must coincide with the function defined earlier on $U \cap \mathbb{H}^-$. Thus r extends holomorphically
 1569 to the negative real axis. \square
 1570

1571 The subordination relation implies $g_{44}(z) = r(z)$ in a neighborhood of ∞ , but both functions
 1572 extend holomorphically to all of $\mathbb{C} \setminus \mathbb{R}^{\geq 0}$, implying they are equal throughout. This completes the
 1573 proof of Propositions 2 and 3.
 1574

1576 E LOCAL GEOMETRY OF MLPs

1596 Figure 6: Eigenvector overlap function for one MLP simulation in the context of 3.3. A dot is plotted
 1597 for every pair of train and test eigenvalues, with dot size and opacity representing squared overlap of
 1598 the corresponding eigenvectors. Note the very strong train-test alignment indicated by the restriction
 1599 of almost all overlap to the diagonal.
 1600

1602 E.1 GRADIENT DESCENT DYNAMICS

1604 The initial gradient at w_0 is $z := d\nabla \mathcal{L}_{\text{train}}(w_0, \epsilon)$, and the Hessian is $H_{\text{train}} := d\nabla^2 \mathcal{L}_{\text{train}}$, so the
 1605 local approximation for the training loss is

$$1606 \quad \mathcal{L}_{\text{train}}(w) \approx \frac{1}{d} z^\top (w - w_0) + \frac{1}{2d} (w - w_0)^\top H_{\text{train}} (w - w_0),$$

1609 where we've discarded additive constants. The gradient is then

$$1611 \quad \nabla \mathcal{L}_{\text{train}}(w) \approx \frac{1}{d} (z - H_{\text{train}} w_0 + H_{\text{train}} w),$$

1613 so gradient descent does

$$1615 \quad w \rightarrow w - \eta (z - H_{\text{train}} w_0 + H_{\text{train}} w) \\ 1616 \quad = (I - \eta H_{\text{train}}) w - \eta (z - H_{\text{train}} w_0).$$

1617 Thus,

$$1619 \quad \Delta w_t := w_t - w_0 = \frac{(I - \eta H_{\text{train}})^t - I}{H_{\text{train}}} z,$$

Figure 7: Learning dynamics predicted by local two-loss geometry. Left panel: Test loss trajectories in response to different label noise realizations (individual trajectories shown as thin green lines; average shown as thick green line). Noise amplitude corresponds to red dot in Fig. 4(b). To reduce clutter, only theory average is shown (black line; see (62)). Right panel: measured vs predicted relative test loss increment at two times, corresponding to the vertical blue and gold lines in the left panel. Points corresponding to the same trajectory are connected by gray lines. Horizontal blue and gold lines show means.

and so the test error satisfies

$$(\Delta\mathcal{L}_{test})_t = \frac{1}{d} g^\top \Delta w_t + \frac{1}{2d} \Delta w_t^\top H_{\text{test}} \Delta w_t \quad (62)$$

$$= \frac{1}{d} g^\top \frac{(I - \eta H_{\text{train}})^t - I}{H_{\text{train}}} z + \frac{1}{2d} z^\top \frac{(I - \eta H_{\text{train}})^t - I}{H_{\text{train}}} H_{\text{test}} \frac{(I - \eta H_{\text{train}})^t - I}{H_{\text{train}}} z, \quad (63)$$

with $g := d\nabla\mathcal{L}_{\text{test}}(w_0)$ and $H_{\text{test}} := d\nabla^2\mathcal{L}_{\text{test}}(w_0)$.

To compute the GD trajectory for a large network, it's most efficient to precompute

$$g = \text{grad}(\mathcal{L}_{\text{train}})(w_0)$$

$$H_{\text{train}} w_0 = \text{hvp}(\mathcal{L}_{\text{train}}, w_0),$$

set $v_0 := z - H_{\text{train}} w_0$, and simply iterate

$$w \rightarrow w - \eta (v_0 + \text{hvp}(\mathcal{L}_{\text{train}}, w)),$$

where grad , hvp compute function gradients and Hessian-vector products.

F EFFICIENT CALCULATION OF EIGENVECTOR OVERLAPS FOR LARGE MATRICES

Here we describe the Overlap-KPM algorithm, which estimates the unnormalized or total eigenvector overlaps for two matrices. That is, for self-adjoint $A, B \in \mathbb{R}^{d \times d}$, it estimates the measure

$$\mu_{A,B} := \frac{1}{d^2} \sum_{i,j=1}^d \delta_{(\lambda_i^A, \lambda_j^B)} \left[d (v_i^A \cdot v_j^B)^2 \right],$$

which accumulates all overlap of λ_1 A -eigenspaces with all λ_2 B -eigenspaces. To obtain the normalized overlap function treated in the main text (eg. equation (18)), one simply divides by the spectral densities of A, B at λ_1, λ_2 . The problem of estimating spectral densities for large matrices has already received significant attention (see Pavan (2019) in machine learning context), so we assume that one can practically transform back and forth between normalized and unnormalized overlap functions.

1674
1675

F.1 RANK DEFLATION AND NORMALIZATION

1676
1677
1678

As a preprocessing step, we remove the outlier eigenspaces from each matrix obtained via subspace iteration (cf Fig. 5), and then normalize the spectra to the interval $[-1, 1]$.

1679

F.2 RANK DEFLATION VIA SUBSPACE ITERATION

1680

1681
1682
1683

The overlap plots of Fig. 5 were generated via Subspace Iteration (SI). SI is a well known method that generalizes power iteration, so we review it only briefly here. See Papyan (2019) for an explicit implementation in a machine learning context.

1684
1685

Let M be a self-adjoint operator with simple spectrum $\lambda_1, \dots, \lambda_d$, and take $V \in \mathbb{R}^{d \times k}$ with standard normal entries and then orthonormalize the columns. SI iterates

1686
1687
1688

$$V \rightarrow MV$$

$$V \rightarrow VQ,$$

1689
1690
1691
1692
1693
1694

where Q is the Gram-Schmidt orthonormalizing upper triangular matrix of V . Informally, each application of M amplifies each i^{th} eigenspace coefficient of the columns of V by λ_i , which generically leads to exponentially greater weight on the leading eigenspaces. The orthonormalization Q prevents all eigenvectors from collapsing onto the same leading eigenvector. Since they are forced to span an k -dimensional space, they must converge to the top k eigenvectors of M . Overlaps can then be calculated direction by computing pairwise dot products of columns of V .

1695
1696
1697

After convergence, outlier eigenspaces are removed from the matrices by replacing each matrix vector product $v \mapsto M(v)$ with

1698

$$v \mapsto M_{def}(v) = M(v) - VV^\top v.$$

1699

F.2.1 SPECTRUM NORMALIZATION

1700
1701
1702
1703
1704
1705

After removing the outlier eigenvalues, one may obtain bounds for the remaining spectrum via standard approaches (eg. the Lanczos algorithm; cf Papyan (2019)). Letting $\lambda_{\min}, \lambda_{\max}$ denote the minimum and maximum eigenvalue (in practice, with a small amount of padding added), we then normalize the matrices to the interval $[-1, 1]$ by replacing $v \mapsto M_{def}(v)$ with

1706
1707
1708

$$v \mapsto M_{norm}(v) = \frac{2}{\lambda_{\max} - \lambda_{\min}} M_{def}(v) - \left(\frac{\lambda_{\max} + \lambda_{\min}}{\lambda_{\max} - \lambda_{\min}} \right) v.$$

1709

F.3 OVERLAP-KPM

1710

We now assume the previous preprocessing steps have been performed and in particular that A, B 's spectra lie inside $[-1, 1]$.

1713
1714

First note that for kernel function G one can write the kernel-smoothed overlaps exactly as a trace:

1715
1716
1717
1718

$$\bar{\text{tr}}[G(A - \lambda_1; \sigma) G(B - \lambda_2; \sigma)] = \frac{1}{d^2} \sum_{i,j=1}^d G(\lambda_{A,i} - \lambda_1; \sigma) G(\lambda_{B,j} - \lambda_2; \sigma) \left[d(v_{A,i} \cdot v_{B,j})^2 \right]. \quad (64)$$

1719
1720
1721
1722

Thus the goal will be to compute such traces for each (λ_1, λ_2) for some sufficiently small fixed kernel width σ . Computing such traces directly is prohibitively expensive for very large matrices, and so a standard approach is to use Hutchinson trace estimation, ie. to average $v^\top M v$ over several random samples of, say, standard normal v , since

1723
1724

$$\mathbb{E}_v[v^\top M v] = \text{tr}[M \mathbb{E}_v[v v^\top]] = \text{tr}[M].$$

1725
1726

Informal experiments suggested better stability for estimation of PSD traces, so we replace the trace on the left side of (64) with

1727

$$\bar{\text{tr}}[G^{1/2}(A - \lambda_1; \sigma) G(B - \lambda_2; \sigma) G^{1/2}(A - \lambda_1; \sigma)].$$

Now applying the Hutchinson trick, we sample probes v_1, \dots, v_P and approximate

$$\begin{aligned} \text{tr}[G(A - \lambda_1; \sigma) G(B - \lambda_2; \sigma)] &\approx \frac{1}{P} \sum_{\mu=1}^P v_\mu^\top G^{1/2}(A - \lambda_1; \sigma) G(B - \lambda_2; \sigma) G^{1/2}(A - \lambda_1; \sigma) v_\mu \\ &= \frac{1}{P} \sum_{\mu=1}^P \left\| G^{1/2}(B - \lambda_2; \sigma) G^{1/2}(A - \lambda_1; \sigma) v_\mu \right\|^2. \end{aligned}$$

To compute the summand, we generalize a standard approach known as the kernel polynomial method. Practically speaking, this entails approximating the kernel functions $G^{1/2}(x - \lambda; \sigma)$ using Chebyshev polynomials $T_j(x)$, which can be computed efficiently using $T_0(x) = 1, T_1(x) = x$, and the recurrence

$$T_j(x) = 2xT_{j-1}(x) - T_{j-2}(x), \quad j \geq 2.$$

Letting α, β be the Chebyshev coefficients of the kernel functions,

$$\begin{aligned} G^{1/2}(x - \lambda_1; \sigma) &= \sum_{i=0}^{\infty} \alpha_i T_i(x) \\ G^{1/2}(x - \lambda_2; \sigma) &= \sum_{j=0}^{\infty} \beta_j T_j(x), \end{aligned}$$

we truncate to degree K and write

$$c_\mu := \left\| G^{1/2}(B - \lambda_2; \sigma) G^{1/2}(A - \lambda_1; \sigma) v_\mu \right\|^2 \quad (65)$$

$$\approx \left\| \sum_{i,j=0}^K \alpha_i \beta_j T_i(B) T_j(A) v_\mu \right\|^2 \quad (66)$$

$$= \sum_{i,j,k,\ell=0}^K \alpha_i \beta_j \alpha_k \beta_\ell v_\mu^\top T_i(A) T_j(B) T_\ell(B) T_k(A) v_\mu \quad (67)$$

$$=: \sum_{i,j,k,\ell=0}^K \alpha_i \beta_j \alpha_k \beta_\ell M_{i,j,k,\ell,\mu}. \quad (68)$$

Thus for P probes and order- K Chebyshev truncation, by appropriate choice of the coefficients α, β , one can approximate a general function from the $P(K+1)^4$ dot products

$$M_{i,j,k,\ell,\mu} = v_\mu^\top T_i(A) T_j(B) T_\ell(B) T_k(A) v_\mu.$$

This can be improved somewhat using the Chebyshev product identity

$$T_j(x) T_\ell(x) = \frac{1}{2} (T_{j+\ell}(x) + T_{|j-\ell|}(x)), \quad (69)$$

so that

$$M_{i,j,k,\ell,\mu} = \frac{1}{2} (v_\mu^\top T_i(A) T_{j+\ell}(B) T_k(A) v_\mu + v_\mu^\top T_i(A) T_{|j-\ell|}(B) T_k(A) v_\mu),$$

and so all needed dot products can be obtained from the $P(K+1)^2(2K+1) \sim 2PK^3$ dot products

$$\tilde{M}_{i,j,k,\mu} := v_\mu^\top T_i(A) T_j(B) T_k(A) v_\mu, \quad 0 \leq i, j \leq K, \quad 0 \leq j \leq 2K, \quad 1 \leq \mu \leq P.$$

Algorithm 1 efficiently generates all such probe moments with $\sim PK^2$ matrix vector products. Algorithm 1 actually stores all $2PK^2$ vectors $T_j(B) T_k(A) v_\mu$, but in practice, our implementation is significantly more memory efficient. We store all $T_k(A) v_\mu$, but as B 's are added, one only needs to store the current and previous power of B . This amounts to $\sim K$ vectors in memory at once.

Once the $\tilde{M}_{i,j,k,\mu}$ are known, equation (68) is used to estimate the trace for each value of λ_1, λ_2 , yielding an approximation to the unnormalized overlap function of A, B .

Often in machine learning contexts, one or both of A, B has spectrum that is highly peaked around a particular value. For the trace in (64) to accurately reflect the overlaps at λ_1, λ_2 , the kernels—more precisely, their finite K Chebyshev series—must decay sufficiently quickly away from λ_1, λ_2 to prevent the spectral spikes from overwhelming the overlap sum. Practically speaking, this can be diagnosed by 1) forming an estimate of A, B 's spectral density, eg. using the Lanczos algorithm (see Papyan (2019) for implementation in ML context), 2) forming truncated Chebyshev series for the kernels, and 3) comparing kernel decay to spike height. Insufficient decay usually requires either decreased kernel width σ , or increased Chebyshev degree K so that polynomial approximations accurately approximate the small tails needed to dampen the spectral spikes.

Algorithm 1 evaluates $O(PK^2)$ matrix vector products. When these correspond to hessian vector products for a model with d parameters evaluated on m examples, this equates to a total runtime complexity of $O(PK^2md)$. The number of probes P and the Chebyshev degree K are usually small and can be taken to be fixed relative to m, d , so runtime is essentially linear in the number of parameters and number of examples. Similarly, Algorithm 1 only requires keeping $O(K)$ matrix vector products in memory at once, for a memory footprint of $O(Kd)$.

Overlap-KMP combines two standard components—Chebyshev polynomial approximation of smooth spectral kernels and Hutchinson trace estimation—and therefore its hyperparameter behavior is straightforward. The truncation order K controls only the polynomial approximation error of the Gaussian kernel; because the kernel is analytic, this error decays exponentially fast in K (Boyd, 1989), and in practice the estimate stabilizes rapidly once K exceeds a modest threshold. The number of probes P affects only the Monte-Carlo variance, which decreases at the usual $O(1/\sqrt{P})$ rate. Empirically, we observe that the estimator is stable over wide ranges of K, P (see tests on synthetic data in F.4).

Algorithm 1: Overlap-KPM for Eigenvector Overlaps

Input: $A(v), B(v)$ (normalized MVPs); degree K ; probes P

Output: Probe moments $M_{i,j,k,\mu}$ for $0 \leq i, k \leq K$; $0 \leq j \leq 2K$; $1 \leq \mu \leq P$.

for $\mu = 1$ **to** P **do**

sample probe $v_\mu \sim \mathcal{N}(0, I_d)$

$v_{0,0,\mu} \leftarrow v_\mu$; $v_{0,1,\mu} \leftarrow A(v_\mu)$

for $i = 2$ **to** K **do**

$v_{0,i,\mu} \leftarrow A(v_{0,i-1,\mu}) - v_{0,i-2,\mu}$

for $k = 0$ **to** K **do**

$v_{1,k,\mu} \leftarrow B(v_{0,k,\mu})$

for $j = 2$ **to** $2K$ **do**

$v_{j,k,\mu} \leftarrow B(v_{j-1,k,\mu}) - v_{j-2,k,\mu}$

for $i = 0$ **to** K **do**

for $k = 0$ **to** K **do**

for $j = 2$ **to** $2K$ **do**

$M_{i,j,k,\mu} \leftarrow v_{0,i,\mu} \cdot v_{j,k,\mu}$

F.4 TESTS ON SYNTHETIC DATA

Algorithm 1 with gaussian kernel is applied to synthetic data in Fig. 8. $A, B \in \mathbb{R}^{1000 \times 1000}$ are generated according to

$$A = W_1, \quad B = W_2 + A^2, \quad (70)$$

where W_1, W_2 are independent Wishart matrices with aspect ratio $\alpha = 5$. The left panel shows the ground truth gaussian-smoothed overlap function of A, B . Note the nontrivial alignment due to B 's dependence on A . The right panel shows the approximation generated via Overlap-KPM, showing good qualitative match.

We performed informal experiments varying K, P to test the robustness of Algorithm 1 (Figure 9). As expected, accuracy quickly improves and eventually saturates as the Chebyshev approximation

1836 order K is increased. The variance of the estimator as a function of P decays as $O(1/\sqrt{P})$ with a
 1837 constant of proportionality that depends on the input matrices. As figure 9 shows, even for a modest
 1838 number of probes (e.g., $P = 4$), results can be quite accurate.

Figure 8: Overlap-KPM algorithm recovers overlaps on synthetic data. $A = Z_1^\top Z_1/m$ and $B = Z_2^\top Z_2/m + A^2$, where $Z_1, Z_2 \in \mathbb{R}^{m,d}$ are independent matrices with iid. standard normal entries. $d = 1000$, $\alpha := m/d = 5$. Chebyshev degree: $K = 45$; number of probes $P = 4$. Left panel shows actual eigenvector overlaps at eigenvalues λ_A, λ_B , smoothed with a gaussian kernel of width $1/16$. Right panel shows approximation derived from the Overlap-KPM algorithm.

Figure 9: Varying K, P in overlap-KPM. Gaussian kernel with of 1/32. Matrices A, B were generated as in 8

1890
1891

F.5 HESSIAN OVERLAPS OF RESNET-20

1892
1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

Normalized
overlap density

Figure 10: Overlap-KPM algorithm for Hessian overlaps of CIFAR-10-trained ResNet-20. Degree $K = 45$ and $P = 4$ probes with Jackson smoothing applied to gaussian kernel Chebyshev coefficients. Left column shows overlaps for $H_{\text{train}}, H_{\text{test}}$ (ie. balanced test set), while right column shows overlaps for $H_{\text{train}}, H'_{\text{test}}$ (imbalanced test set). Top row shows normalized overlap functions $O_{H_{\text{train}}, H_{\text{test}}}(\lambda_{\text{train}}, \lambda_{\text{test}})$ and $O_{H_{\text{train}}, H'_{\text{test}}}(\lambda_{\text{train}}, \lambda'_{\text{test}})$. For ease of visualization, bottom row shows test, train sectional densities $O_{H_{\text{train}}, H_{\text{test}}}(\lambda_{\text{train}}, \lambda_{\text{test}})\mu_{\text{train}}(\lambda_{\text{train}})$ and $O_{H_{\text{train}}, H'_{\text{test}}}(\lambda_{\text{train}}, \lambda'_{\text{test}})\mu_{\text{train}}(\lambda_{\text{train}})$ —the average overlap of 1-D $H_{\text{test}}/H'_{\text{test}}$ eigenspaces onto *full* eigenspaces of H_{train} . In both rows, strong diagonal overlaps are visible in the left column that are reduced or absent in the right column. Note also in the bottom row that the tail of the $\lambda_{\text{train}} \approx 0$ band extends significantly further for H'_{test} than for H_{test} , indicating significant loss of high H'_{test} eigenspace energy into the low-eigenvalue band of H_{train} .

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943