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ABSTRACT

Disease progression trajectories can greatly affect the quality and efficacy of clin-
ical diagnosis, prognosis, and treatment. However, one major challenge is the
lack of longitudinal medical imaging monitoring of individual patients over time.
To address this issue, we propose Progressive Image Editing (PIE) method that
enables controlled manipulation of disease-related image features, facilitating pre-
cise and realistic disease progression simulation in imaging space. Specifically,
we leverage recent advancements in text-to-image generative models to simulate
disease progression accurately and personalize it for each patient. We also the-
oretically analyze the iterative refining process in our framework as a gradient
descent with an exponentially decayed learning rate. To validate our framework, we
conduct experiments in three medical imaging domains. Our results demonstrate
the superiority of PIE over existing methods such as Stable Diffusion Video and
Style-Based Manifold Extrapolation based on CLIP score (Realism) and Disease
Classification Confidence (Alignment). Our user study collected feedback from
35 veteran physicians to assess the generated progressions. Remarkably, 76.2% of
the feedback agrees with the fidelity of the generated progressions. PIE can allow
healthcare providers to model disease imaging trajectories over time, predict future
treatment responses, fill in missing imaging data in clinical records, and improve
medical education. 1

Figure 1: Illustrative examples of disease progression simulation using PIE. The top progression
sequence depicts a patient’s heart increasing in size (red), indicating Cardiomegaly. The bottom
sequence demonstrates the expanding mass areas (blue) in a patient’s lung, indicating Edema.

1The reproducibility and ethics statement are included in the supplemental material D and G. Anonymous
code for replicating our results can be found at anonymous.4open.science/r/PIE-3332.
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1 INTRODUCTION

Disease progression refers to how an illness develops over time in an individual. By studying
the progression of diseases, healthcare professionals can create effective treatment strategies and
interventions. It allows them to predict the disease’s course, identify possible complications, and
adjust treatment plans accordingly. Furthermore, monitoring disease progression allows healthcare
providers to assess the efficacy of treatments, measure the impact of interventions, and make informed
decisions about patient care. A comprehensive understanding of disease progression is essential for
improving patient outcomes, advancing medical knowledge, and finding innovative approaches to
prevent and treat diseases.

However, disease progression modeling in the imaging space poses a formidable challenge primarily
due to the lack of continuous monitoring of individual patients over time and the high cost to collect
such longitudinal data (Sukkar et al., 2012; Wang et al., 2014; Liu et al., 2015; Cook & Bies, 2016;
Severson et al., 2020). The intricate and multifaceted dynamics of disease progression, combined
with the lack of comprehensive and continuous image data of individual patients, result in the absence
of established methodologies (Hinrichs et al., 2011; Ray, 2011; Lee et al., 2019). Moreover, disease
progression exhibits significant variability and heterogeneity across patients and disease sub-types,
rendering a uniform approach impracticable.

Past disease progression simulation research has limitations in terms of its ability to incorporate
clinical textual information, generate individualized predictions based on individualized conditions,
and utilize non-longitudinal data. This highlights the need for more advanced and flexible simulation
frameworks to accurately capture the complex and dynamic nature of disease progression in imaging
data. To incorporate the generation model into a conditioned simulation of disease progression, we
propose a progressive framework PIE, for disease progression simulation that combines text and
image modalities. Specifically, we aim to progressively add and subtract disease-related features,
controlled by a text encoder, to conditionally progress the disease without significantly altering the
original base image features (see Figure 1). Our framework is built based on the invertibility of
denoising diffusion probabilistic models (Ho et al., 2020; Song et al., 2020a). Our theoretical analysis
shows PIE can be viewed as a gradient descent toward the objective maximum log-likelihood of
given text conditioning. The learning rate in this iterative process is decaying exponentially with each
iteration forward, which means that the algorithm is effectively exploring the solution space while
maintaining a balance between convergence speed and stability. This theoretical analysis guarantees
that our framework is moving the instance toward the targeted manifold and ensures modification is
bounded.

We evaluate PIE on three distinct medical imaging datasets with non-longitudinal disease progression
data, including Chexpert (Irvin et al., 2019), Diabetic Retinopathy Detection (CHF, 2015) and
ISIC 2018 (Codella et al., 2019). We demonstrate that our framework leads to more accurate
and individualized disease progression predictions on these datasets, which can improve clinical
diagnosis, treatment planning, and enhance patient records by filling in missing imaging data and
potentially helping medical education. We also conducted a user study with physicians to evaluate
the effectiveness of PIE for disease progression simulation. The study presented physicians with a set
of simulated disease images and progressions, and then asked them to assess the accuracy and quality
of each generated image and progression.

• We propose a temporal medical imaging simulation framework PIE, which allows for more
precise and controllable manipulation of disease-related image features and leads to more
accurate and individualized longitudinal disease progression simulation.

• We provide theoretical evidence that our iterative refinement process is equivalent to gradient
descent with an exponentially decaying learning rate, which helps to establish a deeper
understanding of the underlying mechanism and provides a basis for further improvement.

• We demonstrate the superior performance of PIE over baselines in disease progression
prediction with three medical domains. The results show that PIE produces more accurate
and high-quality disease progression prediction.

• We also conducted a user study with physicians to evaluate the effectiveness of our proposed
framework for disease progression simulation. The physicians agree that simulated disease
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progressions generated by PIE closely matched physicians’ expectations 76.2% of the time,
indicating high accuracy and quality.

2 RELATED WORKS

Disease Progression Simulation Longitudinal disease progression data derived from individual
electronic health records offer an exciting avenue to investigate the nuanced differences in the
progression of diseases over time (Schulam & Arora, 2016; Stankeviciute et al., 2021; Chen et al.,
2022; Mikhael et al., 2023; Koval et al., 2021). Most of the previous works are based on HMM (Wang
et al., 2014; Liu et al., 2015; Alaa et al., 2017) and deep probabilistic models (Alaa & van der Schaar,
2019). Some recent works start to resolve disease progression simulation by using deep generation
models. (Ravi et al., 2022) utilized GAN-based model and linear regressor with individual’s sequential
monitoring data for Alzheimer’s disease progression simulation in MRI imaging space. However, all
these methods have to use full sequential images and fail to address personalized healthcare in the
imaging space. The lack of such time-series data, in reality, poses a significant challenge for disease
progression simulation (Xue et al., 2020; Chen, 2022; Berrevoets et al., 2023).

Generative Models Generative models like Variational Autoencoders (VAEs) (Kingma & Welling,
2013) and Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) have been widely
employed in medical imaging applications (Nie et al., 2017; Isola et al., 2017; Cao et al., 2020). Recent
GAN models (Kang et al., 2023; Patashnik et al., 2021) have harnessed the power of CLIP (Radford
et al., 2021) embedding to guide image editing based on contextual prompts. However, GAN-based
models are unstable and difficult to optimize in general. Denoising Diffusion Models (Sohl-Dickstein
et al., 2015; Ho et al., 2020; Song et al., 2020a; Rombach et al., 2022; Karras et al., 2022) have
become increasingly popular in recent years due to their ability to create photo-realistic images from
textual descriptions. One major advantage of these models is their ability to learn from large-scale
datasets. Among the various text-to-image models, Stable Diffusion (Rombach et al., 2022) has
received considerable attention because of its impressive performance in generating high-quality
images and its relatively low cost to fine-tune. Its denoising process works similarly to the diffusion
models but in a latent space, and this process results in a final image that is highly consistent with the
input text, making it an excellent tool for text-guided image editing. Diffusion models can also be
effortlessly incorporated into an image-to-image editing pipeline (Brooks et al., 2022; Parmar et al.,
2023; Orgad et al., 2023), thus providing users the ability to edit scenarios across multiple modalities
and assess potential imaging progressive editing paths. However, existing image-to-image methods
can only be used for single-step editing, which makes it difficult to simulate personalized time-series
progression data in the medical domain.

3 PROBLEM STATEMENT

In the traditional disease progression simulation setting, assume having sequential time-series image-
text data pairs {(x0, y0), (x1, y1), ..., (xT , yT )} from each patient. The clinical image-text data
pair (x, y) ∈ X × Y is sampled from a non-independent identically distribution, where Y = Rn

denote the medical report space and X = Rm denote the medical imaging space. All the prior
works either rely heavily on probability modeling: fθ(y0:t−1)→ yt (Liu et al., 2015; Alaa & van der
Schaar, 2019), or rely on using longitude data to train regression models for imaging simulation:
fθ(x0:t−1, yt−1)→ yt (Han et al., 2022; Ravi et al., 2022). However, it is hard to obtain sequential
longitude data as most patients may not go to the same hospital for follow-up treatment. And the
hospitals also lack medical imaging and clinical reports in the early stages of the disease.

In this paper, we redefine disease progression simulation using a data-driven generative model without
the need for sequential time-series data or clinical prior knowledge. Anyone with access to discrete
imaging and medical report data could individually train the model to predict disease progressions
without profound medical prior, significantly reducing the amount of work required for feature
engineering and data collection.

Definition 1 (Simulate disease progression with non-sequential data) Assume hϕ is a generative
model learned from the data space: Ω = {(x, y) ∈ χ× Γ}, assuming it is independent identically
distributed and each (x, y) is from different individuals. In training phase, hϕ models the mapping:
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Γ → χ. In the inference phase, given an initial test data sample (xt, yt) at progression stage t,
hϕ converts input imaging xt and input clinical context yT to xT , where yT is the language model
inferred final step clinical report from y0 and xt, xt+1, ..., xT is the simulated sequential imaging
progression.

In the following sections, we picked DDIM as a base step of our proposed method, because of its
reversible theoretical properties that allow smooth transitions and convergence based on Definition 1.
The proof is shown in the supplementary section.

Figure 2: Overview of the PIE inference pipeline. PIE is illustrated using an example of disease
progression editing X-ray from a healthy state to cardiomegaly. For any given step n in PIE, we first
utilize DDIM inversion to procure an inverted noise map. Subsequently, we denoise it using clinical
reports imbued with progressive cardiomegaly information. The output of DDIM denoising serves
as the input for step n+ 1, thus ensuring a gradual and controllable disease progression simulation.
After simulating N steps, the image is converged to the final state.

4 PROGRESSIVE IMAGE EDITING (PIE)

Progressive image editing (PIE) is a novel framework proposed to refine and enhance images in
an iterative and discrete manner, allowing the use of additional prompts for small and precise
adjustments to simulate semantic modification while keeping realism. Unlike traditional image
editing techniques, PIE involves a multi-stage process where each step builds upon the previous one,
with the aim of achieving a final result that is more refined and smooth than if all changes were made
at once. The approach also enables precise control over specific semantic features of the image to be
adjusted without significant impacts on other regions. The main purpose of PIE is to simulate disease
progression from multi-modal input data.

Procedure. The inputs to PIE are a discrete medical image x
(0)
0 depicting any start or middle stage

of a disease and a corresponding clinical report latent y as the text conditioning (Rombach et al.,
2022). y is generated from a pretrained text encoder from CLIP (Radford et al., 2021) [clip-vit-large-
patch14], where the raw text input could either be a real report or synthetic report, providing the
potential hint of the patient’s disease progression. The output generated is a sequence of images,
{x(0)

0 , x
(1)
0 , ..., x

(N)
0 }, illustrating the progression of the disease as per the input report. The iterative

PIE procedure is defined as follows:

Proposition 1 Let x(N)
0 ∼ χ, where χ is distribution of photo-realistic images , y be the text

conditioning, running PIE(n)(·, ·) recursively is denoted as following, where N ≥ n ≥ 1,

x
(n)
0 = PIE(n)(x

(n−1)
0 , y) (1)
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Then, the resulting output x(N)
0 maximizes the posterior probability p(x

(N)
0 | x(0)

0 , y).

With each round of editing as shown in Figure 2, the image gets closer to the objective by moving in
the direction of−∇ log p(x|y). Due to the properties of DDIM, the step size would gradually decrease
with a constant factor. Additional and more detailed proofs will be available in Supplementary B.

Proposition 2 Assuming ∥x(0)
0 ∥ ≤ C1 and ∥ϵθ(x, y)∥ ≤ C2, (x, y) ∈ (χ,Γ), for any δ > 0, if

n >
2

log(α0)
· (log(δ)− C) (2)

then,
∥x(n+1)

0 − x
(n)
0 ∥ < δ (3)

where, λ =
√
α0−α0α1−

√
α1−α0α1√

α1
, χ is the image distribution, Γ is the text condition distribution ,

and C = log(( 1√
α0
− 1) · C1 + λ · C2)

Proposition 3 For all N > 1, ∥x(N)
0 − x

(0)
0 ∥ ≤ [( 1√

α0
− 1) · C1 + λ · C2]

In addition, Proposition 2 and 3 show as n grows bigger, the changes between steps would grow
smaller. Eventually, the difference between steps will get arbitrarily small. Hence, the convergence
of PIE is guaranteed and modifications to any inputs are bounded by a constant.

Algorithm 1: Progressive Image Editing n-th step (PIE(n))

Input: Original input image x
(0)
0 at the start point, input image x

(n−1)
0 at stage n, number of

diffusion steps T , text conditional vector y, noise strength γ, stable diffusion
parameterized denoiser ϵθ, a ROI mask MROI , M i,j

ROI ∈ [0, 1]
Output: Modified image x′ as xn

0

1 x′ ← x
(n−1)
0

2 k ← γ · T
3 ϵ ∼ N (0, I)
4 x′ ← √αk · x′ +

√
1− αk · ϵ

5 for t = k to 1 do
6 x′ ← √αt−1(

x′−
√
1−αtϵ

(t)
θ (x′,y)√

αt
) +
√
1− αt−1 · ϵ(t)θ (x′, y)

7 end
8 x′ ← (β1 · (x′ − x

(0)
0 ) + x

(0)
0 ) · (1−MROI) + (β2 · (x′ − x

(0)
0 ) + x

(0)
0 ) ·MROI

9 return x′ as x(n)
0

5 EXPERIMENTS AND RESULTS

In this section, we present experiments on various disease progression tasks. Experiments results
demonstrate that PIE can simulate the disease-changing trajectory that is influenced by different
medical conditions. Notably, PIE also preserves unrelated visual features from the original medical
imaging report, even as it progressively edits the disease representation. Figure 5 showcases a set
of disease progression simulation examples across three distinct types of medical imaging. Details
for Stable Diffusion fine-tuning, pretraining model for confidence metrics settings are available in
Supplementary D.

5.1 EXPERIMENTAL SETUPS

Implementation Details. We present the details of single-step PIE in Algorithm 1. For PIE(n),
we define αk according to the DDIM case. Line 8 in Algorithm 1 ensures progressive and limited
modifications between the original input image x

(0)
0 , the single-step edited output x′, and the region

guide selector MROI through the utilization of interpolation average parameters β1 and β2. These
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Table 1: Comparisons with multi-step editing simulations. The backbone of PIE and baseline
approaches are Stable Diffusion with the same pre-trained weight.

Method Chest X-ray Retinopathy Skin Lesion Image

Conf (↑) CLIP-I (↑) Conf (↑) CLIP-I (↑) Conf (↑) CLIP-I (↑)
Stable Diffusion Video 0.389 0.923 0.121 0.892 0.201 0.886
Extrapolation 0.0543 0.972 0.0742 0.991 0.226 0.951
PIE 0.690 0.968 0.807 0.992 0.453 0.958

parameters dictate the modification ratio between the ROI mask-guided space and the original input
space. As β1 increases, the multi-step editing process becomes smoother, though it may sacrifice
some degree of realism.

Datasets for Disease Progression. We validate the disease progression analysis through end-to-end
medical domain-specific image inference. Specifically, we evaluate the pretrained domain-specific
stable diffusion model on three different types of disease datasets in classification tasks: CheXpert for
chest X-ray classification (Irvin et al., 2019), ISIC 2018 / HAM10000 (Codella et al., 2019; Tschandl
et al., 2018) for skin cancer prediction, and Kaggle Diabetic Retinopathy Detection Challenge (CHF,
2015). Each of these datasets presents unique challenges and differ in scale, making them suitable for
testing the robustness and versatility of PIE. We also collected over 30 healthy data among the test
set from these datasets. These data were used for disease progression simulation. Three groups of
progression visualization results can be found in Figure 5.

Input Absdiff step 1 Absdiff step 2 Absdiff step 4 Absdiff step 10 PIE Output

Figure 3: Cardiomegarly disease progression absolute difference heatmap simulated by PIE. The
highlighted red portion illustrates the progression of the pathology at each step.
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Figure 4: Using PIE, SD Video, Extrapolation to simulate Edema progression with clinical reports as
input prompt.

Evaluation Metrics. The assessment of generated disease progression images relies on two crucial
aspects: alignment to edited disease feature and subject fidelity. To measure these characteristics, we
utilize two primary metrics: the CLIP-I score and the classification confidence score. The CLIP-I
score (range from [-1, 1] in theory ) represents the average pairwise cosine similarity between the CLIP
embeddings of generated and real images (Radford et al., 2021; Ruiz et al., 2022). The classification
confidence score is determined using supervised train deep networks for binary classification between
negative (healthy) and positive (disease) samples. It is denoted as Conf = Sigmoid(fθ(x)) and
represent whether the simulation results are aligned to target disease. In our experiments, we train the
DeepAUC maximization method (Yuan et al., 2021) (SOTA of Chexpert and ISIC 2018 task 3) using
DenseNet121 (Huang et al., 2017) as the backbone to compute the classification confidence score.
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Baselines To our knowledge, there are no existing image editing models specifically designed for
simulating disease progression without sequential training data. To underscore the unique strengths
of PIE, we compare it against two of the most promising state-of-the-art baseline methods. One of
them is Stable Diffusion Video (SD Video) (Raw, 2022) for short video generation. SD Video is the
code implementation based on recent latent-based video generation methods (Blattmann et al., 2023;
Wu et al., 2022). Another one is the Style-Based Manifold Extrapolation (Extrapolation) (Han et al.,
2022) for generating progressive medical imaging, as it don’t need diagnosis labelled data (Ravi et al.,
2019; Han et al., 2022), which is similar to PIE’s definition setting but need progression inference
prior. During the comparison, all baseline methods are using the same Stable Diffusion finetuned
weights and also applied MROI for region guided.

5.2 PROGRESSION SIMULATION COMPARISON
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Figure 5: Disease Progression Simulation of PIE. The top progression is for Cardiomegarly. The
middle progression is for Diabetic Retinopathy. The bottom progression is for Melanocytic Nevus.

In order to demonstrate the superior performance of PIE in disease progression simulation over
other single-step editing methods, we perform experiments on three datasets previously mentioned.
For each disease in these datasets, we used 10 healthy samples in the test set as simulation start
point and run PIE, SD Video, Extrapolation with 5 random seeds. We obtain at least 50 disease
imaging trajectories for each patient. Table 1 showcases that PIE consistently surpasses both SD
Video and Extrapolation in terms of disease confidence scores while maintaining high CLIP-I scores.
For Chexpert dataset, the 0.690 final confidence score is the average score among 5 classes. For
Diabetic Retinopathy and ISIC 2018 datasets, we compare PIE with SD Video, Extrapolation for
editing image to the most common seen class since these datasets are highly imbalanced. Figure 6
illustrates the evolution of disease confidence scores during the progression simulation in each step.
We observe that PIE is able to produce more faithful and realistic progressive editing compared to the
other two baselines. Interestingly, while the CLIP-I score of Extrapolation is comparable to that of
PIE, it fails to effectively edit the key disease features of the input images as its confidence scores are
low throughout and at the end of the progression. We also visualize the absolute differences between
initial stage and each progression stage of Cardiomegaly in Figure. 3.

Figure 4 showcases a group of progression simulation results for Edema in chest X-rays with CheXpert
clinical report prompt. It is evident from our observations that while SD Video can significantly
alter the input image in the initial step, it fails to identify the proper direction of progression in the
manifold after a few steps and would easily create uncontrollable noise. Conversely, Extrapolation
only brightens the Chest X-ray without making substantial modifications. PIE, on the other hand,
not only convincingly simulates the disease trajectory but also manages to preserve unrelated visual
features from the original medical imaging. Further visual comparisons among different datasets are
presented in Supplementary E.
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Cardiomegaly Edema Pleural Effusion

Consolidation Diabetic Retinopathy Melanocytic Nevi

Figure 6: PIE excels in comparison to all the baseline methods across six different disease progression
simulations. The inputs utilized are genuine healthy images from the test sets. For each image, we
apply five random seeds to simulate disease progression over ten steps. The confidence score, a value
that ranges from 0 to 1, signifies the classification confidence for a specific disease.

5.3 ABLATION STUDY

Medical heuristic guidance. During the PIE simulation, the region guide masks play a big role as
prior information. Unlike other randomly inpainting tasks (Lugmayr et al., 2022), ROI mask for
medical imaging can be extracted from real or synthetic clinical reports Boag et al. (2020); Lovelace
& Mortazavi (2020) using domain-specific Segment Anything models (Kirillov et al., 2023; Ma &
Wang, 2023). It helps keep unrelated regions consistent through the progressive changes using PIE or
baseline models. In order to generate sequential disease imaging data, PIE uses noise strength γ to
control the influence from the patient’s clinically reported and expected treatment regimen at time n.
N is used to control the duration of the disease occurrence or treatment regimen. PIE allows the user
to make such controls over the iterative process, and running PIE(n) multiple times can improve the
accuracy of disease imaging tracking and reduce the likelihood of missed or misinterpreted changes.
Related ablation study results for MROI , γ, N , β1, β2 is available in Supplementary E.

Compare with real longitude medical imaging sequence. Lack of longitudinal data is a common
problem in current chest X-ray datasets. However, due to the spread of COVID, part of the latest
released dataset contains limited longitudinal data. In order to validate the disease sequence modeling
that PIE can match real disease trajectories, we conduct experiments on generating edema disease
progression from 10 patients in BrixIA COVID-19 Dataset (Signoroni et al., 2021). The input image
is the day 1 image, and we use PIE to generate future disease progression based on real clinical
reports for edema.

Input image Real Day 7 Data PIE Day 7 Data

Real VS PIE Generation

Figure 7: Evaluating the confidence scores of PIE progression trajectories highlights the alignment
with realistic progression. The mean absolute error between two trajectories is approximately 0.0658.
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Case study: co-occurring diseases. PIE is capable of generating images for co-occurring diseases,
although the performance slightly trails behind that of single disease generation. To evaluate this
ability, we use 10 chest X-ray reports for co-occurring Cardiomegaly, Edema, and Pleural Effusion. 6
cases successfully obtained co-occurring diseases simulation sequence and agreed with experienced
clinicians. Figure 8 illustrates an example of disease progression simulation. After 10 steps, all
diseases achieve a high confidence score, indicating successful simulation.

Input image Step 4 Step 10
Confidence Score

Figure 8: PIE can successfully simulate co-occurring disease progression (Patent’s clinical report
shows high probability to be Cardiomegaly, Edema, Pleural Effusion at the same time).

5.4 USER STUDY

To further assess the quality of our generated images, we surveyed 35 physicians and radiologists with
14.4 years of experience on average to answer a questionnaire on chest X-rays. The questionnaire
includes disease classifications on the generated and real X-ray images and evaluations of the realism
of generated disease progression sequences of Cardiomegaly, Edema, and Pleural Effusion. More
details of the questionnaire and the calculation of the statistics are presented in Supplementary F.1.
The participating physicians have agreed with a probability of 76.2% that the simulated progressions
on the targeted diseases fit their expectations.

Table 2: To quantitatively analyze the
responses of experienced physicians, we
consider each pathology class indepen-
dent and calculate the precision, recall,
and F1 score across all diseases and
physicians.

Data Precision Recall F1
Real 0.505 0.415 0.455
PIE 0.468 0.662 0.549

Table 2 provides an interesting insight into experienced
physicians’ performance in predicting the pathology on
real and generated X-rays. Surprisingly, we find users’
performance on generated X-rays is superior to their per-
formance on real images, with substantially higher recall
and F1. In addition, the statistical test suggests that the F1
scores of generated scans are significantly higher (p-value
of 0.0038) than the real scans. One plausible explanation
is due to the nature of PIE, the result of running progressive
image editing makes pathological features more evident.
The aggregated results from the user study demonstrate
our framework’s ability to simulate disease progression to
meet real-world standards.

6 CONCLUSION

In conclusion, our proposed framework, Progressive Image Editing (PIE), holds great potential as a
tool for medical research and clinical practice in simulating disease progression. By leveraging recent
advancements in text-to-image generative models, PIE achieves high fidelity and personalized disease
progression simulations. The theoretical analysis shows that the iterative refining process is equivalent
to gradient descent with an exponentially decayed learning rate, and practical experiments on three
medical imaging datasets demonstrate that PIE surpasses baseline methods, in several quantitative
metrics. Furthermore, a user study conducted with veteran physicians confirms that the simulated
disease progressions generated by PIE meet real-world standards. Despite current limitations due
to the lack of large amounts of longitude data and detailed medical reports, our framework has vast
potential in modeling disease trajectories over time, restoring missing data from previous records,
predicting future treatment responses, and improving clinical education. Moving forward, we aim to
incorporate more data with richer descriptions and different monitoring modalities, such as chemical
biomarkers and physiological recordings, into fine-tuning generative models, enabling our framework
to more precise control over disease simulation through text conditioning.
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