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Abstract

In this paper we look at the ability of recent001
large language models (LLMs) at solving math-002
ematical problems in combinatorics. We com-003
pare models LLaMA-2, LLaMA-3.1, GPT-4,004
and Mixtral against each other and against hu-005
man pupils and undergraduates with prior ex-006
perience in mathematical olympiads. To fa-007
cilitate these comparisons we introduce the008
Combi-Puzzles dataset, which contains 125009
problem variants based on 25 combinatorial010
reasoning problems. Each problem is presented011
in one of five distinct forms, created by system-012
atically manipulating the problem statements013
through adversarial additions, numeric param-014
eter changes, and linguistic obfuscation. Our015
variations preserve the mathematical core and016
are designed to measure the generalisability017
of LLM problem-solving abilities, while also018
increasing confidence that problems are submit-019
ted to LLMs in forms that have not been seen020
as training instances. We found that a model021
based on GPT-4 outperformed all other models022
in producing correct responses, and performed023
significantly better in the mathematical varia-024
tion of the problems than humans. We also025
found that modifications to problem statements026
significantly impact the LLM’s performance,027
while human performance remains unaffected.028

1 Introduction029

Mathematical problem-solving tasks are often pre-030

sented as textual statements, requiring solutions031

that are logical, coherent, and culminate in a cor-032

rect final answer. The task of solving mathematical033

word problems (MWP) has been a topic of inter-034

est in the fields of computational linguistics and035

artificial intelligence (AI) since the 1960s.036

Solving MWP as an area of research has seen037

a resurgence due partly to research questions af-038

forded by new AI models, assessing the reasoning039

abilities of large language models (LLMs). Similar040

to human thinking patterns, efficient application041

of models usually requires accurately parsing text042

to identify relevant information, discard irrelevant 043

details, and understand relationships between en- 044

tities. Additionally, it requires creative reasoning 045

to identify relevant arguments and steps, techni- 046

cal proficiency for performing routine calculations, 047

and critical reasoning to examine and adjust the 048

steps of an argument as mentioned by Bubeck et al. 049

(2023). Applying AI to solving advanced mathe- 050

matical problems is now an open-challenge task 051

for researchers, with challenges like AIMO Prize1 052

being a notable example. 053

Recent studies demonstrated that LLMs like 054

GPT-4 exhibit human-like reasoning (Wei et al., 055

2022; Achiam et al., 2024) and can tackle various 056

natural language reasoning tasks. Kojima et al. 057

(2023) found that GPT-4 performs well at reason- 058

ing tasks without further fine-tuning, but only ex- 059

perimented with problems requiring few reasoning 060

steps to solve. Later, Collins et al. (2023) created 061

a set of novel problems, presented them to GPT-4 062

and observed that the model has a tendency to over- 063

rely on plausibly memorised examples or patterns. 064

Therefore, whether the reasoning demonstrated by 065

LLMs generalises is an open question that requires 066

further investigation. 067

This study examines the current abilities of es- 068

tablished LLMs in mathematical reasoning using 069

combinatorial problems with comparisons to the 070

abilities of human participants. We present a fresh 071

dataset and specialised methodology aimed at eval- 072

uating the generalisation of reasoning abilities in 073

LLMs and investigate three questions: 074

1. Which LLM is the best at answering combina- 075

torial reasoning problems? 076

2. Are humans better at reasoning on these prob- 077

lems than the best LLM? 078

3. Which problem variations affect LLMs and 079

humans the most? 080

1https://aimoprize.com/.
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2 Background and Related work081

Most studies on language model evaluation in082

mathematical reasoning typically focus on math-083

ematical word problems (MWPs). Datasets for084

this task are usually structured as mathematical085

statements and queries of mathematics-related con-086

cepts. Among the most widely utilised datasets087

are GSM8K (Cobbe et al., 2021), SVAMP (Patel088

et al., 2021) with a focus on arithmetic reasoning,089

MMLU (Hendrycks et al., 2021a) – multiple choice090

question answering, and MATH (Hendrycks et al.,091

2021b) – word problem-solving. Some instances of092

combinatorial problems are included in the listed093

datasets. However, the emergence of LLMs has094

highlighted several issues:095

• Common datasets lack balanced difficulty lev-096

els, featuring either simple arithmetic or chal-097

lenging olympiad-style problems.098

• Some datasets include test data from down-099

stream tasks in the training data, causing pat-100

tern memorisation instead.101

• Few studies provide human evaluation of102

datasets, crucial for validating problem-103

solving abilities.104

To address these issues, several new datasets105

were introduced in recent years.106

Problems complexity. To enhance the difficulty107

level, the aforementioned datasets have been ex-108

tended, and new datasets including challenging109

problems were introduced.110

Zheng et al. (2022) presented miniF2F, a dataset111

of formal Olympiad-level mathematics problem112

statements intended to provide a unified cross-113

system benchmark for neural theorem proving.114

Frieder et al. (2023) opted to create the GHOSTS115

dataset of graduate-level mathematics. Wang et al.116

(2024) introduced the MMLU-Pro dataset, includ-117

ing data from TheoremQA, featuring high-quality,118

human-annotated questions that necessitate the ap-119

plication of theorems for resolution; and SciBench,120

which includes advanced science questions de-121

rived from college exams, ensuring the inclusion of122

curriculum-aligned questions. In the PuzzleBench123

dataset, Mittal et al. (2024) shortlisted computa-124

tionally challenging problems by manually scan-125

ning Wikipedia for diverse puzzles and NP-hard126

algorithmic problems. Additionally, the authors127

experimented with altering the configurations of128

certain problems to curate the complexity level of 129

the tasks. 130

Data contamination. Authors utilised GSM8k 131

to replicate the questions in the dataset while with- 132

holding their corresponding parts and successfully 133

identified contamination of the dataset within GPT- 134

4 when guided instruction was used (Golchin and 135

Surdeanu, 2024). 136

Zhang et al. (2024) highlighted contamination 137

issues with existing datasets and mirrored the style 138

and complexity of the GSM8k data to create their 139

own dataset GSK1k using fresh problems con- 140

tributed by human annotators. The models tested 141

showed significantly worse results on the alterna- 142

tive problem set, which effectively highlights the 143

issue of LLM’s memorisation of data. In the most 144

recent research done Mirzadeh et al. (2024), au- 145

thors presented an updated GSM-symbolic dataset, 146

an improved benchmark created from symbolic 147

templates that allow for the generation of a diverse 148

set of questions, including changing names, num- 149

bers or both, injection of irrelevant numerical infor- 150

mation into the problem statements. The findings 151

reveal that LLMs exhibit noticeable variance when 152

responding to different instantiations of the same 153

problem question. 154

Human evaluation. Collins et al. (2023) con- 155

ducted the first experiment with humans and LLMs 156

in the domain of mathematics. The authors as- 157

sessed the helpfulness of LLMs as mathematical as- 158

sistants through direct interactions with undergrad- 159

uate students and professors, and found notable in- 160

stances of divergence between correctness and per- 161

ceived helpfulness in LLM generations. In the work 162

by Zheng et al. (2023), authors found that LLMs 163

show limitations in grading basic math problems 164

which it is capable of solving. The test model, GPT- 165

4, was able to solve the problem when asked sepa- 166

rately, but it was misled by the provided answers, 167

ultimately resulting in incorrect judgment. In the 168

work by Bubeck et al. (2023), the authors prompted 169

the GPT-4 model with mathematical statements pre- 170

viously not seen online. From the experiments, the 171

model demonstrates a high level of ability in choos- 172

ing the right argument or path towards the solution 173

but frequently fails to conduct correct reasoning 174

due to arithmetic mistakes. 175

Our goal is to evaluate the reasoning ability of 176

established LLMs and draw comparisons with hu- 177

man subjects. We opted to create our dataset – the 178

Combi-Puzzles dataset of combinatorial problems 179
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Problem statement Combinatorial an-
swer

Num.
answer

Lia has 2 apples, 3 ba-
nanas and 2 oranges.
For the upcoming week,
she wants to eat one
fruit every day. How
many ways are there to
do it?

P (2, 3, 2) =
7!

2!3!2!
210

Table 1: A combinatorial problem example provided
with an answer.

– with fresh problems addressing all issues above.180

First, we included dataset problems of various dif-181

ficulty levels to challenge all parties participating182

in the study. Second, fresh problem statements are183

needed in order for our evaluation to be unbiased184

– it gives us more confidence that good LLM per-185

formance on our dataset is not due to dataset mem-186

orisation. Third, by creating our own dataset we187

introduce controlled alterations to problem state-188

ments designed to measure the ability of LLMs and189

participants to identify and reason about the mathe-190

matical problem underlying each textual statement191

or core.192

3 Combi-Puzzles: Dataset Construction193

We believe that combinatorial problems are194

highly suited for evaluating the mathematical rea-195

soning of LLMs: correct answers are usually ex-196

pressed as combinatorial formulae or simple nu-197

meric results, making the process of verifying the198

answer efficient and reproducible. Formulaic forms199

of answers to combinatorial problems can include200

binomials, factorials, and other combinatorial sym-201

bolic representations, both of which are accepted202

in our experiment. An example of a combinatorial203

problem with the answer in both forms is shown in204

Table 1.205

Additionally, given a response in the form of a206

combinatorial formula, it is usually possible to ex-207

tract the reasoning steps that led to the final answer.208

Furthermore, we can find combinatorial problems209

with a wide range of complexity which can be fur-210

ther adjusted via various text manipulations. These211

characteristics make combinatorial problems an ef-212

ficient and practical way to assess mathematical213

reasoning abilities.214

We constructed a dataset of 125 problem vari-215

ants based on 25 combinatorial problems covering216

permutations (with and without repetition), com-217

binations, the rules of addition and multiplication,218

and object arrangements with various restrictions.219

These problems are representative of basic princi- 220

ples about combinatorics for high school curricu- 221

lum, and spanning from simple to intermediate 222

complexity levels. 223

We created five variations of each problem in a 224

controlled manner through manual text alterations 225

of the common variation of the problem set. As 226

a concrete example, Table 2 shows problem 10 in 227

our dataset in all of its variations. 228

The Common variation is widely available in 229

textbooks about combinatorics, mathematical com- 230

petition proceeding, and online resources like the 231

AOPS website2. This format represents how prob- 232

lems are typically presented to participants to ex- 233

plain combinatorial principles and provide them 234

with illustrative examples. 235

The Mathematical variation is presented in the 236

natural language of mathematics, typically found 237

in academic literature. Statements expressed in this 238

form include mathematical technical terms, con- 239

cepts (e.g., “sets”, “permutations”, “urn model”) 240

and set phrases (e.g., “draw with/without replace- 241

ment”). 242

The Adversarial variation is constructed by in- 243

troducing text that injects information, such as nu- 244

merical data, to the common form of the problem 245

statement that is not relevant for solving the prob- 246

lem. Typically, up to a sentence is injected to test 247

the solver’s ability to identify relevant information. 248

The Parameterisation variation changes the con- 249

figuration of the common problem by typically in- 250

creasing parameter values to expand the answer 251

space and make the problem more challenging. 252

The Linguistic Obfuscation variation is con- 253

structed by changing the narrative style of the prob- 254

lem statement and turning it into a narration of a 255

fictional story. This problem variation can include 256

additional descriptions, irrelevant numerical data 257

and fresh names. Every instance of this variation is 258

at least 300 characters long. This approach tests the 259

solvers’ ability to extract the core of the problem. 260

The mathematical, adversarial, parameterisation 261

and linguistic obfuscation forms are fresh presenta- 262

tions of the problems that have been created by the 263

authors specifically for this study. These variations 264

are intended to model the diverse ways a problem 265

can be stated. This way, we can engage the abil- 266

ity of humans and LLMs to identify the correct 267

problem-solving strategy for each problem. 268

We constructed all variations by systematically 269

2https://artofproblemsolving.com/wiki.
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Problem form Problem example
Common 3 girls found 9 white pearls. How many distinct ways are there to divide all pearls between girls?

It is not necessary that all girls get pearls.
Mathematical In an urn there are 3 balls numbered 1 to 3. You draw 9 times with replacement. How many

distinct sets of balls are there?
Adversarial 3 girls found 9 white pearls. All girls are professional free divers and can hold their breath from

8 to 10 minutes. How many distinct ways are there to divide all pearls between girls? It is not
necessary that all girls get pearls.

Parameterisation 13 girls found 54 white pearls. How many distinct ways are there to divide all pearls between
girls? It is not necessary that all girls get pearls.

Linguistic obfusca-
tion

3 pirates enter a frigate that has just surrendered to them. They know that there are nine bars
of solid gold on board. According to pirate law, any pirate who finds some loot on board a
commandeered ship can keep it. They swarm out into every nook and cranny of the ship to find
the gold – each hoping that she will get all nine, and dreading a situation where she finds nothing.
How many ways are there to assign the gold bars to the pirates?

Table 2: Problem 10 presented in five variations. The highlighted text indicates content modifications based on the
common version. The mathematical and linguistic obfuscation variations constitute the new text.

applying the guidelines highlighted above such that270

the underlying mathematical core, the information271

required to solve it, is preserved. To our knowledge,272

this study is the first to use linguistic obfuscation to273

evaluate the performance of large language models.274

It is our intention to make our collection avail-275

able to the scientific community.276

4 Methods277

To answer the three questions under investiga-278

tion in this paper, we designed two independent279

experiments, which we executed using our Combi-280

Puzzles dataset: one with LLMs and the other one281

with humans.282

We prompted four models: (i) LLaMA-2-283

70B-Chat (referred to as “LLaMA-2” hence-284

forth), LLaMA-3.1-70B-Instruct (ii) (referred to285

as ‘LLaMA-3.1’) (iii) Mixtral-8x7B-Intstruct (re-286

ferred to as “Mixtral”) and (iv) GPT-4-Turbo (re-287

ferred to as “GPT-4”).288

For the open-source models LLaMA-2, LLaMA-289

3.1 and Mixtral we used quantised versions of the290

models running locally. Access to GPT-4-Turbo291

is via API calls to the paid service. Model param-292

eters, such as temperature and top_p, were left293

unchanged to their default values3. We limited the294

maximum number of output tokens for all models295

to MAX_TOKENS = 2048.296

We report statistical significance, where appli-297

cable, using the paired Permutation test – a non-298

parametric test that detects significant differences299

in the distribution of paired samples.300

3Models specifications and computational budget can be
found in the Appendix C.

4.1 Experiment with LLMs 301

We used two prompting strategies to elicit solu- 302

tions to problems in our dataset from the models: 303

(i) no additional prompt (referred to as “None”) 304

and (ii) one prompt added to the end of the prob- 305

lem statement intended to incentivise the models to 306

give a short answer (referred to as “The short and 307

correct answer is” prompt). 308

For each strategy, we performed N prompting 309

runs per model and per problem variant to account 310

for stochastic variations in model responses. For 311

models LLaMA-2 and Mixtral we set N = 10, and 312

for models LlaMA-3.1 and GPT-4 we set N = 5 313

due to more deterministic behaviour through the 314

generation process. We recorded the number of 315

questions answered correctly by each model in 316

every run. For each model, we report accuracy 317

averaged across all runs of a particular variation 318

and strategy. Overall accuracy for a model is the 319

average across all problems forms and runs. 320

We devised guidelines for determining whether 321

a response from a model answers the prompted 322

statement correctly or not. Language models tend 323

to give long, detailed but often inconsistent or con- 324

tradicting responses. For this purpose, every re- 325

sponse was manually assessed by one of the au- 326

thors against the rules in the guidelines which we 327

summarise here as follows4. 328

Model responses are considered correct if the 329

following conditions hold: (i) the response the re- 330

sponse short and correct (no reasoning steps are 331

provided); (ii) contains an explanation with correct 332

calculations leading to a correct answer; (iii) the 333

answer provided is clearly marked as an approxima- 334

tion (for the parameterisation variation problems); 335

4Full set of rules is attached in the Appendix A.
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Model Additional prompt Comm. Math. Advers. Param. Ling.obfus. Overall
GPT-4 None .82 .94 .77 .67 .70 .78
LLaMA-2 None .22 .22 .15 .19 .11 .18
LLaMA-3.1 None .54 .60 .50 .42 .48 .51
Mixtral None .42 .38 .26 .23 .23 .30
GPT-4 “The short and correct answer is” .76 .90 .76 .61 .66 .74
LLaMA-2 “The short and correct answer is” .19 .17 .05 .08 .11 .12
LLaMA-3.1 “The short and correct answer is” .53 .61 .43 .40 .52 .50
Mixtral “The short and correct answer is” .41 .34 .18 .30 .22 .29

Table 3: Model averages per variation and overall for two prompting strategies: with (bottom) and without (top)
additional prompt added to model input.

Figure 1: Table represents human groups’ scores on the problem set. Each cell represents a problem variation:
common (grey), mathematical (blue), adversarial (red), parameterisation (green), linguistic obfuscation (purple).

(iv) the answer is a combinatorial formula with cor-336

rect values inserted but with no further calculations.337

Model responses are considered incorrect if they338

exhibit one or more of the following characteristics:339

(i) the response is ambiguous; (ii) is provided in340

the wrong format (e.g., as programming code); (iii)341

the answer is empty or incomplete.342

We use the permutation test to assess whether343

alterations to the text have a significant impact on344

performance and to compare the models against345

each other.346

4.2 Experiment with Human participants347

We invited Ukrainian pupils and undergraduates,348

who are familiar with the topic of combinatorics349

and have prior experience in mathematical compe-350

titions, to participate in our study. A total of 35351

participants, aged 13 to 18 years, agreed to partici-352

pate in the study.353

We organized 35 participants and 125 problem354

statements into a Latin Square Design. We formed355

5 groups of 7 participants, ensuring each group356

had a roughly similar mean age, and assigned each357

group one of five distinct problem packs. Each pack358

contained 25 problems with evenly distributed vari-359

ations. Our problems were translated from English360

to Ukrainian so that our participants could reliably361

read and comprehend the problems. Participants362

worked individually within their groups.363

We applied the same process for evaluating cor-364

rectness across all responses received by our partic-365

ipants. Each participant provides answers for their366

problem pack in a short combinatorial or numer-367

ical form, which receives a score of 0 (incorrect)368

or 1 (correct). In case participants do not produce 369

any answer no answer is recorded and the student 370

receives a score of 0 for that problem. The correct- 371

ness of responses was manually evaluated by one 372

of the authors. Given the diverse formulations a 373

correct response might take (e.g., in the form of the 374

combinatorial formula), in some cases we also had 375

to apply a degree of calculation and logic in our 376

assessment. 377

In our comparison of LLM versus human per- 378

formance, we use the best-performing model to 379

represent LLMs, and in the case of human problem 380

solvers, we use a group of the top 5 participants per 381

human group as a representation of human experts. 382

The distribution of participant groups and problem 383

variants according to all factors along with average 384

age and time spent to return answers is shown in 385

Figure 1. 386

5 Experimental Results and Discussion 387

We begin our discussion by looking at the results of 388

our first experiment – comparing the mathematical 389

reasoning abilities of the LLMs of interest. Ta- 390

ble 3 shows the performance of each model across 391

variations, with/without additional prompts, and 392

overall. 393

From Table 3 we observe that GPT-4 performed 394

best across all problem forms regardless of the 395

prompting strategy. The best overall performance 396

numerically is obtained by issuing questions to 397

GPT-4 without additional prompts (78% score over- 398

all). We did not find significant differences between 399

prompting strategies but due to the differences in 400

performance being more pronounced with the no 401
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Common Math.* Advers. Param. Ling. obfus. Overall*
GPT-4 model .82 .94 .77 .67 .70 .78
Human students .78 .63 .64 .70 .74 .70
P-value .697 <.05 .185 .874 .714 <.05

Table 4: Average scores for GPT-4 and human students in terms of problems solved correctly across conditions and
overall. ‘*’ represents that condition change was significant (p < .05).

Common Math. Advers. Param. Ling. obfus.
GPT-4 model .82 .94 .77 .67 .70
Common .82 -
Math. .94 .12 -
Adversarial .77 -.05 -.17* (.026) -
Parameterisation .67 -.15 -.27* (.002) -.10 -
Linguistic obfuscation .70 -.12 -.24* (.006) -.07 .03 -

Table 5: Comparison between variations differences for GPT-4 results across variations. ‘*’ represents that variation
difference was significant (p < .05).

prompt strategy on average, we will focus on re-402

sults obtained using this prompting strategy going403

forward.404

We now turn our attention to our second exper-405

iment, examining the performance of participants406

on the Combi-Puzzles dataset. As shown in Fig-407

ure 1, the participants, who had an average age of408

16 years, spent an average of 63 minutes solving409

the problems and achieved an average solution rate410

of 70%.411

Collectively, the responses from all participants412

ensured that every problem was resolved at least413

once in one of the forms. From Figure 1, however,414

we observe that problems 3, 4, 10, 11, 16, 17, 19,415

and 20 have lower average solution rates than the416

expected 70% at 56%, 44%, 44%, 28%, 16%, 48%,417

60% and 36% solution rate, respectively.418

In a few cases this lower than expected solution419

rate can be attributed to the complexity of some of420

the problems. For example, few correct answers421

have been elicited by participants for problems 11422

and 16 (lower than 30% across all variations). This423

pattern might be indicative of problems that are424

difficult to solve for our participants.425

In the case of problems 4, 10, 16, 20 and 25 we426

also observed that none of our participants were427

able to solve the problem in one or two forms. This428

might be an indication that under certain variations429

problems become difficult to understand, even by430

human participants. We look into these cases in the431

next section.432

Next we look at the difference in performance433

between human students and LLMs across varia-434

tions and overall. From Table 4 we observe that the435

best model (GPT-4) performed significantly better436

than human students overall. The table also shows437

that GPT-4 excelled in the mathematical form with 438

a score of 94%, while our students scored signifi- 439

cantly lower at 63%. We hypothesise that GPT-4 440

performs exceptionally well in the mathematical 441

form because the material for this variation is simi- 442

lar in structure to training text in the mathematical 443

domain likely seen by GPT-4 during training (e.g., 444

mathematical text derived from mathematics text- 445

books and tutorials). 446

For adversarial variation, we observe that GPT-4 447

received a higher score of 77% compared to hu- 448

man students 64% (but not statistically significant, 449

p = .185). The adversarial variation is derived 450

from the common statement of a problem by adding 451

irrelevant information. This suggests that humans 452

appeared to be more confused by adversarial infor- 453

mation in shorter statements than GPT-4. 454

However, for the linguistic obfuscation form, 455

the difference between models and humans is 456

much lower (70% and 74%, respectively) and 457

even slightly better for humans. However, we 458

did not find the difference statistically significant 459

(p = .714). One hypothesis as to why GPT-4’s 460

performance on the linguistic obfuscation variation 461

is reduced relative to other variations is that the 462

model becomes less able to separate relevant from 463

irrelevant information in longer text. 464

Another notable difference between the adver- 465

sarial and linguistic obfuscation variations is the 466

linguistic style: the former is more descriptive, 467

whereas the latter adopts a narration style. This 468

might influence the ability of GPT-4 to extract rel- 469

evant information from unfamiliar mathematical 470

text. In contrast, our students appear to be more 471

reliable in finding the underlying generalisations. 472

For the parameterisation form, the performance 473
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of GPT-4 compared to humans is almost equal474

(67% and 70%, respectively), which could be an475

indication that the models lack precision when deal-476

ing with larger calculations. In some cases, we477

observed that despite GPT-4 generating correct rea-478

soning steps, it produced incorrect sequences of479

expressions in the same chain of calculations, re-480

sulting in incorrect results.481

We now address question 3. From Table 5 we482

observe that the performance of GPT-4 is sensitive483

to differences in problem statements introduced484

by the five forms in our dataset. Specifically, we485

found that GPT-4’s performance at solving combi-486

natorial problems is significantly better when the487

content is expressed in mathematical form (94%)488

when compared to the adversarial, linguistic ob-489

fuscation and parameterisation forms (77%, 70%490

and 67%, respectively). GPT-4’s sensitivity to alter-491

ations in problem statements demonstrated in our492

dataset indicates that GPT-4 might not be able to493

generalise effectively without explicit fine-tuning.494

However, this sensitivity is only currently visible in495

our dataset and further study is required to confirm496

this behaviour.497

Meanwhile, the difference in the correctness498

rates between variations is not significant for our499

participants. This suggests that the ability of partici-500

pants to solve combinatorial problems, as observed501

in our experiment, is not affected by variations in502

problem statements.503

We now focus our investigation on ad-hoc analy-504

sis of individual problems. The goal is to identify505

which problem variations were the most difficult506

for humans and LLMs, according to our results.507

Figure 2 is a visualisation of the number of cor-508

rect answers provided by GPT-4 and participants509

for each variation of problems in Combi-Puzzles.510

The x-axis identifies the problem, while the y-axis511

represents the number of times participants or GPT-512

4 provided the correct answer. Model scores are513

out of 5 runs, and human scores are out of 5 partic-514

ipants per group.515

Overall, from figure 2 we observe that the num-516

ber of solutions provided by participants for prob-517

lems appears to vary more than the number of so-518

lutions produced by GPT-4. We observe that the519

model has a more polarised tendency than partic-520

ipants: if the model is able to solve a problem, it521

will do so across many variations consistently. In522

contrast, the ability of human participants to solve523

a problem in more than one of its forms appears to524

be dependent upon the individual.525

We also observe that in some cases GPT-4 526

and participants produced zero correct answers 527

for the distinct problems. Specifically, we iden- 528

tified p4/param., p10/math, and p25/math as prob- 529

lems that GPT-4 provided correct solutions on 4, 530

5 and 5 instances, respectively, to which human 531

participants provided 0 correct solutions. Simi- 532

larly, we identified problems p18/ling.obfus. and 533

p20/ling.obfus. where our participants provided 534

correct solutions for 5 and 4 instances, respectively, 535

to GPT-4’s 0 correct solutions5. 536

The combinatorial answer for problem p25/math 537

problem utilizes separately solved independent sub- 538

cases of the problem with exactly 0 black balls left, 539

1 black ball left, etc., and then summed up together: 540

C(25, 0) + C(25, 1) + C(25, 2) + C(25, 3) = 541∑3
i=0C(3, i). Looking at GPT-4’s response, we 542

find that the model was able to provide the correct 543

response showing its ability to divide a problem 544

into its subproblems, solve the subproblems sepa- 545

rately, and apply the rule of sum to get to the final 546

answer. This problem is one of the most difficult 547

problems in our dataset and the mathematical vari- 548

ation was not solved by any of our participants. 549

GPT-4 also performed better than our partici- 550

pants in problem p10/math. We noticed that our 551

participants did not pay attention to the unique- 552

ness of the sets involved – “How many distinct 553

sets of balls are there?”– and provided an incor- 554

rect combinatorial answer of 39. In contrast, GPT- 555

4 understood the question correctly and applied 556

the right combinatorial formula to get the answer, 557

C(9 + (3− 1), 3− 1) = C(11, 2) = 55. 558

In some cases, GPT-4 demonstrated the ability 559

to identify the relevant concepts mentioned in the 560

problem statements and apply them to solve larger 561

instances of the problem. One example of this phe- 562

nomenon is GPT-4’s success at solving a parame- 563

terised version of the problem about cinema tickets 564

(p4/param.) by recognizing the concept “Catalan 565

number sequence”. This enabled the model to skip 566

intermediate reasoning steps and get directly to the 567

final answer by utilising initial numbers for the 568

formula: Cn = (2n)!/((n+ 1)!n!). 569

In other cases, GPT-4 demonstrated difficulty in 570

solving linguistic obfuscation variations of prob- 571

lems that we consider to be amongst the simplest in 572

our dataset. One such instance is p18/ling.obfus., 573

which GPT-4 solved correctly 0 times. The prob- 574

5Statements of the problems listed here are attached in the
Appendix B.
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Figure 2: Individual problem scores and the percentage of problems solved correctly are shown for the GPT-4 (left)
and human participants (right).

lem requires counting “ways to travel between the575

cities”, in this case: 3 × 5 = 15. The addition of576

“a choice of 7 horses at Ponyville” as adversarial577

information confused GPT-4, which multiplied the578

final answer by 7, resulting in an incorrect response:579

3× 5× 7 = 105.580

Another problem where human participants per-581

formed better than GPT-4 is the p20/ling.obfus.582

Humans correctly identified the narrative of the583

problem, which could be achieved by simplifying584

the statement and transforming the problem into a585

sequence with constraints, as in the mathematical586

form of the same problem p20/math: “How many587

distinct strings could be created from the string588

ABCDE if A must go before B and C must go589

before D?”. The correct answer for the problem is590

30. GPT-4 attempted to list some possible combina-591

tions that satisfy the problem statement but failed592

to include all of them, which then resulted in an593

incorrect final answer.594

6 Conclusion595

We introduced the Combi-Puzzles dataset for596

evaluating the reasoning ability of LLMs in combi-597

natorial problems and a methodology for construct-598

ing datasets for this task.599

Our experimental results overwhelmingly point600

to GPT-4 as the LLM that best answers combinato-601

rial mathematics problems. We found statistically602

significant evidence suggesting that GPT-4 is bet-603

ter than human participants at producing correct604

answers.605

Our results suggest that GPT-4 ability to reason606

peaks when combinatorial problems are expressed607

in the natural language style of mathematical text-608

books (mathematical variation, 94%). However, we609

have also seen that in our dataset, GPT-4’s perfor- 610

mance drops significantly from the aforementioned 611

peak when additional information is injected into 612

the problem statement (adversarial variation, 77%) 613

and when the problem statement is presented in an 614

unfamiliar narrative style (linguistic obfuscation, 615

70%). Although the performance of our partici- 616

pants varied slightly numerically, we did not find 617

a significant difference in the success rate of their 618

responses across variations. 619

We plan to make our collection accessible to the 620

scientific community. 621

In future work, we intend to design experiments 622

specifically for examining the reasoning steps taken 623

by LLMs and human participants in order to better 624

understand their cognitive differences in mathemat- 625

ical reasoning. 626

7 Limitations 627

We identify three main limitations of our approach. 628

The first concerns the human participants’ experi- 629

ence. The age of the participants ranges from 13 630

to 18 years old, with a mean age of 16. While all 631

participants have experience in mathematical com- 632

petitions and are familiar with combinatorics, their 633

backgrounds vary due to age differences, which 634

may affect their preparedness for solving the prob- 635

lem variants in their novel forms. We controlled for 636

age differences by distributing them evenly among 637

groups, allowing this limitation to contribute con- 638

structively to the study’s aims. 639

The second limitation of our study is the size of 640

the Combi-Puzzles dataset; owing to its handcrafted 641

nature, it contains 125 problem variants, which may 642

not fully capture the diversity of scenarios LLMs 643

can encounter. This limits the generalisability of 644

8



our results to broader applications.645

The final limitation is the quality of the translated646

puzzle statements of our dataset. The problems647

were presented to the human participants in Ukra-648

nian, whereas the original problems were written649

in English. Although we took care of preserving650

the same alterations with the text of each problem651

variant, the translated dataset may slightly deviate652

from the original form. Specifically, in order to en-653

sure that the Ukrainian translation of statements re-654

mained familiar to our participants, we replaced set655

phrases in English with their Ukrainian equivalents.656

For example, the set phrase “drawing balls with re-657

placement” was translated directly into “after you658

take a ball you put it back”. These adaptations659

are motivated by differences in mathematical set660

phrases between Ukranian and English languages661

as observed in mathematical textbooks.662

8 Ethics Statement663

This study was conducted as a controlled exper-664

iment approved by the university’s Ethics Com-665

mittee. We recruited 35 current and former stu-666

dents from the Ukrainian STEM project Kvanta6,667

ensuring informed consent from participants and668

parental consent for younger participants, who are669

below 16 years old. The experiment assessed math-670

ematical reasoning skills online, with data collected671

anonymously. Participation was voluntary, and par-672

ticipants were aware of their right to withdraw at673

any time. The guidelines included general infor-674

mation about the number of problems presented,675

their complexity and variance in style. No mone-676

tary compensation was provided, but involvement677

was offered as an educational opportunity. Com-678

munication was clear, emphasising that the study679

is separate from regular project activities.680
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A Marking Scheme759

We provide the Marking Scheme – a list of rules760

we applied to give scores for models’ outputs. In761

some cases, humans and LLMs return responses762

not in numerical form but as a combinatorial763

formula with the use of binomials, factorials, and764

other combinatorial symbolic representations,765

e.g. C(11, 2) = 55 – such responses are also766

accepted if they are equal to the correct answer767

numerically. We list all the rules applied for the768

marking scheme, including the "grey area" cases.769

The Marking Scheme can be found below.770

771

Criteria for Score 1 (Correct):772

1. Score: 1 - Answer is short and correct.773

2. Score: 1 - There is an indicated correct answer774

at the beginning, even if incorrect or irrelevant775

information follows.776

3. Score: 1 - There is an indicated correct an-777

swer at the end, even if incorrect or irrelevant778

information precedes it.779

4. Score: 1 - Model lists several answers and780

indicates the correct one.781

5. Score: 1 - Model starts with an incorrect an-782

swer but then reasons to a correct one.783

6. Score: 1 - Combinatorial answer is correct,784

but a model provides an approximation for a785

numerical answer (e.g., using words "approxi-786

mately", "about", "≈", etc.).787

Criteria for Score 0 (Incorrect):788

1. Score: 0 - Answer is incorrect.789

2. Score: 0 - Answer is empty.790

3. Score: 0 - Response lacks numerical or com- 791

binatorial parts. 792

4. Score: 0 - Model hasn’t finished a solution 793

with a final answer. 794

5. Score: 0 - Model lists several answers (pos- 795

sibly including the correct answer) and indi- 796

cates the wrong one or none. 797

6. Score: 0 - Response is a code written in a 798

programming language. 799

7. Score: 0 - Model has correct reasoning steps 800

but concludes with a wrong answer. 801

8. Score: 0 - Incorrect equality exists, connect- 802

ing multiple answers with one being cor- 803

rect; answers connected with an equal sign 804

or words like "or", "equals", etc. 805

9. Score: 0 - The answer is ambiguous (no final 806

response is given). 807

B Problems Poorly Solved 808

This appendix contains instances of problems that 809

received the lowest scores from human participants 810

or LLMs. We identify each problem and its varia- 811

tion in the format ProblemID/variation. The brack- 812

eted information next to the problem identifier in- 813

dicates how many times the problem was correctly 814

solved by (i) GPT-4 and (ii) participants, in that 815

order. 816

1. p4/param. (Model-Humans 4:0) 817

There is a line in a cinema for a movie. The 818

ticket costs 5 pounds. 5 people have a 10 819

pound banknote each and 5 people have a 5 820

pound banknote each. At the beginning the 821

ticket cashier does not have any change. How 822

many distinct ways are there to form a line, so 823

that everybody can buy a ticket? 824

2. p10/math. (Model-Humans 5:0) 825

In an urn there are 3 balls numbered 1 to 3. 826

You draw 9 times with replacement. How 827

many distinct sets of balls are there? 828

3. p18/ling.obfus. (Model-Humans 0:5) 829

A knight, who lives in Greenfields town, in- 830

tends to participate at the annual jousting 831

event. First, he has to go Ponyville town, 832

where he will get his noble horse. There are 833

3 roads between Greenfields and Ponyville. 834
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Model Params Is
quant.

Q.
method

Context
length

Knowledge
cutoff

Access Model
Creator

LLaMA-2-70B-
Chat

69B ✓ Q4_K_M 4k Jul 2023 Open-source Meta

LLaMA-3.1-
70B-Instruct

70.6B ✓ Q4_K_M 128k Dec 2023 Open-source Meta

Mixtral-7Bx8-
Instruct

46.7B ✓ Q4_K_M 32k N/A Open-source Mistral
AI

GPT-4-Turbo-
preview-v1106

N/A ✗ N/A 128k Apr 2023 API OpenAI

Table 6: Specifications of models used in the experiment.

He has a choice of 7 horses at Ponyville. Af-835

ter that, he has to go to Saddleford town and836

pick the brand-new shiny and comfortable837

saddle. There are 5 roads between Ponyville838

and Saddleford. How many ways are there to839

travel from Greenfields to Saddleford through840

Ponyville?841

4. p20/ling.obfus. (Model-Humans 0:4)842

You oversee two islands and a ceremonial843

boat, and your job is to make sure several844

preparations for an important festival are845

made. On each island, the highest tree needs846

to be felled and then carved into a totem to847

be placed on the beach. As soon as one of848

the two tree is felled, a telegram is transmit-849

ted to the mainland and given a time stamp.850

When one of the two totems is placed on the851

beach, another telegram is transmitted. You852

also need to make sure the ceremonial boat is853

decorated. Again, when this task is finished,854

a telegram is transmitted. You have workers855

on each island, and on the boat. You do not856

know how long each task takes. At the end857

of the preparations, you look a the order of858

the incoming telegrams. How many different859

sequences are there in which the telegrams860

can come in?861

5. p25/math. (Model-Humans 5:0)862

There is an urn with 25 white balls numbered863

1 to 25 and 25 black balls numbered 1 to 25.864

You draw 25 times without replacement. Ev-865

ery time you draw a ball with label N, other866

ball with the same label but other color disap-867

pears from the urn. How many distinct sets of868

balls with 3 or less black balls are there?869

C Large Language Models Tested 870

The specifications of the large language models 871

used in our experiments are detailed in Table 6. 872

The open-source models, which are provided in 873

the GGUF format – a binary format optimized for 874

quick loading and saving to enhance the efficiency 875

of the inference process – have been enhanced fur- 876

ther by applying K-means Quantization through the 877

llama.cpp library. Within the llama.cpp context, 878

Q4_K_M denotes a specific quantization method, 879

whereby ‘Q’ stands for Quantization, ‘4’ signifies 880

the use of four bits in the quantization process, ‘K’ 881

refers to k-means clustering, and ‘M’ indicates the 882

model’s size post-quantization, classified as Small 883

(S), Medium (M), or Large (L). 884

The open-source models were run locally on 885

Nvidia Quadro RTX 8000 (48GB of RAM). Each 886

problem variant has been processed for 1-2 minutes 887

depending on the model, prompting strategy and 888

problem variant, totalling up to 20 GPU hours per 889

model for N = 5 runs for all 125 problem variants 890

from the dataset. The GPT-4 model was accessed 891

via API online and has been processed in a few 892

hours, specifications of the system configurations 893

are unknown. 894

The tested models are available at: 895

• LLaMA-2-70B-Chat: 896

https://huggingface.co/TheBloke/ 897

Llama-2-70B-Chat-GGUF. 898

• LLaMA-3.1-70B-Instruct: 899

https://huggingface.co/bartowski/ 900

Meta-Llama-3.1-70B-Instruct-GGUF. 901

• Mixtral-8x7B-Instruct: 902

https://huggingface.co/TheBloke/ 903

Mixtral-8x7B-Instruct-v0.1-GGUF. 904
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• GPT-4-Turbo-preview-v1106: (accessible905

via API)906

https://platform.openai.com/docs/907

models/#gpt-4-turbo-and-gpt-4.908
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