
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXPLORING MINIMUM BAYES RISK DECODING FOR
TEXT-TO-SQL ENSEMBLE

Anonymous authors
Paper under double-blind review

ABSTRACT

The task of translating natural language into SQL (NL2SQL or text-to-SQL) en-
ables users to query relational databases without requiring SQL expertise. Al-
though recent large language model (LLM) approaches have advanced the field,
achieving robust performance continues to depend on ensemble methods. Exist-
ing heuristic-based ensembles such as Minimum Bayes Risk (MBR) and Model-
Based MBR (MBMBR) either ignore model-predicted probabilities or allow low-
probability candidates to dominate the selection process, and they suffer from
prompt sensitivity when estimating candidate likelihoods. We propose a novel
heuristic-based ensemble method that directly incorporates each candidate’s own
probability into its heuristic score while mitigating prompt sensitivity through
marginal probability estimation across diverse prompts. This formulation both
improves traditional MBR and stabilizes probability estimation, enabling more
accurate and higher-performing candidate selection without the computational
overhead of supervised or prompt-based ensembles. Extensive experiments on
the SPIDER and BIRD benchmarks demonstrate that our approach consistently
outperforms state-of-the-art heuristic methods, achieving higher execution accu-
racy across fine-tuned and pretrained LLMs. Ablation studies confirm that both
the probabilistic scoring function and the marginal probability estimation inde-
pendently contribute to performance gains, with the full method delivering the
strongest results. Our findings establish a new state of the art for heuristic-based
ensembles in NL2SQL and highlight the broader potential of probability-aware
ensemble strategies for natural language generation tasks.

1 INTRODUCTION

The task of translating Natural Language to SQL (NL2SQL or text-to-SQL) enables users to ex-
press queries in natural language and automatically obtain the corresponding SQL code (Yu et al.,
2018; Zhong et al., 2017). This task typically involves generating SQL queries conditioned on a
database schema and natural language question, often leveraging metadata or example values from
the database (Li et al., 2024b; Gao et al., 2024). As the volume of data continues to grow expo-
nentially (Huberman & Adamic, 1999), efficient data access has become increasingly critical. Since
most organizational data is stored in relational databases and accessed via SQL, users without tech-
nical expertise face significant barriers in retrieving information. Thus, NL2SQL systems play a
vital role in reducing the cost and time of data access by empowering non-technical users and ac-
celerating query generation for technical users. Despite notable progress, however, current systems
still lag behind human experts (Shkapenyuk et al., 2025; Pourreza et al., 2024; Gao et al., 2024),
highlighting the need for more robust and generalizable approaches.

Many previous approaches generally produced a single SQL, either by fine-tuning models on task-
specific datasets (Li et al., 2024b) or by prompting pretrained LLMs (Pourreza & Rafiei, 2023;
Gao et al., 2023), using decoding approaches such as sampling, beam search, or greedy decoding.
However, restricting the system to a single candidate often results in suboptimal outputs, as decoding
does not guarantee the best solution. Recent work has shown that generating multiple candidate
queries and then selecting the most promising one significantly improves accuracy (Pourreza et al.,
2024; Gao et al., 2024), a strategy that has proven effective not only in NL2SQL but also in broader
code generation tasks (Shi et al., 2022).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Existing ensemble methods for candidate selection can be grouped into three main categories: (1)
Supervised ensemble models (Jiang et al., 2023; Gao et al., 2024; Gorti et al., 2024; Pourreza et al.,
2024), which require expensive training and tend to generalize poorly across domains and candidate
generation methods. (2) Prompt-based ensemble methods (Du et al., 2023; Talaei et al., 2024; Sheng
et al., 2025), which query an LLM to select the best candidate. While effective, they rely on large
LLMs at inference time and incur high computational costs due to multi-step comparisons and few-
shot prompting. (3) Heuristic based methods (Shi et al., 2022; Jinnai et al., 2023; Li et al., 2024a),
which avoid training and inference costs but typically underperform in terms of accuracy.

In this work, we focus on heuristic-based ensembles for their efficiency. Existing methods, such
as voting and Minimum Bayes Risk (MBR), typically ignore the model’s predicted probabilities,
relying instead on execution results(Li et al., 2024a; Sheng & Xu, 2025) or surface-form similarity
(Shi et al., 2022). Model-Based MBR (MBMBR) partially addresses this by incorporating candi-
date probabilities into the selection heuristics (Jinnai et al., 2023), but it still has two limitations:
the heuristic score of a candidate is largely determined by the probabilities of other candidates,
which can overshadow the candidate’s own probability, and the method is highly sensitive to prompt
variations, leading to unstable selection.

We propose a novel heuristic-based ensemble method that addresses both limitations. Our approach
incorporates each candidate’s probability directly into its heuristic score while also weighting pair-
wise similarity by the probabilities of both candidates. To mitigate prompt sensitivity, candidate
probabilities are estimated using multiple prompts, marginalizing out noise from prompt context.
Compared to supervised or prompt-based methods, this approach avoids expensive training or multi-
step inference, while improving candidate selection reliability and overall accuracy.

Through extensive experiments, we demonstrate that our method consistently outperforms previous
heuristic-based ensembles across multiple NL2SQL benchmarks. Our ablation studies confirm that
the probabilistic scoring function and the marginal probability estimation each contribute indepen-
dently to performance gains, while their combination yields even larger improvements by reinforc-
ing each other’s effect. We further analyze performance across question difficulty levels and varying
numbers of candidates, showing that our method consistently outperforms baselines. Together, these
results establish a new state of the art for heuristic-based candidate selection in NL2SQL and high-
light the broader potential of principled ensemble strategies in natural language generation tasks.

2 RELATED WORK

Ensemble Methods. Early ensemble methods were introduced to enhance the performance of indi-
vidual models by aggregating the outputs of multiple models. Classical techniques include bagging,
boosting, and stacking (Breiman, 1996a;b; Wolpert, 1992). In bagging, several homogeneous mod-
els are trained in parallel on bootstrapped subsets of training set, and their outputs are aggregated by
voting or averaging (Breiman, 1996a). Boosting sequentially trains models, giving higher weight to
previously misclassified samples to correct past errors (Breiman, 1996b). Stacking combines het-
erogeneous models by training a meta-model (Wolpert, 1992). All these classical methods require
independently trained components to introduce diversity into the ensemble.

Recent work has explored more sophisticated techniques for leveraging multiple models. One line
of research focuses on model merging, where the parameters of homogeneous models are combined
into a single model before inference (Yang et al., 2024; Cohere et al., 2025). Although this approach
avoids ensemble predictions at inference time, it requires extensive training and lacks interpretability
and flexibility. Furthermore, merging is limited to homogeneous models. To address heterogeneity,
DEEPEN maps the latent spaces of different large language models (LLMs) into a relative space and
averages them (Huang et al., 2024). However, this also sacrifices interpretability and modularity.

Some other approaches operate on the intermediate generation steps to retain interpretability. For
instance, EBBS performs token-level ensembling by averaging token probabilities and trimming the
distribution tails (Wen et al., 2025). Also, Li et al. (2023) introduce the Step-Aware Verifier that
evaluates intermediate reasoning steps for each candidate reasoning path. However, EBBS becomes
ineffective when LLMs are overly confident as in code generation, where the next token is more
deterministic. The Step-Aware Verifier, meanwhile, is confined to reasoning tasks with discrete,
interpretable steps, such as arithmetic.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In another related line of work, the ensemble is performed on the final output of each model using
some heuristics. For instance, GenQREnsemble generates multiple candidates and concatenates
them into a new reformulation of the original query (Dhole & Agichtein, 2024). Another example
is MBR-EXEC (Shi et al., 2022), Shi et al. (2022) propose Minimum Bayes Risk (MBR)-based
ensemble selection method that utilize execution feedback, demonstrating strong performance in
code and SQL generation when such feedback is available. Inspired by this, we adopt execution
feedback and further enhance the MBR scoring function by incorporating candidate probabilities,
resulting in improved ensemble performance.

Some prior works also explore modifications of the MBR framework. For example, Jinnai et al.
(2024) introduces MBR as a proximity regularizer for Best-of-N decoding to mitigate reward hack-
ing. Zhang et al. (2022) propose a regularized MBR re-ranking strategy using multiple regularizers,
but report limited and inconsistent gains. More closely related to our work, Jinnai et al. (2023)
present a model-based MBR (MBMBR) formulation that integrates candidate probabilities. We
build upon this by refining the MBMBR approach further, leading to improved ensemble effective-
ness in the text-to-SQL setting.

Ensemble in Text-to-SQL. Although some of the text-to-SQL methods do not use any ensemble
in their work (Gao et al., 2023), having some form of ensemble is very common among all text-
to-SQL approaches. To the best of our knowledge, all the ensemble methods used in the previous
text-to-SQL work are applied to the final outputs rather than the intermediate steps. While some
approaches only rely on simple techniques such as executability check (Li et al., 2024b) or self-
consistency (Shkapenyuk et al., 2025; Sheng & Xu, 2025; Xie et al., 2025; Li et al., 2024a), there
is a large body of work leveraging more advanced ensemble approaches to improve the end-to-end
performance of text-to-SQL conversion.

Among these advanced methods, some approaches fine-tune a model to generate the final output
based on the outputs from all components. For example, LLM-Blender first trains a model to com-
pare pairs of candidates and then uses another fine-tuned model to fuse a subset of selected candi-
dates into the final answer (Jiang et al., 2023). Similarly, many text-to-SQL approaches fine-tune
models to select the best candidate (Gorti et al., 2024; Pourreza et al., 2024; Dönder et al., 2025;
Gao et al., 2024) or to predict certain properties of the most promising candidate (Zeng et al., 2023).
However, training such classifiers is computationally expensive and hinders the ability to generalize
to new domains. In contrast, our approach is fully unsupervised and requires no training.

Another set of ensemble approaches use prompting techniques with pre-trained LLMs to choose the
best candidate. In text-to-SQL, several prompting strategies have been introduced, including binary
classification (Cao et al., 2024), merge-and-revise (Sheng et al., 2025), multiple-choice prompts (Lee
et al., 2024), and unit test generation (Talaei et al., 2024). Although prompting-based approaches are
generally less expensive than fine-tuning, they require large context windows for in-context demon-
strations and substantial hardware resources to deploy powerful LLMs, especially since smaller
models often underperform on these tasks.

3 METHOD

3.1 CLASSIC MBR AND MBMBR SETUPS

Minimum Bayes Risk (MBR) and its variant, Model-Based Minimum Bayes Risk (MBMBR), are
common approaches for selecting the best hypothesis from a set of candidates by maximizing ex-
pected utility, which equivalently corresponds to minimizing the associated risk. Given a candidate
set H and a utility function u(h, y) that measures the similarity between two hypotheses h and y,
the goal is to select the hypothesis with the highest expected utility. Concretely, for each candidate,
MBR and MBMBR estimate its expected similarity to the remaining candidates under the distribu-
tion P (y), and the selected hypothesis is the one with the greatest expected similarity. The scoring
rule for both MBR and MBMBR follows this general structure:

h∗ = argmax
h∈H

Ey∼H[u(h, y)] = argmax
h∈H

∑
y∈H

u(h, y) · P (y) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

In standard MBR, the probability P (y) is assumed to be uniform over the candidates, since they are
typically generated via Monte Carlo sampling. This leads to a simplified scoring function:

h∗ = argmax
h∈H

∑
y∈H

u(h, y) (2)

MBMBR improves upon this by using model-predicted probabilities P (y) instead of assuming a
uniform distribution. However, both MBR and MBMBR share a critical limitation: the probability
of a candidate h does not directly contribute to its own score. This is because the scoring function
conditions on h when computing the expectation of the utility, and thus P (h) does not appear in
the calculation except in the trivial case when h is compared with itself through u(h, h). Instead,
the probability of other candidates influence the score of h based on how similar they are to h.
This creates the potential for reward hacking, where a low-probability candidate that happens to
maximize expected utility is selected, even if its own likelihood is implausibly low.

For instance, consider three candidates H = A,B,C with utility scores u(A,B) = 0.9 and
u(A,C) = u(B,C) = 1, and where u(X,X) = 1 for any X ∈ A,B,C. Let the probabili-
ties be P (A) = P (B) = 0.5 and P (C) = 0. Applying the MBMBR scoring formula yields
Score(A) = 0.95, Score(B) = 0.95, and Score(C) = 1.0. In this setting, C, despite having zero
probability, receives the highest score because it has perfect utility similarity with the high probabil-
ity candidates A and B, resulting in its incorrect selection as the best hypothesis.

3.2 OUR PROPOSED METHOD

In this section, we introduce two complementary techniques that address key limitations in candidate
selection and probability estimation when using language models. First, we present our Scoring
Method (Risk Minimization Function), a refined decision rule that incorporates each candidate’s
own model-assigned probability into its utility score, thereby addressing the risk of selecting im-
plausible outputs. Second, we describe our Marginal Probability Calculation approach, which
mitigates prompt sensitivity bias by marginalizing over diverse few-shot demonstrations and apply-
ing structured length normalization. Together, these methods improve both the robustness and the
reliability of model-based candidate evaluation.

3.2.1 OUR SCORING METHOD (RISK MINIMIZATION FUNCTION)

To mitigate the issue mentioned in subsection 3.1, we propose a probabilistic scoring function that
explicitly accounts for the contribution of each candidate to the total expected utility. Instead of
assuming that a specific candidate is given, we compute the difference in total expected utility with
and without a candidate in the set. This results in the following scoring rule:

h∗ = argmax
h∈H

(
Ex,y∼H[u(x, y)]− Ex,y∼H\{h}[u(x, y)]

)
(3)

In Eq. (3), the first term Ex,y∼H[u(x, y)] represents the total expected utility across all candidates in
the pool, which remains constant regardless of the specific candidate under consideration. The sec-
ond term, Ex,y∼H\h[u(x, y)], corresponds to the total expected utility when candidate h is removed
from the pool. Importantly, neither of these terms is conditioned on any specific candidate, ensuring
that the probability of every candidate contributes to the computation of the expectation. In other
words, the scoring rule evaluates which candidate’s absence leads to the greatest reduction in the
overall expected utility. You can find the simplified form of this scoring rule below, and its proof is
provided in Appendix B.

h∗ = argmax
h∈H

(
P (h)

∑
y∈H

u(h, y) · P (y)− 1

2
· P (h)2

)
(4)

In the simplified scoring rule in Eq (4), the influence of P (h) on a candidate’s own score becomes
explicit. The first term, P (h)

∑
y∈H u(h, y) · P (y), is equivalent to the MBMBR formulation in

Eq. (1), scaled by the probability of the candidate itself. The second term, − 1
2P (h)2, while typi-

cally small in practice, serves to counterbalance the potentially disproportionate emphasis on P (h)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

introduced by the first term. Moreover, the classical MBR scoring rule (Eq. (2)) can be recovered
as a special case of our formulation by assuming a uniform distribution over candidates. Thus, our
proposed method generalizes the MBR framework while addressing its limitations.

3.2.2 UTILITY FUNCTION MOTIVATION AND HYPER-PARAMETER SELECTION

To instantiate the utility function u(h, y), we define it based on the execution results of the hypothe-
ses h and y. Let H and Y denote the execution results of h and y, respectively. Let ϕ(H) be a binary
indicator function that returns 1 if H is empty or results in an execution error, and 0 otherwise. Let
η(H) be the fraction of rows in H that contain NULL values. The utility function is then defined as:

u(h, y) =


e−2 if ϕ(H) = 1

e−1 if η(H) > ϵ

eλ·Jacc(H,Y) otherwise
(5)

Here, Jacc(H,Y) denotes the Jaccard similarity between the execution results H and Y . The thresh-
old ϵ specifies the allowable proportion of NULL values . The hyperparameter λ controls the influ-
ence of the utility score relative to candidate probabilities in the probabilistic scoring function.

Motivation for the Piecewise Exponential Design. The structure of the utility function reflects
the semantics of SQL execution results. (1) Empty outputs and execution errors represent com-
plete failure and should receive uniformly low utility, (2) partially valid outputs (high NULL ratios)
represent degraded results, and (3) valid outputs warrant a continuous similarity-based score. A
piecewise function therefore matches the discrete nature of execution correctness. We use exponen-
tials because they integrate cleanly with log-probabilities used during decoding and naturally create
smooth yet well-separated utility scales.

Rationale Behind e−2 and e−1. These constants are not tuned hyperparameters but fixed penal-
ties intended only to enforce the ordering: (1) errors < (2) partial results < (3) valid results. We
verified that changing these constants yields nearly identical performance as long as the ordering is
preserved. This demonstrates that the method is not sensitive to the exact numerical values.

Threshold ϵ. The threshold ϵ is not a tunable hyperparameter in our method. Instead, it is derived
empirically from the characteristics of the BIRD training set. Specifically, the execution results of
many ground-truth queries in the dataset contain some NULL values. We therefore inspected the
training data and observed that having fewer than approximately %20 NULL values is common for
correct, executable queries, whereas higher proportions usually correlate strongly with invalid SQL
predictions. Therefore, we fixed ϵ = 0.2 for all models, datasets, and experiments. Since this choice
reflects a stable property of the underlying data rather than model-dependent tuning, ϵ is identical
across all experiments and was never optimized on validation or test sets.

Scaling parameter λ. λ is the only hyperparameter that is tuned in our method. Its role is twofold:
(1) Matching the scales of probabilities and Jaccard similarity. The Jaccard similarity lies in the
range [0,1], while candidate probabilities vary significantly across models and datasets. Larger
models tend to be more confident and assign higher peak probabilities, and the scale changes further
when using marginal probability, where candidate scores are aggregated through summation rather
than maximum-likelihood. Because these probability scales differ, λ is needed to place the Jaccard
similarity and probability terms on comparable numerical ranges so that neither term dominates the
final ensemble score. (2) Controlling the tradeoff between probability and execution similarity. λ
also regulates how the scoring function prioritizes model confidence versus execution-based similar-
ity. We provide sensitivity analysis on the effect of varying λ on execution accuracy in Appendix C.

3.2.3 MARGINAL PROBABILITY CALCULATION

In tasks where a language model (LM) is used to score multiple candidate answers for a given
prompt, a common approach is to directly compute the conditional probability P (X | Q,D), where
X is a candidate answer, Q is the question, and D represents few-shot demonstrations. However, this
approach suffers from instability due to sensitivity to prompt formatting and content, a phenomenon
we refer to as prompt sensitivity bias. Slight variations in the prompt (e.g., changes in demonstra-
tions or formatting) can result in significant fluctuations in the predicted probabilities, making fair
comparison across candidates difficult.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

To illustrate this issue, consider candidate answers A and B, question Q, and a set of demonstrations
D1, D2, . . . , Dn. The model’s output probabilities may vary such that for some i, P (A | Di, Q) >
P (B | Di, Q), while for others, P (A | Di, Q) < P (B | Di, Q). This inconsistency becomes
especially problematic when the model assigns similar probabilities to both candidates, amplifying
the unreliability of direct scoring.

To mitigate prompt sensitivity bias, we propose an alternative probability formulation based on
marginalization. Rather than computing P (X | Q,Di) directly, we estimate the joint probability
P (X,Q), which is proportional to P (X | Q) given that P (Q) remains constant across all candi-
dates. This is done by marginalizing over a set of sampled demonstrations:

P (X,Q) ≈
n∑

i=1

P (X,Q,Di) (6)

Due to the infeasibility of enumerating all possible demonstrations, we approximate the marginal by
summing over a finite subset D1, D2, . . . , Dn. The larger the sample size n, the more accurate the
approximation of the marginal probability becomes.

A naive approach to estimating P (X,Q,Di) is to compute the product of the token-level probabili-
ties predicted by the language model considering token probabilities are independent. However, this
introduces a bias toward shorter sequences due to exponential decay in probabilities. To counteract
this, a length-normalized formulation is necessary. A simple length penalty that divides the joint
log-probability by the total number of tokens in the sequence (e.g., | X | + | Q | + | Di |) does not
sufficiently emphasize the probability of the candidate X , particularly when Q and Di are long.

To address this, we apply a structured length penalty that ensures the generated candidate’s likeli-
hood retains appropriate emphasis. Let r, s, and t denote the number of tokens in X , Q, and D
respectively, and let xj , qk, and dℓ represent the individual tokens of each component. We define:

P (X,Q,D) ≈

 r∏
j=1

P (xj)

 1
r

·

(
s∏

k=1

P (qk) ·
t∏

ℓ=1

P (dℓ)

) 1
s+t

(7)

This formulation applies separate length penalties to the candidate tokens and the prompt context,
thereby amplifying the influence of the candidate answer in the joint probability.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We conduct our experiments on the development sets of two widely-used text-to-SQL
benchmarks: BIRD (Li et al., 2024c) and SPIDER v1.0 (Yu et al., 2018). The BIRD dataset is
designed to evaluate the generalizability of models in text-to-SQL. It features a diverse range of
database schemas and question types, making it a strong benchmark for assessing semantic pars-
ing capabilities in realistic scenarios. SPIDER v1.0 is a large-scale, cross-domain semantic parsing
dataset that focuses on compositional generalization. Its development set contains complex natu-
ral language questions over unseen database schemas, and it has become the de-facto standard for
evaluating text-to-SQL models in both academic and industrial settings.

Metrics. We evaluate model performance using execution accuracy, which measures the percentage
of generated SQL queries that yield the same execution result as the ground truth query. Unlike
syntactic accuracy metrics, execution accuracy reflects the semantic correctness of the output and is
therefore more robust to superficial differences in SQL structure that do not affect the query result.

Implementation Details. To construct prompts for few-shot learning, we use a retrieval-augmented
generation (RAG) method based on the approach described in the CodeS paper (Li et al., 2024b).
For each input question, we retrieve five few-shot exemplars from a demonstration pool using the
RAG method. We operate in a one-shot setting, where each of the five retrieved exemplars is in-
serted individually into the prompt to generate five distinct prompt variants. These prompt variants

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

are used to calculate the probability of generated candidate queries, allowing us to compute the
marginal probability of each candidate by averaging its probabilities across different few-shot con-
texts. The prompt format follows the same structure as introduced in the CodeS paper (Li et al.,
2024b) to maintain consistency with prior work. We use top-k sampling for candidate generation
and retain 32 distinct queries per input question. This design provides a balance between diversity
and computational efficiency while ensuring a sufficient candidate pool for downstream scoring.

Baselines. Our experiments include a range of competitive baselines across both model types and
ensemble strategies. We evaluate Qwen-Coder-Instruct (Hui et al., 2024) models of various sizes
to assess how our method performs on pre-trained models with different capacities. We also in-
clude CodeS (Li et al., 2024b) fine-tuned models, which are based on the GPT-2 (Radford et al.,
2019) architecture and trained specifically for text-to-SQL generation, providing a strong task-
specific benchmark. In terms of ensemble strategies, we compare our ensemble method against
self-consistency (majority voting), MBR, and MBMBR (Jinnai et al., 2023).

4.2 RESULTS AND ANALYSIS

Main Results. Table 1 presents the execution accuracy of four fully unsupervised ensemble meth-
ods, Voting, MBR (Shi et al., 2022), MBMBR (Jinnai et al., 2023), and our proposed approach,
evaluated across multiple fine-tuned and pre-trained models on the BIRD and SPIDER datasets. The
results indicate that our method consistently achieves the highest accuracy across all model–dataset
combinations, outperforming existing heuristic-based ensemble techniques. While MBMBR gen-
erally yields higher accuracy than both Voting and MBR, its performance occasionally falls below
these simpler methods, highlighting potential instability. In contrast, Voting and MBR exhibit sim-
ilar results, with only marginal differences across settings. These findings demonstrate the robust-
ness and effectiveness of our method in enhancing execution accuracy on both datasets. To further
demonstrate the effectiveness of our method in addressing the shortcomings of MBMBR, we have
also provided our qualitative analysis and case study in Appendix D

Table 1: Main results with different models on BIRD (B) and SPIDER (S) development sets. We are
Comparing our method with previous heuristic-based ensemble methods including voting, MBR,
and MBMBR. ‡ and † shows statistical significance with p-value < 0.01 and 0.05 respectively.

Model Ensemble method B S

SFTCodeS-7b (Li et al., 2024b)

Voting 57.76 81.8
MBR (Shi et al., 2022) 57.43 81.6

MBMBR (Jinnai et al., 2023) 57.63 81.5
Ours 58.21† 83.2‡

SFTCodeS-15b (Li et al., 2024b)

Voting 57.82 81.4
MBR (Shi et al., 2022) 57.82 81.6

MBMBR (Jinnai et al., 2023) 58.47 81.5
Ours 59.45‡ 82.5†

Qwen2.5-Coder-7B-Instruct (Hui et al., 2024)

Voting 58.41 76.1
MBR (Shi et al., 2022) 57.76 76.2

MBMBR (Jinnai et al., 2023) 58.54 77.1
Ours 60.43‡ 78.9†

Qwen2.5-Coder-14B-Instruct (Hui et al., 2024)

Voting 63.43 82.7
MBR (Shi et al., 2022) 63.23 83.0

MBMBR (Jinnai et al., 2023) 63.75 83.5
Ours 64.08 83.7

Qwen2.5-Coder-32B-Instruct (Hui et al., 2024)

Voting 63.56 84.3
MBR (Shi et al., 2022) 63.75 84.3

MBMBR (Jinnai et al., 2023) 63.82 84.0
Ours 64.08 84.8

Ablation. Table 2 presents the ablation study conducted on three representative models (SFTCodeS-
7b, SFTCodeS-15b, and Qwen2.5-Coder-7B-Instruct) across the BIRD and SPIDER datasets. We
begin by reporting the baseline MBMBR (Jinnai et al., 2023) performance. The “+marginal” row

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

replaces MBMBR’s probability computation with our marginal probability calculation while retain-
ing MBMBR’s original scoring function, isolating the contribution of our probability estimation
approach. The “+our scoring function” row instead applies our scoring method without marginal
probability computation, allowing us to assess the effect of the scoring strategy independently. Fi-
nally, the “both (ours)” row applies both components, our scoring function and marginal probability
calculation, representing the full version of our method.

Table 2 highlights several key findings from our ablation study. First, our heuristic scoring con-
sistently outperforms MBMBR across all models and datasets, despite relying on the same proba-
bility estimates, demonstrating the effectiveness of the revised scoring strategy. Second, replacing
MBMBR’s probabilities with our marginal probability estimates yields comparable performance
overall, with only minor improvements, except in the case of Qwen-7B on BIRD, where the marginal
probabilities provide nearly a 1% gain. Finally, when the marginal probability calculation is com-
bined with our scoring function, the performance improvements are consistent and more substantial
across all settings. This effect arises because our scoring formulation more directly integrates candi-
date probabilities, allowing improvements in probability estimation to translate into greater perfor-
mance gains. In contrast, MBMBR’s reliance on probabilities is limited, such that even improved
estimates cannot fully compensate for the shortcomings of its scoring formulation.

Table 2: Ablation study results with three different models on BIRD and SPIDER datasets
investigating the effect of our proposed marginal probability calculation (+marginal) and our scor-
ing function (+our scoring function) individually, and the effect of combining them together (+both).

Ensemble Mehtod SFTCodeS-7b SFTCodeS-15b Qwen-7B
BIRD SPIDER BIRD SPIDER BIRD SPIDER

MBMBR 57.63 81.5 58.47 81.5 58.54 77.1
+marginal 57.63 81.5 58.34 81.6 58.74 77.1

+our scoring function 57.69 82.5 59.19 81.9 59.84 78.7
+both (ours) 58.21 83.2 59.45 82.5 60.43 78.9

Analysis Across Difficulty Levels. Figure 1 illustrates the performance of the Qwen-7B model
on the BIRD and SPIDER datasets, analyzed across question difficulty levels and query lengths.
While the dataset-defined difficulty levels are provided by BIRD and SPIDER, the query lengths
are demonstrated in Fig. 1 by binning the ground-truth query length distribution into five intervals,
and we report the performance of the baseline models for each bin. Results for models beyond
Qwen-7B are presented in the Appendix E. The figure shows that our method consistently improves
performance across all difficulty levels and query lengths, rather than being confined to a particular
subset of questions. This indicates that the effectiveness of our approach is broadly applicable,
making it beneficial for handling diverse text-to-SQL queries of varying complexity and length.

Analysis Across Different Number of Candidates. Table 3 presents the execution accuracy of
Qwen models with 7B, 14B, and 32B parameters on both datasets, evaluated as a function of the
number of generated candidates. In nearly all cases, accuracy increases with the number of candi-
dates, although the rate of improvement diminishes as the number grows, eventually converging to
the model’s upper performance bound. When only a single candidate is available, all ensemble meth-
ods yield identical results, as no ensemble effect is possible. Conversely, with an infinite number of
candidates, the distributions become exhaustive, and all methods converge to similar performance,
since every possible execution result is represented. The key distinction emerges when the candidate
pool is limited. Under these conditions, our method consistently outperforms competing baselines,
as it more effectively incorporates candidate probabilities when the candidates distribution does not
fully capture the underlying probability space. In table 3, † sign in each column indicates where
our method achieves the most pronounced improvements over baselines across different number of
candidates. Notably, larger models reach convergence with fewer candidates, reflecting their higher
inherent capacity. Additional analyses for CodeS models are provided in the Appendix E.

Analysis of Best Number of Candidates. Building on the observations from table 3, Fig. 2 iden-
tifies the number of candidates at which the performance gap between our method and baseline
approaches is maximized, referred to as the “best # candids.” This value reflects the point at which
our method yields the greatest advantage before convergence diminishes differences among ensem-
ble methods. The figure reports results for both Qwen and CodeS models across the two datasets

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 1: Performance analysis of Qwen-7b with heuristic-based ensemble methods across different
question difficulty levels (subfigures (a) and (d)), and across different ground truth query lengths
(subfigures (b) and (e)). The length distribution of the ground truth queries is also shown in subfig-
ures (c) and (f). Subfigures (a), (b), and (c) are on BIRD while (d), (e), (f) are on SPIDER

Table 3: Performance analysis of Qwen models on BIRD and SPIDER when different number of
candidates are available. The best accuracy across all baselines is shown in bold. † shows the accu-
racy that has the highest performance gap with other baselines across different number of candidates.

Candids Ensemble Method Qwen-7b Qwen-14b Qwen-32b
BIRD SPIDER BIRD SPIDER BIRD SPIDER

2

Voting 41.26 65.4 51.56 74.1 56.58 76.4
MBR 41.66 65.9 51.83 73.4 56.19 76.0

MBMBR 42.31 68.7 52.93 74.7 56.84 78.8
Ours 42.63 69.3 52.8 75.0 57.17 79.4†

4

Voting 49.93 70.9 57.82 78.1 60.04 82.4
MBR 49.87 71.8 57.69 77.9 59.97 82.1

MBMBR 50.72 72.2 58.93 79.3 60.04 83.1
Ours 51.04 73.1 58.8 79.9 60.63† 83.2

8

Voting 54.95 73.1 60.76 80.5 62.78 83.9
MBR 54.82 73.4 61.15 80.6 62.45 83.9

MBMBR 55.48 74.0 61.8 80.7 62.84 84.1
Ours 55.02 73.8 62.26 81.4† 62.58 83.8

16

Voting 56.39 75.0 62.65 82.6 62.45 83.9
MBR 56.58 75.0 62.52 82.7 62.71 83.6

MBMBR 57.56 74.7 62.71 82.9 62.91 83.2
Ours 57.95 75.5 63.49† 83.1 63.04 84.4

32

Voting 58.41 76.1 63.43 82.7 63.56 84.3
MBR 57.76 76.2 63.23 83.0 63.75 84.3

MBMBR 58.54 77.1 63.75 83.5 63.82 84.0
Ours 60.43† 78.9† 64.08 83.7 64.08 84.8

and across different model sizes. The results show a clear trend: as model size increases, the “best
candids” decreases. In other words, larger models require fewer candidates to achieve both higher
overall performance and more accurate representation of the underlying candidate probability dis-
tribution. This finding highlights the efficiency of larger models in candidate utilization and further
underscores the robustness of our method in improving performance across model scales.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Figure 2: “Best # candids” (Y axis) with respect to model size (X axis).

Cost-Performance Trade-off. A key consideration in ensemble-based text-to-SQL systems is the
trade-off between computational cost and the corresponding performance gains. Here, we compare
the computational characteristics of the standard baselines (Voting, MBR, and MBMBR) with those
of our proposed method. All three baselines follow the same computational pipeline until a final
answer is selected: (1) Candidate generation: Each of the n candidates is generated via one LLM
call (MBMBR additionally obtains the probability during this step). (2) Execution: Each candidate
is executed to obtain its resulting SQL output. (3) Scoring: All pairs of execution outputs are
compared to compute their pairwise similarity.

Let t denote the average LLM response time, q the average execution time per candidate, and e the
time required to compare two execution results. The total response time for these baseline methods
is: Tbaseline = n.t + n.q +

(
n
2

)
e. On the other hand, our proposed method introduces an additional

step to compute the marginal probability of each candidate using p prompts. Since the initial LLM
call provides one probability estimate, only p− 1 additional prompts per candidate are needed. The
resulting response time is therefore: Tours = n.p.t+ n.q +

(
n
2

)
e.

If we ignore the execution time and comparison time (assuming q ≈ 0 and e ≈ 0), the response time
of our method is at most p times larger than that of the baselines. However, in practice, this upper
bound is seldom reached, especially when using smaller LLMs. Smaller models tend to produce
lower-quality candidates, which significantly increases the execution time because many candidates
fail or time out during execution. In such cases, the LLM response time t becomes negligible
compared to the execution cost q, and the overall response time of our method becomes comparable
to that of the baselines despite requiring extra LLM calls.

Overall, the response time of our full method lies between lower bound equal to the baseline re-
sponse time (when execution dominates), and an upper bound up to p times the baseline response
time (when LLM latency dominates). This analysis demonstrates that the additional probabilistic
refinement introduced by our method does not necessarily result in a proportional increase in wall-
clock time, particularly in settings where execution cost is the primary bottleneck.

5 CONCLUSION

We presented a new heuristic-based ensemble method for the task of NL2SQL that addresses two
key weaknesses of existing approaches: (1) prompt sensitive probability calculation and (2) allowing
candidates with low-probabilities to dominate the selection process. By introducing a new scoring
function, our method leverages both pairwise utility and the intrinsic probability of each candidate,
effectively reducing the risk of selecting implausible queries. Additionally, our marginal probability
calculation over multiple prompt variations improves robustness against prompt-specific biases.

Extensive experiments on two datasets demonstrate that our method consistently outperforms state-
of-the-art heuristic based ensemble techniques in execution accuracy, across both fine-tuned and
pre-trained LLM settings. The ablation studies confirm that each proposed component contributes
to the overall performance gains, with the best results achieved when both are applied together.

Future work may explore extending our approach to other structured prediction tasks beyond text-
to-SQL (eg. other types of code generation), as well as investigating automatic prompt modification
strategies to further enhance robustness in generated answer probability calculation.Additionally,
evaluating our method against fine-tuned sample selectors constitutes promising future work, par-
ticularly for comparing in-distribution and out-of-distribution generalization

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Leo Breiman. Bagging predictors. Machine learning, 24:123–140, 1996a.

Leo Breiman. Bias, variance, and arcing classifiers. 1996b.

Zhenbiao Cao, Yuanlei Zheng, Zhihao Fan, Xiaojin Zhang, Wei Chen, and Xiang Bai. Rsl-sql:
Robust schema linking in text-to-sql generation. arXiv preprint arXiv:2411.00073, 2024.

Team Cohere, Arash Ahmadian, Marwan Ahmed, Jay Alammar, Milad Alizadeh, Yazeed Alnumay,
Sophia Althammer, Arkady Arkhangorodsky, Viraat Aryabumi, Dennis Aumiller, et al. Command
a: An enterprise-ready large language model. arXiv preprint arXiv:2504.00698, 2025.

Kaustubh D Dhole and Eugene Agichtein. Genqrensemble: Zero-shot llm ensemble prompting for
generative query reformulation. In European Conference on Information Retrieval, pp. 326–335.
Springer, 2024.

Yusuf Denizay Dönder, Derek Hommel, Andrea W Wen-Yi, David Mimno, and Unso Eun Seo Jo.
Cheaper, better, faster, stronger: Robust text-to-sql without chain-of-thought or fine-tuning. arXiv
preprint arXiv:2505.14174, 2025.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenenbaum, and Igor Mordatch. Improving fac-
tuality and reasoning in language models through multiagent debate. In Forty-first International
Conference on Machine Learning, 2023.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou.
Text-to-sql empowered by large language models: A benchmark evaluation. arXiv preprint
arXiv:2308.15363, 2023.

Yingqi Gao, Yifu Liu, Xiaoxia Li, Xiaorong Shi, Yin Zhu, Yiming Wang, Shiqi Li, Wei Li, Yuntao
Hong, Zhiling Luo, et al. Xiyan-sql: A multi-generator ensemble framework for text-to-sql. arXiv
preprint arXiv:2411.08599, 2024.

Satya Krishna Gorti, Ilan Gofman, Zhaoyan Liu, Jiapeng Wu, NoÃĢl Vouitsis, Guangwei Yu,
Jesse C Cresswell, and Rasa Hosseinzadeh. Msc-sql: Multi-sample critiquing small language
models for text-to-sql translation. arXiv preprint arXiv:2410.12916, 2024.

Yichong Huang, Xiaocheng Feng, Baohang Li, Yang Xiang, Hui Wang, Ting Liu, and Bing Qin.
Ensemble learning for heterogeneous large language models with deep parallel collaboration.
Advances in Neural Information Processing Systems, 37:119838–119860, 2024.

Bernardo A Huberman and Lada A Adamic. Growth dynamics of the world-wide web. Nature, 401
(6749):131–131, 1999.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models
with pairwise ranking and generative fusion. arXiv preprint arXiv:2306.02561, 2023.

Yuu Jinnai, Tetsuro Morimura, Ukyo Honda, Kaito Ariu, and Kenshi Abe. Model-based minimum
bayes risk decoding for text generation. arXiv preprint arXiv:2311.05263, 2023.

Yuu Jinnai, Tetsuro Morimura, Kaito Ariu, and Kenshi Abe. Regularized best-of-n sampling with
minimum bayes risk objective for language model alignment. arXiv preprint arXiv:2404.01054,
2024.

Dongjun Lee, Choongwon Park, Jaehyuk Kim, and Heesoo Park. Mcs-sql: Leveraging
multiple prompts and multiple-choice selection for text-to-sql generation. arXiv preprint
arXiv:2405.07467, 2024.

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. The dawn of natural language
to sql: are we fully ready? arXiv preprint arXiv:2406.01265, 2024a.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan
Pan, Cuiping Li, and Hong Chen. Codes: Towards building open-source language models for
text-to-sql. Proceedings of the ACM on Management of Data, 2(3):1–28, 2024b.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin,
Ruiying Geng, Nan Huo, et al. Can llm already serve as a database interface? a big bench for
large-scale database grounded text-to-sqls. Advances in Neural Information Processing Systems,
36, 2024c.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen, Jian-Guang Lou, and Weizhu Chen. Making
language models better reasoners with step-aware verifier. In Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 5315–
5333, 2023.

Mohammadreza Pourreza and Davood Rafiei. Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Information Processing Systems, 36:36339–36348,
2023.

Mohammadreza Pourreza, Hailong Li, Ruoxi Sun, Yeounoh Chung, Shayan Talaei, Gaurav Tarlok
Kakkar, Yu Gan, Amin Saberi, Fatma Ozcan, and Sercan O Arik. Chase-sql: Multi-path reasoning
and preference optimized candidate selection in text-to-sql. arXiv preprint arXiv:2410.01943,
2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Lei Sheng and Shuai-Shuai Xu. Csc-sql: Corrective self-consistency in text-to-sql via reinforcement
learning. arXiv preprint arXiv:2505.13271, 2025.

Lei Sheng, Shuai-Shuai Xu, and Wei Xie. Base-sql: A powerful open source text-to-sql baseline
approach. arXiv preprint arXiv:2502.10739, 2025.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke Zettlemoyer, and Sida I Wang. Natural lan-
guage to code translation with execution. arXiv preprint arXiv:2204.11454, 2022.

Vladislav Shkapenyuk, Divesh Srivastava, Theodore Johnson, and Parisa Ghane. Automatic meta-
data extraction for text-to-sql. arXiv preprint arXiv:2505.19988, 2025.

Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini, and Amin Saberi.
Chess: Contextual harnessing for efficient sql synthesis. arXiv preprint arXiv:2405.16755, 2024.

Yuqiao Wen, Behzad Shayegh, Chenyang Huang, Yanshuai Cao, and Lili Mou. Ebbs: An ensemble
with bi-level beam search for zero-shot machine translation. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 39, pp. 25479–25487, 2025.

David H Wolpert. Stacked generalization. Neural networks, 5(2):241–259, 1992.

Xiangjin Xie, Guangwei Xu, Lingyan Zhao, and Ruijie Guo. Opensearch-sql: Enhancing text-to-sql
with dynamic few-shot and consistency alignment. arXiv preprint arXiv:2502.14913, 2025.

Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao.
Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities.
arXiv preprint arXiv:2408.07666, 2024.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, et al. Spider: A large-scale human-labeled dataset for complex
and cross-domain semantic parsing and text-to-sql task. arXiv preprint arXiv:1809.08887, 2018.

Lu Zeng, Sree Hari Krishnan Parthasarathi, and Dilek Hakkani-Tur. N-best hypotheses reranking for
text-to-sql systems. In 2022 IEEE Spoken Language Technology Workshop (SLT), pp. 663–670.
IEEE, 2023.

Yidan Zhang, Yu Wan, Dayiheng Liu, Baosong Yang, and Zhenan He. Rmbr: A regularized mini-
mum bayes risk reranking framework for machine translation. arXiv preprint arXiv:2203.00201,
2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv preprint arXiv:1709.00103, 2017.

A LLM USAGE

In the preparation of this manuscript, large language models (LLMs) were employed as an auxiliary
tool to improve the clarity and presentation of the text. Specifically, LLMs were used to polish
the writing by correcting typographical errors, grammatical mistakes, and other surface-level issues.
They were also used to compress longer passages into more concise formulations while preserving
their technical meaning. In addition, LLMs assisted in the literature review process by suggesting
potentially relevant related work, which was subsequently verified and curated by the authors to
ensure comprehensive coverage and accuracy.

B DERIVATION DETAILS

We start form the following formula and start deriving the simplified version of the formula in Eq. 4

h∗ = argmax
h∈H

(
Ex,y∼H[u(x, y)]− Ex,y∼H\{h}[u(x, y)]

)
We further expand the expectations:

h∗ = argmax
h∈H

(∑
x,y∈H

u(x, y) · P (x, y)−
∑

x,y∈H\{h}

u(x, y) · P (x, y)

)

By assuming x and y are independent (P (x, y) = P (x) ·P (y)), we can further expand the equation
to:

h∗ = argmax
h∈H

(∑
x∈H

P (x)
∑
y∈H

u(x, y) · P (y)−
∑

x∈H\{h}

P (x)
∑

y∈H\{h}

u(x, y) · P (y)

)

After simplification we will reach to the following formula:

h∗ = argmax
h∈H

(
2 · P (h)

∑
y∈H

u(h, y) · P (y)− P (h)2 · u(h, h)
)

By defining u(h, h) = 1, we will have:

h∗ = argmax
h∈H

(
2 · P (h)

∑
y∈H

u(h, y) · P (y)− P (h)2
)

We can divide everything inside the argmax my 2:

h∗ = argmax
h∈H

(
P (h)

∑
y∈H

u(h, y) · P (y)− 1

2
· P (h)2

)

C SENSITIVITY ANALYSIS

Table 4 provides a sensitivity analysis of our only tunable hyper-parameter λ using the execution
accuracy of Qwen-7B on the BIRD benchmark. The following table compares MBMBR and our
method across different values of λ.

The results highlight several key observations regarding the behavior of both methods across differ-
ent values of the hyperparameter λ. First, MBMBR is largely insensitive to λ. Its execution accuracy

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 4: Sensitivity analysis for hyper-parameter λ
λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MBMBR 58.47 58.47 58.47 58.47 58.54 58.47 58.47 58.47 58.47
Our Method 60.43 60.30 60.37 60.23 60.10 59.91 59.84 59.78 59.52

remains nearly constant over a wide range of values, showing minimal improvement as λ changes.
Its best performance within the examined range occurs at λ = 0.5, which is the value we report in
the main results table for fairness.

In contrast, our method exhibits a smooth and predictable dependence on λ. Decreasing λ, which
increases the influence of probabilities in the final score, slightly improves execution accuracy. This
improvement occurs because the probabilistic component contributes more effectively, and the use
of marginal probabilities yields more stable probability estimates.

Most importantly, our method consistently and substantially outperforms MBMBR across the entire
range of λ. Taken together, these results demonstrate that the hyperparameter λ is not overfitting to
the test set. Instead, λ provides a principled mechanism for adjusting the balance between utility-
based similarity scoring and probability-aware scoring. Because our method produces more reliable
probability estimates, reducing λ naturally allows the probabilistic component to contribute more
effectively, resulting in smooth and stable performance gains.

D QUALITATIVE ANALYSIS AND CASE STUDY

To illustrate the practical differences between our method and MBMBR, we present a representative
case from the BIRD dataset. The following example shows candidate SQL queries generated by the
QWEN-7B model.

Question. “List out the accounts who have the earliest trading date in 1995.”

Query selected by our method.

SELECT account_id
FROM trans
WHERE date LIKE ’1995%’
ORDER BY date ASC
LIMIT 1;

Query selected by MBMBR.

SELECT DISTINCT account_id
FROM trans
WHERE date BETWEEN ’1995-01-01’ AND ’1995-12-31’
ORDER BY date ASC
LIMIT 1;

Analysis. The query selected by MBMBR is incorrect because the use of DISTINCT prevents re-
liable identification of the true earliest transaction when an account appears multiple times in 1995.
In the candidate set provided by the model (32 candidates total), 12 queries contain this incorrect
DISTINCT pattern, while only 8 candidates correspond to fully correct solutions. Although both
patterns appear frequently, the correct candidates receive higher probability from the base model.
Our method leverages these probability differences effectively through marginal-probability integra-
tion, allowing it to select the correct query. In contrast, MBMBR relies more on utility-based voting
and weakly accounts for these probability signals, making it prone to selecting high-frequency but
incorrect patterns such as DISTINCT.

This case study demonstrates how probability-aware scoring enables our method to avoid common
structural errors and consistently identify higher-quality candidates.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

E FURTHER ANALYSIS

For further analysis, we report the performance of SFTCodeS-7b (Figure 4) and SFTCodeS-15b
(Figure 3) across varying question difficulty levels and different ground truth query lengths. Both
figures demonstrate that our method consistently outperforms baselines across all levels of ques-
tion difficulty as well as across queries of different lengths. This indicates that the observed im-
provements are not confined to a specific subset of questions but generalize across diverse levels of
complexity and query characteristics. Together with the results from a third model (Figure 1), these
findings confirm that our method exhibits robust performance across different types of questions and
model scales.

Figure 3: Performance analysis of ensemble methods across different question difficulty levels (sub-
figures (a) on BIRD and (c) on SPIDER), and across different ground truth query lengths (subfigures
(b) on BIRD and (d) on SPIDER). Experiments are with SFTCodeS-15b.

Figure 4: Performance analysis of ensemble methods across different question difficulty levels (sub-
figures (a) on BIRD and (c) on SPIDER), and across different ground truth query lengths (subfigures
(b) on BIRD and (d) on SPIDER). Experiments are with SFTCodeS-7b.

We also report results on CodeS models with varying numbers of candidates in Table 5. The results
exhibit the same pattern observed in Table 3, which presents results on Qwen models. Specifically,
our approach outperforms the baselines in most cases across different candidate set sizes, further
demonstrating the robustness and consistency of the method under varying conditions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 5: Performance analysis of fine-tuned codeS models with different sizes on BIRD and
SPIDER when different number of candidates are available. The best accuracy across all baselines
is shown in bold. † shows the accuracy that has the highest performance gap with other baselines
across different number of candidates.

Candids Ensemble Method SFTCodeS-7b SFTCodeS-15b
BIRD SPIDER BIRD SPIDER

2

Voting 39.77 63.2 38.14 60.9
MBR 39.77 63.2 38.27 60.4

MBMBR 41.79 65.4 41.52 63.4
Ours 41.85 66.2 42.50 63.3

4

Voting 48.31 72.5 45.57 69.8
MBR 48.17 71.6 45.70 67.5

MBMBR 49.61 72.5 47.26 70.4
Ours 49.48 73.1 48.76† 70.4

8

Voting 52.93 78.7 52.67 78.2
MBR 52.93 78.7 52.41 77.0

MBMBR 53.91 78.8 53.78 77.2
Ours 54.17 79.1 54.43 77.6

16

Voting 55.80 80.4 56.58 80.2
MBR 55.87 80.5 56.91 80.3

MBMBR 56.13 80.7 56.98 80.2
Ours 56.06 81.0 57.30 80.9

32

Voting 57.76 81.8 57.82 81.4
MBR 57.43 81.6 57.82 81.6

MBMBR 57.63 81.5 58.47 81.5
Ours 58.21† 83.2† 59.45 82.5†

16

	Introduction
	Related work
	Method
	Classic MBR and MBMBR setups
	Our Proposed Method
	Our Scoring Method (Risk Minimization Function)
	Utility Function Motivation and Hyper-parameter Selection
	Marginal Probability Calculation

	Experiments
	Experimental Setup
	Results and Analysis

	Conclusion
	LLM Usage
	Derivation Details
	Sensitivity Analysis
	Qualitative Analysis and Case Study
	Further Analysis

