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Abstract
Auction plays a crucial role in many modern trad-
ing environments, including online advertising
and public resource allocation. As the number of
competing bidders increases, learning Bayesian
Nash Equilibrium (BNE) in auctions faces sig-
nificant scalability challenges. Existing methods
often experience slow convergence in large-scale
auctions. For example, in a classic symmetric auc-
tion setting, the convergence rate depends on the
number of bidders quadratically. To address this
issue, we propose the Approximate Best Response
Gradient method, a new approach for learning
BNE efficiently in auction games. We leverage an
analytic solution for gradient estimation to enable
efficient gradient computation during optimiza-
tion. Moreover, we introduce the Best Response
Distance objective, which serves as an upper
bound of approximation quality to BNE. By opti-
mizing the new objective, our method is proven to
achieve a local convergence rate independent of
bidder numbers and circumvent the traditional
quadratic complexity in the classic symmetric
setting. Extensive experiments across various
auction formats demonstrate that our approach
accelerates convergence and enhances learning
efficiency in complex auction settings.

1. Introduction
Auctions serve as a fundamental mechanism for resource
allocation and price discovery. They are extensively applied
across diverse industries, such as online advertising for ad
impression allocation (Shen et al., 2015) and the distribution
of public resources (e.g., spectrum bands (Milgrom, 2000),
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Figure 1. This work addresses two key challenges in learning BNE
for auction games: (1) gradient computation and (2) optimization
method design. We utilize an analytic gradient solution to avoid
the biased utility function and propose a new optimization method,
approximate BR gradient, for accelerated convergence rate.

mineral rights (Milgrom & Weber, 1982)), to facilitate ef-
ficient and transparent market outcomes. At the core of
the auction is a competitive bidding process, where bidders
submit bids to purchase goods or services from auction-
eers, with the goal of maximizing their utility. Wherein,
bidders adjust their bidding strategies by estimating val-
ues or equilibrium to avoid potential losses (Balseiro et al.,
2015), while auctioneers analyze the equilibrium to assess
the auction mechanism’s effectiveness and predict market
behavior (Krishna, 2010), aiding in the evaluation of overall
market conditions (Milgrom & Weber, 1982). To formalize
this equilibrium behavior, the auction can be modeled as an
incomplete-information game (Harsanyi, 1967), where the
equilibrium concept is captured by the Bayesian Nash Equi-
librium (BNE). However, solving BNE in auction games is
computationally hard, classified as PPAD-complete (Filos-
Ratsikas et al., 2021; Filos-Ratsikas et al., 2024), with only
limited closed-form solutions available in simplified settings
(Kaplan & Zamir, 2012).

This fundamental challenge has attracted great interest in
integrating machine learning techniques with game theory
(Bichler et al., 2021; Huang et al., 2024) to learn the equi-
librium bidding strategies. Early efforts have focused on
discretized approximations of auction games, using methods
such as no-regret learning (Hartline et al., 2015; Kolumbus
& Nisan, 2022; Ahunbay & Bichler, 2025), reinforcement
learning (Feng et al., 2021; Banchio & Skrzypacz, 2022),
and online optimization (Bichler et al., 2023a), to approxi-
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mate BNE strategies. However, in discretized auction games,
achieving more accurate predictions requires finer discretiza-
tion, which will significantly increase computational cost
(Bichler et al., 2023a). This limits both the precision and
scalability of the discrete learning frameworks.

Distinguishing from discretized auctions where bidding
strategies map categorical values to bids, continuous auc-
tions model bidding strategies as functions of continuous
values. Such differences present two challenges to current
learning methods. Specifically, the first challenge lies in the
computation of gradients, which is crucial for continuous
optimization. Due to the non-smooth nature of utility func-
tions in auction games, gradients cannot be computed di-
rectly (Bichler et al., 2021), necessitating advanced gradient
estimation techniques, such as smoothing approximations
of the utility function (Li & Wellman, 2021; Kohring et al.,
2023). However, these approximations will modify the orig-
inal utility, introducing model bias in the learned strategies
(Kohring et al., 2023). This issue is compounded by the
challenge of designing optimization methods to effectively
utilize the estimated gradients. Specifically, existing meth-
ods (Bichler et al., 2021; Kohring et al., 2023) that apply
gradient ascent with the utility’s gradient suffer from slow
convergence as the number of bidders increases.

In this work, we address both the gradient computation
and optimization method design challenges in continuous
auctions, which is summarized in Fig. 1. We introduce a
new gradient estimation method with an analytic solution
for the utility’s gradients, avoiding the modified utility and
model bias in previous approaches. Leveraging this an-
alytic gradient, we identify that the slow convergence of
existing methods stems from the inappropriate optimization
objective, i.e., the utility function, whose convergence rate
degrades quadratically as the number of bidders increases
in a classic symmetric auction setting. To address this, we
propose a new optimization objective called Best Response
Distance, which measures the gap between current bidding
strategies and their local optimal counterparts, providing
an upper bound on the approximation quality to BNE. By
optimizing this objective, our proposed Approximate Best
Response Gradient method achieves a local convergence
rate independent of the number of bidders in the symmet-
ric auction setting. Extensive experiments further validate
the significant improvement in convergence speed across
various auction scenarios.

Our contribution is summarized below:

• We introduce a new gradient estimation technique based
on an analytic solution, addressing the biased utility prob-
lem present in current methods. Using this analytic gradi-
ent, we prove that the traditional learning objective suffers
from slow local convergence in a classic symmetric auc-
tion setting, with the convergence rate degrading quadrati-

cally as the number of bidders increases.
• We propose the Approximate Best Response Gradient

method, optimizing the Best Response Distance objective
which provides an upper bound on the approximation
quality to the BNE. Our method is proven to achieve local
convergence to BNE at a rate independent of the number
of bidders and circumvent the slow convergence issue in
the symmetric auction setting.

• We conduct extensive experiments across various auction
environments, including different auction mechanisms,
asymmetric value prior, risk aversion, and alternative gra-
dient estimation approaches. The empirical results show
significant improvements in convergence speed and learn-
ing efficiency of our method across complex auction sce-
narios, confirming the efficacy of our proposed method.

2. Preliminaries
2.1. Auction Game

This paper studies the single-item auction game with n
bidders. The value profile v = (v1, . . . , vn) is drawn from
a joint prior distribution F : Rn

+ → [0, 1] and each bidder
i ∈ {1, . . . , n} observes a private value realization vi for the
item, where F is assumed to be common knowledge among
all the bidders. Then each bidder i submits a bid bi = βi(vi)
following his/her bidding strategy βi : R+ → R+. The
auction outcome is determined by a mechanismM, which
specifies both the allocation of the item and the payments
pi for each bidder. The risk-neutral ex-post utility of each
bidder i is calculated as:

ui(vi, bi, b−i|M) = vi · I(i wins)− pi, (1)

where I(·) is the indicator function and the index−i denotes
the profile of all bidders except for i.

For example, under the classic first-price (FP) and second-
price (SP) auctions, the ex-post utility is formulated as:

ui(vi, bi, b−i|FP) = (vi − bi) · I(bi > max
j ̸=i

bj),

ui(vi, bi, b−i|SP) = (vi −max
j ̸=i

bj) · I(bi > max
j ̸=i

bj).
(2)

2.2. Bayesian Nash Equilibrium

The Nash Equilibrium is achieved when no one can im-
prove his/her utility by unilaterally changing his/her strategy
(Nash, 1950). In the auction game with random player type
(i.e., value), NE extends to the Bayesian Nash Equilibrium
(Harsanyi, 1967). A typical Bayesian auction game unfolds
in three stages: (1) In the ex-ante stage, bidders only acquire
the value distribution prior; (2) In the ex-interim stage, each
bidder privately observes his/her value realization; (3) In
the ex-post stage, the bidding decision is determined. Let
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ūi be the ex-interim utility of bidder i:

ūi(vi, bi, β−i) = Ev−i∼F−i(·|vi) [ui(vi, bi, β−i(v−i))] ,
(3)

where F−i(·|vi) denotes the conditioned distribution of
other bidders’ value realization v−i. Then, bidder i’s ex-ante
utility becomes:

Ui(βi, β−i) = Evi∼Fi [ūi(vi, βi(vi), β−i)] , (4)

where Fi is the marginal distribution of vi.

Following prior studies (Chen & Peng, 2023), the best re-
sponse of bidder i is computed based on value vi and others’
strategies β−i as follows:

bri(vi, β−i) = argmax
b

ūi(vi, b, β−i). (5)

An ex-interim ϵ-BNE (ϵ ≥ 0) is reached by bidders strategy
profile β∗ = (β∗

1 , . . . , β
∗
n) if, for any bidder i ≤ n and

value vi ∈ dom Fi:

ūi(vi, β
∗
i (vi), β

∗
−i) ≥ ūi(vi,bri(vi, β

∗
−i), β

∗
−i)− ϵ. (6)

Furthermore, β∗ is an ex-ante ϵ-BNE if, for any bidder
i ≤ n:

Evi∼Fi

[
ūi(vi, β

∗
i (vi), β

∗
−i))

]
≥Evi∼Fi

[
ūi(vi,bri(vi, β

∗
−i), β

∗
−i))

]
− ϵ.

(7)

In this paper, we focus primarily on learning the ex-ante
ϵ-BNE (ϵ-BNE for short). Note that ex-ante ϵ-BNE and ex-
interim ϵ-BNE are equivalent when ϵ = 0, which is simply
referred to as BNE.

2.3. Gradient-Based Learning

Recent advancements (Bichler et al., 2021; 2023b; Kohring
et al., 2023) have investigated the gradient-based learning
techniques (Bubeck, 2015; Salimans et al., 2017) to compute
BNE in auction games. In these approaches, each bidder’s
strategy is modeled by a neural network, denoted as βθi(·),
with parameters θi updated through gradient methods to
optimize a specific objective L:

θt+1
i = θti − α · ∇θiL(βθt

i
, βθt

−i
),

where α is the learning rate and ∇θiL represents the gra-
dient of the objective function w.r.t. the bidder’s strategy
parameters. This optimization process depends on two key
factors: (1) the selection of the learning objective L and (2)
the method for estimating the gradient∇θiL.

In practice, most existing methods (Bichler et al., 2021;
2023b; Kohring et al., 2023) unanimously adopt the negative
ex-ante utility −Ui(βi, β−i) as the objective L, resulting in

simultaneous gradient ascent on each bidder’s utility. The
parameter update rule for bidder i can be expressed as:

θt+1
i = θti + α · ∇θiUi(βθt

i
, βθt

−i
)

= θti + α · Evi

[
∇θi ūi(vi, βθt

i
(vi), βθt

−i
)
]
,

(8)

where various approximation methods (Bichler et al., 2021;
Kohring et al., 2023) have been proposed to estimate the
ex-interim utility’s gradient∇θi ūi. These methods enable
practical implementations of learning BNE in complex auc-
tion environments.

3. Gradient Estimation
The need to approximate the utility’s gradient ∇θi ūi arises
from the discontinuous nature of the ex-post utility function,
which includes a non-smooth indicator operator I(·) defined
in Eq. (2). As shown in previous work (Kohring et al., 2023),
such discontinuities can lead to inaccurate gradient estima-
tion for the Monte Carlo (MC) method when calculating
the ex-interim utility’s gradient ∇θi ūi(vi, θi) (we rewrite
ūi(vi, θi) = ūi(vi, βθi(vi), β−i) for brevity):

∇θi ūi(vi, θi) = ∇θiEv−i|vi [ui(vi, βθi(vi), β−i(v−i))]

̸≈ 1

K

K∑
j=1

∇θiui(vi, βθi(vi), β−i(v
j
−i)) (9)

where K denotes the sample size. As a result, Bichler et al.
(2021) reported that strategies learned using MC estimation
on gradient tend to converge to zero bidding in FP auctions.
To illustrate this issue, we exemplify the FP auction with
the ex-post utility defined in Eq. (2), and compute the MC
estimation on gradient ∇MCg

θi
ūi of bidder i as follows:

∇MCg
θi

ūi(vi, θi) =
1

K

K∑
j=1

∇θiui(vi, βθi(vi), β−i(v
j
−i))

≈ −Pr(i wins) · ∇θiβθi(vi). (10)

where Pr(i wins) = Eb−i|viI(βθi(vi) > max{b−i}). The
key issue here is that the MC-estimated gradient’s coefficient
for the bidder i’s bidding network∇θiβθi(vi) is consistently
negative unless the bidder places a minimal bid. This im-
plies that the estimated gradient persistently encourages the
bidder to lower their bid until βθi(vi) = 0, which explains
the zero-bidding problem in MC gradient estimation.

3.1. Existing Gradient Estimation

To address this issue, existing works (Bichler et al., 2021;
Li & Wellman, 2021; Kohring et al., 2023) turn to utilize
different gradient estimation methods to approximate the
ex-interim utility’s gradient. Early works adopt black-box
optimization techniques, such as Evolution Strategies (ES),

3



Learning Bayesian Nash Equilibrium in Auction Games via Approximate Best Response

to estimate the pseudo-gradient as an approximation of the
utility’s gradient (Bichler et al., 2021; Li & Wellman, 2021).
Specifically, the ES algorithm approximates the ex-interim
utility with a Gaussian-smoothed utility function, where the
bidding strategy’s parameter θi is perturbed with Gaussian
noise, then the gradient of this smoothed utility can be
estimated as follows:

∇ES
θi ūi(vi; θi) ≈ ∇θiEϵ∼N (0,σ2I)[ūi(vi; θi + ϵ)]

= Eϵ∼N (0,σ2I)[
ϵ

σ2
ūi(vi; θi + ϵ)].

In addition to perturbing the parameters of the bidding func-
tion, this approach can also be applied to perturb the outputs
of the bidding function (i.e., bid values). This alternative
method, known as the REINFORCE algorithm (Salimans
et al., 2017; Kohring et al., 2023), perturbs the bid function
βi into a mixed strategy such that bi ∼ N (βθi(vi), σ

2I).
Similarly, the gradient can be estimated as:

∇RE
θi ūi(vi, βθi(vi), β−i)

≈∇θiEϵ∼N (0,σ2I)[ūi(vi, βθi(vi) + ϵ, β−i)]

=Eϵ∼N (0,σ2I)[
ϵ

σ2
ūi(vi, βθi(vi) + ϵ, β−i)∇θiβθi(vi)].

Despite the widely recognized effectiveness in black-box op-
timization, the ES algorithm faces criticism for the high vari-
ance and computational complexity due to the perturbation-
based estimation (Bichler et al., 2023a; Kohring et al., 2023).
To alleviate this concern, Smooth Market (SM) (Kohring
et al., 2023) introduced a smooth ex-post utility function
that approximates the original discontinuous utility by sub-
stituting the winning indicator I(i wins) and distributing the
payment with a smooth soft-max operator:

∇SM
θi ūi(vi, θi) ≈ Ev−i|vi [∇θiu

SM
i (vi, βθi(vi), β−i(v−i))],

where uSM
i (vi, bi, b−i) = (vi−pSMi ) · exp(bi/λ)∑n

j=1 exp(bj/λ)
. Thus

the approximated utility function is fully differentiable, mak-
ing the first-order optimization applicable: the gradient can
be efficiently estimated via sampling and back-propagation,
without relying on noisy perturbations in zeroth-order meth-
ods like ES and REINFORCE. This approach improves
both approximation quality and computational efficiency
compared to previous methods (Kohring et al., 2023).

3.2. Proposed Gradient Estimation

Although the aforementioned approaches can estimate the
ex-interim utility’s gradient, the utility function under
their estimation is modified by either Gaussian noise (e.g.,
∇ES

θi
ūi,∇RE

θi
ūi) or softmax approximation (e.g., ∇SM

θi
ūi),

which can introduce error in the final learned strategy
(Kohring et al., 2023). Surprisingly, we find that the gradi-
ent of ex-interim utility ∇θi ūi can be directly estimated via
Monte Carlo sampling in certain mechanisms (e.g., FP, SP),

Table 1. Comparison of existing gradient estimation methods.

Gradient Estimation Optimization Introduced
Approach Method Utility Bias

Evolution Strategy∇ES zeroth-order Gaussian Noise
REINFORCE ∇RE zeroth-order Gaussian Noise

Smooth Market∇SM first-order Softmax
The Derived Eq.(11) first-order Free

by leveraging an analytic gradient solution. As elucidated
in Tab. 1, this estimation avoids the model bias of existing
methods by preserving the original utility function. In par-
ticular, we present this analytic gradient computation under
FP and SP auctions in Equation (11) (See Appendix C for
detailed proofs and additional scenarios):

∇θi ūi(vi, βθi(vi), β−i) =
∂

∂bi
ūi(vi, bi, β−i) · ∇θiβθi(vi)

=

{
[(vi − bi)fmi

(bi)− Fmi
(bi)] · ∇θiβθi(vi), FP

(vi − bi)fmi
(bi) · ∇θiβθi(vi), SP

(11)
Here, fmi

and Fmi
are the probability density function

(pdf) and cumulative density function (cdf), respectively.
Both of them can be estimated via sampling market prices
max{β−i(v−i)}with v−i ∼ F−i(·|vi) given vi: the cdf can
be naturally estimated via MC estimation and the pdf can
be estimated via kernel density estimation (KDE) or using a
histogram of sampled market prices. Therefore, the utility
gradient∇θi ūi can be correctly approximated by the Monte
Carlo estimated distribution, enabling learning with first-
order methods based on this analytic gradient computation.
We name this method as MC on distribution to differentiate
it from the MC on gradient one in Eq. (10).

Moreover, this analytic gradient computation allows for in-
vestigating the convergence ability of gradient methods to
BNE strategies. We follow a classic symmetric auction set-
ting (Feng et al., 2021) with shared linear bidding strategies:
Assumption 3.1. Consider a symmetric n-bidder first-price
auction with uniform prior Fi = U [0, 1]. Bidders share a
linear bidding function βθi(vi) = wvi+c with non-negative
parameter θi := (w, v)⊺ ∈ R2

+ (to ensure bids bi ≥ 0).

The symmetric BNE solution to this auction game is
β∗
i (vi) = n−1

n (i.e., θ∗i = (n−1
n , 0)⊺). Consistent with

previous studies (Kohring et al., 2023; Bichler et al., 2021),
we focus on maximizing the ex-ante utility via gradient
ascent, herein referred to as the Utility Gradient method:

θt+1
i ← θti + α∇θiUi(βθt

i
, βθt

−i
). (Utility Gradient)

Then we can prove that our derived gradient solution in
Eq. (11) converges to the BNE while the MC estimation on
gradient in Eq. (10) incorrectly converges to zero bidding:
Proposition 3.2 (Convergence Ability). Under Assump. 3.1,
projected gradient ascent1 via utility gradient satisfies:

1We use projected gradient ascent θt+1
i ← Proj(θti+α∇θiUi)
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1. Learning with the derived gradient in Eq. (11) converges
to the symmetric BNE: β∗

θi
(vi) =

n−1
n vi.

2. Learning with MC estimation on gradient in Eq. (10)
converges to the zero-bidding strategy: βθi(vi) = 0.

4. Proposed Learning Algorithm
4.1. Convergence Rate of Utility Gradient

Despite the convergence guarantee in Proposition 3.2, we
find the utility gradient method suffers from slow conver-
gence in the vicinity of the BNE point θ∗i when the bidder
number n increases. To demonstrate this phenomenon, we
conduct numerical experiments under Assump. 3.1 by ini-
tializing the parameters θ0i in the neighborhood of the BNE
point θ∗i = (n−1

n , 0)⊺. As depicted in Fig. 2, the utility gra-
dient method fails to converge to the BNE point θ∗ within
limited training steps if the bidder number n grows from
2 to 10. Such poor convergence results persist even if we
extend the training times twice, labeled as “Utility Grad
(+300 steps)” in the figure.

We identify that such a slow convergence phenomenon is
raised due to the local property of the utility objective:
Ui(βθi , βθ−i

). To capture the vicinal property of the BNE
point θ∗i , we define a neighbor region with Θ( 1n ) radius:

N (θ∗i ) := {θi ∈ R2
+|∥θi − θ∗i ∥ ≤

1

2n
}.

By examining the Hessian matrix H(θi) of the objective Ui

in this neighborhood, we find:
Lemma 4.1. Under Assump. 3.1, the Hessian matrix H(θi)
of Ui(βθi , βθ−i

) in N (θ∗i ) has a condition number in the
order of Θ(n2).

In optimization, the convergence speed of gradient-based
methods depends on the condition number of the objective’s
Hessian; higher condition numbers generally lead to slower
convergence (Bubeck, 2015). In our auction setting, the
utility function’s Hessian has a condition number growing
quadratically as n. This ill-conditioned property (Tong et al.,
2021) explains the slow convergence observed for large n.

Intuitively, for a bidder who should submit a low bid when
holding a low valuation, his/her chance of winning becomes
negligible as n increases. Consequently, the utility gain of
deviating from the current strategy βi to the BNE strategy
β∗
i also diminishes with increasing n. This results in vanish-

ing gradient magnitudes near the BNE for low valuations.
Conversely, the bidder’s utility gradient remains significant
when their valuation is high and does not degenerate with in-
creasing n. This imbalance in gradient magnitudes, caused
by the vanishing gradient at low valuations, can lead to
slower convergence rates during optimization.

to ensure non-negative parameter, where the projection operator is:
Proj(w, c) = (max{w, 0},max{c, 0})⊺.
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Figure 2. Learning dynamics of different methods under Assump-
tion 3.1. The initial point θ0i is picked at the vicinity of θ∗i , with
θ0i = θ∗i + (−1

2n
, 1
2n

)⊺. All methods run 150 steps by default and
we plot the best-performing results after learning-rate grid search.

Formally, we prove that the local convergence rate satisfies:

Theorem 4.2 (Utility Gradient Converge Rate). Under As-
sump. 3.1, for projected gradient ascent via utility gradient:
1. It converges to the BNE θ∗i at a local rate ofO(n2 log 1

d ),
where d is the last-iterate distance to BNE ∥θti − θ∗i ∥.

2. Let θ0i = (n−2
n , 1

n+1 )
⊺, it will require Ω(n2 log 1

d ) itera-
tions to reach ∥θti − θ∗i ∥ ≤ d.

These results indicate that the number of iterations required
to achieve a specified accuracy increases quadratically with
the number of bidders n, highlighting the inefficiency of
the utility gradient method. Moreover, this slow-converging
problem still exists when applied with accelerated gradient
methods, such as the Momentum (Kingma & Ba, 2015)
or Nesterov method (Beck & Teboulle, 2009), which we
further discuss in Appendix C.2.3 and show that they also
suffer from growing complexity with bidder number n. In
contrast, in the following sections, we will see that our
proposed BR gradient method achieves a convergence rate
of O(log 1

d ), proved to avoid the n term.

4.2. Best-Response Distance Objective

The slow convergence of the utility objective encourages us
to explore a more robust objective in auction games, which
can directly capture the strategy-wise difference of βi and
β∗
i so that the convergence rate won’t degenerate when n

increases. Inspired by recent success of equilibrium-aware
loss in learning equilibrium (Gemp et al., 2024; Huang et al.,
2024), we propose a new objective called Best Response
Distance (BR Distance):

LBR(βθ) =
∑
i≤n

1

2
Evi∥βθi(vi)− bri(vi, βθ−i

)∥2 (12)

where bri(vi, βθ−i) = argmax
b

ūi(vi, b, βθ−i).

By directly measuring the distance between current strat-
egy βθi(·) with the best-response bid br(·, β−i) (Armantier
et al., 2008), this loss sidesteps the utility objective’s gradi-
ent vanishing problem when bidder numbers increase.
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Moreover, assuming the ex-interim utility ūi(vi, bi, β−i) to
be L-Lipschitz continuous in bi, the BR distance can serve
as an upper bound of the approximation factor ϵ in ϵ-BNE:

Lemma 4.3. With an L-Lipschitz continuous ex-interim
utility, the strategy profile β̂ forms an ϵ-BNE such that ϵ ≤√

2LBR(β̂) · L.

Therefore a lower BR distance leads to a closer approxi-
mation to the BNE. Like utility gradient method, we can
optimize this objective by applying gradient update for each
bidder’s strategy θi, dubbed as the BR Gradient method:

θt+1
i ← θti − αgbri(βθt), (BR Gradient)

where the gradient is calculated as:

gbri(βθt) = Evi

[(
βθt

i
(vi)− bri(vi, βθt

−i
)
)
·∇θiβθt

i
(vi)

]
.

(13)
Furthermore, we’ve derived the following convergence rate
in comparison to the utility gradient method:

Theorem 4.4 (BR Gradient Converge Rate). Under As-
sump. 3.1, projected gradient descent via BR gradient con-
verges to the BNE θ∗i = (n−1

n , 0)⊺ at a rate of O(log 1
d ).

With anO(log 1
d ) convergence rate, the BR gradient method

is proved to fundamentally avoid the growing complexity
with increasing n. As illustrated in Fig. 2, the BR gradient
dynamics converge to the BNE point within limited steps,
even for a large number of bidders n.

4.3. Learning via Approximate BR Gradient

Although the BR Gradient is proven to avoid the slow con-
verging problem, it requires an arg-max operator over all
bids: bri(vi, β−i) = argmaxb ūi(vi, b, β−i), which can in-
troduce vast computational burdens in practice. To circum-
vent this issue, we propose to utilize a locally approximated
best response b̂ri instead of directly computing the arg-max.

Firstly, we consider to utilize the local second-order Tay-
lor’s expansion of the ex-interim utility function (we denote
ūi(b) = ūi(vi, b, β−i) and bi = βθi(vi) for clarity):

ūi(b) ≈ ūi(bi) +
∂ūi(bi)

∂bi
(b− bi) +

1

2

∂2ūi(bi)

∂b2i
(b− bi)

2.

If the ex-interim utility is concave locally, i.e., ∂2ūi/∂b
2
i <

0, the maximum of the quadratic approximation provides
an estimate of the best response, resulting in a second-order
approximate best repsonse:

b̂r
2nd

i ≈ bi −
(
∂2ūi/∂b

2
i

)−1 · ∂ūi/∂bi. (14)

This formula resembles Newton’s method (Nesterov, 2018)
but is used here to approximate the local best response

rather than to optimize the entire objective function. Addi-
tionally, the second-order gradient of ∂2ūi/∂b

2
i can also be

calculated analytically, similar to the first-order gradient in
Eq. (11). Specifically, in FP or SP auctions:

∂2ūi

∂b2i
=

{
(vi − bi)fmi

(bi)− 2f ′
mi

(bi), FP
(vi − bi)fmi

(bi)− f ′
mi

(bi), SP
(15)

where f ′
mi

(·) is the gradient of market price’s pdf. To esti-
mate the pdf’s gradient, we can use any differentiable esti-
mation method, such as KDE with a differentiable kernel,
or other fully differentiable methods like SM2.

On the other hand, if the ex-interim utility is locally con-
vex, i.e., ∂2ūi/∂b

2
i ≥ 0, the quadratic approximation has

unbounded maxima. To address this, we replace the second-
order gradient with a negative constant to ensure the update
direction improves the utility, resulting in a first-order ap-
proximate best response:

ūi(b) ≈ ūi(bi) +
∂ūi(bi)

∂bi
(b− bi)−

1

2γ
(b− bi)

2

⇒ b̂r
1st

i ≈ bi + γ · ∂ūi/∂bi

(16)

With these approximations, we have the following Approxi-
mate BR Gradient method:

θt+1
i ← θti − αĝbri(βθt) (Approx BR Gradient)

where ĝbri(βθt) = Evi [(βθt
i
(vi)− b̂ri) · ∇θiβθt

i
(vi)],

and the approximate best response b̂ri is calculated via
Eq. (14) or Eq. (16) depending on the local condition, which
we’ve detailed in Algorithm 1 in Appendix E.2.

In fact, when applying the first-order approximation, our
method reduces to the previous utility gradient method:

−ĝbri(βθ) = −Evi [(βθi(vi)− b̂r
1st

i ) · ∇θiβθi(vi)]

= γ∇θi ūi(vi, βθi(vi), β−i).

But in the vicinity of the BNE, where the slow convergence
problem of utility gradient happens, the bid bi is close to
the best response. Using the optimality condition of best
response bri = argmaxbi ūi(vi, bi, β−i), we have:

∂ūi/∂bi = 0, ∂2ūi/∂b
2
i < 0. (17)

Such concavity validates the use of a second-order approxi-

mation for the best response b̂r
2nd

i in the neighborhood of
BNE. Consequently, the local convergence properties dif-
fer from those of the utility gradient. Specifically, we’ve
established the following local convergence result:

2The contribution of optimization objective is orthogonal to
gradient estimation, allowing for various estimation methods.
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Theorem 4.5 (Approximate BR Gradient Converge Rate).
Under Assump. 3.1, projected gradient descent via approx-
imate BR gradient locally converges to the BNE θ∗i =
(n−1

n , 0)⊺ at a rate of O(log 1
d ).

Like the original BR gradient, the approximate BR gradient
method also achieves an O(log 1

d ) local convergence rate,
thereby avoiding the locally slow-converging problem of the
utility gradient. As depicted in Fig. 2, the learned strategy
using approximate BR gradient also successfully converges
to the BNE point even with increased bidder numbers.

5. Experiments
5.1. Implementation Details

We conduct the experiments in a more general setting where
the bidding function is a 3-layer MLP instead of the linear
model in Assumption 3.1 and evaluate performance across
different mechanisms, asymmetric auctions, risk-averse util-
ities, and alternative gradient estimation approaches. To
assess the learned bidding strategies and their approxima-
tion of the BNE, we analyze several classic auction games
with known BNE solutions and measure the L2-distance
between the learned strategy βθi(·) and the BNE solution
β∗
i (·) by sampling K values vji from the prior Fi:

L2i =
( 1

K

K∑
j=1

(
βθi(v

j
i )− β∗

i (v
j
i )
)2)1/2

,

where the BNE solutions are detailed in Appendix E.1. For
comparisons, we primarily utilize the following three meth-
ods to learn BNE in different auction game settings:

• SM (Kohring et al., 2023): the existing state-of-the-art
method for learning BNE strategies, which maximizes Ui

with soft-max approximated gradient∇SM
θi

ūi.
• Utility Grad: the utility gradient method using our derived

gradient solution in Eq. (11) to maximize Ui.
• Approx BR: the proposed approximate BR gradient

method (or Approx BR for short), detailed in Algorithm 1.

Following (Kohring et al., 2023; Bichler et al., 2021), we
use a shared MLP network for bidders with the same value
prior and run each method with 2,000 steps. More details
can be found in Appendix E.

5.2. Main Results

We benchmark the L2 distance in the symmetric auction
games with a uniform prior under first-price and second-
price mechanisms like previous work (Bichler et al., 2021;
Kohring et al., 2023; Huang et al., 2024), where the BNE
solutions are β∗

i (vi) =
n−1
n vi and β∗

i (vi) = vi respectively.
We increase the bidder numbers n and validate the conver-
gence improvement of our proposed method in Tab. 2, where
we report the averaged L2 results across 5 initializations.

Table 2. Learned strategies’ L2 distance to BNE using different
methods in FP/SP symmetric auctions with varying numbers of
bidders n. We report the averaged L2 across 5 initializations after
a hyper-parameter search for every method. The L2 values are
evaluated at different steps (“@steps”) during the training stage.

M n Algorithm L2@500 L2@1k L2@2k t/iter

FP

2
SM 4.12e-3 3.75e-3 3.08e-3 0.013s
Utility Grad 5.35e-3 4.75e-3 2.82e-3 0.002s
Approx BR 5.46e-3 5.42e-3 3.01e-3 0.002s

5
SM 3.74e-2 1.83e-2 1.57e-2 0.035s
Utility Grad 3.49e-2 1.62e-2 1.51e-2 0.002s
Approx BR 1.35e-2 7.77e-3 5.20e-3 0.002s

10
SM 1.05e-1 7.39e-2 5.01e-2 0.091s
Utility Grad 8.84e-2 6.94e-2 5.44e-2 0.002s
Approx BR 6.21e-2 1.28e-2 9.65e-3 0.002s

SP

2
SM 5.26e-3 4.53e-3 3.57e-3 0.012s
Utility Grad 5.31e-3 4.61e-3 3.73e-3 0.002s
Approx BR 5.31e-3 4.62e-3 3.77e-3 0.002s

5
SM 3.40e-2 1.89e-2 1.73e-2 0.035s
Utility Grad 2.91e-2 1.59e-2 1.34e-2 0.002s
Approx BR 7.83e-3 4.89e-3 3.45e-3 0.002s

10
SM 1.40e-1 7.57e-2 3.51e-2 0.090s
Utility Grad 9.35e-2 5.35e-2 3.17e-2 0.002s
Approx BR 1.33e-2 5.91e-3 3.73e-3 0.002s

As shown in Tab. 2, we find that the proposed approximate
BR gradient method significantly enhances convergence
speed as the number of bidders increases. While all meth-
ods achieve near-optimal solutions with L2 distances at the
order of 1e-3 when the number of bidders is small (n = 2),
differences become pronounced as n grows. As the number
of bidders n increases, the SM and Utility Grad methods
exhibit slow convergence, resulting in final L2 distances of
approximately 5e-2 and 3e-2 when n = 10. In contrast, the
Approx BR method consistently delivers solutions with L2
distances at the 1e-3 order. This reduction in L2 distance
indicates that the strategies learned by our method produce
a more accurate approximation of the BNE.

For a clearer understanding of different L2 magnitudes,
Fig. 5b provides a visual comparison of the strategies, where
the “SM+aBR” strategy (ours) closely aligns with the BNE
solution, while the “SM” strategy exhibits a noticeable devi-
ation from the BNE. Specifically, the ”SM+aBR” strategy
achieves an L2 distance of approximately 5e-3, in contrast
to the ”SM” strategy, which reaches an L2 distance of about
7e-2. Referring back to the results in Tab. 2, where our Ap-
prox BR method consistently yields average L2 distances at
the order of 1e-3, this confirms the precision of the strategies
learned through our method in approximating the BNE.

Additionally, we explain the substantial reduction in the
time required for each step in the Utility Grad and Approx
BR methods, as shown in the last column (t/iter) of Tab. 2.
The reason is that both methods estimate gradients based
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Figure 3. L2 error of learned strategies under the SP asymmetric
auction with 2 different (weak/strong) value priors.

on the proposed MC on distribution estimation with directly
computed solution in (11), whereas SM relies on sampling
the ex-post utility and approximating the gradient through
backpropagation. The direct estimation significantly im-
proves the efficiency of our gradient estimation method.

5.3. Further Extensions

Extension to Asymmetric Auctions. We also explore the
asymmetric auction setting, where bidders have different
value priors. Following previous work on learning asymmet-
ric auction games (Bichler et al., 2023a), we consider the FP
auction with 2 bidders whose value priors are U [0, 0.5] (the
weak bidder) and U [0, 1] (the strong bidder). As depicted in
Fig. 11 in Appendix E.1, the bidding strategies learned via
our Approx BR method closely align with the BNE strategy,
confirming convergence even in this asymmetric setting.

We then scale up the number of bidders to evaluate con-
vergence speed with a similar prior setting in SP auctions,
where half of the bidders belong to the weak type U [0, 0.5]
and the rest strong type follows U [0, 1]. As shown in Fig. 3,
both SM and Utility Grad methods exhibit L2 distances
above 1e-2, while our proposed Approx BR method con-
sistently achieves precise solutions with L2 distances at
the order of 1e-3 for both types of bidders, demonstrating a
much closer approximation to the BNE. In addition, the Util-
ity Grad also outperforms the SM’s prediction, highlighting
the effectiveness of our gradient estimation approach.

Extension to Risk Aversion. In practical trading scenarios,
the bidders might be risk-averse, which means their utility
may not be identical to the monetary payoff. To address this,
we extend our experiments to cases where each bidder has a
Von Neumann–Morgenstern utility function (Krishna, 2010).
Similar to prior works (Bichler et al., 2021; 2023a), we
assume the risk-averse bidders possess the utility function
defined as the payoff raised to the power of ρ < 1.By
measuring the L2 distance to analytic BNE solutions, we
can evaluate the convergence rates of the three methods in
the risk-averse setting. As depicted in Fig. 4, our proposed
Approx BR continuously learns precise solutions with the
L2 distance at the order of 1e-3 for both types of bidders,
outperforming other methods by a clear margin.

6 8 10
Number of Bidders n

10 2

10 1

L2
 E

rro
r

L2 on FP with Risk-Aversion Utility
SM
Utility Grad
Approx BR

(a) FP with risk aversion

6 8 10
Number of Bidders n

10 2

10 1

L2
 E

rro
r

L2 on SP with Risk-Aversion Utility
SM
Utility Grad
Approx BR

(b) SP with risk aversion

Figure 4. L2 error of learned strategies under the FP/SP symmetric
auction settings with risk-averse bidders

Alternative Gradient Estimations. The proposed approxi-
mate BR gradient method is not limited to a specific gradient
estimation technique. To demonstrate its adaptability, we
incorporate the SM gradient estimation into the approximate
BR (aBR for short) gradient learning framework, referring
to this combination as “SM+aBR”. Given that SM exhibits
slow convergence with large bidder numbers n, we bench-
mark both SM and the aBR-augmented version in the 10-
bidder FP auction setting of Tab. 2 to examine whether our
proposed method can enhance convergence speed.

We run both methods with five initializations and plot the L2
distance over training time in Fig. 5a. As illustrated, after
applying the approximate BR gradient method from the 200-
th step, the L2 distance decreases significantly faster than
the original SM method and quickly converges around 1,000
steps. Moreover, we present the best-performing learned
strategies across 5 initialization for both methods in Fig. 5b.
The results reveal that the strategy learned by SM shows
a noticeable distance from the BNE solution, whereas the
learned strategy of SM+aBR aligns closely with the BNE
strategy. This confirms the flexibility of the proposed Ap-
prox BR method to effectively utilize different gradient
estimation techniques without the analytic gradients.

200 300 400 500 600 700 800 900 1000
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(b) Learned strategies

Figure 5. Learning results of the SM method (Kohring et al., 2023)
and the augmented version with our proposed Approx BR method
(SM+aBR) under the 10-bidder symmetric FP auction.

6. Conclusion
In this paper, we introduce the Approximate Best Response
Gradient method, a new approach for efficiently learning
Bayesian Nash Equilibrium in auction games. By utiliz-
ing an analytic solution for utility gradient estimation, we
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not only improve the efficiency of the gradient computa-
tion but also enable theoretical convergence analysis. Our
method optimizes the proposed Best Response Distance
objective, which achieves a significantly faster local con-
vergence rate of O(log 1

d ) in a classic symmetric auction
setting, compared to the traditional utility gradient method’s
O(n2 log 1

d ) rate. Extensive experiments validate the su-
perior convergence speed of our approach across various
auction scenarios, including different auction mechanisms,
asymmetric value distributions, risk-averse utilities, and
alternative gradient estimation techniques.
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A. Related Work
Our work is mainly related to methods for solving equilibrium in auction games, which has been addressed via various
approaches.

Numerical Equilibrium Solver: Computing Nash Equilibrium (NE) is known for its computational complexity, with
even the two-player (aka bidder) bi-matrix game problem being PPAD-complete (Chen et al., 2009). This complexity
extends to auction settings, where solving BNE is also PPAD-complete in both continuous (Filos-Ratsikas et al., 2021)
and discrete value scenarios (Filos-Ratsikas et al., 2024; Chen & Peng, 2023). Despite this complexity, there have been
positive developments in numerical methods for solving BNE in specific auction contexts. Marshall et al. (1994) proposed
a numerical method for solving BNE in first-price auctions, named backward-shooting, which has since been applied to
both continuous (Bajari, 2001; Gayle & Richard, 2008) and discrete settings (Wang et al., 2020). Other numerical methods
include polynomial approximations (Bajari, 2001; Hubbard & Paarsch, 2009) and best-response dynamics (Bosshard et al.,
2020).

Learning BNE in Discrete Auction Games: Recent advancements have investigated the application of machine learning
techniques to compute the BNE in both discrete and continuous auction games. In discrete value scenarios, initial approaches
applied no-regret learning algorithms, known to converge to NE in zero-sum normal-form games (Freund & Schapire, 1999;
Lei et al., 2021), to auction scenarios (Hartline et al., 2015). Theoretical results show that no-regret learning can converge to
BNE in several simplified auction settings (Feng et al., 2021), while it might fail to converge in auctions with fixed values
(Deng et al., 2022). Researchers have also introduced other agent-based learning methods (e.g. reinforcement learning)
into discrete auctions (Feng et al., 2021; Kolumbus & Nisan, 2022; Banchio & Skrzypacz, 2022). More advanced methods
include the application of online convex optimization techniques (Bichler et al., 2023a) and the development of unified
frameworks to learn BNE across various auction mechanisms (Huang et al., 2024) via transformer architectures (Vaswani
et al., 2017).

Learning BNE in Continuous Auction Games: Our focus aligns with the continuous value setting, where solving BNE
requires optimizing each bidder’s bidding function, similar to optimizing differentiable games. Despite the success of
gradient-based learning in differentiable games (Daskalakis et al., 2018; Letcher et al., 2019), gradient methods face a
fundamental challenge of gradient computation in auction games, due to the non-smooth nature of utility function (Bichler
et al., 2021). To address this issue, existing works have employed various gradient estimation methods through evolutionary
strategies (ES) (Bichler et al., 2021; Li & Wellman, 2021; Bichler et al., 2023b), or approximating the utility function to allow
for smooth gradient computation (Kohring et al., 2023). Theoretically, Bichler et al. (2023c) provided convergence analysis
on gradient-based methods in symmetric auction games by formulating the BNE as a variational inequality (VI) problem.
Our work follows this gradient-based learning paradigm in continuous auction games, with novel gradient estimation
techniques and learning objectives to improve convergence rates.

B. Limitations and Future Directions
Theoretical Limitations: Our theoretical framework primarily focuses on the symmetric auction with a uniform prior
following Feng et al. (2021), and employs a shared linear bidding strategy. Future research could extend these insights to
more generalized settings that include a broader array of auction types and bidding strategies. Additionally, the theoretical
results presented are based on exact gradients in their population form and do not incorporate empirical loss under different
estimation scenarios, e.g., the KDE or histogram methods when estimating the pdf of the market price distribution. Future
studies could address this limitation by deriving solutions using stochastic optimization approaches, which may offer more
robust and practical insights.

Methodological Constraints: Our work introduces a new gradient estimation method that utilizes the analytic gradient
and proposes a new optimization approach, approximate BR gradient. However, the closed-form solution required by
our gradient estimation method might not generalize across all possible scenarios, particularly in more complex auction
settings where more sophisticated gradient estimation techniques might be necessary. Although our optimization objective
operates independently of specific gradient estimation methods, its reliance on second-order gradients introduces additional
complexity, necessitating a differentiable estimated distribution.
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C. Proofs
C.1. Gradient Estimation

Following previous work (Huang et al., 2024; Bichler et al., 2023c), the ex-post utility ui can be reformulated as the function
ũi of competition with market price mi = maxj ̸=i bj :

ui(vi, bi, b−i) = ũi(vi, bi,mi) (mi := max
j ̸=i

bj)

= ũ+
i (vi, bi,mi) · I(bi > mi),

(18)

where the ũ+
i (vi, bi,mi) is the utility when bidder i wins. We present the results in FP and SP, where ũ+

i (vi, bi,mi) = vi−bi
in FP and ũ+

i (vi, bi,mi) = vi −mi in SP respectively. Without loss of generality, we assume:

Assumption C.1. The market price distribution is atomless.

The ex-interim utility’s gradient can be directly computed:

∂

∂bi
ūi(vi, bi, β−i)

=
∂

∂bi
Ev−i|vi [ui(vi, bi, b−i(v−i))]

=
∂

∂bi
Emi|vi

[
ũ+
i (vi, bi,mi) · I(bi > mi)

]
=

∂

∂bi

∫
ũ+
i (vi, bi, x) · I(bi > x)dFmi(x)

=
∂

∂bi

∫ bi

0

ũ+
i (vi, bi, x) · fmi

(x)dx

= ũ+
i (vi, bi, bi) · fmi(bi) +

∫ bi

0

∂

∂bi
ũ+
i (vi, bi, x) · fmi(x)dx.

In the case of first-price (FP) and second-price (SP) auctions, the gradient is calculated by:

∂

∂bi
ūi(vi, bi, β−i) =

{
(vi − bi)fmi

(bi)− Fmi
(bi), FP

(vi − bi)fmi
(bi), SP

Moreover, the second-order gradient, which is used in the approximate BR method, is calculated by:

∂2

∂b2i
ūi(vi, bi, β−i) =

{
(vi − bi)f

′
mi

(bi)− 2fmi
(bi), FP

(vi − bi)f
′
mi

(bi)− fmi
(bi), SP

Notably, this gradient formula can be extended to other settings, such as risk aversion and reserve price. For example,
consider a risk-averse utility (Krishna, 2010) such that the ex-post utility is extended as:

uρ
i (vi, bi, b−i) =

{
ui(vi, bi, b−i)

ρ, ui ≥ 0

ui(vi, bi, b−i), else
(19)

where ui(vi, bi, b−i) is the original risk-neutral utility function defined in (2) and ρ ∈ (0, 1) is the risk-aversion weight.
Take the first price auction as an example, the gradient of ex-interim utility in this risk-aversion setting can be computed as
(denote ūρ

i (vi, bi, β−i) with ūρ
i for simplicity):

∂

∂bi
ūρ
i =

{
(vi − bi)

ρfmi
(bi)− ρ(vi − bi)

ρ−1Fmi
(bi), bi ≤ vi

(vi − bi)fmi
(bi)− Fmi

(bi), bi > vi

∂2

∂b2i
ūρ
i =


(vi − bi)

ρf ′
mi

(bi)− 2ρ(vi − bi)
ρ−1fmi(bi)

+ ρ(ρ− 1)(vi − bi)
ρ−2Fmi

(bi), bi ≤ vi

(vi − bi)f
′
mi

(bi)− 2fmi
(bi), bi > vi
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As for scenarios with a reserve price r, the ex-iterim utility is modified as:

ūi(vi, bi, β−i) =

{
Ev−i [(vi − bi) · I(bi > max{β−i(v−i), r})], FP,
Ev−i [(vi −max{β−i(v−i), r}) · I(bi > max{β−i(v−i), r})], SP.

To estimate the gradients, we can replace the original market price mi = maxj ̸=i bj with a reserved version: mr
i =

max{mi, r}. We can estimate the distribution of the reserved market price mr
i by sampling bids b−i, and compute the pdf

fmr
i

and cdf Fmr
i
. Then the gradient with the reserve price can be estimated via Equation (11) by changing the distribution

from mi to mr
i .

C.2. Convergence Analysis on Utility Gradient

C.2.1. CONVERGENCE ABILITY

Here we provide the convergence ability of different MC estimation methods under the symmetric uniform first-price auction
setting of Assumption 3.1. We will prove that projected gradient ascent via our derived closed-form gradient (MC on
distribution) converges to BNE while the MC on gradient converges to zero-bidding:

Proof of Proposition 3.2. The gradient of ūi is calculated as:

∂

∂bi
ūi(vi, bi, β−i) = (vi − bi)fmi

(bi)− Fmi
(bi).

Assuming a linear bidding function βi(vi) = wvi + c, the market price distribution becomes:

Fmi
(x) =

(
x− c

w

)n−1

, fmi
(x) =

n− 1

w

(
x− c

w

)n−2

,

thus, the gradient of ūi w.r.t. bi = βi(vi) is:

∂

∂bi
ūi(vi, βi(vi), β−i) =

n− 1− nw

w
vn−1
i − c

n− 1

w
vn−2
i .

By applying the chain rule, the derivatives of θi = (w, c)⊺ are

∇wūi(vi, βi(vi), β−i) = vi ·
∂

∂bi
ūi(vi, βi(vi), β−i),

∇cūi(vi, βi(vi), β−i) =
∂

∂bi
ūi(vi, βi(vi), β−i).

Given that∇θiUi(βθi , β−i) = Evi∇θi ūi(vi, βθi(vi), β−i), we have:

∇wUi(βi, β−i) =
n− 1− nw

(n+ 1)w
− (n− 1)c

nw

∇cUi(βi, β−i) =
n− 1− nw

nw
− c

w
.

Since the parameters are constrained to be non-negative, we utilize projected gradient ascent:

θt+1
i = Proj(θti + α∇θiUi),

where the projection operator is defined as:

Proj(θi) = Proj(w, c) = min
w′,c′≥0

∥w′ − w∥22 + ∥c′ − c∥22

= (max{w, 0},max{c, 0})⊺.

14
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To prove that projected gradient ascent converges to the BNE strategy θ∗i = (w∗, c∗)⊺ = (n−1
n , 0)⊺, we seek to show that:

⟨∇θiUi, θ
∗
i − θi⟩ ≥ 0.

This condition is sufficient for convergence since:

∥θt+1
i − θ∗i ∥2 = ∥θt+1

i − Proj(θ∗i )∥2

= ∥Proj(θti + α∇θt
i
Ui)− Proj(θ∗i )∥2

≤ ∥θti + α∇θt
i
Ui − θ∗i ∥2 (non-expansion)

= ∥θti − θ∗i ∥2 − 2α⟨∇θt
i
Ui, θ

∗
i − θti⟩+ α2∥∇θt

i
Ui∥2

≤ ∥θti − θ∗i ∥2 (when α is small)

Denoting δw = w − n−1
n , then n− 1− nw = −nδw, and the gradient can be written as:

∇θiUi =

(
∇wUi

∇cUi

)
=

(
−nδw
(n+1)w −

(n−1)c
nw

−δw
w − c

w

)
, θ∗i − θi =

(
−δw
−c

)
.

Considering the different cases for δw:

• When δw = 0: The dot-product equals c2/w ≥ 0 and the equality only occurs at c = 0, i.e., θi = θ∗i .

• When δw ̸= 0: The dot-product is:

−δw∇wUi − c∇cUi =
1

w

(
n

n+ 1
δ2w +

2n− 1

n
cδw + c2

)
.

Given that the discriminator (w.r.t. c) ∆ = δ2w
1−3n

n2(n+1) < 0, the dot-product remains positive.

Thus, the gradient satisfies ⟨∇θiUi, θ
∗
i − θi⟩ ≥ 0, where the equality holds only when θi = θ∗i , ensuring convergence to θ∗i .

We’ve also provided a gradient flow of∇θiUi in Fig. 6, from which it can be observed that the gradient vector always has a
positive part pointing to the BNE point.

For MC estimation on gradient, the parameters update is given by:

∂

∂bi
ūi(vi, bi, β−i) = −Pr(i wins) = −Fmi(bi),

∇wūi(vi, βi(vi), β−i) = −vni ,
∇cūi(vi, βi(vi), β−i) = −vn−1

i ,

thus:

∇wUi(βi, β−i) = −
1

n+ 1

∇cUi(βi, β−i) = −
1

n
.

The gradient is always negative, causing the parameters to converge to w, c = 0 with the projection operator. This results in
the zero-bidding strategy βi(vi) = 0.

We’ve also validated this phenomenon experimentally in the symmetric first-price auction setting with n = 2 bidders who
share a 3-layer MLP network as their bidding function and employ stochastic gradient descent (SGD) to optimize the
network. As illustrated in Fig. 7, the network employing our gradient estimation method in Eq. (11) successfully converges
to the BNE. In contrast, the network trained using the MC estimation on gradient in Eq. (10) converges toward zero bidding.
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Figure 6. Gradient flow of∇θiUi when n = 5

C.2.2. CONVERGENCE RATE

Upper bound. Here we prove the Θ(n2) condition number of Ui’s Hessian matrix (Lemma 4.1) and O(n2 log 1
d ) local

convergence rate of projected gradient ascent under the symmetric uniform first-price auction setting of Assumption 3.1:

Proof of Lemma. 4.1 and Theorem. 4.2 (Part I: upper bound). Firstly we examine the Hessian matrix of Ui:

∇2
θiUi = Evi

[
∂2

∂b2i
ūi∇θi β̄i(vi)∇θi β̄i(vi)

⊺
+

∂

∂bi
ūi∇2

θi β̄i(vi)

]
.

With the second gradient of ∂2

∂b2i
ūi(vi, bi, β−i) at bi = βθi(vi) being (assuming n > 2):

∂2

∂b2i
ūi =

(n− 1)(n− 2− nw)

w2
vn−2
i − c

(n− 1)(n− 2)

w2
vn−3
i ,

the Hessian matrix is expressed as (Let Sw = nw + 2− n):

H(w, c) = −

[
(n−1)Sw

(n+1)w2 + c(n−1)(n−2)
nw2

(n−1)Sw

nw2 + c(n−2)
w2

(n−1)Sw

nw2 + c(n−2)
w2

Sw

w2 + c(n−1)
w2

]
.

For the local convergence rate, we define a neighbor region of the BNE point:

N (w∗, c∗) := {(w, c)⊺ ∈ R2
+||w − w∗|2 + |c− c∗|2 ≤ r2},

where we set a Θ( 1n ) radius: r = 1
2n , so that Sw ∈ [ 12 ,

3
2 ]. Now we analyze the property of the Hessian matrix within this

neighborhood, which satisfies:

• Every element of −H is positive and in the order of Θ(1), thus the max eigenvalue λmax = O(1);
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(a) MC on distribution (ours)
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(b) MC on gradient

Figure 7. Convergence results of different gradient estimation methods. The strategy converging to BNE in (a) is learned via the proposed
MC estimation on distribution, while the zero-bidding strategy in (b) is learned via the MC estimation on gradient.

• The determinant is positive:

Det(−H) =
1

w4

[
n− 1

(n+ 1)n2
S2
w +

2(n− 1)

n(n+ 1)
cSw +

n− 2

n
c2
]
> 0;

• With the eigenvalues λ satisfying:

Det(−H − λI) = λ2 −
(

2nSw

(n+ 1)w2
+

2(n− 1)2c

nw2

)
λ+Det(−H),

one can verify that the discriminator of this quadratic (w.r.t. λ) is positive, so that −H has 2 positive real eigenvalues,
−H is positive definite, and λmax ≥ nSw

(n+1)w2 + (n−1)2c
nw2 = Ω(1);

• The determinant Det(−H) is in the order of Θ( 1
n2 ), the max eigenvalue λmax is in the order of Θ(1) so that the condition

number κ = λmax

λmin
=

λ2
max

Det(−H) is Θ(n2) .

Having examined the local property of H(w∗, c∗), we can now prove the local convergence rate within N (w∗, c∗). Since
we’ve established in previous proof that:

∥θt+1
i − θ∗i ∥2 ≤ ∥θti − θ∗i ∥2,

the gradient update will keep the parameter inside the neighbor region N (w∗, c∗), making the negative utility function
always convex and the condition number κ always being Θ(n2). Thus we can directly apply the results of general convex
optimization problems: as established by Bubeck (2015) (Theorem 3.12), with stepsize α = 2

λmax+λmin
, the projected

gradient ascent update θt+1
i = Proj(θti + α∇θiUi) satisfies:

∥θti − θ∗i ∥ ≤
(
1− 2

κ+ 1

)
∥θti − θ∗i ∥.

With κ being Θ(n2), it will take O(n2 log
1

d
) steps for ∥θti − θ∗i ∥ ≤ d.

Lower Bound. Here we prove the convergence rate’s lower bound of the utility gradient method.

Proof of Theorem. 4.2 (Part II: lower bound). As previously stated, let δw = w− n−1
n , the utility gradient update (w.r.t. δw

and c) can be written as: (
δt+1
w

ct+1

)
=

(
δtw
ct

)
− α

δtw + n−1
n

·

(
nδtw
n+1 + (n−1)ct

n

δtw + ct

)
.
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We consider an initial point θ0 = (n−2
n , 1

n+1 ) thus δ0w = − 1
n . Applying the update rule to the initial point:(

δ1w
c1

)
=

(
− 1

n
1

n+1

)
− αn

n− 2
·
(
− 1

n2+n

− 1
n2+n

)
,

to ensure convergence, we need to make sure: (δ1w)
2 + (c1)2 ≤ (δ0w)

2 + (c0)2, resulting in α < n−2
n . We first claim that

during optimization, δtw ∈ [− 1
n , 0] and ct ≥ 0 (so that projected gradient ascent degrades to the vanilla gradient ascent),

which will be verified by induction later. Then we have:

α

δtw + n−1
n

∈ [0, 1].

For convergence analysis, we separate the update rule into two independently updating terms, denoted as at = δtw + k1c
t

and bt = δtw + k2c
t, where k1, k2 are two roots of the following quadratics:

− nkc

n+ 1
+

(n− 1)c

n
+ k(−kc+ c) = 0 ⇐⇒ k

(
n

n+ 1
+ k

)
=

n− 1

n
+ k.

This quadratics is derived by letting∇δwU = −k∇cU and replace δw = −kc. Without loss of generality, let k1 < k2, one
may verify that:

− n

n+ 1
< k1 < − n

n+ 1
+

1

n2
,

n2 − 1

n2
< k2 < 1.

With the equally scaled gradient and parameter∇δwU/∇cU = δw/c, we have:

δt+1
w +kct+1 = δtw+kct− α

δtw + n−1
n

(
(

n

n+ 1
+ k)δtw + (

n− 1

n
+ k)ct

)
=

(
1− α

δtw + n−1
n

· ( n

n+ 1
+ k)

)
(δtw+kct),

which means at+1 =
(
1− α

δtw+n−1
n

· ( n
n+1 + k1)

)
at and bt+1 =

(
1− α

δtw+n−1
n

· ( n
n+1 + k2)

)
bt. Since the optimum of a

and b are both a∗ = b∗ = 0, the convergence of at and bt can be directly examined via the multiplier 1− α
δtw+n−1

n

·( n
n+1 +k).

Given α
δtw+n−1

n

< 1, the convergence rates are as follows:

• For at with − n
n+1 < k1 < − n

n+1 + 1
n2 , we have ( n

n+1 + k1) ∈ (0, 1
n2 ), so at converges to a∗ = 0 at Ω(n2 log 1

d ),
with the lower bound obtained with some constant-order α = Θ(1).

• For bt with n2−1
n2 < k2 < 1, we have ( n

n+1 + k1) ∈ (2− 1
n+1 −

1
n2 , 2− 1

n+1 ), so bt converges to b0 = 0 atO(n log 1
d )

with the constant-order α.

For large n, the initial a0 = − 1
n + k1

n+1 ≈ −
2
n while b0 = − 1

n + k2

n+1 ≈ −
1
n2 , so a0 ≫ b0. This imbalance further

expands due to then Ω(n2 log 1
d ) convergence rate for at while O(n log 1

d ) rate for bt. As a result, the distance to optimum
is dominated by at:

∥θt − θ∗∥2 = (δtw)
2 + (ct)2 =

(
k2a

t − k1b
t

k2 − k1

)2

+

(
at − bt

k1 − k2

)2

=
1

(k1 − k2)2
[(k22 + 1)(at)2 − 2(k1k2 + 1)atbt + (k21 + 1)(bt)2]

≈ k22 + 1

(k1 − k2)2
(at)2.

Resulting in an Ω(n2 log
1

d
) convergence rate for θ.

Additionally, the condition δtw ∈ [− 1
n , 0] can be verified via induction (we consider a large n for simplicity):

• Initially ,we have δ0w = − 1
n , a0 ≈ − 2

n and b0 ≈ − 1
n2 .
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• With at+1 =
(
1− α

δtw+n−1
n

· ( n
n+1 + k1)

)
at, the multiplier of at is positive by induction, so the sign of at+1 and at

are the same. And at+1 ≫ bt+1 holds by the update rule. So δt+1
w = k2a

t+1−k1b
t+1

k2−k1
≈ k2a

t+1

k2−k1
< 0. With at converges

to 0, the shrinking magnitudes ensures δt+1
w still in [− 1

n , 0].

Similarly, the projected gradient ascent becomes the vanilla gradient ascent method since ct = at−bt

k1−k2
≥ 0.

We provide illustrative examples for the constructed lower bound. Given the initial point θ0 = (n−2
n , 1

n+1 ), we set the
learning rate α to n−2

n , and the optimization trajectory in shown in Fig. 8. As predicted, the point quickly converges
to around the line δw + k2c = 0 (i.e., bt = 0) but takes much more steps to converge to the optimum due to the slow
convergence of at.
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Figure 8. An illustration of our construction of utility gradient’s lower bound. The figure illustrates the parameter quickly converges to the
vicinity of the line δw + k2c = 0, but slowly converges to optimum. We use 200 steps for the n = 5 case and employ 200× 22 = 800
iterations for the n = 5× 2 = 10 case to show the quadratically growing complexity as n increases.

C.2.3. ACCELERATED METHODS

One may argue that the choice of projected gradient ascent rather than some accelerated gradient method, such as the
Momentum or Nesterov method, might harm the convergence rate. However, it can be verified that even with Nesterov (or
FISTA algorithm in the constrained optimization setting), which is known to achieve the lower bound time complexity of
first-order algorithm (Nesterov, 2018), the local convergence rate of the utility gradient is O(n log 1

d ). This convergence rate
can be directly derived via Theorem 3.15 from (Bubeck, 2015) like the previous results, so we omit it here.

We’ve also included a comparison with the Nesterov method in Fig. 9. As depicted in the figure, using fixed steps, the
accelerated Nesterov method seems to alleviate the problem of slow convergence when n = 10, but it still cannot converge
if the bidder number n increases further. In contrast, our proposed BR gradient methods successfully converge to the BNE
point in both cases.

C.3. Convergence Analysis on BR Gradient

C.3.1. THE BR DISTANCE OBJECTIVE

Here we prove that the Best Response Distance objective is an upper bound of the approximation factor ϵ in ϵ-BNE, as
stated in Lemma 4.3.

Proof of Lemma 4.3. Let the approximation factor ϵ being:

ϵ = max
i

Evi∼Fi

[
ūi(vi,bri(vi, β̂−i), β̂−i))− ūi(vi, β̂i(vi), β̂−i)

]
.

then β̂ is an ϵ-BNE by definition. For the BR distance, let ūi(bi) = ūi(vi, bi, β̂−i) and bri = bri(vi, β̂−i) for short, we
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Figure 9. Learning dynamics of different methods in the setting of Proposition 3.2. The initial point θt=0
i is picked at the vicinity of

N (θ∗), such that θt=0
i = θ∗i +(−1

2n
, 1
2n

)⊺. All methods run 150 steps by default and we plot the best-performing results after learning-rate
grid search.

have:

LBR(β̂) =
∑
i≤n

1

2
Evi

[
∥β̂i(vi)− bri∥2

]
≥max

i

1

2
Evi

[
∥β̂i(vi)− bri∥2

]
≥max

i

1

2

(
Evi [∥β̂i(vi)− bri∥]

)2
(Jensen’s inequality)

≥max
i

1

2

(
Evi [

1

L
|ūi(β̂i(vi))− ūi(bri)|]

)2

(L-Lipschitz)

=
1

2L2
ϵ2.

Thus ϵ is bounded by
√
2LBR(β̂) · L.

C.3.2. CONVERGENCE RATE

Here we prove the O(log 1
d ) convergence rate of the projected gradient descent via the BR gradient (i.e., optimizing the BR

distance objective), under the symmetric uniform first-price auction setting of Assumption 3.1:

Proof of Theorem 4.4. The BR gradient is defined as:

gbri = Evi [(wvi + c− bri(vi))∇θiβθi(vi)]

where bri(vi) = argmax
bi

ūi(vi, bi, β−i).

Let ∂ūi/∂bi = 0, the best-response can be calculated as:

bri(vi) =
n− 1

n
vi +

c

n
,

therefore the BR gradient can be calculated as:

gbri =

(
1
3 (w −

n−1
n ) + n−1

2n c
1
2 (w −

n−1
n ) + n−1

n c

)
.
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So the update rule of the BR gradient can be written as:

θt+1
i = Proj

(
θti − αgtbri

)
,

where θti − αgtbri =

(
wt − α

3 δ
t
w −

(n−1)α
2n ct

ct − α(n−1)
n ct − α

2 δ
t
w

)
.

To measure the distance to θ∗, let:

θti − αgtbri − θ∗i =

(
(1− α

3 )δ
t
w −

(n−1)α
2n ct

(1− α(n−1)
n )ct − α

2 δ
t
w

)
= A(θti − θ∗i )

where the matrix A is defined as:

A =

[
1− α

3 − (n−1)α
2n

−α
2 1− α(n−1)

n

]
.

So the distance to θ∗i satisfies:

∥θt+1
i − θ∗i ∥ = ∥Proj

(
θti − αgtbri

)
− Proj(θ∗i )∥

≤ ∥θti − αgtbri − θ∗i ∥
= ∥A(θti − θ∗i )∥
≤ ∥A∥ · ∥θti − θ∗i ∥.

So the problem converts to examine the spectral radius of A. Let the stepsize being α = 1
2 , we have:

A =

[
5
6 − (n−1)

4n
− 1

4
n+1
2n

]
.

By simple calculation, one can verify that:

1. The matrix A is positive-definite;

2. The spectral radius of A (i.e., max eigenvalue in the positive definite case) is smaller than 39
40 .

Thus we have:

∥θti − θ∗i ∥ ≤ ∥A∥ · ∥θt−1
i − θ∗i ∥

≤ 39

40
∥θt−1

i − θ∗i ∥

≤ (
39

40
)t∥θ0i − θ∗i ∥.

Thus it will take O(log 1

d
) steps for ∥θti − θ∗i ∥ ≤ d.

C.4. Convergence Analysis on Approximate BR Gradient

Here we prove the local convergence results of the approximate BR gradient under Assumption 3.1:

Proof of Theorem 4.5. In a small neighbor region of θ∗i , such as the previously defined N (w∗, c∗), the ex-interim utility
function is guaranteed to be concave, thus the approximate BR gradient is computed via the second-order approximation
(assuming n > 2):

b̂ri(vi, β−i) = βi(vi)−
∂
∂bi

ūi(vi, bi, β−i)
∂2

∂b2i
ūi(vi, bi, β−i)

= βi(vi)−
wvi[(n− 1− nw)vi − c(n− 1)]

(n− 1)[(n− 2− nw)vi − c(n− 2)]
.
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The gradient dynamics satisfies: (
wt+1

ct+1

)
=

(
wt − αEvi [vi(βi(vi)− b̂ri]

ct − αEvi [βi(vi)− b̂ri]

)
.

Assume the gradients can be locally approximated as a linear function of θti − θ∗i (which we will validate later), i.e.,(
Evi [vi(βi(vi)− b̂ri]

Evi [βi(vi)− b̂ri]

)
= A(θti − θ∗i ).

Then the gradient dynamics be reformulated as:

θt+1
i − θ∗i = (I − αA) · (θti − θ∗i ).

Similarly, we need to examine the spectral radius of I − αA. Consider the convex case, i.e., A is positive-definite so that
λmin(A) > 0, to make sure the spectral radius ∥I − αA∥ less than 1, we let 0 < α < 2/λmax(A). Then the minimal
spectral radius is:

min
α∈(0, 2

λmax(A)
)
{max(|1− αλmax(A)|, |1− αλmin(A)|)} ,

which is satisfied when α∗ = 2
λmin(A)+λmax(A) . (Note that this is the learning rate in the previous utility gradient’s proof.)

With this learning rate, we have (denote the condition number as κ(A) = λmax(A)/λmin(A)):

∥θti − θ∗i ∥ ≤ ∥I − αA∥ · ∥θt−1
i − θ∗i ∥

≤ ∥I − α∗A∥ · ∥θt−1
i − θ∗i ∥

=
λmax − λmin

λmax + λmin
· ∥θt−1

i − θ∗i ∥

=
κ− 1

κ+ 1
· ∥θt−1

i − θ∗i ∥

≤ exp

(
− 4t

κ+ 1

)
∥θ0i − θ∗i ∥.

resulting in an O(κ(A) log 1
d ) convergence rate with optimal learning rate.

This explains the O(n2 log 1
d ) local convergence rate for the utility gradient method since the gradient of the negative utility

function can be locally approximated linearly by −H · (θti − θ∗i ) and −H has an O(n2) condition number.

For the approximate BR gradient method, we now derive a similar linear system for the gradients. Consider a neighbor
region with radius r:

N ′(r) = {θi ∈ R2
+|∥θi − θ∗i ∥ ≤ r},

denote δw = w − n−1
n , we have δw, c in the order of O(r).

The gradient of c is:

Evi [βi(vi)− b̂ri]

=Evi

wvi[(n− 1− nw)vi − c(n− 1)]

(n− 1)[(n− 2− nw)vi − c(n− 2)]

=
w

n− 1
Evivi

nδwvi + c(n− 1)

(nδw + 1)vi + c(n− 2)

=
w

n− 1

∫ 1

0

nδwvi + c(n− 1)

(nδw + 1)vi + c(n− 2)
vidvi

Let a = nδw = O(nr), b = c(n− 1) = O(nr), e = nδw + 1 = 1 +O(nr), d = c(n− 2) = O(nr).The integral can be
computed as:

integral =
ae− 2ad+ 2be

2e2
− d(be− ad)

e3
log(

e+ d

d
)

=
a

2e
+

b

e
+O((nr)2 log 1

nr
).
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With some small r, such as r = O( 1
n2 ), we can omit the high-order infinitesimals and get:

Evi [βi(vi)− b̂ri] ≈
w

n− 1
·
(
nδw
2

, c(n− 1)

)⊺

=
w

n− 1
· (n

2
, n− 1) ·

(
δw
c

)
.

Similarly, the gradient of w is:

Evivi[βi(vi)− b̂ri]

=
w

n− 1

∫ 1

0

nδwvi + c(n− 1)

(nδw + 1)vi + c(n− 2)
v2i dvi

The integral is calculated as:

integral =
1

6e3
[
a(6d2 − 3ed+ 2e2) + 3eb(e− 2d)

]
+

d2

e4
(eb− ad) log(

d+ e

d
)

=
a

3e
+

b

2e
+O((nr)2).

With small enough r we can omit the high-order infinitesimals and get:

Evivi[βi(vi)− b̂ri] ≈
w

n− 1
·
(
nδw
3

,
c(n− 1)

2

)⊺

=
w

n− 1
· (n

3
,
n− 1

2
) ·
(
δw
c

)
Combining the 2 gradients produces a linear gradient dynamics:(

Evi [vi(βi(vi)− b̂ri]

Evi [βi(vi)− b̂ri]

)
= A(θti − θ∗i ),

where the matrix is defined as:

A =
nw

n− 1
·
[
1
3

n−1
2n

1
2

n−1
n

]
.

This is a scaled version of the previous BR gradient’s matrix, which has been proven to be positive-definite, and the condition
number is in the order of Θ(1).

Therefore, the approximate BR gradient locally converges to BNE, at a speed of O(log 1

d
) .

D. Additional Experiments
To illustrate our method’s generalizing ability to more general auction settings without known closed-form solutions, we
consider asymmetric first-price auctions with n > 2 bidders, which generally lack closed-form solutions.

Here we reuse the setting of Figure 3 by replacing the second price with the first price, where bidders are equally divided
into 2 types: the strong bidders with U [0, 1] and the weak bidders with U [0, 0.5]. In the context of n = 10, we conducted
experiments to plot the learned strategies of various methods across different random initializations in Figure 10.

As shown in the figures, the learned strategies of existing baselines (i.e., SM and Utility Grad) exhibit a classical slow-
converging pattern: the strategies place positive bids bi > 0 even as vi → 0. While the closed-form BNE solutions under
this setting, to our best knowledge, have not been derived, we can still infer that this bidding behavior surely deviates from
BNE, as better utility could be achieved by bidding zero when vi = 0.

Conversely, strategies derived from our Approx BR method do not exhibit this issue. Furthermore, the learned strategy
curves suggest that strong bidders with large values tend to bid more conservatively due to reduced competition, which
aligns with the characteristics of the simplified 2-bidder setting’s BNE solution (Kaplan & Zamir, 2012).
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(a) Learned strategies using our Approx BR method.
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(b) Learned strategies using the Utility Grad method.
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(c) Learned strategies using the SM method.

Figure 10. Learned strategies of various methods across different random initialization under the asymmetric first price setting.

E. Implementation Details
E.1. Closed-Form BNE Solutions

Here we list the closed-form BNE solutions for the auction games considered in our experiments:

1. FP with symmetric uniform prior U [0, 1], risk-neutral bidders: β∗
i (vi) =

n−1
n vi;

2. SP with symmetric uniform prior U [0, 1], risk-neutral bidders: β∗
i (vi) = vi;

3. FP with symmetric uniform prior U [0, 1], risk-averse bidders with utility defined in (19) and ρ = 0.5: β∗
i (vi) =

2n−2
2n−1vi;

4. SP with symmetric uniform prior U [0, 1], risk-averse bidders: β∗
i (vi) = vi.

5. FP with asymmetric uniform prior U [0, 0.5] and U [0, 1], each type has 1 risk-neutral bidder: β∗
1(v1) = 1

3v1
(1 −√

1− 3v21) for the weak bidder, β∗
2(v2) =

1
3v2

(
√
1 + 3v22 − 1) for the strong bidder;

6. SP with asymmetric uniform prior U [0, 0.5] and U [0, 1], each type has m risk-neutral bidders (m ≥ 2): β∗
i (vi) = vi.
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The solutions of (1), (2), (4), (5), and (6) can be directly found in (Krishna, 2010). As for the (3) case, we can directly apply
the ODE (Equation (4.3) in (Krishna, 2010)):

β∗
i
′(vi) =

u(vi − β∗
i (vi))

u′(vi − β∗
i (vi))

· g(vi)
G(vi)

where u(x) = xρ, G(x) =
∏

j ̸=i Fj(x) = xn−1 and g(x) = G′(x) = (n− 1)xn−2. Thus the BNE strategy satisfies:

β∗
i
′(vi) = 2(vi − β∗

i (vi))
n− 1

vi
,

with the boundary condition β∗
i (0) = 0, we have

β∗
i (vi) =

2n− 2

2n− 1
vi.

Additionally, we illustrate the learned strategies using our Approx BR method for the FP asymmetric setting with two value
priors: U [0, 0.5] and U [0, 1] (i.e., the No.5 setting above) in Fig. 11. The bidding strategies learned via our method closely
align with the BNE solutions, confirming convergence even in this asymmetric setting.
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Figure 11. Theoretical BNE and the learned strategies with our Approx BR method in the asymmetric 2-player FP auction, which shows
convergence in this asymmetric setting.

E.2. Approximate BR Gradient Algorithm

The approximate BR gradient method is detailed in Algorithm 1.

E.3. Codes & Hyper-Parameters

Since the official repository for the SM method (Kohring et al., 2023) does not provide instructions for reproducing their
experiments, we have implemented the SM method independently. In the original SM paper, the ex-post utility is modified
as:

uSM
i (vi, bi, b−i) = (vi − pSMi ) · exp(bi/λ)∑n

j=1 exp(bj/λ)

where pSMi =
∑

j≤n pj . In our implementation, we use pSMi = bi for FP and pSMi = maxj ̸=i bj for simplicity. Note that
this modification doesn’t change the smoothness and ability to approximate the original utility function of uSM

i . Our results
align closely with the ones reported in the SM paper: The L2 error of our results is around 3e-3 and the SM paper’s L2 is
ranged in 4e-3∼5e-3 when evaluated at the FP/SP symmetric uniform setting with 2 players. While improving the L2 result,
the training time per iteration when n = 2 in our implementation is 0.012∼0.013 seconds, which is comparable to the time
range of 0.009∼0.011 seconds reported in SM’s paper.
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Algorithm 1 Stochastic Approximate BR Gradient Method

1: Input: Bidders {1 . . . , n}, distributions F , each bidder’s strategy: βθt=0
i

, learning rate α, parameter γ, total steps T
2: for t = 0 to T − 1 do
3: for i = 1 to n do
4: Sample K values: vji ∼ Fi, j = 1, . . . ,K and corresponding bids bji = βθt

i
(vji )

5: Estimate the gradients of ūj
i via Eq. (11) and Eq. (15)

6: if ∂2ūj
i/∂b

2
i < 0 and ∂ūj

i/∂bi ≈ 0 then

7: Calculate the approximate best response via second-order gradient: b̂r
j

i = bji −
(

∂2ūj
i

∂b2i

)−1
∂ūj

i

∂bi

8: else
9: Calculate the approximate best response via first-order gradient: b̂r

j

i = bji + γ
∂ūj

i

∂bi
10: end if
11: Update strategy:

θt+1
i ← θti − α

1

K

K∑
j=1

(
βθt

i
(vji )− b̂r

j

i

)
· ∇θiβθt

i
(vji )

12: end for
13: end for
14: Return: Learned bidding strategies: βθt=T

For the estimation of pdf in the ex-interim utility’s gradient (Eq. (11)), we utilize the kernel density estimation (KDE)
approach with a Gaussian kernel:

f̂mi
(x) =

1

hN

N∑
j=1

K(
x−mj

i

h
),

where the mj
i , j = 1, . . . , N are samples of market prices, and K(·) is the standard normal density function. The bandwidth

h in KDE is a hyperparameter that controls the approximation quality. For comparison, the SM gradient estimation uses a
soft-max approximation for the winning indicator in the ex-post utility function:

I(bidder i wins) ≈ exp(bi/λ)∑n
j=1 exp(bj/λ)

,

where the λ is also a hyperparameter controlling the approximation quality. For the choices of these two parameters, we
perform a grid search in the main experiment (Tab. 2) and use tuned values for the rest experiments.

As for other hyper-parameters during the training stages, we set the learning rate to 0.05 for all experiments except for the
asymmetric SP auction, where we increased the learning rate to 0.2 for better results. Since all experiments considered in
this work are under the independent private value (IPV) setting, this allows us to individually sample the vi and v−i values.
For all experiments, we sample 256 values for vi and 10,000 value samples for v−i. Since the value prior is mainly uniform,
we use 10,000 equally divided value samples for L2 evaluation to avoid random noise.

Regarding the conditions for applying the second-order approximation in the approximate BR gradient method, we use the
following criteria: 1. the 2nd-order approximation is not applied during the first 200 steps of training; 2. it’s only enabled
if ∂2ui/∂b

2
i ≤ -1e-8 and |∂ui/∂bi| ≤ 0.01 by default. These conditions ensure that the second-order approximation is

used in the vicinity of a local optimum. The parameter γ in first-order approximate best response is set to 1. Our code is
open-sourced at: https://github.com/Hesse73/Approx-BR-Grad.
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