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ABSTRACT

Unequal representation of demographic groups in training data poses challenges to
model generalisation across populations. Standard practice assumes that balanc-
ing subgroup representation optimises performance. However, recent empirical
results contradict this assumption: in some cases, imbalanced data distributions
actually improve subgroup performance, while in others, subgroup performance
remains unaffected by the absence of an entire subgroup during training. We con-
duct a systematic study of subgroup allocation across four vision and language
models, varying training data composition to characterise the sensitivity of sub-
group performance to data balance. We propose the latent separation hypothesis,
which states that a partially fine-tuned model’s dependence on subgroup represen-
tation is determined by the degree of separation between subgroups in the latent
space of the pre-trained model. We formalise this hypothesis, provide theoretical
analysis, and validate it empirically. Finally, we present a practical application
to foundation model fine-tuning, demonstrating that quantitative analysis of latent
subgroup separation can inform data collection and balancing decisions.

1 INTRODUCTION

There is a wide consensus in machine learning that model performance improves monotonically
with increasing training data (Rosenfeld et al., 2020; Kaplan et al., 2020). This principle, formalised
through dataset scaling laws, has guided much of the recent progress in model training. However,
real-world data rarely satisfies the assumption of being independent and identically distributed (i.i.d.)
(Arjovsky et al., 2020; Wang et al., 2023). Instead, datasets are composed of clusters of correlated
samples, corresponding to subgroups or domains. In the medical domain, clusters may correspond to
demographic categories, while in image datasets they may reflect camera types, and in multilingual
corpora they may represent language varieties.

In such cases, the question becomes more nuanced: how does model performance on a particular
subgroup scale as its representation in the training data increases? While intuition suggests that a
higher proportion of subgroup-specific data should directly improve performance on that subgroup,
recent studies have revealed surprising counterexamples (Rolf et al., 2021; Weng et al., 2023; Cevora
et al., 2025), where increasing subgroup allocation had little or even no effect. This challenges the
widely held view that dataset rebalancing is always a reliable solution (Idrissi et al., 2022).

Therefore, understanding the relationship between subgroup allocation and subgroup performance
remains an important open question. When concerned about model fairness, practitioners must
decide whether to conduct certain interventions, like collecting balanced data across demographic
groups, or resampling or augmenting their dataset, potentially at the cost of reduced overall perfor-
mance (Raji & Buolamwini, 2019; Idrissi et al., 2022). In domain generalisation, practitioners must
weigh whether fine-tuning on a smaller set of domain-specific data will yield better deployment
performance than fine-tuning on a larger set of general data (Hulkund et al., 2025). More broadly,
given the cost of data collection and annotation, knowing when subgroup representation matters can
guide whether to prioritise general high-quality data or group-specific data.

In this work, we aim to understand how the allocation of data across subgroups affects subgroup
performance at inference time, given a fixed training budget. Through extensive experiments in
vision and language tasks, we find that subgroup sensitivity to allocation varies dramatically across
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Figure 1: Model sensitivity to data balance depends on latent separation of subgroups. Left
plots show PCA projections of latent representations of MNIST parity classifiers. Right plots show
subgroup accuracy as training data allocation changes.

datasets, models, and attributes. We probe why these differences arise and put forward a novel
hypothesis: the degree to which redistributing subgroup data improves subgroup performance is
determined by how strongly the set of subgroups are separated in the pre-trained model’s latent
representations. We provide both theoretical justification and empirical evidence of this hypothesis.

Our contributions are:

§4 We demonstrate that widely held explanations for sensitivity to subgroup allocation fail to
match empirical behaviour.

§5 We derive a theoretical upper bound on sensitivity to subgroup allocation based on sub-
group separation in the pre-trained model’s latent space.

§6 We show empirically that sensitivity to subgroup allocation is significantly correlated to the
distance between two subgroups in the pre-trained model’s latent representations.

§6.5 We show how our findings can guide dataset selection decisions to improve fairness in a
practical case-study fine-tuning a vision-language foundation model.

2 RELATED WORK

Dataset scaling is not straightforward when the train and deployment settings are not i.i.d.
We are broadly interested in the relationship between model training data and model performance.
Research in this area has investigated different aspects of data (e.g., size, composition, or individual
points) and different performance metrics (e.g., overall loss, fairness, or domain-specific accuracy)
Hashimoto (2021). While dataset scaling laws have shown that performance improvements follow
predictable power law trends (Rosenfeld et al., 2020; Kaplan et al., 2020), this relationship becomes
more complex when the training and test data are drawn from different distributions. In such cases
more data is not necessarily better. For instance, Hulkund et al. (2025) and Shen et al. (2024) both
show that when optimising for a specific deployment setting, a subset of the data can yield better
performance than the full dataset. Similarly, Diaz & Madaio (2025) argue that scaled training data
can have a negative impact depending on the evaluation metrics and subpopulations considered.

Subgroup data scaling through the lens of fairness This problem has also been studied indi-
rectly in the field of fairness, where data are grouped into subgroups (e.g., based on demographic
attributes), and one investigates how training data composition (i.e., number/proportion of samples
from certain subgroups) affects fairness (i.e., some metric based on model performance on certain
subgroups). The prevailing assumption is again that more subgroup-specific training data leads to
improved performance on that subgroup (Raji & Buolamwini, 2019; Chen et al., 2018). When more
data cannot be collected, the standard intervention is to rebalance the model training data by under-
or over-sampling samples from certain subgroups (Idrissi et al., 2022). Many works show that this
simple method can yield remarkable fairness improvements both when training from scratch (Idrissi
et al., 2022) and when fine-tuning (potentially biased) pre-trained models (Kirichenko et al., 2023;
Wang & Russakovsky, 2023; Alabdulmohsin et al., 2024).
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Inconsistencies in subgroup balancing results However, a growing body of work argues that
balancing data does not necessarily improve fairness, and that it can even be detrimental. Schrouff
et al. (2024) use a causal framework to show conditions under which data balancing will not improve
model fairness. Similarly, Schwartz & Stanovsky (2022), Roh et al. (2021), Qiao et al. (2025), and
Claucich et al. (2025) show that fairness is not necessarily maximized at uniform group ratios,
with the latter arguing that this is due to unequal task difficulty across groups. Weng et al. (2023)
and Cevora et al. (2025) even show cases where a model’s performance on female medical im-
ages remains constant (and sometimes decreases) as the proportion of female images in the training
set increases. Loss-reweighting based approaches such as group distributionally robust optimisa-
tion (Sagawa et al., 2020) are based on a related principle: rather than balancing group size, they
reweight groups with higher losses. However, loss-based methods also exhibit failure modes (Zong
et al., 2023), and it remains unclear whether up-weighting data from poor-performing groups nec-
essarily improves performance on those groups. Together, these studies reflect an emerging trend in
fairness research, that different subgroups have distinct properties and causes of under-performance,
and therefore respond differently to interventions like data balancing or loss re-weighting (Wang,
2025; Alloula et al., 2025; Jones et al., 2024; Yang et al., 2023). However, without a causal frame-
work (which is difficult to apply in practice) (Jones et al., 2024; Schrouff et al., 2024) or direct
experimentation, it is difficult to determine a priori whether balancing will improve fairness.

Impact of subgroup allocation on subgroup performance Our work differs from fairness-
oriented studies in that we address a more fundamental question: how does subgroup allocation
affect subgroup performance? We argue that understanding this is prerequisite for tackling fair-
ness concerns and implementing any bias mitigation methods. Despite its importance, this question
has received little direct attention, and as discussed above, it is not clear whether redistributing
data from under-represented or poorly performing groups reliably improves performance for those
groups. Rolf et al. (2021) take a first step by fitting a per-group power-law scaling model describ-
ing the impact of subgroup and total training data size on subgroup performance. Similarly to the
fairness papers, they show that the optimal allocation varies across datasets and tasks, and is not
necessarily balanced. Our work builds on theirs in several ways, but differs crucially in that we
propose a (theoretically-grounded) explanation for why subgroup allocation impacts subgroup per-
formance so variably. Unlike Rolf et al. (2021), who must train many models across dataset sizes
and allocations to fit their empirical scaling law, we identify an underlying mechanism driving these
effects. This enables us to determine, for a given model and subgroup, whether subgroup allocation
is likely to matter, and can help guide fine-tuning strategies to maximise subgroup performance.

3 PROBLEM SETTING

To study the impact of subgroup allocation on subgroup performance, we consider supervised fine-
tuning of a pre-trained model on a dataset of input-label pairs (z,y) € X x Y. The data are
drawn from an underlying distribution P, which we randomly split into three disjoint subsets:
Ppre-train> Phine-tune> and Presr. We study settings where the training and test distributions are anno-
tated with m binary attributes {A(l), ..., AU™Y which can represent demographic or other sample-
level characteristics. Each attribute A) induces a binary partition of the data into two subgroups,
af) = {(z,y) | AW = 0} and a{?) = {(2,y) | AU = 1}. Examples of attributes include gender
(male/female), imaging view (frontal/lateral), or dataset source (scanner A/scanner B).

For each subgroup, we record its base population prevalence under P : fy,(cj ) =
Prix v at)~p [AY) = k], k € {0,1}. During fine-tuning, we investigate the impact of ma-
nipulating the prevalence of each subgroup, which we refer to as subgroup allocation. We assume
there is a fixed fine-tuning budget of K examples {(z;, y;, Al(] ))}ZK:l. For each subgroup a,(j ), fol-
lowing Rolf et al. (2021), we define its allocation as the fraction of the fine-tuning dataset coming

from subgroup a,,(cj ).

K
) 1 ,
al) = = S AP =k, ke {01}
i=1
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Our objective is to characterise how subgroup-specific test performance (for instance the loss Eg ))
(4)

depends on these allocations. The central question of this work is thus: how does é,(cj ) vary with o
and why does this sensitivity differ across attributes and subgroups?

4 CURRENT EXPLANATIONS ARE UNRELIABLE

We begin by systematically compare how subgroup allocation affects subgroup performance across
various empirical settings. We explore whether existing hypotheses, for instance that under-
represented subgroups will benefit from increased allocation, can explain the patterns we observe.

4.1 EXPERIMENTAL SETUP

Model training with different allocations We start with a baseline model trained on a random
subset of the original dataset and subsequently fine-tune it on datasets for which we systematically
vary the allocations « of different subgroups. For each attribute AU), we partition the dataset into
binary subgroups géj ) and gy ). For each attribute and dataset, we create 11 fine-tuning datasets,
varying the allocation agj ) e {0,0.1,0.2, ..., 1} while keeping the total fine-tuning dataset size K
constant (ablations on K are presented in Figure J25). Correspondingly, a(()j ) =1 - agj ). This

yields, for instance, a dataset with 0% female images, 10% female images, and so on until 100%.

Assessing sensitivity to subgroup allocation = We quantify how subgroup allocation affects model
performance on each subgroup ¢’ in two ways. First, we fit a linear least-squares regression to
the subgroup-specific performance (e.g., accuracy, loss, AUC) as a function of the allocation ag ),
recording the slope a,(j ). We then average this across both groups to obtain a slope estimate a/. We
also obtain a coarse estimate of generalisation by subtracting model performance on subgroup g,(j )

at 0% allocation from its performance at 100% allocation: Aﬁfcj ) = chj ) (a,(gj ) = 1)— é,(j ) (a,(j ) = 0).

Datasets, tasks, and models We conduct these experiments in four image and text datasets with a
range of model architectures for binary classification tasks. This includes even/odd digit prediction
with a red and green coloured version of MNIST (Lecun et al., 1998), pleural effusion classification
in MIMIC-CXR (chest-X rays) (Johnson et al., 2019), skin lesion detection in HAM10000 (skin
images) (Tschandl et al., 2018), and toxic comment classification in Civil_comments (Borkan et al.,
2019). These datasets all contain various metadata which enables natural splitting of the samples
into subgroups, based on attributes like sex, ethnicity, image type, date of image etc. The multitude
of attributes we compare within the same dataset allows us to gain more insights than previous
studies which usually only consider one or two standard groupings (Rolf et al., 2021; Claucich
et al., 2025; Idrissi et al., 2022). We use CNNs and transformers for our experiments. Detailed
dataset characteristics and model implementation specifics are provided in Tables B1 and 2.

4.2  SENSITIVITY TO SUBGROUP ALLOCATION IS HIGHLY VARIABLE

Across our three real-world datasets, we find substantial variability in subgroup performance sen-
sitivity to allocation. Certain subgroups show no benefit from increased allocation and achieve
equivalent performance whether the model is fine-tuned only on that subgroup or entirely without
it (e.g., age in MIMIC). In contrast, other subgroups, like dataset of origin in HAM 10000, are sen-
sitive to their allocation. This results an estimated slopes of the accuracy change which range from
0 (no effect) to 0.05 (strong sensitivity), as shown in Figure 2. In other words, while the MIMIC
model performs equivalently on old individuals whether or not it has been trained on such images,
the HAM model is almost 10% less accurate on one dataset source if it has not been trained on
any images from it. We summarise all slopes obtained in Tables C3 and C4. These results mirror
other recent work which showed that while subgroup performance is sometimes maximised when a
dataset is balanced with respect to a certain attribute, it can also be maximised at skewed allocations,
or in other cases it can be equally maximised across allocations Rolf et al. (2021); Claucich et al.
(2025); Roh et al. (2021); Cevora et al. (2025); Weng et al. (2023).
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Figure 2: While some subgroups’ accuracy increases with increased representation in training
data, others’ performance is independent of their training data representation. The fine-tuned
model’s balanced accuracy on each subgroup, averaged across 9 fine-tuning runs, is shown alongside
estimated linear regression slopes a.

We consider more complex functional forms for fitting subgroup loss vs. allocation (e.g., power-law
models (Rolf et al., 2021)), but we find them unstable: fits vary substantially with small changes in
data and standard deviations are large, an issue also reported in Rolf et al. (2021)). We further discuss
this in §C.2. We attribute this to small sample sizes and high heterogeneity across subgroups. In
contrast, linear regression provides robust and interpretable summaries, and subgroup losses appear
roughly linear across allocations. We therefore adopt linear fits as a first-order sensitivity measure.

4.3 CURRENT HYPOTHESES DO NOT EXPLAIN DIFFERENCES IN ALLOCATION SENSITIVITY

We explore common explanations for sensitivity to subgroup allocation including whether it could
be linked to certain subgroups being under-represented in the initial pre-training dataset, certain
subgroups being disadvantaged by the pre-trained model’s performance, or certain subgroups hav-
ing substantial class imbalances (Figures 3 and D8 respectively). However, none of these three
explanations appear to be consistently correlated with sensitivity to subgroup allocation. For in-
stance, we see certain subgroups which are extremely under-represented in the pre-training set (e.g.,
less than 20% of the pre-training data) which show no reduction in loss as fine-tuning data alloca-
tion increases (Figure 3 top row). This suggests that over-representing under-represented subgroups
does not necessarily yield performance improvements, in line with other recent work (Schrouff et al.,
2023; Claucich et al., 2025; Roh et al., 2021) and contradicting many other pieces of research (Idrissi
et al., 2022; Wang & Russakovsky, 2023; Alabdulmohsin et al., 2024).

Similarly, we see surprising examples where certain subgroups which are initially amongst the low-
est performing by the pre-trained model also show almost no decrease in loss as allocation increases
(Figure 3 bottom row), again contradicting the general assumption that training on more data from
a poor-performing subgroup will improve model performance on that subgroup (or improve it more
than training on general data) (Roh et al., 2021; Sagawa et al., 2020).

5 BOUNDING SENSITIVITY TO SUBGROUP ALLOCATION WITH MODEL
LATENT REPRESENTATIONS

Given the lack of a coherent explanation for differences in sensitivity to subgroup balance, we in-
troduce the following hypothesis: sensitivity to subgroup allocation may be explained by whether
a model learns distinct representations for subgroups ag and a;, and thus needs to be trained on
sufficiently high proportion of samples from, say ag, in order to achieve good performance on ay.

Through theoretical analysis and with certain assumptions, we are able to validate this hypothe-
sis. We show that low latent separation with respect to an attribute A implies low sensitivity to A
allocation in the fine-tuning dataset, i.e., fine-tuned model performance on ay and on a; does not
significantly vary for different allocations a(4). We formalise this idea by proving that small to-
tal variation distance (TV) between class-conditioned subgroup representations Z in a pre-trained
model, implies that last-layer fine-tuning on any dataset which differs in the allocation of A, but
not in its proportion of Y, cannot result in models which differ significantly specifically in their
subgroup accuracies (Theorem 5.1). To the best of our knowledge, this is the first result that links
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Figure 3: Performance on subgroups under-represented during pre-training (top) and perfor-
mance on disadvantaged subgroups (bottom) does not necessarily improve with increasing dataset
allocation. The y-axis shows the gradient of subgroup loss change with respect to subgroup alloca-
tion (negative values indicate performance improvement). No clear correlation is observed in either
setting. Each point represents one subgroup, with error bars showing variation across 9 runs.

subgroup allocation sensitivity to class-conditional representation separation. For readability, we
provide only proof sketches here, deferring the full derivations to Appendix E.

Lemma 5.1. Let fy, (x) = go(hy(x)) with representation Z = h,(X) and predictor Y = g¢(Z),
where gg is the last layer. P, denotes the distribution over representations Z. Assume that

TV(P,[Z|Y =y, A=1],P)[Z|Y =y, A=0]) <k,
fory € {0,1}. Then, it holds |P,(Z | Y =y, A=a) —P,(Z|Y =y)| <eforalla € {0,1}.

This theorem tells us that if the representation Z is similar between groups (i.e., A = 0and A = 1)
for a given label Y = y, then each group’s representation is also close to the overall representation
for that label, meaning group membership does not significantly affect the representation once the
label is fixed. We can use this lemma to prove the main result. The proof is shown in E.1.

Assumptions. We assume that (i) fine-tuning datasets D’, D" differ only in subgroup allocations
o), and (ii) the marginal label distribution P(Y") and conditional distribution P(Y | A) remain
unchanged across datasets. These assumptions are further discussed in Appendix E.2.1.
Theorem 5.1 (Group accuracy parity). Let fp () = go(hy,(2)) with representation Z = h,(X)
and predictor Y = go(Z), where gq is the last layer. For a dataset D, define the quantity

TV(D) :=E, [TV(P,[Z |Y =y, A=1],P,[Z|Y =y, A=0])].

Suppose that the model is fine-tuned on two datasets D', D" which differ only in o), yielding two
models with parameters ' and 0". If TV(D') < € and TV(D") < ¢, then

|AcCy (A = a) — AcCyr (A = a)| < 4e + |AcCy — ACCyr/|
foralla € {0,1}.

This theorem tells us that if two models are fine-tuned on datasets that differ only in the group
proportions (i.e., the distribution of A), and both models learn approximately group-invariant repre-
sentations (i.e., TV(D) < ¢), then the accuracy on any group A = a will not differ much between
the models.

The proof (E.1) uses a result that bounds how much the model’s class-conditioned predictions can
differ across groups using total variation distance (Lemma 5.1). Assuming that the label distribution
P(Y) and the conditional distribution P(Y" | A) remain unchanged across the datasets, this implies
that the subgroup accuracy difference is bounded by a term depending on ¢ and the difference in
overall accuracies between the models.
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Remark (Scope of the last-layer assumption). The statement and proof of Theorem 5.1 do not
rely on retraining only the last layer. For any fixed representation map h: X — Z (including h = Id
so that Z = X), if the class-conditional subgroup distributions of Z have TV bounded by ¢ then the
same accuracy bound holds for any readout gy trained on Z. In practice, however, evaluating TV in
the input or very early-layer spaces often yields large values and a vacuous bound.

Remark (Tightness of bound). In practice, for a fixed fine-tuning budget K, the overall accu-
racy difference is typically negligible relative to subgroup accuracy differences, i.e. |[AACC| <«
|[AAcc,|. We observe this in our experiments (Figure E9), implying that TV differences are the
dominant driver in the upper bound.

6 SUBGROUP SEPARATION PREDICTS SENSITIVITY TO ALLOCATION IN
REAL-WORLD EXPERIMENTS

We showed that if subgroup representations are nearly indistinguishable (as measured by TV),
then modifying fine-tuning dataset subgroup allocation (assuming that P(Y") and P(Y'|A) are un-
changed) has little effect on downstream accuracies. We now turn to empirical analyses to test how
well this theoretical upper bound captures real-world behaviour, and to investigate whether finer-
grained patterns, such as correlations between representation separation and allocation sensitivity,
emerge beyond what the bound alone reveals.

6.1 ASSESSMENT OF REPRESENTATION INVARIANCE

We keep the same setup as previously, where models are pre-trained on a random subset of each of
the four datasets, and their last layer is then fine-tuned with varying subgroup allocations. To cover
a broad range of subgroups, we relax the theorem’s assumption that P(Y) is fixed across fine-tuning
distributions. Notably, many attributes do satisfy (or closely approximate) this assumption as they
have equal class prevalences. This includes gender, marital status, language, and race in MIMIC;
localisation in HAM10000; year and race in Civil_comments; and random groups across all datasets
(full details listed in Table B2).

We quantify subgroup separation by extracting penultimate-layer embeddings, projecting them to
a lower-dimensional space using PCA (retaining > 70% variance), and computing the mean total
variation distance (TV) between subgroup distributions conditioned on Y. TV is bounded in [0, 1],
with higher values indicating stronger separation. For completeness, we also explore additional
distance metrics including the Wasserstein distance (WD) and the Fréchet distance (FD) which
emphasise distinct representation differences. We give additional methodological details, show that
our metrics are robust to whether they are calculated on the full feature-space or the reduced feature
space, and show that all three distances metrics are correlated in Appendix Section F.

6.2 INTUITION FOR OUR RESULTS IN MNIST

In our synthetic MNIST set-up, we know that a good parity classification model should not rely on
colour (A(O)) to make a prediction, so learnt representations z should be invariant to AO) in other

words P(z | Y, aéo)) =P(z]Y, ago)). In contrast, a model must encode some notion of which digit
is represented in order to classify it into even vs. odd, and therefore its learned representation should
depend on whether the digit is over 5 or under 5 (A(")). We test this by training a 2-layer CNN. As
expected, the penultimate layer model embeddings do cluster by digit A(*) but not by colour A
(Figure 1). Quantitatively, the average TV between the images representing digits over 5 and those
under 5 is 0.17, approximately twice the average distance between the red and green images (which
is itself close to that between random groupings), as shown in Figure F11.

Our hypothesis predicts that fine-tuning this model on datasets with different proportions of the same
subgroups will show that the model is only sensitive to the allocation of the under 5/over 5 groups
but not to the red/green groups. Indeed, we find that the subgroup accuracy on under 5 and over 5
images drops sharply as their fine-tuning dataset allocation drops, while the subgroup accuracy in
the red/green images is roughly independent of the fine-tuning dataset allocation (Figure 1, bottom
row). The model can effectively generalise “zero-shot” to new colours, but not to unseen digit
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groups. Looking back at common explanations in the literature, we note that both red/green and over
5/under 5 groups have equal P(Y"), equal base accuracy, and equal base allocation in the pre-training
dataset, so none of those explanations would have been able to predict the observed discrepancy in
subgroup allocation sensitivity.

6.3 SUBGROUP SEPARATION IS HIGHLY CORRELATED TO ALLOCATION SENSITIVITY

We next explore how our hypothesis holds in real-world datasets with more subgroups and larger
models, where there is no clear-cut separation between attributes a model should be invariant to or
not. We first note that there is wide variation in subgroup separation in penultimate-layer represen-
tations (as shown in Figure 11). Generally, image-related attributes (e.g., X-ray view in MIMIC or
dataset of origin in HAM10000) induce greater separation than demographic attributes. Some sub-
groups, such as Civil_comments year (pre- vs. post-2017) or HAM10000 lesion location (extremity
vs. trunk), show separations comparable to random splits. The three distance metrics (TV, WD, FD)
are strongly correlated and robust across full vs. PCA-reduced spaces (Figures F12 and 13).

Across our three real-world datasets (image and text) and multiple architectures (CNNs and trans-
formers), we find a significant correlation between subgroup separation in pre-trained representa-
tions and subgroup sensitivity to allocation during fine-tuning (Figure 4). This correlation holds
across the three distance metrics (TV, WD, FD). Intuitively, when two subgroups have similar rep-
resentation of target Y (i.e., P(z | Y, a(()o)) =P(z|Y, ago))), then additional subgroup specific data
provides little added value. Conversely, when subgroup representations are separated, allocation has
a large effect.

MIMIC HAM10000 Civil_comments
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Figure 4: Sensitivity to subgroup allocation is highly correlated with separation in the pre-
trained model’s representation space (as measured by total variation distance, TV) across the three
datasets. Each dot represents mean TV and loss slope for one subgroup, averaged across 9 fine-
tuning runs, with bars corresponding to standard deviations, and Pearson correlation also shown.

We also observe that zero-shot generalisation is directly related to subgroup separation. As shown in
Figure 5, subgroup AUC is constant between 100% and 0% training data allocation only when rep-
resentations are (approximately) invariant across them. This echoes work in the domain adaptation
literature, which stipulate that invariant representations are more robust as they generalise across
environments (Arjovsky et al., 2020). Similar ideas have also laid the foundation for “fair repre-
sentation learning” methods which aim to mitigate biases by encouraging models to learn causal
representations of Y rather than encoding, e.g., demographic attributes like sex (Sarhan et al., 2020;
Madras et al., 2018). Here, we extend this principle to subgroup balancing by using a measurable
property of the pre-trained model, class-conditional latent separation, as a predictive diagnostic for
when allocation will matter. We further provide a bound (Theorem 5.1) linking small total-variation
separation to small subgroup-accuracy differences across allocations. Altogether, these empirical re-
sults support our theoretical finding of an upper bound to performance differences across allocations,
and the consistent correlation suggests there may even be a stronger phenomenon at play.

While we first experiment with last-layer fine-tuning for consistency with our theory, we test whether
this correlation extends to settings where the fine-tuning occurs on the full network (and therefore
representations Z could change). We find equally significant correlations, with effects of stronger
magnitudes, across all three datasets (Figure H17 and H18), suggesting that this trend may hold in
less restricted settings. Surprisingly, analysis of the separation of last-layer representations shows
that they are roughly constant across allocations, effectively matching our initial setup (Figure H16).
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Figure 5: AUC difference when a model has not been trained on a subgroup increases with
the separation of the latent representations of the subgroups. Results are shown as mean AUC
difference across 9 fine-tuning runs with error bars indicating standard deviation.

We also test whether our results hold when training from scratch (using the model trained on the
natural dataset proportions to analyse latent representation separation), and find that the same trends
persist, with allocation sensitivities almost 10 times stronger (full results in Appendix H.2).

6.4 OPERATIONALISATION OF LATENT SEPARATION HYPOTHESIS

We further test our hypothesis by explicitly enforcing low TV (via a differentiable proxy) during pre-
training to see whether this affects sensitivity to subgroup allocation (method detailed in § J). We find
that regularisation indeed reduces latent TV separation, which leads to a significant drop in overall
performance (over 0.10 accuracy decrease) but reduced performance gaps between frontal and lateral
images, and importantly, reduced sensitivity to subgroup allocation (accuracy slope decreases from
0.016 to -0.007 with regularisation), as shown in Figure 6. This intervention directly supports our
hypothesis that latent separation drives allocation sensitivity.
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Figure 6: TV regularisation reduces subgroup allocation sensitivity. Mean latent TV distance
between view-groups after pre-training (left), fine-tuned subgroup balanced accuracy as subgroup
allocation increases without TV regularisation (middle) and with regularisation (right).

6.5 PRACTICAL APPLICATION IN FINE-TUNING A FOUNDATION MODEL

Beyond our findings’ analytical value in explaining previously observed discrepancies in subgroup
allocation sensitivity, we also examine its practical utility. Specifically, we consider a more realistic
setup where a foundation model (FM) is used to generate informative embeddings of a dataset, on
top of which a simple classification layer is trained. For this, we use two radiology-specific FMs:
CheXagent (Chen et al., 2024) and RAD-DINO-MAIRA-2 (Pérez-Garcia et al., 2024). Both are
trained on over 1 million images, with distinct training mechanisms (e.g., image and text via SigLIP
and only images via DINO respectively). We use these two models to embed images in the MIMIC-
CXR test set. This differs from our traditional setup as the pre-training and fine-tuning datasets
are drawn from different distributions and the fine-tuning task does not directly overlap with the
pre-training tasks.
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We again measure distances between subgroup
representations and find substantial variabil- -
ity (Figures 121). Interestingly, demographic 081{ i 1o0%
attributes such as gender and age are more

separated in the FM than in our task-specific e 1 j
model, likely because a general-purpose model . tJv. I
encodes broad features rather than only task-

specific ones. Across both models, the most o7 I
separated groups remain imaging-related, fol-
lowed by age, gender, and ethnicity. Based on
our hypothesis, we predict that sensitivity to
subgroup allocation should follow this order- Pt e . Tone  Veraen
ing, and that if we are concerned about max- Increasing TV

Mean subgroup balanced accuracy

0.77

imising subgroup performance across each of
these attributes, we should prioritise balancing
the dataset with respect to imaging variables.
Indeed, our experiments confirm this: balanc-
ing by gender or race has little effect, but bal-
ancing by X-ray procedure or view significantly
increases mean subgroup accuracy when using
a 50/50 allocation compared to 100/0 in both
models (Figure 7, 122). Full analysis of allo-
cation sensitivity and latent separation shows
strong correlations (r € [0.60, 0.95], Figure 123, 24), supporting our hypothesis under much weaker
assumptions and highlighting its potential practical implications for data curation and model fine-
tuning. Concretely, practitioners could use this TV calculation to prioritise obtaining balanced data
with respect to procedure and image view in further fine-tuning data collection efforts.

Figure 7: In foundation model fine-tuning, se-
lecting a balanced allocation for imaging sub-
groups increases subgroup accuracy by over 0.02,
but has less importance for demographic groups,
as predicted by their reduced total variation dis-
tance. We show results of 3 fine-tuning runs, with
red arrows for potential balancing gains.

6.6 LIMITATIONS AND FUTURE WORK

The core of our study is restricted to a pre-training—then—fine-tuning setup, as this is necessary to
first explore representation separation before deciding how to allocate data. One consequence is
that the effects we observe are often modest in magnitude, but they remain consistent and statisti-
cally significant across the different random seeds, data splits, and pre-trained checkpoints we use.
We also do not provide a method for determining the optimal allocation strategy to maximise ac-
curacy across multiple subgroups. We caution that precise recommendations (e.g., targeting 40/60
female/male or 20/80 young/old ratios) would likely be unreliable due to factors like confounders,
noise, or differences in sample informativeness, and in any case difficult to operationalise. Instead,
we argue that a broader understanding of whether and how strongly subgroup allocation influences
performance is more relevant to current concerns in fairness and domain generalisation. Moreover,
future work should explore how our findings apply to more complex settings, including tasks other
than binary classification, with multi-valued or even continuous subgroups, and settings where the
training data is expanded instead of simply re-allocated. Future work should also explore if our find-
ings can be leveraged for bias mitigation (for instance by enforcing representation invariance where
appropriate). Finally, our work is limited, as in all fairness research, by our use of subgroups. For
example, finding that a model is insensitive to the allocation of white vs. non-white samples does
not imply that allocation across ethnic groups as a broad concept is irrelevant, simply that, when
described by our chosen coarse groupings, it does not matter.

7 CONCLUSIONS

We propose, prove (under certain assumptions), and give extensive empirical evidence for, a novel
hypothesis explaining why in some cases subgroup training data allocation does not matter for sub-
group performance, and in other cases, it is crucial. Unlike standard explanations (e.g., assuming
that under-represented or poorly performing-groups always benefit from increased data representa-
tion), our hypothesis consistently matches empirical results across diverse datasets and models. By
predicting subgroup allocation sensitivity through latent representation analysis, we provide a new
way to inform crucial training data decisions, maximising fairness, accuracy, and efficiency.

10
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8 REPRODUCIBILITY STATEMENT

We provide extensive details in the appendix to ensure reproducibility of our results. For each
dataset, we describe pre-processing steps, model architectures, hyper-parameter optimisation pro-
cedures, and training details. We pre-train three models with different random seeds per dataset
and conduct fine-tuning across three more random data splits, yielding nine runs per allocation. We
further conduct ablations on different representation distance metrics, full vs. last-layer fine-tuning,
and fine-tuning budget K. We release code and scripts (upon acceptance) to replicate all figures and
analyses.
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A APPENDIX STRUCTURE

* § B: Supplementary details on datasets, models, and their implementations

* § C: Supplementary results on sensitivity to subgroup allocation and ways to model it
* § D: Supplementary results on common hypotheses not holding

¢ § E: Full theoretical results and further remarks

* § F: Supplementary results on latent representation distances

* § G: Supplementary results on the correlation between representation distance and sub-
group allocation sensitivity

* § H: Extending setup to other training regimes (full fine-tuning and training from scratch)
* § I: Supplementary results on foundation model fine-tuning

* § J: Operationalisation of hypothesis through TV regularisation

§ J: Ablations on fine-tuning budget K in MIMIC

§ L: LLM Usage

B SUPPLEMENTARY EXPERIMENTAL DETAILS

We present additional details on the four datasets and models used. We do not use the full datasets for
fine-tuning because to keep all fine-tuning allocation datasets the same size we set them to the size
of the smallest subgroup in each dataset. For each dataset, we pre-train three models with different
random seeds. For each subgroup allocation experiment, we fine-tune the final classification layer of
each pre-trained model on the three randomly generated data splits, resulting in a total of nine fine-
tuned models per subgroup allocation. This is then repeated across all the subgroups we consider.
This reflects one of the strengths of our work, that compared to the typical data balancing paper, we
compare many different subgroups within a dataset (5 to 11), allowing us to gain new insights on
why they may have different properties.

Table 1 summarises the implementation choices for each dataset. We conduct hyperparameter tuning
both for pre-training and fine-tuning. We optimise hyperparameters within the following ranges:

* Batch size: 64, 128, 256
* Learning rate: [le-6:1e-3]
* Weight decay: [1e-6:1e-2]

Table 1: Implementation details for all models.

Training strategy ~MNIST MIMIC-CXR HAM10000 Civil_comments

Y Even/odd digit Pleural effusion Malignant/benign lesion Comment toxicity

Backbone 2-layer CNN DenseNet121 Huang et al. (2016) ViTB16 Dosovitskiy et al. (2021) BERTClassifier (uncased) Devlin et al. (2018)
Initialisation None ImageNet Deng et al. (2009) ImageNet Deng et al. (2009) Bookcorpus, Wikipedia (English)

Nopretrain 5,000 33,237 2,000 17,920

Ninetune 24,000 22,353 3,184 24,000

Neest. 4,000 26,590 1,000 12,243

Image size 3x28x28 3x256x256 3x256x256 NA

Augmentation Flip, rotation, Gaussian blur  Flip, rotation, affine transformation, crop  Flip, rotation, color jitter, affine transformation, crop  None

Optimiser Adam Adam AdamW AdamW

Loss Binary cross-entropy Binary cross-entropy Binary cross-entropy Binary cross-entropy

We create natural subgroups based on the metadata available, such as based on sex, age, ethnicity,
or image-related attributes like the position of the X-ray. subgroups are generated based on whether
the comment mentions specific attributes, like gender, religion, or sexual orientation.
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Table 2: Subgroups used for each dataset and their base population prevalence and class prevalence.
Subgroups which satisfy our main theorem’s assumptions are highlighted in green.

Dataset Attribute Group 0/1 P(A=1) P(Y|A=0)/P(Y|A=1)
Colour Red / Green 0.50
MNIST Digit value Below 5/ Over 0.50
Random / 0.50
View Position Lateral / Frontal 0.65 0.16/0.26
Patient Orientation Recumbent / Erect 0.77 0.35/70.20
Procedure Portable / Fixed scanner 0.46 0.35/0.11
Support_Devices Absent / Present 0.23 0.17/0.39
Gender Female / Male 0.51 0.20/0.25
MIMIC-CXR Insurance Not-private / Private 0.27 0.24/0.19
Language English / Non-English 0.88
Marital Status Married / Unmarried 0.44 0.20/0.25
Race White / Non-White 0.66 0.17/0.25
Age Under 60 / Above 60 0.56 0.16/0.28
Random / 0.50
Sex Male / Female 0.54 0.11/0.22
Age Under 50 / Above 50 0.46 0.08/0.27
HAM10000 Dataset of origin Rosendahl or Vidir_molemax / Neither 0.62 0.23/0.13
Localisation of lesion  Central / Extremity 0.38
Random / 0.53
Gender No mention / Mention 0.20 0.10/0.15
Orientation No mention / Mention 0.03 0.11/0.26
Civil_comments Religion No mention / Mention 0.16
Race No mention / Mention 0.09 0.10/0.26
Year of comment Pre-2017 / Post-2017 0.76
Random / 0.50
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C SUPPLEMENTARY RESULTS ON SUBGROUP ALLOCATION SENSITIVITY

C.1 SENSITIVITY OF ALL ATTRIBUTES

We report full results for subgroup allocation sensitivity across all attributes for two full fine-tuning
and last-layer fine-tuning (Tables 3 and 4 respectively).

Table 3: Sensitivity of subgroup performance to fine-tuning allocation across datasets and attributes
in full model fine-tuning. Reported values are esimated regression slopes (mean £ standard devia-
tion across nine fine-tuning runs) for subgroup loss, balanced accuracy, and AUC as allocation varies
from 0% to 100%. Larger absolute slopes indicate higher sensitivity.

Dataset Attribute Loss slope  Balanced Acc slope AUC slope
MIMIC View Position -0.027 (0.001) 0.034 (0.003)  0.012 (0.001)
MIMIC Patient Orientation  -0.009 (0.001) 0.013 (0.002)  0.003 (0.000)
MIMIC Procedure -0.026 (0.001) 0.026 (0.002)  0.016 (0.001)
MIMIC Support_Devices -0.009 (0.001) 0.010 (0.001) 0.006 (0.000)
MIMIC Gender -0.003 (0.001) 0.004 (0.002)  0.002 (0.000)
MIMIC Insurance -0.002 (0.001) 0.003 (0.002) 0.001 (0.000)
MIMIC Language -0.002 (0.001) 0.001 (0.002)  0.001 (0.000)
MIMIC Marital_Status -0.001 (0.001) -0.002 (0.001)  0.000 (0.000)
MIMIC Race_cat -0.002 (0.001) -0.003 (0.002)  0.001 (0.000)
MIMIC Age -0.006 (0.001) 0.009 (0.002)  0.003 (0.000)
MIMIC Random -0.000 (0.001) 0.000 (0.002)  0.000 (0.000)
HAM10000 Sex -0.090 (0.008) 0.058 (0.003)  0.032 (0.001)
HAM10000 Age -0.157 (0.011) 0.049 (0.003)  0.044 (0.001)
HAM10000 Dataset -0.230 (0.011) 0.129 (0.003)  0.077 (0.002)
HAM10000 Localization -0.173 (0.010) 0.082 (0.003)  0.049 (0.001)
HAM10000 Random 0.018 (0.008) -0.010 (0.003)  -0.002 (0.001)
Civil_comments  Gender -0.034 (0.011) 0.023 (0.003)  0.017 (0.003)
Civil_comments Orientation -0.243 (0.012) 0.094 (0.004)  0.089 (0.003)
Civil.comments  Religion -0.048 (0.012) 0.031 (0.003)  0.025 (0.003)
Civil_comments Race -0.146 (0.014) 0.037 (0.002)  0.041 (0.002)
Civil_comments  Year -0.022 (0.013) 0.013 (0.003)  0.011 (0.004)
Civil_comments Random -0.014 (0.011) 0.008 (0.003)  0.007 (0.003)

C.2 EXPERIMENTING WITH MORE COMPLEX FITS

We also experiment with the subgroup allocation scaling law model introduced by Rolf et al. (2021),
which describes subgroup loss as a function of group size and total sample size:

2 — 2, —
ly(ng,n) = oyn,P? + 1,0 % + 6,
where n is the number of samples in subgroup g, 7 is the total number of samples, and o4, 74 > 0,
Dg,qqg > 0. Following their setup, we conduct additional experiments where we vary the fine-tuning

dataset size K (to obtain more data points) and fit this model under the same parameter constraints.

In our experiments, however, we find that the fitted parameters often come with very large standard
deviations, suggesting instability in the estimates. We also find that estimated parameters that are
highly non-robust to small changes in how the fit is estimated or which data points are included.
An example for two groups in MIMIC is given in Table 5. While we recognise that linear fits are
imperfect, and do not always precisely capture subgroup performance at extreme allocations (e.g.,
0 or 100), we use them in our main analysis as they reliably and consistently capture the first-order
pattern, telling us whether performance changes across allocations and how much it changes. This
is sufficient to capture a strong and consistent relationship to latent representation separation.
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Table 4: Sensitivity of subgroup performance to fine-tuning allocation across datasets and attributes
in last-layer fine-tuning. Reported values are esimated regression slopes (mean = standard deviation
across nine fine-tuning runs) for subgroup loss, balanced accuracy, and AUC as allocation varies

from 0% to 100%. Larger absolute slopes indicate higher sensitivity.

Dataset Attribute Loss slope  Balanced Acc slope AUC slope
MIMIC View Position -0.007 (0.001) 0.001 (0.002)  -0.000 (0.000)
MIMIC Patient Orientation  -0.008 (0.001) -0.002 (0.001)  0.000 (0.000)
MIMIC Procedure -0.011 (0.001) 0.014 (0.002)  0.003 (0.000)
MIMIC Support_Devices -0.005 (0.001) 0.000 (0.001)  0.000 (0.001)
MIMIC Gender -0.000 (0.001) 0.001 (0.002)  0.000 (0.000)
MIMIC Insurance -0.000 (0.001) 0.000 (0.002)  -0.000 (0.000)
MIMIC Language -0.001 (0.001) -0.000 (0.001)  0.001 (0.000)
MIMIC Marital_Status -0.000 (0.001) -0.000 (0.002)  -0.000 (0.000)
MIMIC Race_cat -0.000 (0.001) -0.002 (0.002)  -0.000 (0.000)
MIMIC Age -0.002 (0.001) 0.002 (0.002)  0.001 (0.000)
MIMIC Random 0.000 (0.001) 0.001 (0.002)  -0.000 (0.000)
HAM10000 Sex -0.009 (0.002) 0.004 (0.003)  0.005 (0.001)
HAM10000 Age -0.032 (0.002) -0.011 (0.003)  0.004 (0.001)
HAM10000 Dataset -0.023 (0.005) 0.020 (0.003)  0.010 (0.001)
HAM10000 Localization -0.014 (0.003) 0.010 (0.003)  0.004 (0.001)
HAM10000 Random 0.000 (0.003) -0.001 (0.003)  -0.000 (0.001)
Civil_comments  Gender -0.002 (0.002) 0.001 (0.002) 0.000 (0.002)
Civil_comments Orientation -0.026 (0.002) -0.000 (0.002)  0.002 (0.002)
Civil_comments  Religion -0.003 (0.002) -0.000 (0.002) 0.000 (0.002)
Civil_comments Race -0.022 (0.002) 0.004 (0.002)  0.000 (0.002)
Civil_comments  Year -0.000 (0.002) 0.000 (0.003)  0.000 (0.002)
Civil_comments Random -0.000 (0.002) -0.001 (0.002)  -0.000 (0.002)

Table 5: Estimated power-law scaling model parameter fits and standard deviations.

Attribute Group ; Ty qg Og
Gender 0 0.000 £ 0.000 1.298 +0.000 3136.744 4+ 13745.833  2.000 & 0.964  0.302 £ 0.020
Gender 1 278.269 £ 647.492  2.000 £ 0.650  3002.106 £ 13853.293  2.000 £ 1.015 0.348 £ 0.019
ViewPosition 0 4.843 +6.518 0.850 + 0.387 1.523 +4.728 0.225+1.188  0.000 % 1.388
ViewPosition 1 1.035 £ 0.806  0.260 £ 0.336 2.175+£8930 0.276 +£ 1.359  0.000 £ 1.609

18



Under review as a conference paper at ICLR 2026

D SUPPLEMENTARY RESULTS ON COMMON HYPOTHESES NOT HOLDING

We additionally test the hypothesis that subgroups with a high class imbalance may lead to greater
model sensitivity to their allocation by modifying P(Y"). However, we see no consistent correlation
between the two variables.

Mean slope of loss across allocations
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Figure 8: Performance on subgroups with high class imbalance during pre-training does not neces-
sarily improve with increasing training data allocation. Each dot represents one subgroup with bars
indicating variation across 9 fine-tuning runs.
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E FULL THEORETICAL RESULTS

E.1 FULL PROOFS
Assumptions E.1. Throughout this section, we impose the following conditions:

1. Fine-tuning datasets D differ in subgroup allocations oY), but not in their overall label
distribution P(Y') or conditional distribution P(Y | A).

2. Fine-tuning is restricted to the last-layer classifier gy, with representation Z held fixed.

3. We assume that all classifiers are Bayes optimal under realisability.

Lemma E.1. Let fo ,(x) = go(h,(x)) with representation Z = h,(X) and predictor Y = gq(Z),
where gg is the last layer. P, denotes the distribution over representations Z. Assume that

TV, [Z|Y =y, A=1],P)Z|Y =y, A=0]) <e

fory € {0,1}. Then, it holds |P,(Z | Y =y, A=a) =P, (Z | Y =y)| < eforalla € {0,1}.

Proof. We only prove the case for A = 1, since the case for A = 0 is analogous. For simplicity,
write

a Py(Z|Y =y, A=a)
(- n(Z’Y_y>
y~—]P’( =1]Y =y)

By the law of total probability, we have that

p(ly) =myp(ly) + (1 —my) ol | y). (1)

View po(- | y) and puq(- | y) as probability measures on the same measurable space. By using
equation 1, we have that

(1 y) =l 1 y) = [y) = (mypa (- [ y)+ L =my)po(- [ y)) = (L=my) (u1(- | y)—po(- | y)).

Taking total variation norms and using homogeneity of total variation for signed measures,
TV(ur (- | 9), 0 1y) = (1= 7)) TV(pa (- [ ), o(- | )

By the defining property of total variation,

sup (2 | y) =z | y)| = TV(pa(- [ y) p(- 1y) < (L —my)e <e,

where we have used that 1—,, < 1. Hence, itholds |P,(Z | Y =y, A=1)-P,(Z | Y =y)| <e,
as claimed. O

We can use this lemma to prove the main result.

Theorem E.1 (Group accuracy parity). Let fg,(x) = go(hy,(x)) with representation Z = h,(X)
and predictor Y = go(Z), where gy is the last layer. For a dataset D, define the quantity

TV(D) :=E, [TV(P,[Z|Y =y, A=1],P,[Z|Y =y, A=0])] .

Suppose that the model is fine-tuned on two balanced datasets D', D" with different proportions of
the attribute A, yielding parameters 0" and 0". If TV(0') < e and TV(0") < & !, then

|ACCy (A = a) — ACCyr (A = a)| < 4e 4+ |ACCy — ACCyr |
foralla € {0,1}.

'If the TVs are bounded by different constants, e.g., € and §, then the upper bound can be rewritten as:
25 + 25 —+ |ACC9/ — ACCQH ‘
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Proof. We can write the accuracy via conditioning on the true label as
AcCp(A=a)=Pp(Y =Y |[A=a)=) Pp(Y=y|Y =y A=a)Pp(Y =y | A=a)
Yy
2
and

AcCpr(A=a) =Py (Y =Y [A=a)=) Po(Y =y|Y =y, A=a)Pp(Y =y|A=a)
Y

3)
We know by construction that class-conditional label distributions match, i.e.,
Po(Y=y|A=a)=Pe (Y =y | A=0a) =:pay )

Combining equation 2-equation 4 it holds

|ACCy (A = a) — ACCyn (A =a)| =

ZPQ’(?:ZJ | Y:yvA:a)pa,y_Z]P)H”(Y:y | Y:yvA:a)pa,y
Yy

Y

éZ}%(ff:y|Y=y,A=a)—IP’e~(f”:y|Y:yvAZG)’Ipa,yl
Yy

<SS |Pe =y Y =y A=a)~Po(¥ =y |Y =y, A=a),
y

(&)

where we have used the triangle inequality, together with the fact that 0 < p, , < 1. Furthermore,
using the triangle inequality and Lemma 5.12, it holds

Z‘Ry(ff:y\Y=y,A=a)—1P’e~(Y’=y\Y=y,A=a)‘
Y

<> |Pe =y |V =y A=a)~Pu(V =y |V =)

+

(6)

The claim follows by combining equation 5 with equation 6, and noting that since the parameters 6’
and 0" are Bayes optimal under realisability, it holds

= ‘ACCQ/ — ACCgH|

E.2 FURTHER REMARKS ON THEORY ASSUMPTIONS AND BOUNDS

?Note that Y is parametrised by both 77 and 6.
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E.2.1 THEORY ASSUMPTIONS ON FINE-TUNING DATASETS

The assumption that P(Y'|A) is stable should always be satisfied if samples from A are randomly
selected when re-allocating the dataset. The assumption that P(Y") is unchanged is more restrictive
in practice. It is satisfied if both groups A = 0 and A = 1 have the same distribution of Y (i.e.,
P(Y|]A =0) = P(Y|A = 1)). This is true for 10 out of 25 of the subgroups in our experiments
(Table 2). While we relax this assumption for our experiments, and find the same consistent trend,
we must make it for the purposes of the theorem, in particular so that we can isolate the effects of
changes in A rather than changes in the label Y.

E.2.2 CROSS-ATTRIBUTE EFFECTS

Theorem 5.1 extends naturally to scenarios where balancing with respect to another attribute B
indirectly alters the allocation of A, as discussed in Li et al. (2023). If the empirical distributions
P(A) and P(Y | A) remain unchanged when reweighting by B, then the subgroup accuracies with
respect to A are stable. However, if A and B are correlated so that changing the allocation of B
induces a shift in the effective distribution of A, then the same bound applies with respect to the
induced change in A. In particular, differences in subgroup accuracy across A are bounded by the
representation separation (TV distance) for A and the magnitude of the change in A-allocation.
Hence, balancing B can only affect A-performance insofar as it implicitly changes the distribution
of A observed during fine-tuning.

E.2.3 EXTENDING TO MULTIPLE DISCRETE GROUPS

We note that our Theorem 5.1 can also be extended to cases with non-binary attributes, i.e., for
A€e{l,...,K}. Define

TV (D) :=E, Ilr)la[};qTV(Pn(Z Y =y,A=a), P (Z|Y =y, A= b)) .
a,be

Under the same assumptions, if TV (D) < e and TV (D”) < ¢, then for all a € [K],
|Accy (A = a) — AcCyr (A = a)| < 4e + |ACCy — ACCyr|.

E.2.4 UPPER BOUND VALUES

In our experiments, we observe that |ACCy — ACCyr| is neglible. As shown in Figure 9, there
is very little variation in overall model performance across fine-tuning allocations, with a mean
accuracy standard deviation of 0.016, 0.002, 0.001, and 0.001 for MNIST, MIMIC, HAM, and
Civil_comments respectively.
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Figure 9: Overall and group-wise accuracy across all fine-tuning runs for MNIST, MIMIC,
HAM10000, and Civil_comments.

We further calculate the value of the upper bound for each subgroup, and find that it is generally in-
formative, with values between 0 and 0.4, except for very high TV subgroups, where it is sometimes
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above 1. HAM10000 appears to be an outlier, as every subgroup (even random groups), have very
high TV (> 0.25) causing the upper bound to be consistently above 1 (which the LHS trivially sat-
isfies). This is most likely because the HAM 10000 dataset is of a much smaller size (1000 images,
with only 175 positive samples) which causes the TV estimates to be unreliable and very sensitive
to small changes like the bin size used in histogram estimation.

MNIST MImIC HAM10000 Civil_comments

o
& S
< o K o

Figure 10: Value of upper bound for MNIST, MIMIC, HAM 10000, and Civil_comments subgroups,
with the trivial upper bound (accuracy difference of 1) marked in red.
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F SUPPLEMENTARY RESULTS ON REPRESENTATION INVARIANCE

F.1 ADDITIONAL DETAILS ON DISTANCE METRICS

We analyse the pre-trained models’ representations by extracting the penultimate layer embeddings
of the test inputs (e.g., 1024-dimensional vector z for DenseNet121) and projecting them to a lower
dimensional space via principal component analysis. To reduce noise, we retain the top-k principal
components that explain at least 70% of the variance (in practice k € [2,81] depending on the dataset

and model) and measure the mean total variation distance (TV) between the representations of

() () ;

examples in subgroups a’ and ay

for class imbalances.

in this lower dimensional space. We condition on Y to control

Given subgroup embeddings Z,G) and Z,(), We estimate their distributions by constructing nor-
(0] 1

malized histograms along each principal component dimension. For a given component, let p
and ¢ denote the resulting discrete probability mass functions over bins b. The TV is then
TV(p,q) = 3>, Ip(b) — q(b)|, where the sum is over histogram bins. In practice, we compute
TV for each principal component dimension separately over 50 bins and report the average across
dimensions. TV provides a bounded ([0, 1]) measure of separation. Values near 0 indicate nearly
identical marginal distributions, while values near 1 indicate almost complete disjointness.

For completeness, we also explore additional distance metrics including the Wasserstein distance
(WD) and the Fréchet distance (FD) which emphasise distinct representation differences.

For WD, we compute the 1D WD along each principal component vector of the embeddings and
report the mean across components:

WD(Z (J> ) 2 (J)

w\H

k
Z z mvz (7>)
(7)

@ ) , and z o denote the projections of the embeddings from subgroups a

(7) €]

where z and ay"’ onto

the ¢-th pr1n01pal component and W is the univariate Wasserstein-1 distance.

The FD approximates the subgroup feature distributions as multivariate Gaussians. Let ( Ko Ea( )
(0] 0

and ( Ko Ea(j)) be the empirical means and covariances of the embeddings for the two subgroups.
Then

o 2 1/2 1/2\1/2
FD(Za(gjnzagj)) = H“agﬂ') Kol 5+ Tr (Eaéw + 20— Q(Eaéﬂxagnx )Y )
Together, these measures provide different estimates of on invariance: TVD emphasizes the largest
discrepancies in probability mass between subgroups, WD gives a precise estimate of marginal

distribution shift (including differences in distributional shape), and FD captures coarse differences
in means and covariances.

F.2 REPRESENTATION DISTANCES OBTAINED ACROSS THE FOUR DATASETS

We highlight the variation in TV across subgroups in the four datasets in Figure 11.

F.3 METRICS ARE ROBUST

All three distance metrics are correlated and appear robust to whether the calculation is done on the
dimension reduced space or full feature space. We calculate representation distance on a dimension-
reduced space to reduce noise (our test sample size is sometimes smaller than our latent embedding
size) and for improved computational efficiency.
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Figure 12: Total variation distance (TV), wasserstein distance (WD), and Fréchet distance (FD)
across subgroups appear correlated in MIMIC. Each dot represents a subgroup with error bars rep-
resenting standard deviation across three pre-training runs.
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Figure 13: Representation distance metrics appear robust to whether they are calculated on the full
latent space or on the lower dimensional space (after PCA). Each dot represents a subgroup in each
of the three datasets with error bars representing standard deviation across three pre-training runs.
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G SUPPLEMENTARY RESULTS ON THE CORRELATION BETWEEN
REPRESENTATION DISTANCE AND SUBGROUP ALLOCATION SENSITIVITY

Figure 15 extends the main text by showing subgroup allocation sensitivity against additional dis-
tance metrics across our datasets. The correlation is strong across metrics, supporting the latent
separation hypothesis.
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Figure 15: Sensitivity to subgroup allocation is correlated with separation in the pre-trained model’s
representation space (as measured by total variation distance, wasserstein distance, and Fréchet dis-
tance) across the three datasets. Each dot represents mean distance and loss slope for one subgroup,
averaged across 9 fine-tuning runs, with bars corresponding to standard deviations, and Pearson cor-
relation coefficients also shown.
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H EXTENDING SETUP TO OTHER TRAINING REGIMES

H.1 FULL FINE-TUNING

We additionally extend our setup from last-layer fine-tuning to full model fine-tuning. Overall, the
correlations are equally significant, and the magnitude of the effects larger (Figures 17 and 18). We
attribute this to the fact that in practice, separation of subgroup representations does not change with
subgroup allocations (Figure 16). Therefore, while some of our theoretical assumptions still hold,
the effect increases as full fine-tuning allows for greater modification of network parameters.

We hypothesise that representation separation is so consistent between pre-training and fine-tuning
and across allocations (Figure 16) because of non-spurious shifts in the features necessary to predict
Y across groups. For example, in MIMIC, the TV distance between different X-ray views (frontal
or lateral) is consistently high. This is most likely because the necessary features to diagnose disease
differ depending on the viewpoint, and therefore, across allocations, a model must maintain a high
separation in its latent space to perform well on both groups.
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Figure 16: Examples showing latent representation separations are stable across subgroup alloca-
tions under full fine-tuning and close to separation of the initial pre-trained model.
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Figure 17: Correlation between loss slope and distance metrics remains strong under full fine-tuning.
Each dot represents mean distance (total variation distance, wasserstein distance, or Fréchet dis-
tance) and loss slope for one subgroup, averaged across 9 fine-tuning runs, with bars corresponding

to standard deviations, and Pearson correlation coefficients also shown.
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Figure 18: Representation distances continue to predict AUC gaps at extreme subgroup allocations
under full fine-tuning at 100% allocation vs 0%. Bars represent mean and standard deviation of the

AUC across 9 fine-tuning runs.
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H.2 TRAINING FROM SCRATCH

We also test whether the our hypothesis holds when only doing one round of training from scratch.
We train the same models from scratch while systematically varying subgroup training data allo-
cation and measure how much performance changes across allocations. We find similar trends in
allocation sensitivity, but of a much greater magnitude (e.g., loss slopes are approximately 10x
steeper than in last-layer fine-tuning), as expected since the models can vary more. We next explore
whether this is linked to latent representation separation, using the model trained on the natural
dataset proportions to extract latent embedding vectors. We find very similar results to fine-tuning,
with a strong significant correlation between latent representation separation and sensitivity to sub-
group allocation (Figures 19 and 20). While this finding is less clearly actionable under this setup
(e.g., cannot directly inform subsequent data collection efforts), it provides a strong explanation as
to the behaviour of models trained under different subgroup allocations.
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Figure 19: Correlation between loss slope and distance metrics remains strong when training from
scratch. Each dot represents mean total variation distance and loss slope for one subgroup, averaged
across 3 training runs, with bars corresponding to standard deviations, and Pearson correlation co-
efficients also shown.
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Figure 20: Representation distances continue to predict AUC gaps at extreme subgroup allocations
when training from scratch at 100% allocation vs 0%. Bars represent mean and standard deviation
of the AUC across 3 training runs.
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I SUPPLEMENTARY RESULTS ON FOUNDATION MODEL FINE-TUNING

I.1 SUPPLEMENTARY EXPERIMENTAL DETAILS

We test whether our results hold in the much less controlled setting of foundation model fine-tuning.
We experiment with two vision-language models, CheXagent (Chen et al., 2024), and RAD-DINO-
MAIRA-2 (Pérez-Garcia et al., 2024). Both of these rely on fundamentally different training mecha-
nisms. CheXagent is trained on images and text with SigLIP training while RAD-DINO-MAIRA-2
is only trained on images with a DINO-based setup, providing two distinct embedding regimes to
assess the robustness of our hypothesis.

We  first pass the MIMIC-CXR  images  through the image  encoders
XraySigLIP_vit-1-16-siglip—-384_webli and rad-dino-maira-2 and obtain
1024- and 768-dimensional embeddings respectively. We then train a single classification layer
on each of the 16,000 MIMIC-CXR training embeddings, varying allocation in the same way as
previous experiments. We test the classification model on the MIMIC-CXR test set (which, to the
best of our understanding, neither model has been trained on).

1.2 SUPPLEMENTARY RESULTS

We show differences in latent representation separations in both foundation models in Figure 21.

CheXagent representation separation on MIMIC RAD-DINO-MAIRA-2 representation separation on MIMIC
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Figure 21: Total variation distances of CheXagent (left) and MAIRA-2 (right) embeddings of
MIMIC images across subgroups.
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Figure 23: Correlation between latent representation separation and subgroup allocation sensitivity
in CheXagent (vision-language model) fine-tuning. Results confirm that our hypothesis generalises
beyond task-specific models. Each dot represents mean distance and loss slope for one subgroup,
averaged across 9 fine-tuning runs, with bars corresponding to standard deviations, and Pearson
correlation coefficients also shown.
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Figure 24: Correlation between latent representation separation and subgroup allocation sensitivity
in MAIRA-2 (vision-language model) fine-tuning. Results confirm that our hypothesis generalises
beyond task-specific models. Each dot represents mean distance and loss slope for one subgroup,
averaged across 9 fine-tuning runs, with bars corresponding to standard deviations, and Pearson
correlation coefficients also shown.
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J  ABLATIONS ON FINE-TUNING BUDGET K

We repeat the MIMIC experiments with a smaller fine-tuning budget K to explore whether changing
sample size modifies our results. We find that smaller budgets show slightly higher absolute mag-
nitudes of allocation sensitivity. This is most likely due to larger sample sizes allowing the model
to learn more robust disease representations which generalise better across allocations. However,
correlations are equally significant across fine-tuning budgets, suggesting our latent representation
hypothesis is valid across dataset sizes.
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Figure 25: Correlation between representation separation and subgroup allocation sensitivity is
strong across fine-tuning dataset sizes in MIMIC. Each dot represents mean distance and loss slope
for one subgroup, averaged across 9 fine-tuning runs, with bars corresponding to standard devia-
tions, and Pearson correlation coefficients also shown.
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K IMPLEMENTATION OF TV-BASED LATENT REGULARISATION

During pre-training, we augment the standard cross-entropy loss with a differentiable surrogate for
the TV distance between the embedding distributions of the two view-position groups. For each
mini-batch, we compute a Mahalanobis-squared distance between the group-wise mean last-layer
embeddings within each label (i.e., conditioned on Y'), and average these distances. This quantity
acts as a smooth proxy for the TV divergence and is scaled by a regularisation hyperparameter .
The resulting loss is

L= Lug+ATV(Z | AY),

where A denotes the view-position group and Z the last-layer embeddings. No gradient is taken
through density estimates; the surrogate is computed directly from batch statistics and therefore
adds minimal computational overhead. In practice, we use A = 0.01, as this gives approximately
equal weighting to the CE objective and the distance estimate (which is on the order of 100). To
evaluate sensitivity to subgroup allocation, we fine-tune this model at with different view proportions
as in our standard pipeline.
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L LLM USAGE

We used a large language model (OpenAl ChatGPT) as a general-purpose assistant tool to help with
phrasing and grammar improvements. The model was not used for research ideation, experiment
design, data analysis, or generation of original scientific content. All technical ideas, methods, and
results are the authors’ own, and the authors take full responsibility for the paper’s contents.
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