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ABSTRACT

Unequal representation of demographic groups in training data poses challenges to
model generalisation across populations. Standard practice assumes that balanc-
ing subgroup representation optimises performance. However, recent empirical
results contradict this assumption: in some cases, imbalanced data distributions
actually improve subgroup performance, while in others subgroup performance
remains unaffected by the absence of an entire subgroup during training. We con-
duct a systematic study of subgroup allocation across four vision and language
models, varying training data composition to characterise the sensitivity of sub-
group performance to data balance. We propose the latent separation hypothesis,
which states that a partially fine-tuned model’s dependence on subgroup represen-
tation is determined by the degree of separation between subgroup latent space
representation of the pre-trained model. We formalise this hypothesis, provide
theoretical analysis, and validate it empirically. Finally, we present a practical ap-
plication to foundation model fine-tuning, demonstrating that quantitative analysis
of latent subgroup separation can inform data collection and balancing decisions.

1 INTRODUCTION

There is a wide consensus in machine learning that model performance improves monotonically
with increasing training data (Rosenfeld et al., 2020; Kaplan et al., 2020). This principle, formalised
through dataset scaling laws, has guided much of the recent progress in model training. However,
real-world data rarely satisfies the assumption of being independent and identically distributed (i.i.d.)
(Arjovsky et al., 2020; Wang et al., 2023). Instead, datasets are composed of clusters of correlated
samples, corresponding to subgroups or domains. In the medical domain, clusters may correspond to
demographic categories, while in image datasets they may reflect camera types, and in multilingual
corpora they may represent language varieties.

In such cases, the question becomes more nuanced: how does model performance on a particular
subgroup scale as its representation in the training data increases? While intuition suggests that a
higher proportion of subgroup-specific data should directly improve performance on that subgroup,
recent studies have revealed surprising counterexamples (Rolf et al., 2021; Weng et al., 2023; Cevora
et al., 2025), where increasing subgroup allocation had little or even no effect. This challenges the
widely held view that dataset rebalancing is always a reliable solution (Idrissi et al., 2022).

Therefore, understanding the relationship between subgroup allocation and subgroup performance
remains an important open question. When concerned about model fairness, practitioners must
decide whether to conduct certain interventions, like collecting balanced data across demographic
groups, or resampling or augmenting their dataset, potentially at the cost of reduced overall perfor-
mance (Raji & Buolamwini, 2019; Idrissi et al., 2022). In domain generalisation, practitioners must
weigh whether fine-tuning on a smaller set of domain-specific data will yield better deployment
performance than fine-tuning on a larger set of general data (Hulkund et al., 2025). More broadly,
given the cost of data collection and annotation, knowing when subgroup representation matters can
guide whether to prioritise general high-quality data or group-specific data.

In this work, we aim to understand how the allocation of data across subgroups affects subgroup
performance at inference time, given a fixed training budget. Through extensive experiments in
vision and language tasks, we find that subgroup sensitivity to allocation varies dramatically across
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Figure 1: Model sensitivity to data balance depends on latent separation of subgroups. Left
plots show PCA projections of latent representations of MNIST parity classifiers. Right plots show
subgroup accuracy as training data allocation changes.

datasets, models, and attributes. We probe why these differences arise and put forward a novel
hypothesis: the degree to which redistributing subgroup data improves subgroup performance is
determined by how strongly the set of subgroups are separated in the pre-trained model’s latent
representations. We provide both theoretical justification and empirical evidence of this hypothesis.

Our contributions are:

§4 We demonstrate that widely held explanations for sensitivity to subgroup allocation fail to
match empirical behaviour.

§5 We derive a theoretical upper bound on sensitivity to subgroup allocation based on sub-
group separation in the pre-trained model’s latent space.

§6 We show empirically that sensitivity to subgroup allocation is significantly correlated to the
distance between two subgroups in the pre-trained model’s latent representations.

§6.4 We show how our findings can guide dataset selection decisions to improve fairness in a
practical case-study fine-tuning a vision-language foundation model.

2 RELATED WORK

Dataset scaling is not straightforward when the train and deployment settings are not i.i.d.
We are broadly interested in the relationship between model training data and model performance.
Research in this area has investigated different aspects of data (e.g., size, composition, or individual
points) and different performance metrics (e.g., overall loss, fairness, or domain-specific accuracy)
Hashimoto (2021). While dataset scaling laws have shown that performance improvements follow
predictable power law trends (Rosenfeld et al., 2020; Kaplan et al., 2020), this relationship becomes
more complex when the training and test data are drawn from different distributions. In such cases
more data is not necessarily better. For instance, Hulkund et al. (2025) and Shen et al. (2024) both
show that when optimising for a specific deployment setting, a subset of the data can yield better
performance than the full dataset. Similarly, Diaz & Madaio (2025) argue that scaled training data
can have a negative impact depending on the evaluation metrics and subpopulations considered.

Subgroup data scaling through the lens of fairness This problem has also been studied indi-
rectly in the field of fairness, where data are grouped into subgroups (e.g., based on demographic
attributes), and one investigates how training data composition (i.e., number/proportion of samples
from certain subgroups) affects fairness (i.e., some metric based on model performance on certain
subgroups). The prevailing assumption is again that more subgroup-specific training data leads to
improved performance on that subgroup (Raji & Buolamwini, 2019; Chen et al., 2018). When more
data cannot be collected, the standard intervention is to rebalance the model training data by under-
or over-sampling samples from certain subgroups (Idrissi et al., 2022). Many works show that this
simple method can yield remarkable fairness improvements both when training from scratch (Idrissi
et al., 2022) and when fine-tuning (potentially biased) pre-trained models (Kirichenko et al., 2023;
Wang & Russakovsky, 2023; Alabdulmohsin et al., 2024).
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Inconsistencies in subgroup balancing results However, a growing body of work argues that
balancing data does not necessarily improve fairness, and that it can even be detrimental. Schrouff
et al. (2024) use a causal framework to show conditions under which data balancing will not im-
prove model fairness. Similarly, Claucich et al. (2025) and Roh et al. (2021) show that fairness is
not necessarily maximized at 50/50 group ratios, and argue that this is due to unequal task difficulty
across groups. Weng et al. (2023) and Cevora et al. (2025) even show cases where a model’s per-
formance on female medical images remains constant (and sometimes decreases) as the proportion
of female images in the training set increases. Loss-reweighting based approaches such as group
distributionally robust optimisation (Sagawa et al., 2020) are based on a related principle: rather
than balancing group size, they reweight groups with higher losses. However, loss-based methods
also exhibit failure modes (Zong et al., 2023), and it remains unclear whether up-weighting data
from poor-performing groups necessarily improves performance on those groups. Together, these
studies reflect an emerging trend in fairness research, that different subgroups have distinct prop-
erties and causes of under-performance, and therefore respond differently to interventions like data
balancing or loss re-weighting (Wang, 2025; Alloula et al., 2025; Jones et al., 2024; Yang et al.,
2023). However, without a causal framework (which is difficult to apply in practice) (Jones et al.,
2024; Schrouff et al., 2024) or direct experimentation, it is difficult to determine a priori whether
balancing will improve fairness.

Impact of subgroup allocation on subgroup performance Our work differs from fairness-
oriented studies in that we address a more fundamental question: how does subgroup allocation
affect subgroup performance? We argue that understanding this is prerequisite for tackling fairness
concerns and implementing any bias mitigation methods. Despite its importance, this question has
received little direct attention, and as discussed above, it is not clear whether redistributing data from
under-represented or poorly performing groups reliably improves performance for those groups.
Rolf et al. (2021) take a first step by fitting a per-group power-law scaling model describing the
impact of subgroup and total training data size on subgroup performance. Similarly to the fairness
papers, they show that the optimal allocation varies across datasets and tasks, and is not necessar-
ily balanced. Our work builds on theirs in several ways, but differs crucially in that we propose a
(theoretically-grounded) explanation for why subgroup allocation impacts subgroup performance so
variably. This enables us to determine, for a given model and subgroup, whether subgroup allocation
is likely to matter, and can help guide fine-tuning strategies to maximise subgroup performance.

3 PROBLEM SETTING

To study the impact of subgroup allocation on subgroup performance, we consider supervised fine-
tuning of a pre-trained model on a dataset of input-label pairs (z,y) € X x ). The data are
drawn from an underlying distribution P, which we randomly split into three disjoint subsets:
Pore-train> Phine-tune> and Presr. We study settings where the training and test distributions are anno-
tated with m binary attributes {A(l), e A(m)} which can represent demographic or other sample-
level characteristics. Each attribute A) induces a binary partition of the data into two subgroups,

a(()j) = {(z,y) | AY) =0} and agj) = {(z,y) | AY) = 1}. Examples of attributes include gender
(male/female), imaging view (frontal/lateral), or dataset source (scanner A/scanner B).

For each subgroup, we record its base population prevalence under P : ’y,(cj) =
Prixyam)p [AY) = k], k € {0,1}. During fine-tuning, we investigate the impact of ma-
nipulating the prevalence of each subgroup, which we refer to as subgroup allocation. We assume
there is a fixed fine-tuning budget of K examples {(z;, y;, A(j )}X . For each subgroup a,(f ), fol-

lowing Rolf et al. (2021), we define its allocation as the fraction of the fine-tuning dataset coming

from subgroup a(J ).

1 K
= Z1A<J>—k ke {0,1}.
1:1

Our objective is to characterise how subgroup-specific test performance (for instance the loss E(j ))

depends on these allocations. The central question of this work is thus: how does K,(C vary with a(j )

and why does this sensitivity differ across attributes and subgroups?
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4 CURRENT EXPLANATIONS ARE UNRELIABLE

We begin by systematically compare how subgroup allocation affects subgroup performance across
various empirical settings. We explore whether existing hypotheses, for instance that under-
represented subgroups will benefit from increased allocation, can explain the patterns we observe.

4.1 EXPERIMENTAL SETUP

Model training with different allocations We start with a baseline model trained on a random
subset of the original dataset and subsequently fine-tune it on datasets for which we systematically
vary the allocations « of different subgroups. For each attribute AU), we partition the dataset into

binary subgroups géj ) and g§j ). For each attribute and dataset, we create 11 fine-tuning datasets,
varying the allocation agj ) e {0,0.1,0.2,...,1} while keeping the total fine-tuning dataset size K
constant (ablations on K are presented in Figure J17). Correspondingly, a((f ) =1 - agj ). This

yields, for instance, a dataset with 0% female images, 10% female images, and so on until 100%.

Assessing sensitivity to subgroup allocation = We quantify how subgroup allocation affects model
performance on each subgroup ¢’ in two ways. First, we fit a linear least-squares regression to
the subgroup-specific performance (e.g., accuracy, loss, AUC) as a function of the allocation a,(gj ),
recording the slope a,(j ). We then average this across both groups to obtain a slope estimate a’. We
also obtain a coarse estimate of generalisation by subtracting model performance on subgroup g,(cj )

at 0% allocation from its performance at 100% allocation: Aﬁfj ) = ngj ) (oa,(cj ) = 1)— é;cj ) (ag ) = 0).

Datasets, tasks, and models We conduct these experiments in four image and text datasets with a
range of model architectures for binary classification tasks. This includes even/odd digit prediction
with a red and green coloured version of MNIST (Lecun et al., 1998), pleural effusion classification
in MIMIC-CXR (chest-X rays) (Johnson et al., 2019), skin lesion detection in HAM10000 (skin
images) (Tschandl et al., 2018), and toxic comment classification in Civil_comments (Borkan et al.,
2019). These datasets all contain various metadata which enables natural splitting of the samples
into subgroups, based on attributes like sex, ethnicity, image type, date of image etc. The multitude
of subgroups we compare within the same dataset allows us to gain more insights than previous
studies which usually only consider one or two standard groupings (Rolf et al., 2021; Claucich
et al., 2025; Idrissi et al., 2022). We use CNNs and transformers for our experiments. Detailed
dataset characteristics and model implementation specifics are provided in Tables B1 and 2.

4.2 SENSITIVITY TO SUBGROUP ALLOCATION IS HIGHLY VARIABLE

Across our three real-world datasets, we find substantial variability in subgroup performance sen-
sitivity to allocation. Certain subgroups show no benefit from increased allocation and achieve
equivalent performance whether the model is fine-tuned only on that subgroup or entirely without
it (e.g., age in MIMIC). In contrast, other subgroups, like dataset of origin in HAM 10000, are sen-
sitive to their allocation. This results an estimated slopes of the accuracy change which range from
0 (no effect) to 0.05 (strong sensitivity), as shown in Figure 2. In other words, while the MIMIC
model performs equivalently on old individuals whether or not it has been trained on such images,
the HAM model is almost 10% less accurate on one dataset source if it has not been trained on
any images from it. We summarise all slopes obtained in Tables C3 and C4. These results mirror
other recent work which showed that while subgroup performance is sometimes maximised when a
dataset is balanced with respect to a certain attribute, it can also be maximised at skewed allocations,
or in other cases it can be equally maximised across allocations Rolf et al. (2021); Claucich et al.
(2025); Roh et al. (2021); Cevora et al. (2025); Weng et al. (2023).

We consider more complex functional forms for fitting subgroup loss vs. allocation (e.g., power-law
models as in Rolf et al. (2021)), but we find them unstable: fits vary substantially with small changes
in data, and standard deviations are large (Table CS5, an issue also reported in Rolf et al. (2021)). We
attribute this to small sample sizes and higher heterogeneity across subgroups in our setting. In
contrast, linear regression provides robust and interpretable summaries, and subgroup losses appear
roughly linear across allocations. We therefore adopt linear fits as a first-order sensitivity measure.
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Figure 2: While some subgroups’ accuracy increases with increased representation in training
data, others’ performance is independent of their training data representation. Mean subgroup
performance across 9 fine-tuning runs is shown along side estimated linear regression slopes a.
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Figure 3: Performance on subgroups under-represented during pre-training (top) and perfor-
mance on disadvantaged subgroups (bottom) do not necessarily improve with increasing dataset
allocation. Each dot represents a subgroup with bars indicating variation across 9 fine-tuning runs.

4.3 CURRENT HYPOTHESES DO NOT EXPLAIN DIFFERENCES IN ALLOCATION SENSITIVITY

We explore common explanations for sensitivity to subgroup allocation including whether it could
be linked to certain subgroups being under-represented in the initial pre-training dataset, certain
subgroups being disadvantaged by the pre-trained model’s performance, or certain subgroups hav-
ing substantial class imbalances (Figures 3 and D7 respectively). However, none of these three
explanations appear to be consistently correlated with sensitivity to subgroup allocation. For in-
stance, we see certain subgroups which are extremely under-represented in the pre-training set (e.g.,
less than 20% of the pre-training data) which show no reduction in loss as fine-tuning data alloca-
tion increases (Figure 3 top row). This suggests that over-representing under-represented subgroups
does not necessarily yield performance improvements, in line with other recent work (Schrouff et al.,
2023; Claucich et al., 2025; Roh et al., 2021) and contradicting many other pieces of research (Idrissi
et al., 2022; Wang & Russakovsky, 2023; Alabdulmohsin et al., 2024).

Similarly, we see surprising examples where certain subgroups which are initially amongst the low-
est performing by the pre-trained model also show almost no decrease in loss as allocation increases
(Figure 3 bottom row), again contradicting the general assumption that training on more data from
a poor-performing subgroup will improve model performance on that subgroup (or improve it more
than training on general data) (Roh et al., 2021; Sagawa et al., 2020).

5 BOUNDING SENSITIVITY TO SUBGROUP ALLOCATION WITH MODEL
LATENT REPRESENTATIONS

Given the lack of a coherent explanation for differences in sensitivity to subgroup balance, we in-
troduce the follwoing hypothesis: sensitivity to subgroup allocation may be explained by whether
a model learns distinct representations for subgroups ag and a;, and thus needs to be trained on
sufficiently high proportion of samples from, say ag, in order to achieve good performance on ag.
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Through theoretical analysis and with certain assumptions, we are able to validate this hypothe-
sis. We show that low latent separation with respect to an attribute A implies low sensitivity to A
allocation in the fine-tuning dataset, i.e., fine-tuned model performance on a( and on a; does not
significantly vary for different allocations a(4). We formalise this idea by proving that small to-
tal variation distance (TV) between class-conditioned subgroup representations Z in a pre-trained
model, implies that last-layer fine-tuning on any dataset which differs in the allocation of A, but
not in its proportion of Y, cannot result in models which differ significantly specifically in their
subgroup accuracies (Theorem 5.1). To the best of our knowledge, this is the first result that links
subgroup allocation sensitivity to class-conditional representation separation. For readability, we
provide only proof sketches here, deferring the full derivations to Appendix E.

Lemma 5.1. Let fy ,(z) = go(hy(x)) with representation Z = h,)(X) and predictor Y = gq(Z),
where gg is the last layer. Assume that

TV(P[Z|Y =y A=1],Py[Z |V =y, A=0]) <
fory € {0,1}. Then, it holds |Po(Z | Y =y,A=0a) —Po(Z | Y =y)| < aforalla €{0,1}.

This theorem tells us that if the representation Z is similar between groups (i.e., A =0and A = 1)
for a given label Y = y, then each group’s representation is also close to the overall representation
for that label, meaning group membership doesn’t significantly affect the representation once the
label is fixed. We can use this lemma to prove the main result. The proof is shown in E.1.

Assumptions. We assume that (i) fine-tuning datasets D’, D" differ only in subgroup allocations
o), and (ii) the marginal label distribution P(Y") and conditional distribution P(Y | A) remain
unchanged across datasets.

Theorem 5.1 (Group accuracy parity). Let fp () = go(hy,(x)) with representation Z = h,(X)
and predictor Y = go(Z), where gg is the last layer. For a set of parameters 0, define the quantity

TV() :==E, [TV(P[Z | Y =y, A=1], Pg[Z | Y =y, A=0])].

Suppose that the model is fine-tuned on two datasets D', D" which differ only in oY), yielding two
models with parameters 0" and 0", If TV(0') < e and TV(0") < ¢, then

|ACCy (A = a) — ACCyr (A = a)| < 4e 4+ |ACCy — ACCyr |
foralla € {0,1}.

This theorem tells us that if two models are fine-tuned on datasets that differ only in the group
proportions (i.e., the distribution of A), and both models learn approximately group-invariant repre-
sentations (i.e., TV(6) < ¢), then the accuracy on any group A = a will not differ much between
the models.

The proof (E.1) uses a result that bounds how much the model’s class-conditioned predictions can
differ across groups using total variation distance (Lemma 5.1). Assuming that the label distribution
P(Y) and the conditional distribution P(Y | A) remain unchanged across the datasets, this implies
that the subgroup accuracy difference is bounded by a term depending on ¢ and the difference in
overall accuracies between the models.

Remark In practice, for a fixed fine-tuning budget K, the overall accuracy difference is typically
negligible relative to subgroup accuracy differences, i.e. |AACC| < |AACC,|. We observe this in
our experiments, implying that TV differences are the dominant driver in the upper bound.

6 SUBGROUP SEPARATION PREDICTS SENSITIVITY TO ALLOCATION IN
REAL-WORLD EXPERIMENTS

We showed that if subgroup representations are nearly indistinguishable (as measured by TV),
then modifying fine-tuning dataset subgroup allocation (assuming that P(Y") and P(Y|A) are un-
changed) has little effect on downstream accuracies. We now turn to empirical analyses to test how
well this theoretical upper bound captures real-world behaviour, and to investigate whether finer-
grained patterns, such as correlations between representation separation and allocation sensitivity,
emerge beyond what the bound alone reveals.
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6.1 ASSESSMENT OF REPRESENTATION INVARIANCE

We keep the same setup as previously, where models are pre-trained on a random subset of each of
the four datasets, and their last layer is then fine-tuned with varying subgroup allocations. To cover
a broad range of subgroups, we relax the theorem’s assumption that P(Y) is fixed across fine-tuning
distributions. Notably, many attributes do satisfy (or closely approximate) this assumption as they
have equal class prevalences. This includes gender, marital status, language, and race in MIMIC;
localisation in HAM10000; year and race in Civil Comments; and random groups across all datasets.

We quantify subgroup separation by extracting penultimate-layer embeddings, projecting them to
a lower-dimensional space using PCA (retaining > 70% variance), and computing the mean total
variation distance (TV) between subgroup distributions conditioned on Y. TV is bounded in [0, 1],
with higher values indicating stronger separation. For completeness, we also explore additional
distance metrics including the Wasserstein distance (WD) and the Fréchet distance (FD) which
emphasise distinct representation differences. We present additional details, show that our metrics
are robust to whether they are calculated on the full feature-space or the reduced feature space, and
show that all three distances metrics are correlated in Section F.

6.2 INTUITION FOR OUR RESULTS IN MNIST

In our synthetic MNIST set-up, we know that a good parity classification model should not rely on
colour (A(U)) to make a prediction, so learnt representations z should be invariant to A(O), in other

words P(z | Y, aéo)) =P(z|Y, a(lo)). In contrast, a model must encode some notion of which digit
is represented in order to classify it into even vs. odd, and therefore its learned representation should
depend on whether the digit is over 5 or under 5 (A(")). We test this by training a 2-layer CNN. As
expected, the penultimate layer model embeddings do cluster by digit A(") but not by colour A
(Figure 1). Quantitatively, the average TV between the images representing digits over 5 and those
under 5 is 0.17, approximately twice the average distance between the red and green images (which
is itself close to that between random groupings), as shown in Figure F8.

Our hypothesis predicts that fine-tuning this model on datasets with different proportions of the same
subgroups will show that the model is only sensitive to the allocation of the under 5/over 5 groups
but not to the red/green groups. Indeed, we find that the subgroup accuracy on under 5 and over 5
images drops sharply as their fine-tuning dataset allocation drops, while the subgroup accuracy in
the red/green images is roughly independent of the fine-tuning dataset allocation (Figure 1, bottom
row). The model can effectively generalise “zero-shot” to new colours, but not to unseen digit
groups. Looking back at common explanations in the literature, we note that both red/green and over
5/under 5 groups have equal P(Y"), equal base accuracy, and equal base allocation in the pre-training
dataset, so none of those explanations would have been able to predict the observed discrepancy in
subgroup allocation sensitivity.

6.3 SUBGROUP SEPARATION IS HIGHLY CORRELATED TO ALLOCATION SENSITIVITY

We next explore how our hypothesis holds in real-world datasets with more subgroups and larger
models, where there is no clear-cut separation between attributes a model should be invariant to or
not. We first note that there is wide variation in subgroup separation in penultimate-layer represen-
tations (as shown in Figure 8). Generally, image-related attributes (e.g., X-ray view in MIMIC or
dataset of origin in HAM10000) induce greater separation than demographic attributes. Some sub-
groups, such as Civil_comments year (pre- vs. post-2017) or HAM10000 lesion location (extremity
vs. trunk), show separations comparable to random splits. The three distance metrics (TV, WD, FD)
are strongly correlated and robust across full vs. PCA-reduced spaces.

Across our three real-world datasets (image and text) and multiple architectures (CNNs and trans-
formers), we find a significant correlation between subgroup separation in pre-trained representa-
tions and subgroup sensitivity to allocation during fine-tuning (Figure 4). This correlation holds
across the three distance metrics (TV, WD, FD). Intuitively, when two subgroups have similar rep-
resentation of target Y (i.e., P(z | Y, a(()o)) =P(z|Y, ago))), then additional subgroup specific data
provides little added value. Conversely, when subgroup representations are separated, allocation has
a large effect.
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Figure 4: Sensitivity to subgroup allocation is highly correlated with separation in the pre-
trained model’s representation space (as measured by total variation distance, TV) across the three
datasets. Each dot represents mean TV and loss slope for one subgroup, averaged across 9 fine-
tuning runs, with bars corresponding to standard deviations, and Pearson correlation also shown.

We also observe that zero-shot generalisation is directly related to subgroup separation. As shown
in Figure 5, subgroup AUC is constant between 100% and 0% training data allocation only when
representations are (approximately) invariant across them. This echoes work in the domain adap-
tation literature, which stipulate that invariant representations are more robust as they generalise
across environments (Arjovsky et al., 2020). Here, we extend this principle to subgroup balancing
by using a measurable property of the pre-trained model, class-conditional latent separation, as a
predictive diagnostic for when allocation will matter. We further provide a bound (Theorem5.1)
linking small total-variation separation to small subgroup-accuracy differences across allocations.
Altogether, these empirical results support our theoretical finding of an upper bound to performance
differences across allocations, and the consistent correlation suggests there may even be a stronger
phenomenon at play.
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Figure 5: AUC difference when a model has not been trained on a subgroup increases with
the separation of the latent representations of the subgroups. Results are shown as mean AUC
difference across 9 fine-tuning runs with error bars indicating standard deviation.

While we first experiment with last-layer fine-tuning for consistency with our theory, we test whether
this correlation extends to settings where the fine-tuning occurs on the full network (and therefore
separations of representations Z could change). We find equally significant correlations, with effects
of stronger magnitudes, across all three datasets (Figure H13), suggesting that this trend may hold
in less restricted settings. Analysis of the separation of last-layer representations shows that they are
roughly constant across allocations, effectively matching our initial setup (Figure H12 and H14).

6.4 PRACTICAL APPLICATION IN FINE-TUNING A FOUNDATION MODEL

Beyond our findings’ analytical value in explaining previously observed discrepancies in subgroup
allocation sensitivity, we also examine its practical utility. Specifically, we consider a more realistic
setup where a foundation model (FM) is used to generate informative embeddings of a dataset, on
top of which a simple classification layer is trained. For this, we use CheXagent, a radiology vision-
language FM, trained on over 8.5 million image and text samples (Chen et al., 2024), to embed
images in the MIMIC-CXR test set. This differs from our traditional setup as the pre-training and
fine-tuning datasets are drawn from different distributions and the fine-tuning task does not directly
overlap with the pre-training tasks.
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We again measure distances between subgroup osa———
representations and find substantial variabil- =
ity (Figure I15). Interestingly, demographic = ° == wo
attributes such as gender and age are more

separated in the FM than in our task-specific
model, likely because a general-purpose model
encodes broad features rather than only task-
specific ones. The most separated groups re-
main imaging-related, followed by age, gen-
der, and ethnicity. Based on our hypothesis,
we predict that sensitivity to subgroup alloca-
tion should follow this ordering, and that if we
are concerned about maximising subgroup per-

formance across each of these attributes, we . .
should prioritise balancing the dataset with re- Figure 6: In foundation model fine-tuning, se-
spect to imaging variables. Indeed, our ex- lecting a balanced allocation for imaging sub-
periments confirm this: balancing random sub- £roups increases subgroup accuracy by over 0.02,
groups has no effect, balancing by race or while it has lessllmportance.for demographic sqb-
age has little effect, but balancing by chest X- &roups, as predicted by their reduced total varia-
ray procedure or view position significantly in- tion distance. We report mean accuracy and stan-
creases mean subgroup accuracy when using a dard deviations fgr 3 ﬁne-tunlng runs, with red
50/50 allocation compared to 100/0 (Figure I6). ITOWS for potential gains from balanced alloca-
Full analysis of subgroup allocation sensitivity ~tOns.

and latent separation shows strong correlations

(with correlation values ranging from 0.63 to 0.95, Figure 116), supporting our hypothesis under
much weaker assumptions and highlighting its potential practical implications for data curation and
model fine-tuning.

Mean subgroup balanced accuracy
°
2
3

Gender Race_cat Age Procedure ViewPosition

Increasing TV

6.5 LIMITATIONS AND FUTURE WORK

Our study is restricted to a pre-training—then—fine-tuning setup, as this is necessary to first explore
representation separation before deciding how to allocate data. One consequence is that the effects
we observe are often modest in magnitude, but they remain consistent and statistically significant
across the different random seeds, data splits, and pre-trained checkpoints we use. We also do not
provide a method for determining the optimal allocation strategy to maximise accuracy across mul-
tiple subgroups. We caution that precise recommendations (e.g., targeting 40/60 female/male or
20/80 young/old ratios) would likely be unreliable due to dataset confounders, and in any case diffi-
cult to operationalise. Instead, we argue that a broader understanding of whether and how strongly
subgroup allocation influences performance is more relevant to current concerns in fairness and
domain generalisation. Moreover, future work should explore how our findings apply to more com-
plex settings, including tasks other than binary classification, with multi-valued or even continuous
subgroups. Finally, our work is limited, as in all fairness research, by our use of subgroups. For
example, finding that a model is insensitive to the allocation of white vs. non-white samples does
not imply that allocation across ethnic groups as a broad concept is irrelevant, simply that, when
described by our chosen coarse groupings, it does not matter.

7 CONCLUSIONS

We propose, prove (under certain assumptions), and give extensive empirical evidence for, a novel
hypothesis explaining why in some cases subgroup training data allocation does not matter for sub-
group performance, and in other cases, it is crucial. Unlike standard explanations (e.g., assuming
that under-represented or poorly performing-groups always benefit from increased data representa-
tion), our hypothesis consistently matches empirical results across diverse datasets and models. By
predicting subgroup allocation sensitivity through latent representation analysis, we provide a new
way to inform crucial training data decisions, maximising fairness, accuracy, and efficiency.
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8 REPRODUCIBILITY STATEMENT

We provide extensive details in the appendix to ensure reproducibility of our results. For each
dataset, we describe pre-processing steps, model architectures, hyper-parameter optimisation pro-
cedures, and training details. We pre-train three models with different random seeds per dataset
and conduct fine-tuning across three more random data splits, yielding nine runs per allocation. We
further conduct ablations on different representation distance metrics, full vs. last-layer fine-tuning,
and fine-tuning budget K. We release code and scripts (upon acceptance) to replicate all figures and
analyses.
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A APPENDIX STRUCTURE

* § B: Supplementary details on datasets, models, and their implementations

* § C: Supplementary results on sensitivity to subgroup allocation and ways to model it
* § D: Supplementary results on common hypotheses not holding

¢ § E Full theoretical results

* § F: Supplementary results on latent representation distances

* § G: Supplementary results on the correlation between representation distance and sub-
group allocation sensitivity

* § H: Extending setup to full fine-tuning

e § I: Supplementary results on VLM fine-tuning

§ J: Ablations on fine-tuning budget K in MIMIC
§ KLLM Usage

B SUPPLEMENTARY EXPERIMENTAL DETAILS

We present additional details on the four datasets and models used. We do not use the full datasets for
fine-tuning because to keep all fine-tuning allocation datasets the same size we set them to the size
of the smallest subgroup in each dataset. For each dataset, we pre-train three models with different
random seeds. For each subgroup allocation experiment, we fine-tune the final classification layer of
each pre-trained model on the three randomly generated data splits, resulting in a total of nine fine-
tuned models per subgroup allocation. This is then repeated across all the subgroups we consider.
This reflects one of the strengths of our work, that compared to the typical data balancing paper, we
compare many different subgroups within a dataset (5 to 11), allowing us to gain new insights on
why they may have different properties.

Table 1 summarises the implementation choices for each dataset. We conduct hyperparameter tuning
both for pre-training and fine-tuning. We optimise hyperparameters within the following ranges:

¢ Batch size: 64, 128, 256
¢ Learning rate: [le-6:1e-3]
* Weight decay: [1e-6:1e-2]

Table 1: Implementation details for all models.

Training strategy MNIST MIMIC-CXR HAM10000 Civil_comments

Y Even/odd digit Pleural effusion Malignant/benign lesion Comment toxicity

Backbone 2-layer CNN DenseNet121 Huang et al. (2016) ViTB16 Dosovitskiy et al. (2021) BERTClassifier (uncased) Devlin et al. (2018)
Initialisation None ImageNet Deng et al. (2009) ImageNet Deng et al. (2009) Bookcorpus, Wikipedia (English)
Nopretrain 5,000 33,237 2.000 17,920

Néinetune 24,000 22,353 3,184 24,000

Neest 4.000 26.590 1,000 12,243

Image size 3x28x28 3x256x256 3x256x256 NA

Augmentation Flip, rotation, Gaussian blur  Flip, rotation, affine transformation, crop  Flip, rotation, color jitter, affine transformation, crop  None

Optimiser Adam Adam AdamW AdamW

Loss Binary cross-entropy Binary cross-entropy Binary cross-entropy Binary cross-entropy

We create natural subgroups based on the metadata available, such as based on sex, age, ethnicity,
or image-related attributes like the position of the X-ray. subgroups are generated based on whether
the comment mentions specific attributes, like gender, religion, or sexual orientation.
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Table 2: Subgroups used for each dataset and their base population prevalence and class prevalence.

Dataset Attribute Group0/1 Pop prev. Class prev.
Colour Red / Green 0.50 0.50
MNIST Digit value Below 5/ Over 0.50 0.50
Random / 0.50 0.50
View Position Lateral / frontal 0.65 0.26
Patient Orientation Recumbent / erect 0.77 0.20
Procedure Portable / fixed scanner 0.46 0.11
Support_Devices Absent / Present 0.23 0.40
Gender Female / male 0.51 0.25
MIMIC-CXR Insurance Not-private / private 0.27 0.19
Language English / non-English 0.88 0.23
Marital Status Married / unmarried 0.44 0.25
Race White / non-White 0.66 0.25
Age Under 60 / Above 60 0.56 0.28
Random / 0.50 0.23
Sex Male / Female 0.54 0.22
Age under 50 / above 50 0.46 0.27
HAM10000 Dataset of origin Rosendahl or Vidir_molemax / Neither 0.62 0.13
Localisation of lesion  Central / Extremity 0.38 0.17
Random / 0.53 0.17
Gender No mention / mention 0.20 0.15
Orientation No mention / mention 0.03 0.27
Civil_.comments Religion No mention / mention 0.16 0.12
Race No mention / mention 0.09 0.11
Year of comment Pre-2017 / Post-2017 0.76 0.11
Random / 0.50 0.11
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C SUPPLEMENTARY RESULTS ON SUBGROUP ALLOCATION SENSITIVITY

C.1 SENSITIVITY OF ALL ATTRIBUTES

We report full results for subgroup allocation sensitivity across all attributes for two full fine-tuning
and last-layer fine-tuning (Tables 3 and 4 respectively).

Table 3: Sensitivity of subgroup performance to fine-tuning allocation across datasets and attributes
in full model fine-tuning. Reported values are esimated regression slopes (mean £ standard devia-
tion across nine fine-tuning runs) for subgroup loss, balanced accuracy, and AUC as allocation varies
from 0% to 100%. Larger absolute slopes indicate higher sensitivity.

Dataset Attribute Loss slope  Balanced Acc slope AUC slope
MIMIC View Position -0.027 (0.001) 0.034 (0.003)  0.012 (0.001)
MIMIC Patient Orientation  -0.009 (0.001) 0.013 (0.002)  0.003 (0.000)
MIMIC Procedure -0.026 (0.001) 0.026 (0.002)  0.016 (0.001)
MIMIC Support_Devices -0.009 (0.001) 0.010 (0.001) 0.006 (0.000)
MIMIC Gender -0.003 (0.001) 0.004 (0.002)  0.002 (0.000)
MIMIC Insurance -0.002 (0.001) 0.003 (0.002) 0.001 (0.000)
MIMIC Language -0.002 (0.001) 0.001 (0.002)  0.001 (0.000)
MIMIC Marital_Status -0.001 (0.001) -0.002 (0.001)  0.000 (0.000)
MIMIC Race_cat -0.002 (0.001) -0.003 (0.002)  0.001 (0.000)
MIMIC Age -0.006 (0.001) 0.009 (0.002)  0.003 (0.000)
MIMIC Random -0.000 (0.001) 0.000 (0.002)  0.000 (0.000)
HAM10000 Sex -0.090 (0.008) 0.058 (0.003)  0.032 (0.001)
HAM10000 Age -0.157 (0.011) 0.049 (0.003)  0.044 (0.001)
HAM10000 Dataset -0.230 (0.011) 0.129 (0.003)  0.077 (0.002)
HAM10000 Localization -0.173 (0.010) 0.082 (0.003)  0.049 (0.001)
HAM10000 Random 0.018 (0.008) -0.010 (0.003)  -0.002 (0.001)
Civil_comments  Gender -0.034 (0.011) 0.023 (0.003)  0.017 (0.003)
Civil_comments Orientation -0.243 (0.012) 0.094 (0.004)  0.089 (0.003)
Civil.comments  Religion -0.048 (0.012) 0.031 (0.003)  0.025 (0.003)
Civil_comments Race -0.146 (0.014) 0.037 (0.002)  0.041 (0.002)
Civil_comments  Year -0.022 (0.013) 0.013 (0.003)  0.011 (0.004)
Civil_comments Random -0.014 (0.011) 0.008 (0.003)  0.007 (0.003)

C.2 EXPERIMENTING WITH MORE COMPLEX FITS

We also experiment with the subgroup allocation scaling law model introduced by Rolf et al. (2021),
which describes subgroup loss as a function of group size and total sample size:

— 52n7P 2,-q
ly(ng,n) = oyn,P? + 1,0 % + 6,

where n is the number of samples in subgroup g, 7 is the total number of samples, and o4, 74 > 0,

Dg,qqg > 0. Following their setup, we conduct additional experiments where we vary the fine-tuning
dataset size K (to obtain more data points) and fit this model under the same parameter constraints.

In our experiments, however, we find that the fitted parameters often come with very large standard
deviations, suggesting instability in the estimates. An example for two groups in MIMIC is given
below:
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Table 4: Sensitivity of subgroup performance to fine-tuning allocation across datasets and attributes
in last-layer fine-tuning. Reported values are esimated regression slopes (mean = standard deviation
across nine fine-tuning runs) for subgroup loss, balanced accuracy, and AUC as allocation varies

from 0% to 100%. Larger absolute slopes indicate higher sensitivity.

Dataset Attribute Loss slope  Balanced Acc slope AUC slope
MIMIC View Position -0.007 (0.001) 0.001 (0.002)  -0.000 (0.000)
MIMIC Patient Orientation  -0.008 (0.001) -0.002 (0.001)  0.000 (0.000)
MIMIC Procedure -0.011 (0.001) 0.014 (0.002)  0.003 (0.000)
MIMIC Support_Devices -0.005 (0.001) 0.000 (0.001)  0.000 (0.001)
MIMIC Gender -0.000 (0.001) 0.001 (0.002)  0.000 (0.000)
MIMIC Insurance -0.000 (0.001) 0.000 (0.002)  -0.000 (0.000)
MIMIC Language -0.001 (0.001) -0.000 (0.001)  0.001 (0.000)
MIMIC Marital_Status -0.000 (0.001) -0.000 (0.002)  -0.000 (0.000)
MIMIC Race_cat -0.000 (0.001) -0.002 (0.002)  -0.000 (0.000)
MIMIC Age -0.002 (0.001) 0.002 (0.002)  0.001 (0.000)
MIMIC Random 0.000 (0.001) 0.001 (0.002)  -0.000 (0.000)
HAM10000 Sex -0.009 (0.002) 0.004 (0.003)  0.005 (0.001)
HAM10000 Age -0.032 (0.002) -0.011 (0.003)  0.004 (0.001)
HAM10000 Dataset -0.023 (0.005) 0.020 (0.003)  0.010 (0.001)
HAM10000 Localization -0.014 (0.003) 0.010 (0.003)  0.004 (0.001)
HAM10000 Random 0.000 (0.003) -0.001 (0.003)  -0.000 (0.001)
Civil_comments  Gender -0.002 (0.002) 0.001 (0.002) 0.000 (0.002)
Civil_comments Orientation -0.026 (0.002) -0.000 (0.002)  0.002 (0.002)
Civil_comments  Religion -0.003 (0.002) -0.000 (0.002) 0.000 (0.002)
Civil_comments Race -0.022 (0.002) 0.004 (0.002)  0.000 (0.002)
Civil_comments  Year -0.000 (0.002) 0.000 (0.003)  0.000 (0.002)
Civil_comments Random -0.000 (0.002) -0.001 (0.002)  -0.000 (0.002)

Table 5: Estimated power-law scaling model parameter fits and standard deviations.

Attribute Group ; Ty qg Og
Gender 0 0.000 £ 0.000 1.298 +0.000 3136.744 4+ 13745.833  2.000 & 0.964  0.302 £ 0.020
Gender 1 278.269 £ 647.492  2.000 £ 0.650  3002.106 £ 13853.293  2.000 £ 1.015 0.348 £ 0.019
ViewPosition 0 4.843 +6.518 0.850 + 0.387 1.523 +4.728 0.225+1.188  0.000 % 1.388
ViewPosition 1 1.035 £ 0.806  0.260 £ 0.336 2.175+£8930 0.276 +£ 1.359  0.000 £ 1.609
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D SUPPLEMENTARY RESULTS ON COMMON HYPOTHESES NOT HOLDING

We additionally test the hypothesis that subgroups with a high class imbalance may lead to greater
model sensitivity to their allocation by modifying P(Y"). However, we see no consistent correlation

between the two variables.

MIMIC HAM10000 Civil_c
» 0.002 3 Groupo | 0.04 § Group 0 r & Group0
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Figure 7: Performance on subgroups with high class imbalance during pre-training does not neces-
sarily improve with increasing training data allocation. Each dot represents one subgroup with bars
indicating variation across 9 fine-tuning runs.
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E FULL THEORY

Assumptions E.1. Assumptions for theory Throughout this section, we impose the following condi-
tions:

1. Fine-tuning datasets D differ in subgroup allocations a), but not in their overall label

distribution P(Y') or conditional distribution P(Y | A).
2. Fine-tuning is restricted to the last-layer classifier gy, with representation Z held fixed.

3. We assume that all classifiers are Bayes optimal under realisability.

Lemma E.1. Let fy.,(x) = go(h,(x)) with representation Z = h,(X) and predictor Y = go(Z),
where gy is the last layer. Assume that

fory € {0,1}. Then, it holds |Po(Z | Y =y,A=0a) —Po(Z |Y =y ’ e forall a € {0,1}.
Proof. We only prove the case for A = 1, since the case for A = 0 is analogous. For simplicity,
write

ta(-|y) =Pe(Z|Y =y, A=a)

p(-ly:)=Pe(Z|Y =y)

Ty =Pg(A=1|Y =y)
By the law of total probability, we have that

p(- 1y) = my (- [ y) + (1= 7y) po(- [ y)- (D

View po(- | y) and pq(- | y) as probability measures on the same measurable space. By using
equation 1, we have that

pa( L y)=nC [ y) = m( [ y) = (mym( [ y)+A=m)po | y)) = A=my) (m( [ y)—po(- [)).
Taking total variation norms and using homogeneity of total variation for signed measures,
TV(pr (- [9)s (- [9)) = (1= my) TV(pa (- | ), (- | ).
By the defining property of total variation,
sup |p1(z | y) = p(z | 9)| = TV(a( | 9), u(- [y) < (1 —my)e <,

where we have used that 1 — 7, < 1. Hence, itholds [Pg(Z | Y =y, A=1)-Py(Z | Y =y)| <,
as claimed. O

We can use this lemma to prove the main result.
Theorem E.1 (Group accuracy parity). Let fg,(x) = go(hy,(x)) with representation Z = h,(X)
and predictorY = go(Z), where gy is the last layer. For a set of parameters 0, define the quantity

TV(0) :=E, [TV(P[Z | Y =y, A=1], Pg[Z | Y =y, A=0])].

Suppose that the model is fine-tuned on two balanced datasets D', D" with different proportions of
the attribute A, yielding parameters 0" and 0". If TV(0') < e and TV(0") < ¢, then

|AcCy (A = a) — AcCyr (A = a)| < 4e + |ACCy — ACCyr/|
foralla € {0,1}.

Proof. We can write the accuracy via conditioning on the true label as

AcCp(A=a)=Pp(Y =Y |[A=a)=) Pp(Y=y|Y =y A=a)Pp(Y =y | A=a)
Yy

2)
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and

AcCor(A=a) =Py (Y =Y |A=a)=> Pp(Y =y |Y =y, A=a)Pp (Y =y | A=a)
Yy

3)
We know by construction that class-conditional label distributions match, i.e.,
]P)g/(Y:y|A:a):Pgu(Y:y|A:a):;pa’y (4)

Combining equation 2-equation 4 it holds

|AcCy (A =a) — AcCyr(A=a)| =

ZPB’(?:y | Y:yaA:a)pa,y_ZPG”(Y:y | Y:yvA:a)pa,y
Yy Yy

SZ)PQ,(?:y|Y:y,A:a)—P9u(?:y|Y:y,A:a)’|pa’y|
Yy

SZ’PQ/(Y/:y|Y:y,A:a)—IP’9u(1A/:y|Y:y,A:a)’,
y

&)

where we have used the triangle inequality, together with the fact that 0 < p, ,, < 1. Furthermore,
using the triangle inequality and Lemma 5.1, it holds

SV =y Y =y A=0)—Pp(V =y | Y =y, A=a)

Yy

<> |Pe( =y|Y =y A=a)-Pu(V =y |V =y)|

+

Y By(Y=y|Y =y —Pp(Y =y|Y =y
Y

[PV =y |V =y A=) = Pon(V =y | ¥ =)
)

<de 4+ |) Po(Y=y|Y =y)-Pp(Y =y |V =y)

Y

(6)

The claim follows by combining equation 5 with equation 6, and noting that since the parameters 6’
and 0" are Bayes optimal under realisability, it holds

ZPQ/(?Z}/‘YZ )—Pgu(?zy‘Y: ) :‘ACCQ/—ACC9//|
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F SUPPLEMENTARY RESULTS ON REPRESENTATION INVARIANCE

F.1 ADDITIONAL DETAILS ON DISTANCE METRICS

We analyse the pre-trained models’ representations by extracting the penultimate layer embeddings
of the test inputs (e.g., 1024-dimensional vector z for DenseNet121) and projecting them to a lower
dimensional space via principal component analysis. To reduce noise, we retain the top-k principal
components that explain at least 70% of the variance (in practice k € [2,81] depending on the dataset

and model) and measure the mean total variation distance (TV) between the representations of

() () ;

examples in subgroups a ’ and a;”’ in this lower dimensional space. We condition on Y to control

for class imbalances.

Given subgroup embeddings Z,G) and Z,(), We estimate their distributions by constructing nor-
(0] 1

malized histograms along each principal component dimension. For a given component, let p
and ¢ denote the resulting discrete probability mass functions over bins b. The TV is then
TV(p,q) = 3>, Ip(b) — q(b)|, where the sum is over histogram bins. In practice, we compute
TV for each principal component dimension separately over 50 bins and report the average across
dimensions. TV provides a bounded ([0, 1]) measure of separation. Values near 0 indicate nearly
identical marginal distributions, while values near 1 indicate almost complete disjointness.

For completeness, we also explore additional distance metrics including the Wasserstein distance
(WD) and the Fréchet distance (FD) which emphasise distinct representation differences.

For WD, we compute the 1D WD along each principal component vector of the embeddings and
report the mean across components:

WD(Z (J> ) 2 (J)

w\H

k
Z z mvz (7>)
(7)

@ ) , and z o denote the projections of the embeddings from subgroups a

(7) €]

where z and ay"’ onto

the ¢-th pr1nc1pal component and W is the univariate Wasserstein-1 distance.

The FD approximates the subgroup feature distributions as multivariate Gaussians. Let ( Ko Ea( )
(0] 0

and ( Ko Ea(j)) be the empirical means and covariances of the embeddings for the two subgroups.
Then

o 2 1/2 1/2\1/2
FD(Za(gjnzagj)) = H“agﬂ') Kol 5+ Tr (Eaéw + 20— Q(Eaéﬂxagnx )Y )
Together, these measures provide different estimates of on invariance: TVD emphasizes the largest
discrepancies in probability mass between subgroups, WD gives a precise estimate of marginal

distribution shift (including differences in distributional shape), and FD captures coarse differences
in means and covariances.

F.2 REPRESENTATION DISTANCES OBTAINED ACROSS THE FOUR DATASETS

We highlight the variation in TV across subgroups in the four datasets in Figure 8.

F.3 METRICS ARE ROBUST
All three distance metrics are correlated and appear robust to whether the calculation is done on the

dimension reduced space or full feature space. We show results in MIMIC as an example because it
is the dataset with the largest number of subgroups.
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Figure 8: Total variation (TV) distances across subgroups in the pre-trained model’s penultimate-
layer representation space. We report mean and standard deviation across three random seeds.
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Figure 9: Total variation distance (TV), wasserstein distance (WD), and Fréchet distance (FD) across
subgroups appear correlated in MIMIC. Each dot represents a subgroup with error bars representing

standard deviation across three pre-training runs.
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Figure 10: Representation distance metrics appear robust to whether they are calculated on the
full latent space or on the lower dimensional space (after PCA). Each dot represents a subgroup in
MIMIC with error bars representing standard deviation across three pre-training runs.
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G SUPPLEMENTARY RESULTS ON THE CORRELATION BETWEEN
REPRESENTATION DISTANCE AND SUBGROUP ALLOCATION SENSITIVITY

Figure 11 extends the main text by showing subgroup allocation sensitivity against additional dis-
tance metrics across our datasets. The correlation is strong across metrics, supporting the latent
separation hypothesis.
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Figure 11: Sensitivity to subgroup allocation is correlated with separation in the pre-trained model’s
representation space (as measured by total variation distance, wasserstein distance, and Fréchet dis-
tance) across the three datasets. Each dot represents mean distance and loss slope for one subgroup,
averaged across 9 fine-tuning runs, with bars corresponding to standard deviations, and Pearson cor-
relation coefficients also shown.
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H EXTENDING SETUP TO FULL FINE-TUNING

We additionally extend our setup from last-layer fine-tuning to full model fine-tuning. Overall, the
correlations are equally significant, and the magnitude of the effects larger (Figures 13 and 14. We
attribute this to the fact that in practice, separation of subgroup representations does not change with
subgroup allocations (Figure 12). Therefore, while some of our theoretical assumptions still hold,
the effect increases as full fine-tuning allows for greater modification of network parameters.
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Figure 12: Examples showing latent representation separations are stable across subgroup alloca-

tions under full fine-tuning.
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Figure 13: Correlation between loss slope and distance metrics remains strong under full fine-tuning.
Each dot represents mean distance (total variation distance, wasserstein distance, or Fréchet dis-
tance) and loss slope for one subgroup, averaged across 9 fine-tuning runs, with bars corresponding

to standard deviations, and Pearson correlation coefficients also shown.
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I SUPPLEMENTARY RESULTS ON VLM FINE-TUNING

I.1 SUPPLEMENTARY EXPERIMENTAL DETAILS

We first obtain 1024-dimensional embeddings of MIMIC-CXR images by passing them through the
CheXagent XraySigLIP_vit-1-16-siglip-384__webli. We train a single classification
layer on 16,000 MIMIC-CXR training embeddings, varying allocation in the same way as previous
experiments. We test the classification model on the MIMIC-CXR test set (which CheXagent has
not been trained on).

1.2 SUPPLEMENTARY RESULTS

We show differences in latent representation separations in CheXagent in Figure 15.
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Figure 15: Total variation distances of CheXagent Vision-Language Model embeddings of MIMIC
images across subgroups.
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Figure 16: Correlation between latent representation separation and subgroup allocation sensitivity
in the vision-language model setting. Results confirm that our hypothesis generalizes beyond task-
specific models. Each dot represents mean distance and loss slope for one subgroup, averaged
across 9 fine-tuning runs, with bars corresponding to standard deviations, and Pearson correlation
coefficients also shown.
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J  ABLATIONS ON FINE-TUNING BUDGET K

We repeat the MIMIC experiments with a smaller fine-tuning budget K to explore whether changing
sample size modifies our results. We find that smaller budgets show slightly higher absolute mag-
nitudes of allocation sensitivity. This is most likely due to larger sample sizes allowing the model
to learn more robust disease representations which generalise better across allocations. However,
correlations are equally significant across fine-tuning budgets, suggesting our latent representation
hypothesis is valid across dataset sizes.
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Figure 17: Correlation between representation separation and subgroup allocation sensitivity is
strong across fine-tuning dataset sizes in MIMIC. Each dot represents mean distance and loss slope
for one subgroup, averaged across 9 fine-tuning runs, with bars corresponding to standard devia-
tions, and Pearson correlation coefficients also shown.
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K LLM USAGE

We used a large language model (OpenAl ChatGPT) as a general-purpose assistant tool to help with
phrasing and grammar improvements. The model was not used for research ideation, experiment
design, data analysis, or generation of original scientific content. All technical ideas, methods, and
results are the authors’ own, and the authors take full responsibility for the paper’s contents.

28



	Introduction
	Related work
	Problem setting
	Current explanations are unreliable
	Experimental setup
	Sensitivity to subgroup allocation is highly variable
	Current hypotheses do not explain differences in allocation sensitivity

	Bounding sensitivity to subgroup allocation with model latent representations
	Subgroup separation predicts sensitivity to allocation in real-world experiments
	Assessment of representation invariance
	Intuition for our results in MNIST
	Subgroup separation is highly correlated to allocation sensitivity
	Practical application in fine-tuning a foundation model
	Limitations and future work

	Conclusions
	Reproducibility Statement
	Appendix structure
	Supplementary experimental details
	Supplementary results on subgroup allocation sensitivity
	Sensitivity of all attributes
	Experimenting with more complex fits

	Supplementary results on common hypotheses not holding
	Full theory
	Supplementary results on representation invariance
	Additional details on distance metrics
	Representation distances obtained across the four datasets
	Metrics are robust

	Supplementary results on the correlation between representation distance and subgroup allocation sensitivity
	Extending setup to full fine-tuning
	Supplementary results on VLM fine-tuning
	Supplementary experimental details
	Supplementary results

	Ablations on fine-tuning budget K
	LLM Usage

