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ABSTRACT

Genes, proteins and other biological entities influence one another via causal molec-
ular networks. Causal relationships in such networks are mediated by complex
and diverse mechanisms, through latent variables, and are often specific to cellular
context. It remains challenging to characterise such networks in practice. Here, we
present a novel framework to evaluate the ability of large language models (LLMs)
for zero-shot inference of causal relationships in biology. In particular, we systemat-
ically evaluate causal claims obtained from an LLM using real-world interventional
data. This is done over one hundred variables and thousands of causal hypotheses.
Furthermore, we consider several prompting and retrieval-augmentation strategies,
including large, and potentially conflicting, collections of articles. Our results show
that with tailored augmentation and prompting, even relatively small LLMs can
capture meaningful aspects of causal structure in biological systems. This supports
the notion that LLMs could act as orchestration tools in biological discovery, by
helping to distil current knowledge in ways amenable to downstream analysis. Our
approach to assessing LLMs with respect to experimental data is relevant for a
broad range of problems at the intersection of causal learning, LLMs and scientific
discovery.

1 INTRODUCTION

Discovery in many scientific disciplines is complex and often expensive and time-consuming. In biol-
ogy, the large number of interacting components creates an enormous space of potential experiments
to perform. Experimental plans, as well as joint experimental-computational workflows, are usually
informed by the existing literature (e.g. on a particular disease or biomolecular pathway), but this step
is itself challenging. If large language models (LLMs) are capable of reducing even a small fraction
of the work needed to elucidate biological mechanisms, or compress literature-derived knowledge
into priors for in silico models, they have the potential to significantly accelerate biological discovery
and the understanding of disease mechanisms.

To date, often without fine-tuning on biological data, LLMs have been applied in biochemistry as
experimental orchestration tools (M. Bran et al., 2024), AI bioinformaticians (Ding et al., 2024),
collaborative multi-agent teams of AI scientists (Swanson et al., 2024) or as a source for pre-trained
embeddings for downstream prediction tasks (Chen & Zou, 2024). However, to accelerate science,
LLMs must be capable of elucidating causal relationships and this is highly relevant in the context of
studying molecular networks underpinning disease biology.

In experimental settings conducive to LLM-driven orchestration, researchers often face large experi-
mental search spaces. Tasks may include identifying molecular pathways associated with a transcrip-
tional signature, inferring regulatory pathways linked to a gene target, or designing molecules that
target a specific gene. LLMs that are capable of elucidating causal gene-gene relationships would be
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useful in collapsing the experimental space by identifying potential (i) upstream regulators, (ii) direct
effects and (iii) key regulatory pathways. However, for any such downstream application it would
be essential to first understand how to evaluate whether LLMs are able to infer causal relationships
between molecular entities.

Perturbation screens are fundamental tools in biology that allow researchers to observe inherently
causal relationships by intervening experimentally on specific molecular entities. Contemporary
gene perturbation experiments— notably those using CRISPR-based gene editing tools—offer the
possibility of carrying out interventions in a systematic fashion (spanning potentially large numbers
of intervention targets) and to record changes brought about by such interventions in a global fashion.
These experimental approaches have developed rapidly and include a wide range of specific protocols
(Jinek et al., 2012; Qi et al., 2013; Piatek et al., 2015; Dixit et al., 2016). Such experiments can be
carried out in specific biological contexts (e.g. particular cell types and epigenetic backgrounds),
offering a scalable way to explore causal relationships that may themselves be context-dependent.
Data from such experiments offer an opportunity to understand, in a systematic manner, whether
LLMs are capable of elucidating causal relationships between genes.

Our contributions. We leverage data from interventional experiments to generate a causal ground-
truth to assess whether LLMs can infer gene regulatory networks in a zero-shot fashion, without
prior exposure to the experimental data. Specifically, we focus on evaluating the ability of LLMs to
identify directed gene–gene causal relationships, a key step towards their wider application in applied
causal inference tasks in biology. Importantly, our experimental design tests LLM output with respect
to empirical, interventional experiments, mimicking a real-world scientific workflow. This paves the
way for applying LLMs to generate context-specific priors for causal models of biology and helps to
evaluate their potential in orchestrating experiments aimed at studying gene regulation. We offer the
following contributions:

1. We develop a benchmarking approach for assessing capabilities of LLMs in eludicating
(directed) causal relationships in biology;

2. We explore a range of retrieval-augmented strategies, including ways to specify biological
or experimental context as well as providing guidance at the node or gene level;

3. Finally, the LLM-based output is compared to standard knowledge-driven prior specification
methods.

By combining insights from causal structure learning, Perturb-seq datasets, and advanced text-mining
tools like PubTator 3.0 (Wei et al., 2024) and the STRING database (Szklarczyk et al., 2023), this
work aims to quantify the ability of current LLMs to infer causal gene–gene relationships and build a
framework to help evaluate the role of LLMs in causal discovery within complex biological systems.

2 BACKGROUND

We provide a brief introduction to single-cell perturbation screens in Section 2.1. We then introduce
the basic terminology and notation from causal structure learning that will be used throughout this
paper in Section 2.2. Finally, Section 2.3 describes related work.

2.1 SINGLE-CELL PERTURBATION SCREENS

Advances in RNA sequencing technologies allow the measurement of thousands of molecular readouts
in single cells, referred to as single-cell RNA sequencing (scRNA-seq). These advances underpin
protocols such as Perturb-seq (Dixit et al., 2016), which combine large-scale interventions (e.g. gene
knockouts) with measurement of gene expression at the single-cell level. Perturb-seq and related
protocols allow researchers to explore causal effects at scale, providing rich datasets for studying
gene networks and causal regulatory interactions.

2.2 CAUSAL STRUCTURE LEARNING

Inferring the existence of causal relationships is a fundamental question in science. Causal structure
learning (CSL) methods (Heinze-Deml et al., 2018) aim to identify these causal relationships from
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observational and interventional data. These relationships are usually represented by a causal graph
G = (V,E), which is composed of vertices V = [d] and directed edges E = {i → j : Xi ∈ Xpa(j)}.
An edge i → j implies a causal relationship between Xi and Xj .

In this context, if there exists a directed path i → . . . → j, then node i is an ancestor of node j, and
conversely, node j is a descendant of node i. Here, we use the term ancestral or indirect causal graph
to refer to a graph where each edge xi → xj implies that xi is an ancestor of xj (rather than a parent).
We can also compute the transitive closure of G, denoted by G+ = (V +, E+), such that if there is a
path between i, j ∈ V then there is a direct edge i → j ∈ E+. Indirect edges are a relevant notion in
analyzing experimental perturbations of the kind seen in genetic screens, since these capture total
causal effects of perturbation on a given node (Hill et al., 2019).

2.3 RELATED WORK

Previous research has demonstrated that LLMs are capable of extracting causal relationships between
variables from short, well-structured sentences (Kıcıman et al., 2023; Nie et al., 2023; Romanou et al.,
2023; Jin et al., 2024). However, these tasks typically lack the complexity, noise, and contradictions
typically found in scientific literature.

Märtens et al. (2024) demonstrated that LLM-derived embeddings can improve the performance
of generative models for perturbation prediction. While this highlights the utility of LLMs in
representation learning for biology, it does not directly address their ability to perform causal
inference tasks. By focusing specifically on causal retrieval and reasoning, our study fills this gap.

Other research in evaluation for CSL from Perturb-seq experiments has focused on evaluating CSL
from Perturb-seq data directly (Chevalley et al., 2022; Kovačević et al., 2024), or considered the
perturbation prediction problem from a non-causal perspective (Wu et al., 2024; Szałata et al., 2024).
In Chevalley et al. (2022) the authors apply a similar hypothesis testing procedure to generate ground
truth causal graphs from Perturb-seq data, however, they focus on data-driven CSL methods.

To evaluate LLM performance, in addition to testing against experimental data, we benchmark also
against traditional knowledge-driven methods. This includes the STRING database (Szklarczyk et al.,
2023), a database that integrates known and predicted protein-protein interactions from multiple
sources, including experimental data, computational predictions, and text mining. Unlike standard
LLMs, STRING relies on curated biological networks and statistical association scores, making it
highly structured and reliable for established interactions but less adaptable to novel or ambiguous
queries. Our work contrasts this classical knowledge-driven approach with the broader reasoning
capabilities of LLMs.

3 METHODOLOGY

To evaluate the ability of LLMs to retrieve causal information about gene regulatory relationships, we
compare the causal relationships identified by the LLM to those that can be inferred from Perturb-seq
experiments. In Section 3.1, we describe how the causal ground truth is constructed from perturbation
data. Section 3.2 briefly describes our prompting scheme, then Section 3.3 defines the approach for
evaluating the LLM-derived causal graph.

3.1 CONSTRUCTING A CAUSAL GROUND TRUTH

Problem setting. For each Perturb-seq experiment with N cells we observe the pairs {xi, vi}Ni=1,
where xi ∈ Rd is the gene expression for d genes and vi ∈ V ∪ {I0} denotes the perturbation target,
with I0 being the non-targeting perturbation (i.e. no gene is knocked out). Note that we assume
each perturbation targets a single gene. We denote the univariate interventional distribution under
intervention vi for the readout gene j as Xvi

j .

Hypothesis testing. To identify the genes downstream of a given gene k, we test the null hypothesis
H0 : Xvk

j ∼ XI0
j (the intervened and unintervened univariate distributions for gene j, respectively

Xvk
j and XI0

j , are identical) against the alternative hypothesis H1 : Xvk
j ̸∼ XI0

j . The Mann–Whitney
U test (Mann & Whitney, 1947) is used for these comparisons, with the Benjamini–Hochberg
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correction (Benjamini & Hochberg, 1995) to control for the false discovery rate across multiple
hypothesis tests. A fixed significance level of α = 0.05 is used to determine significant differences.

This procedure identifies a set of differentially expressed genes1 for gene k denoted by ∆k, where
each j ∈ ∆k represents a gene that significantly changes following an intervention on gene k.
Formally, we define:

∆k = {j | pkj < α}, (1)

where pkj is the corrected p-value from the hypothesis test comparing the distributions of Xvk
j and

XI0
j .

As shown in Figure 1, for each j ∈ ∆k we draw an ancestral edge k → j, signifying that gene k
causally influences gene j. Repeating this procedure across all k ∈ {1, . . . , d} yields our baseline
ancestral graph G. Each directed edge in G is interpreted as causal but ancestral and possibly indirect,
as defined in Section 2.2.

∆k

i j

k

i j

k

···

Figure 1: Directed edges are drawn between the perturbed gene k and the set of genes ∆k =
{i, . . . , j} that change significantly under experimental intervention on k.

3.2 LLM PROMPTING FOR ANCESTRAL CAUSAL GRAPHS

The LLM is prompted to predict the probability of a causal relationship between each pair of genes
i, j ∈ V , which we call the query genes. For example2:

User: Please quantify the extent to which gene i has a causal effect on gene j. Return your
answer as a two decimal place probability between 0 and 1.

The LLM output is parsed automatically to retrieve the predicted probability. If no probability is
present, it is set to 0, however, this affected only < 0.33% across all prompts in our experiments.

We repeat this process for all possible pairs of d genes to obtain a matrix of probabilities P ∈ Rd×d

where each entry P [i, j] = pi→j represents the probability of an edge i → j. In general, this matrix is
not symmetric since the probability of an edge i → j may differ from j → i. For performance metrics
that require binary calls on edges, including those used in this work, the matrix P is thresholded at γ
to yield a predicted graph Ĝγ or its transitive closure Ĝ+

γ . Crucially, after each prompt, the LLM is
reinstatiated to prevent biasing the output.

3.3 EVALUATION

Given a probability matrix P obtained by repeatedly prompting an LLM and a ground truth G, we
evaluate performance using Area Under the Receiver Operating Characteristic curve (AUROC). We
calculate the AUROC over all non-diagonal items in P , where the binary labels are given by the
corresponding items in the adjacency matrix of G. In Appendix C, we also present results from
considering transitive closures of the ground truth and predicted graphs.

1Differentially expressed genes are those that are significantly different between two conditions. In this case,
the two conditions are before and after a targeted (CRISPRi) intervention.

2Details of our prompting strategy are given in Appendix A.
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4 EXPERIMENTS

4.1 DATASET

The Perturb-seq dataset generated by Replogle et al. (2022) contains data from more than 2.5 million
human cells on cell-lines3 K562 and RPE1. This dataset has been used in several causal modelling
papers to study the performance of causal models in perturbation prediction (Chevalley et al., 2022).

Since a causal graph with no self-loops and d nodes requires d(d− 1) LLM queries to construct the
causal graph we consider only the 100 most commonly referenced cancer relevant genes. The process
of selecting these genes is explained in Appendix B.

The data is filtered to exclude lowly expressed genes and cells, and z-normalised with respect to the
unperturbed (control) samples,

x̃i =
xi − µ0

σ0
, (2)

where µ0 is the mean and σ0 is the standard deviation of XI0 . The filtered and z-normalised dataset
{x̃i, pi}Ni=1 is then used to generate G as detailed in Section 3.1.

4.2 LLM PROMPTING SETTINGS

For all our experiments, we use Gemma2-9B-it (Team et al., 2024), from the state-of-the-art
small-model family at time of publication. This is because it is open-source, so we could freely test
different experimental settings in the early project exploration stage, and relatively small, so that
it required only one GPU to run. Given that some of our experiments—those that introduce long
additional literature contexts—took up to 32h to run, we were unable to straightforwardly use larger
models and these restrictions are relevant also to prospective scientific use-cases.

In addition to evaluating the performance of LLM-based retrieval without prior or contextual infor-
mation, we consider additions to our original prompt that allow us to condition the LLM’s output on
the cellular context, measurement modality, gene function and experimental protocol. We reason that
providing additional information about the experimental and biological context could help the LLM
reach an embedding space more closely related to the experimental context.

The full list of LLM prompts used for both the experiments for inferring causal direction and full
causal graphs can be found in Table 1.

4.3 INFERRING CAUSAL DIRECTION

As an initial illustrative example, we investigate the LLM’s ability to infer the causal direction
between the example gene pair ATR and CD47. For this pair, G includes the causal edge ATR →
CD47, but not CD47 → ATR (i.e. the experiments support the former but not the latter).

Naive inference. With no contextual information, the LLM returns pATR→CD47 = 0.25 and
pCD47→ATR = 0.15, as visualised in 2a. This simple two gene problem provides an example where
the LLM is capable of distinguishing causal direction (here, given that there is a causal relationship)
with only the names of the two genes (systematic results follow below).

Cancer contextual information. Next, we explore whether conditioning the LLM on the relevant
cancer type could reinforce its causal assessment. We add ‘in human CML (Chronic myelogenous
leukemia)’ to the prompt, which specifies the disease type of the K562 cells on which the experi-
ments were performed. This improves the LLM’s predicted scores yielding pATR→CD47 = 0.35 and
pCD47→ATR = 0.05, as visualised in 2b.

Gene-wise contextual information. We consider several approaches to conditioning on gene-relevant
information. First, we consider general independent descriptions of ATR and CD47, provided by
RefSeq (O’Leary et al., 2016), which leads to significantly lower predicted probability scores for
both causal directions (pATR→CD47 = 0, pCD47→ATR = 0.02), as shown in Figure 2c.

3Cell-lines are a class of immortalised human cells commonly used in biology as tractable laboratory models.
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Setting Description Context Type Inference task

naive Default prompt. None Causal direction (4.3)
& graph (4.4)

cancer Default prompt with context about the
type of cancer that the cells come from.

Experimental Causal direction (4.3)
& graph (4.4)

gene-desc Default prompt with independent infor-
mation about each of the query genes.

Query genes Causal direction (4.3)

literature Default prompt with extracts from the
literature describing the causal relation-
ship between the query genes.

Query genes Causal direction (4.3)
& graph (4.4)

false Default prompt with a statement deny-
ing the true causal relationship between
the query genes.

Query genes Causal direction (4.3)

contradict Default prompt with multiple contradic-
tory statements about the causal rela-
tionship between the query genes.

Query genes Causal direction (4.3)

mRNA Default prompt with context about
the type of measurement being taken,
which in this case is mRNA abundance
or gene expression.

Experimental Causal graph (4.4)

evidence Default prompt with encouragement for
the LLM to consider various types of
evidence present in the literature.

Experimental Causal graph (4.4)

cancer
+ mRNA

Combination of the above prompt set-
tings.

Experimental Causal graph (4.4)

cancer
+ mRNA
+ evidence

Combination of the above prompt set-
tings.

Experimental Causal graph (4.4)

cancer
+ mRNA
+ experiment

Combination of above prompt settings
with additional context about the type
of CRISPRi experiment carried out.

Experimental Causal graph (4.4)

Table 1: Prompt settings with a description of what they should contain and the task where they are
used. The table also includes the type of information that each setting targets whether regarding the
query genes or the experimental setting. Examples of each prompt setting can be found in Appendix
A.

Figure 2: Outputs for inferring causal direction with different prompt contexts, for the example gene
pair ATR and CD47.
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Now we consider relevant context from the literature comprised of passages4 where the causal link
between ATR and CD47 is directly referenced. The probabilities with this additional context are
pATR→CD47 ≥ 0.75 and pCD47→ATR = 0. This is visualised in 2d and shows that provided sufficient
information directly, LLMs can correctly predict causal direction. It has been shown previously by
Jin et al. (2024) that LLMs are capable of this kind of causal reasoning. This underlines again that
LLM performance on causal tasks is dependent on the provided evidence.

Contradictory contextual information. To explore this further, we examine the effect of incorrect
sentences and contradictory sentences. As expected, the incorrect sentence describing no causal
link from ATR to CD47 results in a predicted score of 0 in both directions (Figure 2e). When
provided with contradictory sentences, the LLM is still able to predict the correct causal edge with
pATR→CD47 = 0.75 and pCD47→ATR = 0 (Figure 2f).

4.4 INFERRING A CAUSAL GRAPH

Having shown that LLMs are capable of distinguishing causal direction given that there is a causal
relationship, we move to the more challenging problem of inferring a full causal graph for the genes
specified in Section 4.1.

Figure 3 shows the results for Gemma2 with varying degrees of gene-wise contextual information on
the y-axis and experimental contextual information on the x-axis, as described in Table 1. Each cell
shows the mean AUROC score for this level of context with the standard error in parentheses. The
distributions of the AUROC scores are visualised in Figure A.5.

The best performance is an AUROC = 0.625, via prompting with the experimental context of
cancer + mRNA with no gene-specific information. Providing literature evidence near-
uniformly reduces the LLM performance, especially when there are additional caveats that the
literature may not generalise to the specific context of the experiments in question. We hypothesise
that this is because this further prompting introduces additional uncertainty and leads the LLM
to become less likely to commit to high-probability outputs. When not including gene-specific
information, cancer +mRNA yield predictions with AUROC > 0.6. Including additional details on
experimental protocol generally improves performance slightly.

Interestingly, repeating these experiments with chain-of-thought (CoT) reasoning (Wei et al., 2022)
does not improve AUROC scores. Figure A.1 shows this for a simple variant of CoT and Figure A.2
for a more detailed, guided variant of CoT, which shows that CoT decreases the performance in many
cases. Again, we suspect this is because chain-of-thought reasoning encourages the LLM to be less
confident for or against a causal relationship.

Gene-wise contextual information. At least in the present setting of a small LLM, in the context of
specific ground-truth experiments, gene descriptions and literature information appear to not be useful
for predicting causal regulatory relationships observed in the experiments. We believe that this may
be due to the lack of literature available for mechanisms impacted by CRISPRi interventions used to
generate the Replogle et al. (2022) dataset. The prompts used for the final row of results in Figure
3 emphasise that the gene-specific contextual information should only be used as supplementary
information and yet this worsens performance across prompt settings.

To investigate why gene-wise contextual information worsens performance, we quantify the corre-
lation between G and the literature evidence: there is no correlation between G and the literature
(Boschloo’s one-sided exact test: p = 0.2075; Boschloo (1970)). That is, the presence of literature
evidence for a gene pair is not significantly associated with whether that gene pair is causal, as
described in Appendix B. This result, over a large number of causal relationships, underlines the
limitations of relying on traditional literature mining approaches in the context of elucidating causal
relationships at large-scale in specific biological contexts.

We also find that the gene descriptions, even when provided as supplementary information, strongly
influence the LLM’s predictions. When examining the outputs of the LLM with guided CoT, we find
that the model heavily focuses on the distinct functions of the genes and how their pathways are not
directly interconnected. For example, one of the outputs for the causal gene pair ATR and CD47
states: “There is no readily apparent direct relationship between ATR’s role in DNA damage response

4Full gene context passages can be found in Table A.2.
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and repair, and CD47’s function in cell adhesion, calcium signaling, and thrombospondin binding”
and “A lack of known direct interactions or regulatory pathways linking ATR to CD47 suggests a low
probability of a causal effect”.

Comparison with a knowledge-driven baseline. Next, we investigate how the predictions from
Gemma2 compare to a method that does not utilise LLMs but also draws from existing literature-
based knowledge on gene interactions and associations. We obtain the scores given by the STRING
database (as described in Appendix B), which integrates multiple gene interaction and association
databases and literature-derived associations, and evaluate them against an undirected version of G.
This results in an AUROC of 0.460, demonstrating that the predictions by Gemma2 outperform the
predictions obtained from STRING for this task regardless of the prompt setting used. It is important
to note however, that the STRING database provides symmetric association scores, which are not
intended to provide causal information.

Figure 3: Results on Gemma2 for all combinations of prompt variants (different contexts along each
column, different gene-specific information along each row). The results are shown as the mean
AUROC over 10 repetitions, with the standard error given in brackets.

5 DISCUSSION

In conclusion, we find that even a small LLM is capable of inferring causal gene–gene relationships
better than random chance and in an entirely zero-shot manner, with no input experimental data.
Gemma2 performs considerably better than a database-based zero-shot baseline based on the STRING
database. While the highest AUROC of 0.625 is not large in absolute terms, this is an entirely
automated, zero-shot method, which requires no biological knowledge nor any empirical data for the
task at hand. The LLM output can be straightforwardly integrated as a prior into any downstream
causal structure learning task. Due to the hyperexponential space of possible causal graphs, even a
weak prior that could steer data driven methods has the potential to signficantly narrow this space.

Our results highlight the importance of context-specific information. Potentially, more sophisticated
retrieval-augmented generation strategies—with careful constraining of the associated context—may
improve performance. We found that providing the experimental context improved performance
yet gene-specific information did not, suggesting that the latter lacked specificity to enable accurate
inference with respect to the target ground truth of interest. Indeed, this underlines the need for
novel approaches, that go beyond classical literature mining, in the context of elucidating causal
relationships in biology. Future work could search explicitly for experimentally-relevant literature—in
this case, relating to CML cells and mRNA measurements—rather than any biological or experimental
context with associated gene measurement.

Although we spent significant effort on prompt engineering, we nevertheless expect that it might be
possible to further improve results by providing longer context and optimising the prompts further.
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This is particularly the case for the chain-of-thought reasoning. Moreover, larger ‘vanilla’ LLMs or
RL-imbued reasoning-style LLMs (such as o1; Jaech et al. (2024)) may perform better. As with all
recent LLM advances, this work represents a lower-bound on the state-of-the-art and we are excited
to see how far future LLMs can provide more accurate zero-shot CSL priors and better quantify
causal gene–gene relationship at scale.
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Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
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APPENDIX

A PROMPTING DETAILS

For each pair of genes—in the 9,900 non-identical pairs constructed from the 100 genes pre-selected
for their relevance to cancer (see Appendix B)—we used the following default prompt. Here, we
have provided the example with genes ATR and CD47:

User: You are a professional biologist who is an expert in assessing whether one gene has a
causal effect or not on another. You reply concisely and always follow instructions exactly.
Below, you will be asked to quantify the level at which one gene has a causal effect on another
by returning a 2 decimal place number between 0 and 1, where 0 indicates the first gene has
no causal effect on the second and 1 indicates the first gene has a very strong causal effect on
the second. Here is an example:
[Begin example]
Q: Please quantify the extent to which [Gene A] has a causal effect on [Gene B]. Return your
answer as a 2 decimal place probability between 0 and 1.
LLM output: Probability = the 2dp probability
[End example]
IMPORTANT: DO NOT REPLY IN ANY OTHER WAY. YOUR REPLY MUST END WITH
“Probability = ” AND THEN A 2 DECIMAL PLACE PROBABILITY. Remember, you are a
highly accurate expert biologist who answers concisely, follows instructions and returns only
2dp probabilities as answers.
Q: Please quantify the extent to which ATR has a causal effect on CD47. Return your answer
as a 2 decimal place probability between 0 and 1.
Probability =

We constructed 105 different variants of this prompt by considering three different types of augmen-
tation: the experimental context that underpins the ground truth data we used to evaluate the LLM
inferences, specific information on the gene–gene pair in question and requests for chain-of-thought
reasoning. After drafting the prompts ourself, we used GPT-4o (Hurst et al., 2024) to improve the
prompts.

We investigated providing six additional experimental contexts to better guide the LLM to the correct
biologically-relevant part of its embedding space. These included clarifying that the prediction should
be based on a specific type of cancer, that the causal relationship was identified using mRNA gene
expression data, and sometimes additional experimental or biological details about causal gene–gene
experiments. See Table A.1 for the specific modifications we made to the prompts. We also provided
four different types of gene-specific information (see Table A.2). The first two straightforwardly
drew on gene descriptions from RefSeq, with or without an additional note clarifying that this was
only supplementary information. The third and fourth types provided literature evidence using the
PubTator 3.0 system, again with or without a clarifying note. Finally, we experimented with two
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chain-of-thought reasoning extensions, which are described in Table A.3. The maximum number of
new tokens was set differently for different chain of thought variants: 500 for guided, 200 for simple
and 10 for no chain-of-thought.

For around 40% of the gene pairs, no PubTator associations were found. For such cases—for example
HMGB1 and RUNX1—the PubTator part of the prompt was replaced with

A search of PubTator for research articles relating to HMGB1 and RUNX1 did not yield
relevant results. However, the absence of findings in this search does not rule out the possibility
of an association, as data may exist in other resources or contexts not captured by PubTator.

to clarify. If more than 100 PubTator associations were found, only the first 100 were given due to
memory limitations.

B GENE DATA

Cancer genes. We used a text-mining procedure to obtain 100 well-known cancer genes. Specifically,
we used the Entrez Direct tool (Kans, 2013) and Pangaea (Pirvan & Samarajiwa, 2020) to parse
abstracts from PubMed articles using the search term “cancer”. From these abstracts, we identified
the 100 most commonly referenced genes that were both perturbed and measured in the Replogle
dataset.

Gene descriptions. We used the Entrez Direct tool (Kans, 2013) to retrieve the Entrez gene summary
for each gene.

Literature evidence For each gene pair and each of the following relation types: “associate”,
“interact”, “positive correlate”, “negative correlate”, we queried the PubTator 3.0 search API (Wei
et al., 2024) and extracted the resulting text to produce the literature evidence data. We ran a one-
sided Boscholoo’s exact test on the literature evidence data to investigate whether the presence of
literature evidence was significantly associated with whether a particular gene–gene pair had a causal
relationship in either direction. Specifically, we split the gene pairs into two groups: gene pairs with
at least one sentence in the literature evidence, and gene pairs with no such sentences. We constructed
a contingency table (see Table A.4): A one-sided Boschloo’s exact test gives a nonsignificant p-value
of 0.2075, which suggests the presence of literature evidence is not significantly associated with
whether the gene–gene pair is causal.

STRING scores. We downloaded the STRING database (Szklarczyk et al., 2023) for Homo sapien
and extracted the combined scores for each gene–gene pair. We constructed a d× d matrix from the
scores (which is symmetric since STRING scores are symmetric), with 0-entry where no STRING
score was found.

C EVALUATION UNDER TRANSITIVE CLOSURES

In the main text, we have assumed that the LLM infers ancestral causal relationships, since our
prompt does not specify that direct causal edges are needed but rather whether gene A has a causal
effect on gene B. This causal effect could occur due to a direct causal relationship (i.e. A → B) or
through an indirect path (i.e. A → C → B).

Thus, the LLM’s predictions might represent direct edges or even a mix of ancestral and direct edges,
hence to assess against an indirect ground truth it may be helpful to consider the transitive closure of
the LLM-derived graph. We therefore considered the transitive closure of Ĝγ , denoted by Ĝ+

γ , and
compared this with the ground truth G. We also considered comparing Ĝ+

γ to the transitive closure of
the ground truth, G+.

We first compare Ĝ+
γ to the ground truth G. The results are shown in Figure A.3a. This shows

the AUROCs are generally lower than before, but here gene-desc and literature improve
performance in some cases, contrasting with our previous results. The best performing prompt
variant is literature and cancer+mRNA+evidence with an AUROC of 0.6074. This could
imply that literature evidence helps Gemma2 to identify direct causal edges, but is less helpful for
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identifying the ancestral causal edges. We also compare Ĝ+
γ to the transitive closure of the ground

truth, G+, and obtain similar results, as shown in Figure A.4a.

Figures A.3b and c (and A.4b and c) show how the AUCs change with simple and guided CoT,
respectively. As before, the AUCs do not improve with CoT and in some cases the guided CoT
decreases performance by up to 0.15.

D TRAINING DETAILS

Each inference experiment was completed on a single NVIDIA A100-SXM-80GB GPU, using
resources provided by the Cambridge Service for Data Driven Discovery (CSD3) operated by the
University of Cambridge Research Computing Service, provided by Dell EMC and Intel using Tier-2
funding from the Engineering and Physical Sciences Research Council (capital grant EP/T022159/1),
and DiRAC funding from the Science and Technology Facilities Council. In particular, each GPU
node contained four such GPUs, with two AMD EPYC 7763 64-Core 1.8GHz Processors and
dual-rail Mellanox HDR200 InfiniBand interconnect.

Figure A.1: Results on Gemma2 using simple chain of thought, compared to the results using no
chain of thought (shown in Figure 3). Green indicates the simple CoT reached a higher AUROC than
no CoT and pink indicates it reached a lower AUROC than no CoT.
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Table A.1: Prompts with additional context
Context Prompt addition

+cancer . . . [Gene A] has a causal effect on [Gene B] in human CML (Chronic myelogenous
leukemia) . . .
. . . ATR has a causal effect on CD47 in human CML (Chronic myelogenous leukemia)
. . .

+mRNA . . . [Gene A] has a causal effect on [Gene B] in the context of gene expression (mRNA
measurements) . . .
. . . ATR has a causal effect on CD47 in the context of gene expression (mRNA
measurements) . . .

+cancer+mRNA . . . [Gene A] has a causal effect on [Gene B] in human CML (Chronic myelogenous
leukemia) in the context of gene expression (mRNA measurements) . . .
. . . ATR has a causal effect on CD47 in human CML (Chronic myelogenous leukemia)
in the context of gene expression (mRNA measurements) . . .

+extra detail . . . a very strong causal effect on the second. Use known scientific evidence, including
experimental findings, gene pathway involvement, and established literature, to
determine the causal effect. Prioritise experimental findings, such as knockout
studies and mechanistic insights from direct gene interactions. Assess the strength of
the evidence and consider the possibility of unknown factors. If causal relationships
between two genes are unclear or lack sufficient evidence, return a probability
reflective of this uncertainty. Here is an example: . . .

+cancer+mRNA+extra detail . . . a very strong causal effect on the second. Use known scientific evidence, including
experimental findings, gene pathway involvement, and established literature, to
determine the causal effect. Prioritise experimental findings, such as knockout
studies and mechanistic insights from direct gene interactions. Assess the strength of
the evidence and consider the possibility of unknown factors. If causal relationships
between two genes are unclear or lack sufficient evidence, return a probability
reflective of this uncertainty. Here is an example:
. . . [Gene A] has a causal effect on [Gene B] in human CML (Chronic myelogenous
leukemia) in the context of gene expression (mRNA measurements) . . .
. . . ATR has a causal effect on CD47 in human CML (Chronic myelogenous leukemia)
in the context of gene expression (mRNA measurements) . . .

+Perturb-seq details ..a very strong causal effect on the second. The evaluation is based on single-cell
data from a Perturb-seq experiment conducted in K562 cells, a chronic myeloid
leukemia (CML) cell line. In this experiment, gene perturbations are systematically
introduced to assess their effects on the expression levels of other genes at single-cell
resolution. Your task is to estimate the extent to which Gene B is affected by the
knockdown of Gene A in this specific experimental context (without seeing the raw
experimental data). The output probability should estimate the causal relationship
inferred from the Perturb-seq data. Here is an example:
. . . [Gene A] has a causal effect on [Gene B] in the context of this Perturb-seq
experiment . . .
. . . ATR has a causal effect on CD47 in the context of this Perturb-seq experiment . . .

14



Published as a workshop paper at MLGenX 2025

Table A.2: Prompts with gene-specific information, for the gene pair ATR and CD47
Gene-specific
information

Prompt addition

Gene descriptions . . . follows instructions and returns only 2dp probabilities as answers.
You may use the following contextual information:
Description of ATR: The protein encoded by this gene is a serine/threonine kinase
and DNA damage sensor, activating cell cycle checkpoint signaling upon DNA stress.
The encoded protein can phosphorylate and activate several proteins involved in the
inhibition of DNA replication and mitosis, and can promote DNA repair, recombination,
and apoptosis. This protein is also important for fragile site stability and centrosome
duplication. Defects in this gene are a cause of Seckel syndrome 1. [provided by RefSeq,
Aug 2017]
Description of CD47: This gene encodes a membrane protein, which is involved in
the increase in intracellular calcium concentration that occurs upon cell adhesion to
extracellular matrix. The encoded protein is also a receptor for the C-terminal cell
binding domain of thrombospondin, and it may play a role in membrane transport
and signal transduction. This gene has broad tissue distribution, and is reduced in
expression on Rh erythrocytes. Alternatively spliced transcript variants have been
found for this gene. [provided by RefSeq, Jul 2010]
Q: Please quantify the extent . . .

Gene descriptions
as supplementary in-
formation

. . . follows instructions and returns only 2dp probabilities as answers.
You may use the following contextual information:
Gene Descriptions: These provide independent functional information about each
gene. Treat them as supplementary context, not definitive evidence of causality. While
contrasting or compatible functions may inform your reasoning, rely primarily on
broader biological knowledge, including regulatory pathways, experimental evidence,
and known gene interactions.
Description of ATR: . . .
Description of CD47: . . .
Note: The descriptions above are intended to provide auxiliary context about each
gene’s independent functions. They may suggest plausible functional relationships
or incompatibilities but are not expected to directly indicate causality. Use them as
supplementary information alongside your broader biological understanding to assess
the causal relationship.
Q: Please quantify the extent . . .

Literature evidence . . . follows instructions and returns only 2dp probabilities as answers.
You may use the following contextual information, which are extracted from research
articles:
We showed that treatment of tumor cells with a DNA-damage response (DDR) inhibitor
targeting the ATR kinase limits the induction of CD47 and PD-L1 signals thus promot-
ing increased antitumor abscopal activity in vivo.
ATR inhibition may cause downregulation of programmed cell death 1 ligand 1 (PD-L1)
and leukocyte surface antigen 47 (CD47), thereby giving a partial suppression of the
PD-1/PD-L1 and SIRPα/CD47 immune checkpoints.
Q: Please quantify the extent . . .

Literature evidence
as supplementary in-
formation

. . . follows instructions and returns only 2dp probabilities as answers.
You may use the following contextual information, extracted from research articles by
PubTator. These provide associations or findings reported in the literature and are
useful as supplementary evidence. However, they are not comprehensive or definitive
sources for causal relationships. Consider the possibility of differences in biological
contexts, experimental setups, or interpretation. Use them alongside your broader
understanding of gene interactions, regulatory pathways, and experimental evidence.
Literature evidence as supplementary information:
We showed that treatment, . . . immune checkpoints.
Note: The above associations from PubTator provide context about findings in specific
studies. They may reflect particular experimental conditions or biological contexts that
are not universally applicable. While they may suggest plausible evidence in favour or
against a causal relationship, they should not be treated as the sole or definitive source
of information. Always integrate this context with your broader biological knowledge
and reasoning to assess the causal relationship accurately.
Q: Please quantify the extent . . .
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Table A.3: Prompts with chain-of-thought
Chain of thought
variant

Prompt addition

Simple . . . Return your answer as a 2 decimal place probability between 0 and 1. Please think
step by step. Remember to first give one or two sentences of reasoning, and then
YOU MUST include a 2dp probability at the end of your answer!
LLM output:
Reason = {Here you will include reasoning}
. . . Return your answer as a 2 decimal place probability between 0 and 1. Please think
step by step. Remember to first give one or two sentences of reasoning, and then
YOU MUST include a 2dp probability at the end of your answer!
Reason =

Guided . . . Return your answer as a 2 decimal place probability between 0 and 1. Please think
step by step. To do so first, generate evidence and reasoning in favour of a causal
effect. Second, generate evidence and reasoning against a causal effect. Third, come
to an overall conclusion about the evidence. Fourth, include a 2dp probability that
reflects, overall, the extent to which [Gene A] has a causal effect on [Gene B]. YOU
MUST include a 2dp probability at the end of your answer!
LLM output:
Evidence/reasoning in favour of causal effect = {Relevant evidence/reasoning in
favour}
Evidence/reasoning against a causal effect = {Relevant evidence/reasoning against}
Overall conclusion = {A simple summary of the evidence/reasoning}
Probability = {the 2dp probability}
. . . Return your answer as a 2 decimal place probability between 0 and 1. Please think
step by step. To do so first, generate evidence and reasoning in favour of a causal
effect. Second, generate evidence and reasoning against a causal effect. Third, come
to an overall conclusion about the evidence. Fourth, include a 2dp probability that
reflects, overall, the extent to which ATR has a causal effect on CD47. YOU MUST
include a 2dp probability at the end of your answer!
Evidence

Table A.4: Contingency table showing the relationship between STRINGdb-derived literature gene–
gene associations and whether the corresponding edge is causal.

No literature evidence Literature evidence present
No causal edge 4060 5639
Causal edge 78 123
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Figure A.2: Results on Gemma2 using guided chain of thought, compared to the results using no
chain of thought (shown in Figure 3). Green indicates the guided CoT reached a higher AUROC than
no CoT and pink indicates it reached a lower AUROC than no CoT.
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Figure A.3: Results on Gemma2 for all combinations of prompt variants when computing the
transitive closure over the predictions. a) The results for no CoT, showing the mean AUROC over 10
repetitions, with the standard error given in brackets. b) The results for simple CoT, compared to the
results using no CoT. c) The results for guided CoT, compared to the results using no CoT.
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Figure A.4: Results on Gemma2 for all combinations of prompt variants when computing the
transitive closure over both the predictions and the ground truth. a) The results for no CoT, showing
the mean AUROC over 10 repetitions, with the standard error given in brackets. b) The results for
simple CoT, compared to the results using no CoT. c) The results for guided CoT, compared to the
results using no CoT.
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Figure A.5: Results on Gemma2 for all combinations of prompt variants (different contexts along
each column, different gene-specific information along each row), shown as boxplots. The AUROCs
for each of the 10 repetitions are plotted on the y axes.
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