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Abstract

Federated learning could enable multiple parties to collaboratively fine-tune large
language models without directly sharing their data (FedLLM). Following this
training paradigm, the community has put massive efforts from diverse aspects
including framework, performance, and privacy. However, an unpleasant fact is that
there are currently no realistic datasets and benchmarks for FedLLM and previous
works often rely on artificially constructed datasets, failing to capture properties in
real-world scenarios. Addressing this, we propose FedLLM-Bench, which involves
8 training methods, 4 training datasets, and 6 evaluation metrics, to offer a compre-
hensive testbed for the FedLLM community. FedLLM-Bench encompasses three
datasets (e.g., user-annotated multilingual dataset) for federated instruction tuning
and one dataset (e.g., user-annotated preference dataset) for federated preference
alignment, whose scale of client number ranges from 38 to 747. Our datasets in-
corporate several representative diversities: language, quality, quantity, instruction,
length, embedding, and preference, capturing properties in real-world scenarios.
Based on FedLLM-Bench, we conduct experiments on all datasets to benchmark ex-
isting FL methods and provide empirical insights (e.g., multilingual collaboration).
We believe that our FedLLM-Bench can benefit the FedLLM community by reduc-
ing required efforts, providing a practical testbed, and promoting fair comparisons.
Code and datasets are available at https://github.com/rui-ye/FedLLM-Bench.

1 Introduction

Large language models (LLMs) have achieved unprecedented success in diverse domains [[1} 2} [3}
4,15 16]. These LLMs are usually trained by centralized learning paradigm, where various parties
individually collect massive data for model training. In this case, the data amount of each individual
party is hard to scale due to the high cost of collecting and annotating data. However, their data
cannot be directly shared for collaboration due to property and privacy issues.

To relieve the required cost of each party, federated learning (FL) [7, I8] has emerged as a sound
and off-the-shelf technique to facilitate collaboration, which leverages decentralized language data
to collaboratively train LLMs in a privacy-preserving way (FedLLMﬂ [9, 110k [11]]. To facilitate the
development of FedLLM, there has been a series of code frameworks such as OpenFedLLM [9]],
FederatedScope-LLM [10], and FedML-LLM [11]]; and many methods that tackle the issues of
data quality [12], safety risks [[13], incentive mechanism [14]], intellectual property protection [[15]],
privacy [16]], limited resources [17], data and system heterogeneity [18] in FedLLM.
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Table 1: Summary of our four realistic FedLLM datasets. IT denotes instruction tuning and PA
denotes preference alignment. # denotes ‘the number of” and L. denotes ‘the length of’. Our datasets
exhibit diversities in characteristic, task, client number, quantity, length, and quality. See statistics of
unfiltered versions in Table

Dataset Name \ Fed-Aya [23] Fed-ChatbotIT [24] Fed-WildChat [25] Fed-ChatbotPA [24]
Characteristic Multilingual Single-Turn chat Multi-Turn chat Preference
Applied Task IT IT IT PA

# Clients (Total) 38 237 100 747

# Samples (Total) 25,513 6,166 52,703 9,508

# Samples (Client) 671 + 815 26 + 33 527 £ 477 13 + 21

L. Instruction (Client) | 116 £ 199 68 + 119 331 £ 435 69 + 124

L. Response (Client) 225 + 411 211 £ 176 506 £ 470 218 £ 178
Data Quality (Client) | 0.63 £ 0.28 0.67 £0.22 0.79 £ 0.37 0.68 £0.21

Despite that massive efforts have been made, one significant concern remains: there is currently
no realistic benchmark for FedLLM, making it hard to practically evaluate the effectiveness of
FL methods in real-world scenarios. In such context, each previous work constructs its own FL
datasets by artificially partitioning existing centralized datasets [9, (10, [15], falling short of capturing
the natural properties existed in real-world cross-user datasets [[19,[20]. Even worse, these papers
often follow different training and evaluation setups, which significantly increases the difficulty of
re-implementations and risk of unfair comparisons [21} [16].

To fill this gap, we propose the first realistic benchmark for FedLLM termed FedLLM-Bench, offering
a comprehensive testbed for the FedLLM community. FedLLM-Bench encompasses three datasets
for federated instruction tuning (including one user-annotated multilingual dataset: Fed-Aya, and
two datasets with realistic user instructions: Fed-WildChat and Fed-ChatbotIT) and one dataset
(user-annotated preference dataset: Fed-ChatbotPA) for federated preference alignment. These
datasets are all naturally split by real-world user ID with the scale ranging from 38 to 747 clients,
therefore exhibiting realistic federated properties (especially for cross-device setup in FL where data
are partitioned by user devices) [20l [19]. Specifically, datasets in our FedLLM-Bench inherit the
following diversities (Table[I): (1) Language: clients’ datasets (e.g., our Fed-Aya dataset) cover
data from diverse languages, modeling the real-world scenarios of multilingual collaboration (see
Figure[I(a)). (2) Quality and Quantity: the quality and quantity of clients’ datasets vary across each
other, which is a common property in real-world applications; see detailed illustrations in Figure[3|and
[l (3) Length: the sequence length of clients’ data could be quite different, representing a new type of
data heterogeneity in FL; see Figure[I(b)] (4) Preference: different clients have different preferences
as verified by different preferred instructions in instruction tuning datasets (e.g., Fed-WildChat) and
different preferred responses in preference alignment dataset (i.e., Fed-ChatbotPA), mirroring the
complexities of real-world data scenarios; see detailed illustrations in Figure Rl[I(d)] These
diversities make our FedLLM-Bench a comprehensive benchmark in the era of FedLLM, serving as a
great successor to representative benchmarks for classical tasks such as LEAF [22]] benchmark.

Based on these datasets, we implement 8 representative baseline methods and 6 evaluation metrics,
and conduct extensive experiments. Our experiments mainly demonstrate (1) that federated learning
can consistently bring performance gain compared to local training without collaboration; and (2) the
performance ranking of several representative baseline methods. Besides serving as a benchmark for
performance comparison, our FedLLM-Bench can also support exploration of new research directions
thanks to its flexibility and diversity. As an example, we conduct an exploratory experiment based
on the multilingual dataset Fed-Aya, showing that collaboration among similar languages could
potentially bring more benefits comparing to collaboration among all languages.

Our contributions are as follows:

1. We propose the first realistic benchmark for federated post-training of LLMs, FedLLM-Bench,
which encompasses four naturally split datasets. FedLLM-Bench covers diverse tasks, scales,
languages, qualities, quantities, lengths, and preferences, mirroring the complexities and diversities
of real-world scenarios.

2. We integrate these datasets into a codebase with 8 representative baseline methods and 6 evaluation
metrics, and open-source the datasets with the integrated codebase for the community.



3. We conduct extensive experiments to demonstrate the status of several existing baseline methods
on our FedLLM-Bench and show its potential in promoting exploration of new research directions.

2 Related work

Federated learning for large language models. Federated learning is a privacy-preserving and
collaborative training paradigm that enables multiple parties to collaboratively train a shared global
model without sharing their raw data [[7, [8]. Data heterogeneity is one of the most representative
challenges in FL, where clients’ datasets are drawn from different distributions. Addressing this,
numerous methods have been proposed by regularization [26], gradient correction [27]], feature
alignment [28]], adjustment of aggregation weights [29,|30], or introducing momentum [31} [32].

Recently, having witnessed the success of large language models (LLMs) in centralized learning [1}
331134, 131 135]], many researchers start to explore training LLMs via federated learning, mitigating the
issue of the shortage of public data or private data of one individual [2} 136,37 9]. Within one year,
there have been many frameworks such as OpenFedLLM [9]], FederatedScope-LLM [10], FedML-
LLM [11], and diverse works such as attacks of safety alignment in FedLLM [[13]], FedbiOT [[15]]
that protects model property, FFA-LoRA [16]] that improves performance under differential privacy,
HetLoRA [18]] that addresses data and system heterogeneity problem, iPFL that focuses on incentive
mechanism.

However, one significant issue of these previous works is that their experiments are all based on
artificially crafted FL datasets, falling short of extrapolating their effectiveness in real-world scenarios.
Addressing this, we propose the first realistic benchmark for FedLLM, FedLLM-Bench, which mirrors
the complexities and diversities in real-world applications. Besides, we implement 8 representative
baseline methods in our FedLLM-Bench to demonstrate their effectiveness in realistic scenarios.

Datasets and benchmarks in federated learning. Since clients’ data are collected independently
without coordination, the issue of data heterogeneity commonly exists in FL. A large proportion of
FL works [7,129, 26} 28] simulate data heterogeneity by artificially partitioning classical datasets such
as CIFAR-10/100 [38], Fashion-MNIST [39], and MNIST [40]. Recently, researchers on FL and
pre-training of LLMs may split dataset according to tags such as web domain, article, or book [41]];
while researchers on FL and post-training of LLMs may artificially partition centralized dataset
based on task type [14}42] or coding language [[10]. Addressing this, several realistic benchmarks
are proposed for classic tasks such as image and text classification, which include LEAF [22] (a
suite of user-split datasets), FLAIR [20]] (multi-label image classification), and FLamby [19] (a
benchmark for medical analysis). However, currently, there is no realistic dataset or benchmark for
the tasks of post-training of FedLLM, while our FedLLM-Bench stands out as the first one in the
literature. Besides, our FedLLM-Bench covers two unique post-training tasks compared to previous
benchmarks: federated instruction tuning [43| 44, 9] and federated preference alignment [45] 46, 9].

3 FedLLM-Bench: a realistic benchmark for Fed LLM

Here, we introduce our FedLLM-Bench, from four perspectives: training methods, descriptions of
training datasets, analysis of training datasets, and evaluation metrics.

3.1 Training methods

FedLLM overview. FedLLM involves four iterative steps: server-to-client model downloading, local
model training, client-to-server model uploading, and global model aggregation. During FedLLM,
clients could collaborate on two critical tasks for LLMs [2]]: instruction tuning and preference
alignment, which are challenging for individuals due to high cost of data collection [47} 48]]. Besides,
various FL baseline methods [26} 27, 132] can be incorporated into FedLLM.

Tasks: instruction tuning & preference alignment. In instruction tuning [2,[9]], each data sample
is an instruction-response pair, where the LL.Ms are trained to follow instructions to generate the
expected responses via supervised fine-tuning. In preference alignment [49} 9], each data sample
consists of an instruction, a preferred and a dispreferred response, where the LLMs are trained to
align with the preferred response given user instructions via direct preference optimization [46].
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Figure 1: (a) Langauge distribution of clients in Fed-Aya dataset. (b) The distribution of length of
instruction and response of clients’ data. (c) Distribution of length preference (the ratio of a user
preferring longer response) of clients in Fed-ChatbotPA dataset. (d) Distribution of quality preference
(quality difference between preferred and dispreferred data) of clients in Fed-ChatbotPA dataset.
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Figure 2: Distributions of top 10 verbs in instructions (10 clients are plotted for illustration). Our
realistic FedLLM datasets exhibit diverse patterns with respect to instruction types.

For both two tasks, we adopt the most commonly used parameter-efficient fine-tuning technique
LoRA [50]], reducing the requirements of computation and communication in FL [51}152].

FL: baseline methods. In our FedLLM-Bench, we implement 8 representative baseline methods,
including local training without collaboration and 7 classical FL baseline methods. Following the
standard baseline FedAvg [7]], at the local training part, we implement FedProx [26]] which applies
local-global model regularization and SCAFFOLD [27] which introduces control variate to correct
local gradients; while at the model aggregation part, we implement FedAvgM [31], FedAdagrad [32],
FedYogi [32], and FedAdam [32] which introduce model momentum to update global model.

3.2 Descriptions of training datasets

Fed-Aya. Aya [23] dataset is a multilingual instruction tuning dataset annotated by contributors from
various countries [53]]. We select 6 high-resource languages: English (en), Spanish (es), French (fr),
Russian (ru), Portuguese (pt), Chinese (zh), and 2 low-resource languages: Standard Arabic (ar)
and Telugu (te). According to the annotator ID, we filter out those who contribute less than 100
annotations, and construct Fed-Aya, which consists of 38 clients with 25k data samples in total. This
dataset models a real-world federated scenario [54] where collaborating clients are distributed around
the globe and aim to advance multilingual LLMs [1},55]]. We visualize the language distribution of
Fed-Aya dataset in Figure [I(a)] showing that the number of clients for different languages varies.
Therefore, it also provides a dataset basis for the explorations of new research topics in FedLLM,
including language personalization and fairness across high- and low-resource languages.

Fed-ChatbotIT. Chatbot-Arena-Conversations [56] is originally a collection of human-annotated
preference data, where each data sample consists of a user instruction, a user-chosen response and
a user-rejected response. Here, for each data sample, we combine the instruction and user-chosen
response as an instruction-response pair. Subsequently, according to the user ID of the annotator, we
filter out those who contribute less than 10 data samples and construct Fed-ChatbotIT, which consists
of 237 clients with 6k data samples in total. This dataset captures the diversities of realistic use cases
in single-turn query of LLMs, where instructions of different users could hold different patterns.
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Figure 3: The dataset quality distribution of clients in four training datasets: Fed-Aya, Fed-WildChat,

Fed-ChatbotIT and Fed-ChatbotPA. We average the IFD scores of all instruction-response pairs of
each client to represent the client’s dataset quality.
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Figure 4: The t-SNE visualization of embeddings of instruction-response pairs from 10 clients in
Fed-Aya, Fed-ChatbotIT, Fed-WildChat, and Fed-ChatbotPA datasets. Each color denotes one client.
We can see clustering phenomenon of one client’s data and that clients’ data are diverse.

Fed-WildChat. WildChat [25] is a collection of conversations between humans and ChatGPT, which
contains a broad spectrum of user-chatbot interactions. According to the IP address, we partition the
whole dataset into several user datasets and filter out those with less than 200 samples, forming our
Fed-WildChat. Fed-WildChat consists of 100 clients with 53k data samples in total. This dataset
represents real-world use cases between humans and chatbots, which involve multi-turn interactions.

Fed-ChatbotPA. We construct another federated version of Chatbot-Arena-Conversations [24]] for
preference alignment tasks: Fed-ChatbotPA. Specifically, we filter out users who contribute fewer
than 5 preference pairs and the resulting Fed-ChatbotPA consists of 747 clients with 10k data samples
in total. Each data sample contains a user instruction, a preferred and dispreferred response. This
dataset exhibits real-world property that different individuals could have different preferences. To
verify this, we analyze the dataset from two perspectives. Firstly, we visualize the length preferences
of clients in Figure where for each client we compute the ratio of the preferred responses being
longer than the dispreferred responses. We see that most clients tend to prefer longer responses (i.e.,
the ratio is larger than 0.5) and clients have various preference ratios. Secondly, we visualize clients’
quality preferences in Figure[I(d)} where for each client we compute the averaged quality difference
between the preferred and dispreferred data. We can see the diversity of clients’ quality preferences.

Drawing inspiration from centralized learning of LLMs that the diversity of training data is critical
for post-training of LLMs, we filter out clients with few data samples in the above construction
process. However, to facilitate more comprehensive research, we also release the unfiltered versions,
see statistics in Table[T0l

3.3 Analysis of training datasets

We further show the diversities of our datasets for FedLLM from four perspectives.

(1) Length. For each client, we tokenize the instruction and response of each data sample using
tokenizer of Llama2 [34], and average their length respectively. We plot the length distribution of
clients in Figure[I(b)] We can see that clients’ data varies in data length and different datasets exhibit
different distributions, verifying both inter-dataset and intra-dataset diversities. (2) Instruction.
Following Self-Instruct [57]], we use the Berkeley Neural Parser [58]] to parse the instructions and
extract the root verbs. We randomly sample 10 clients for each dataset and visualize the distribution of
top-10 verbs in Figure 2] We can see that clients have different usage preferences in their instructions
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Figure 5: Data quantity distribution across clients of our four FedLLM datasets. We can see a variety
of data quantities of clients, where a large proportion of clients have relatively few data.

and that the top 10 verbs vary among datasets. See more detailed visualizations in Figure [7} Ol
(3) Quality. We measure the data quality using IFD metric [39]], where a higher value
denotes higher instruction-following difficulty, and average the quality of all data samples of one
client. From Figure |3} we can observe the diversities in clients’ data, and distinct distributions among
these four datasets. (4) Embedding. We randomly sample 10 clients, extract the embedding of each
instruction-response data sample using text-embedding-ada-002 model from OpenAl, and plot them
via t-SNE [60] in Figure d where each color denotes one client. We can see that there is clustering
phenomenon, indicating certain patterns within one client’s data that mirror real-world cases. It also
demonstrates the diversity of clients’ data. (5) Quantity. We plot clients’ data quantity distribution in
Figure[5] From the figure, we see a variety of data quantity across clients for all datasets, where most
clients have relatively fewer data samples.

3.4 Evaluation metrics

To evaluate the effectiveness of the training methods on our realistic FL datasets, we consider 6
evaluation metrics, including 4 open-ended metrics and 2 close-ended metrics.

Open-ended evaluation. MT-Bench [56] is one of the most acknowledged evaluation metrics in
the era of LLMs, which evaluates both one-turn and two-turn conversation capability. Similarly,
Vicuna bench [[61]] evaluates one-turn instruction-following capability. AdvBench [62] evaluates
the safety rate given unsafe instructions. Additionally, we consider an in-domain evaluation metric
termed Ref-GPT4, where we randomly sample 50 unseen data as the test set and use GPT-4 to rate
the generated response given the ground-truth response as reference [[63} 56]; see prompt in Figure

Close-ended evaluation. We consider two common close-ended evaluations [[64, 134, |35/ [1, 9]:
MMLU [65] (measuring knowledge of 57 subjects) and HumanEval [66] (measuring capability
of generating programs from docstrings). We evaluate these two metrics mainly to ensure that
fine-tuning will not compromise these capabilities acquired during pre-training.

4 Experiments on FedLLM-Bench

Experimental setups. For instruction tuning task, we use Llama2-7B [34] as the base model and
set the learning rate as 2~ with a batch size of 16. For preference alignment task, we use Alpaca-
7B [67] as the base model and set the learning rate 1e~* with a batch size of 8, as a large proportion
of clients have fewer than 10 data samples. We adopt 8-bit quantization on the base model and set the
rank of LoRA [50] as 16. The number of communication rounds is set to either 100 or 200 and only
a small proportion of clients are sampled for each round. We set the number of steps of local model
training as 10 for most scenarios. The chosen hyper-parameters of baseline methods are shown in
Table[T2] Please refer to more details in Appendix [C.1]

4.1 Benchmark results

Fed-Aya. Here, we conduct experiments on Fed-Aya with Ref-GPT4 as the evaluation metric for
8 languages. We run local training for each language (randomly sample one client for simplicity),
and 7 federated methods. From Table 2] we see that: (1) Most FL methods can outperform local
training on average, indicating the effectiveness of collaboration. (2) No FL method can achieve



Table 2: Experiments on multilingual dataset Fed-Aya evaluated via Ref-GPT4. FL methods generally
perform better than local training on average. However, FL methods can not ensure better performance
on every language, implying the necessity for exploring language personalization techniques.

Algorithm | ar en €s fr pt ru te zh | Average

Local Training (ar) | 2.55 7.55 4.85 5.10 395 455 155 335 4.18
Local Training (en) | 2.55 7.20 535 460 535 475 160 3.55 4.37
Local Training (es) | 1.90 7.80 5.55 5.60 450 520 130 5.05 4.62
Local Training (fr) | 1.85 7.90 4.75 420 425 505 130 3.95 4.16
Local Training (pt) | 1.95 595 420 545 385 5.15 155 395 4.01
Local Training (ru) | 1.60 7.80 6.05 4.80 4.00 450 175 4.90 4.43
Local Training (te) | 2.10 3.70 3.75 350 3.05 4.10 125 3.60 3.13
Local Training (zh) | 2.30 8.10 545 580 4.80 430 1.60 4.95 4.66

FedAvg [7] 250 8.00 550 535 495 565 200 525 4.90
FedProx [26] 320 7.10 590 5.65 4.85 520 1.60 5.80 4.92
SCAFFOLD [27]] 265 775 630 535 500 635 145 490 4.97
FedAvgM [31] 3.00 7.80 535 500 530 565 190 5.00 4.86
FedYogi [32] 200 845 6.15 455 385 630 1.65 493 4.73
FedAdagrad [32]] 250 7.85 515 525 445 575 155 550 4.75
FedAdam [32] 240 850 525 470 435 540 190 5.20 4.71

Table 3: Experiments on single-turn chat dataset Fed-ChatbotIT. FL methods perform consistently
better under open-ended instruction-following evaluations and comparably under closed-ended
knowledge evaluations compared to local training. Overall, FedAdagrad is the most effective.

Algorithm | MT-Bench-1  Vicuna Ref-GPT4 Average | HumanEval MMLU
Local Training | 3.73 6.78 4.49 500 | 13.41 46.31
FedAvg [7] 4.30 6.93 5.29 5.51 14.02 46.10
FedProx [26]] 4.25 7.21 5.00 5.49 14.63 46.12
SCAFFOLD [27] 3.86 7.35 4.82 5.34 15.24 46.02
FedAvgM [31] 4.34 7.17 4.76 5.42 14.63 46.13
FedYogi [32]] 4.13 7.20 5.00 5.44 15.85 46.24
FedAdagrad [32] 3.94 7.50 4.99 5.48 15.85 46.48
FedAdam [32] 3.88 7.32 5.02 5.41 14.57 46.10

comprehensive superiority in all languages, implying the necessity of future exploration of language
personalization [68]169]. (3) FedAvg and FedProx are the two most effective algorithms here.

Fed-ChatbotIT. Here, we conduct experiments on Fed-ChatbotIT evaluated under 5 metrics. We
randomly sample two clients to run local training and average their evaluation results. From Table 3]
we see that (1) on open-ended evaluation, all FL. methods consistently outperform local training,
indicating the effectiveness of FL in enhancing the capability of instruction following. (2) On closed-
ended evaluation, FL. methods perform better or are comparable to local training, indicating that FL.
training will not compromise LLMs’ general capability.

Fed-WildChat. Here, we show two series of experiments based on Fed-WildChat: instruction tuning
based on single-turn and multi-turn conversations, in Table |4l For both experiments, we see that
FL methods consistently outperform local training, verifying the effectiveness of collaboration. For
single-turn, we see that no FL. method can dominate in all evaluation metrics; while for multi-turn,
we see that FedAvg [[7] consistently outperforms the best across metrics.

This is an interesting observation since the other baseline methods are shown to be effective in
tackling data heterogeneity in other tasks such as image classification [26, 127]. This phenomenon
could be attributed to two reasons: (1) training from pre-trained model itself benefits tackling the
issue of data heterogeneity [70, [71]], which could make some model-level optimization techniques
not as effective as before [26), 27]. (2) We are fine-tuning with parameter-efficient fine-tuning
technique [50]] with a small number of local steps (e.g., 10), reducing the risk of overfitting on local



Table 4: Experiments of single-turn and multi-turn chat on Fed-Wildchat. FL. methods perform
consistently better than local training. FedAvg is a robust method in this scenario.

Experiment Single-Turn Multi-Turn

Algorithm MT-1 Vicuna Ref-GPT4 | MT-1 MT-2 MT-Bench Ref-GPT4
Local Training | 4.15  7.03 450 | 399 256 3.27 4.68
FedAvg [7] 4.81 7.99 5.88 4.84 3.15 3.99 5.86
FedProx [26] 4.86 7.93 5.74 4.58 2.92 3.75 5.26
SCAFFOLD [27] | 4.78 7.93 5.57 4.46 3.13 3.79 5.25
FedAvgM [31] 4.52 8.07 5.85 4.53 2.77 3.65 5.34
FedYogi [32] 4.78 8.04 5.48 4.59 2.96 3.78 5.05
FedAdagrad [32] 4.76 7.76 5.93 4.64 3.03 3.84 5.17
FedAdam [32] 4.54 8.03 5.68 4.63 2.85 3.74 4.96

Table 6: Experiments of federated preference alignment on Fed-ChatbotPA dataset. FL. methods
consistently perform better than local training, indicating the significance of collaboration via
FL. Compared to base model, models trained via FL. methods achieve consistent improvement in

instruction-following capabilities and safety , and preserve most of the knowledge .

Algorithm | MT-Bench-1  Vicuna Average | AdvBench | MMLU
Base Model ‘ 3.96 6.31 5.14 ‘ 9.40 ‘ 40.41
Local Training | 4.12 6.62 537 | 110 | 3826
FedAvg [7] 4.44 7.06 5.75 16.2 39.70
FedProx [26] 4.44 7.11 5.78 13.8 39.51
SCAFFOLD [27]] 4.53 7.01 5.77 16.0 39.94
FedAvgM [31] 4.71 6.87 5.79 13.3 39.78
FedYogi [132] 4.33 6.62 5.48 11.3 40.27
FedAdagrad [32]] 4.40 6.79 5.60 11.0 40.30
FedAdam [32]] 4.31 6.72 5.52 11.8 40.26

datasets [27}52]. Therefore, we call for more future works to enhance the performance regarding
data, such as considering data quality [[12] or synthetic data [21]].

Fed-ChatbotPA. Here, we conduct ex-
periments of federated preference align-
ment on Fed-ChatbotPA dataset, with an

Table 5: Results on unfiltered Fed-WildChat. FL methods
consistently and evidently outperform local training.

instruction-tuned LLM as the model ini- ~ Method | MT-1  Vicuna Ref-GPT4 | Avg
tialization. We randomly sample two | g1 4.15 7.03 4.50 5.23
clients to run local training and average  peq Avg 4.61 8.03 5.81 6.15
their evaluation results. From Table[6l we  pedProx 4.69 7.98 5.98 6.22
see that (1) preference alignment could  gcaffold 4.48 7.95 5.83 6.09
enhance the LLMSs’ capability in follow-  Req AvgM 4.63 8.24 5.99 6.29
ing humans instructions in an helpful FedYogi 4.68 7.97 5.47 6.04
and harmless manner. (2) All FL meth-  peq Adagrad | 4.46 7.98 5.55 6.00
ods consistently perform better than local ~ FegAdam 4.68 811 6.16 6.32

training, indicating the effectiveness of
federated preference alignment. Since the high-quality preference data usually involves massive
human efforts, each party is hard to scale up the data, motivating diverse parties to collaborate via
FL [48, 72} [73]. (3) Regarding instruction-following capabilities, FedAvgM [31]], FedProx [26],
SCAFFOLD [27], adn FedAvg [7] are four most effective methods.

Results on unfiltered Fed-WildChat. Here, we conduct instruction tuning based on the unfiltered
version of Fed-WildChat (single-turn conversations). Due to the increased number of total clients,
we accordingly increase the number of clients participating per round and the total communication
rounds; see details in Table From Table [5] we can see that FL methods consistently and evidently



Table 7: Experiments of exploration of efficient collaboration among languages. FedSimLang per-
forms better than FedSamLang on some languages, indicating its partial effectiveness and calling for
future works on constructing efficient collaboration structure to facilitate multilingual collaboration.

Algorithm | ar es en fr pt ru zh | Average
Local 2.55 555 720 420 385 450 495 4.69
FedAvg 250 550 8.00 535 495 5.65 5.25 5.31

FedSamLang | 3.30 590 7.65 645 410 480 535| 5.36
FedSimLang | 3.05 585 7.80 540 490 430 575| 5.30

outperform local training, indicating the benefits of joining collaboration. On average, we see that
FedAdam [32] performs the best across baseline methods.

4.2 Further explorations

Multilingual collaboration. We have observed in Table[2]that despite that FL methods achieve better
performance than local training on average, they fail to bring consistent benefits on every specific
language. Such observation motivates us to explore language personalization. Therefore, in this
experiment, we construct two representative baselines: FedAvg among clients with the same language
(FedSamLang) and FedAvg among clients with "similar" languages (FedSimLang) to explore the
potential mutual benefits among languages. We partition languages into five "similar" groups by their
language family [74] as follows: (1) Standard Arabic, Urdu, and Iranian Persian (evaluated on "ar"
testset); (2) French, Italian, Spanish, and Portuguese (evaluated on "fr", "es" and "pt" testset); (3)
English and German (evaluated on "en" testset); (4) Russian, Polish and Ukrainian (evaluated on "ru"
testset); (5) Simplified Chinese, Traditional Chinese, Japanese and Korean (evaluated on "zh" testset).
Also, FedSamLang and FedSimLang generally have fewer training samples than FedAvg as they
involve only one or a few of these languages.

We show the experimental results in Table [/} where we compare FedSamLang and FedSimLang with
FedAvg (trained on 8 languages as previous experiments) and local training. From the results, we can
see that (1) FedSamLang outperforms local training in all languages and achieves the highest average
score, indicating the benefits of collaboration among clients with the same language. (2) Compared
to FedSamLang, FedSimLang performs better on 3 languages (i.e., en, pt, and zh) but worse on
other languages, showing that leveraging the power of other languages can benefit some particular
languages. Though this observation verifies the possibility of multilingual collaboration, we need
more future works to fully explore its potential. (3) FedSamLang and FedSimLang perform better or
comparably compared to FedAvg with fewer collaborators, indicating the effectiveness of language
personalization. These results call for future works on exploring personalization techniques that
can strike a good balance between localization and collaboration or construct a better collaboration
structure among these multilingual clients [69].

Differential privacy. Here, we conduct experiments Evaluation under MT-Bench-1
to evaluate the effectiveness of differential privacy [75], ...
where we apply user-level differential privacy [76]. Ex- .

4.69 4.68
LER 447
periments are conducted on our Fed-WildChat single-turn =z
dataset. We use a batch size of 1 for this experiment; see o + g
more details in Appendix We fix the § = le* and 37 H H

tune € in range of {1e3,1e72,0.1, 1} that satisfies (¢, §)- **
differential privacy, and report the results in Figure[6] Re-
sults show that (1) FedAvg with (1, 1e~*)-differential pri- oAl FedNg. PR ReDPOL FedbPet Fedoblert
vacy can achieve comparable performance compared to Fe-

dAvg without differential privacy. (2) With the reduction Figure 6: Experiments on Fed-WildChat
of ¢, the privacy preservation improves while the perfor- with differential privacy (e,d) (6 =
mance degrades. FedAvg with (1e =3, 1e~%)-differential 1e~%). FedDP-x indicates ¢ = z. Fe-
privacy can achieve comparable performance compared dAvg with (1e=2, 1e~*)-DP still outper-
to local training without differential privacy technique. To forms local training without DP while
the best of our knowledge, this is the first time in the lit- ensuring user-level differential privacy.
erature demonstrating the results of differential privacy in

FedLLM. We also encourage future works to explore sample-level differential privacy [77]].



Experiments with other LLM back- Table 8: Results based on Mistral-7B. Federated learning
bone: Mistral-7B. Previous experiments methods consistently outperform local training, showing

on instruction tuning task are conducted  the generalization ability of our benchmark across differ-
on Llama-2-7B [34]. Here we conduct ex- ent LLLM backbones.

periments on Fed-WildChat using Mistral- Method ‘ MT-1 Vicuna Ref-GPT4 ‘ Avg
7B [35]] as the base LLM to validate the

generalization ability of our benchmark ~ Local 5.23 8.33 5.47 6.34
across different LLM backbones. From  FedAvg 6.08 8.91 721 1.40
Table[8] we can see (1) clear gap between FedProx 6.18 8.88 6.91 7.32
federated learning methods and local train- Scaffold 6.24 8.85 6.85 1.31
ing, (2) improvement in all metrics com- FedAng 6.20 8.99 7.14 744
pared to LLaMA-2-7B results in Table@} ~ FedYogi 6.31 9.06 7.00 7.46
Notably, this increase is uniform across  FedAdagrad | 6.28 9.11 6.92 7.44
all baselines, and is clearly attributed to FedAdam 6.41 8.88 7.35 7.55

the increased capacity of the model. This
indicates the evident benefits brought by collaboration and the generalization ability of our benchmark
across different LLM backbones.

5 Conclusions

Federated learning enables multiple parties to collaboratively train large language models without
sharing their raw data (FedLLM), which has attracted many research efforts from the community. In
this paper, we propose the first realistic benchmark for FedLLM, FedLLM-Bench, which involves
8 training methods, 4 training datasets, and 6 evaluation metrics. The core contribution lies in the
datasets, which cover a wide range of client scale and two common tasks (i.e., instruction tuning and
preference alignment). These datasets exhibit many real-world diversities, including language, quality,
quantity, instruction, sequence length, embedding, and preference, mirroring real-world scenarios.
Based on FedLLM-Bench, we conduct extensive experiments on all datasets to benchmark classical
FL methods. Besides, we also conduct experiments to explore the effective collaboration strategies of
cross-language collaboration and show results when incorporating differential privacy with federated
instruction tuning. We believe that our FedLLM-Bench could benefit the FedLLM community by
reducing required efforts, providing a practical testbed, and promoting fair comparisons.
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Table 9: Results of perplexity on our four datasets. Higher perplexity observed on Fed-Aya and
Fed-WildChat due to their high quality.

Dataset | Fed-Aya Fed-ChatbotIT ~Fed-WildChat Fed-ChatbotPA
Perplexity | 3.941 2.881 3.395 2.868

A Limitations

Firstly, we explore Llama-2-7B [34] and Mistral-7B [33]] for instruction tuning task and Alpaca [67]]
for preference alignment task. More future works are required to explore more model series and
sizes. Secondly, safety alignment is also an important topic in the era of LLMs, which is not
comprehensively covered in our paper. This could be an interesting and promising future direction.

B Datasets

B.1 Lengths measurement

To measure each data sample, We use Llama?2 tokenizer to tokenize the instruction and response
of each data sample and use the number of tokens as the sentence length. Figure [I(b)] shows the
distribution of length of instruction and response of clients’ data of our four datasets.

B.2 Verbs and nouns

We show the top 20 verbs and corresponding top 4 nouns of instructions of overall four datasets in
Figure [/l We refer to the visualization code of Self-instruct [57]]. Note that for all four datasets, we
choose clients with English samples. From Figure|/} we can observe that different datasets possess
diverse instruction types and distributions. For example, the top 2 verbs for Aya and WildChat datasets
are (explain, write) and (write, make), respectively; While ChatbotIT and ChatbotPA, which are from
the same public dataset, have a large range of keyword overlap but different quantity distributions.

We also show the top 20 verbs and corresponding top 4 nouns of instructions of individual clients
from four datasets in Figure [0} Figure[T0] Figure[TT]and Figure[I2] For all four datasets, we choose
clients with English samples to present verbs and nouns in their instructions.

B.3 Quality evaluation

We conduct data quality evaluation with the pre-trained Llama2-7B [34] and the IFD metric [S9].
IFD is a quality evaluation metric, qualifying the instruction-following difficulty of the given model
as the data quality. It has been widely used in [78| 1211 [79]. From Figure[3] we can see that clients in
four datasets have various data qualities. This indicates these four federated datasets demonstrate
quality heterogeneity, which is an inherent property of real data sets.

B.4 t-SNE visualization

We also implement the t-SNE instruction-response embedding in four datasets. Here the ’fext-
embedding-ada-002’ from OpenAl is utilized as the feature extraction model. We randomly select 10
clients from each dataset and use the t-SNE two-dimensional visualization to demonstrate the data
heterogeneity from each client. From Figure[d] we could see that data points from the same client
cluster in the feature space. This is particularly evident in Fed-Aya and Fed-WildChat, demonstrating
data heterogeneity within the dataset.

B.5 Perplexity

Perplexity is a widely-used metric for evaluating data complexity and quality in language modeling.
To provide a more comprehensive understanding of our dataset’s variability and quality, We evaluate
perplexity on our four datasets and the results are shown in Table[0] The model has relatively higher
average perplexity on Fed-Aya and Fed-WildChat, and lower on Fed-ChatbotIT and Fed-ChatbotPA.

17



/
B’

'l
&

W

@%’e
make
eald

&
Ger

IS)

omelet
story
GonemnSyuo>
1oA1S
et
03

¢}
bar
metog

list
e

(b) ChatbotIT

(c) WildChat (d) ChatbotPA

Figure 7: The top 20 most common root verbs (inner circle) and their top 4 direct noun objects (outer
circle) in the instructions of four datasets.

B.6 Unfiltered Dataset

To provide researchers with flexibility, we have released both filtered and unfiltered versions of our
datasets. The unfiltered version enables future researchers to freely adjust and customize the data
according to specific research needs. We also provide a overall statics of data distribution as shown in
Table[T0} The unfiltered dataset includes a larger number of clients, but the average data volume per
client has significantly decreased, compared to the filtered version as shown in Table[T}

B.7 Discussion about data privacy and safety

The base datasets we construct ours from have already undergone screenings for safety and privacy.
For example, in Chatbot-arena Conversations dataset, most conversations that contain personally
identifiable information have been moved. Fed-ChatbotIT, Fed-ChatbotPA and Fed-WildChat, which
are based on Chatbot-arena Conversations dataset and WildChat dataset, may contain unsafe or toxic
interacts, but they are kept so that these datasets can be better used to study Al safety and simulate
real-world dialogue scenarios.
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Table 10: Data distribution of unfiltered datasets. The unfiltered dataset includes a larger number of
clients, but the average data volume per client has significantly decreased.

Dataset Name | Fed-Aya Fed-ChatbotIT ~ Fed-WildChat Fed-ChatbotPA
# Clients (Total) 1456 10996 181063 10996

# Samples (Total) 202364 23294 899215 23294

# Samples (Client) | 139+605 2+6 5+57 2+6

Table 11: Experimental setups of all datasets. ‘Local epochs’ denotes the number of training epochs
in local training. In the column of ‘Clients’, x/y denotes that there are y clients in total and we same x
clients for each round.

Dataset | Local Epochs | Clients Local Steps ~ Global Rounds
Fed-Aya 5 4/38 10 200
Fed-ChatbotIT 10 10/237 5 100
Fed-WildChat 5 5/100 10 100
Fed-WildChat (Multi-Turn) 20 3/50 10 50
Fed-ChatbotPA 10 10/747  Dynamic 200
Fed-WildChat (unfiltered) 5 10/500 10 200

C Experiments

C.1 Experimental setups

We report the detailed experimental setups in Table [T1] For each table, we randomly sample two
clients to conduct local training and average their performance as the final results of ‘local training’
in the table. We use dynamic local steps for local training in ChatbotPA. We calculate the probability
of a user being selected in a round given parameters such as the total number of rounds, the number
of clients sampled per round, and the total number of clients. We then adjust the local training steps
for each client based on their sampling probability and data volume, ensuring that each client’s data
can undergo about three epochs of training in total. Our experiments were mainlt conducted on a
machine equipped with an NVIDIA GeForce RTX 3090 GPU with 24 GB of VRAM. Experiments
on Fed-WildChat(Multi-Turn) were conducted on a machine equipped with an NVIDIA A40 with
48GB of VRAM.

Here, we provide a comprehensive description of the selected baselines, categorizing them into two
types (classified by operations on the client or server side) to demonstrate the thoroughness of our
experiments.

1. FedAvg [7] is the basic federated learning method.

2. Client-side methods: FedProx [26]] applies an 12 regularization term between the local model
and global model during the training of local model on the client side. SCAFFOLD [27]]
introduces a control variate that corrects the gradient of local model on the client side.

3. Server-side methods: FedAvgM [31] introduces simple momentum for updating the global
model on the server side. FedAdagrad, FedYogi, and FedAdam [32] introduce adaptive
optimization methods for updating the global model on the server side.

The hyperparameter configurations used in each baseline experiment are detailed in Table[T2] To
further optimize model efficacy, We perform a tuning experiment on the FedAdam baseline using the
Fed-WildChat dataset, results shown in Table[I3] where the adjusted parameters yield improvements.
This experiment serves as a basis for future work, encouraging further exploration into optimal
parameter settings that promote robust and efficient federated learning outcomes.

C.2 Evaluation

Here, we show the prompt template used in GPT-4 Judge in Figure[§] For the specific dataset Aya,
we utilize some test samples from the raw dataset, where each sample contains a question and a

19



Table 12: Hyper-parameters of baselines.

Baseline | Hyper-parameters

FedProx p=0.01

FedAvgM momentum=0.5

FedAdagrad | 81 =0, 82 = 0,1y = le=3,7 = le—3
FedYogi B1 =096 =099, n, =1le=3,7=1e-3
FedAdam B1=0.9, 82 =0.99,ny = le=3, 7 = le—3

Table 13: Results of FedAdam on Fed-WildChat. New parameters achieve better performance.

Method | MT-1  Vicuna
FedAvgM 4.52 8.07
FedAdam (previous parameters) | 4.54 8.03
FedAdam (new parameters) 4.68 8.35

reference answer. We infer the tested model with the question and obtain an answer. Then we fill in

the "question”, "answer" and "reference" blanks of the template.

i Prompt:

: [Instruction]

: Please act as an impartial judge and evaluate the quality of the response provided by an Al assistant to the user question
I displayed below. A good answer should follow these rules:

I 1.It should be in the same language as the question.

1 2. It should answer the request in the instruction.

: 3.1t should be factually and semantically comprehensible.

I 4. It should be grammatically correct and fluent.

| Begin your evaluation by providing a short explanation. Be as objective as possible. After providing your explanation,
: you must rate the response on a scale of 1 to 10 by strictly following this format: \"[[rating]]\", for example: \"Rating:
: [[5]]\". A human annotated answer is given for reference.

[Question]

{ ¥

[The Start of Assistant's Answer]

{
[The End of Assistant's Answer]

[Reference]

{ }

Figure 8: Prompt template used in GPT-4 judge.

D More details about differential privacy

D.1 Definition

Differential privacy (DP) [[75] has emerged as a broadly recognized framework for safeguarding
privacy in statistical analyses. Through DP, we can perform computations on extensive datasets while
ensuring that individual data points remain indistinguishable, thereby protecting personal privacy.

In general, we use privacy parameters € and § to formally define DP. Specifically, a randomized
mechanism M : D — R is (e, J)-differential private for ¢ > 0 and § € [0,1) if for any two
neighboring datasets D, D’ € D differing by at most one entry and for any subset of outputs R C R
it holds that

P(M(D) € R) < exp(e)P(M(D') € R) + 6.
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Table 14: MT-Bench on WildChat with Differential Privacy and fixed . FedLLM with DP(c=0.1) still
outperforms local and differential privacy costs slight model performance while ensuring user-level
differential privacy.

local(813) local(1702) FedAvg FedDP-le=® FedDP-le=2 FedDP-0.1 FedDP-1
3.5375 4.0875 4.6875 4.6750 4.5500 4.5375 1.6875

D.2 User-level differential privacy

We implement user-level differential privacy(UDP) [[76] in our experiments. Following [[76], we use
the Gaussian mechanism that employs the Lo norm sensitivity. It adds zero-mean Gaussian noise
with variance oI to each coordinate of the function output (D) as follows:

M(D) = r(D) + N(0,5%1),

where I is an identity matrix of the same size as (D). The sensitivity of the function r is expressed
as:
Ar = max_|r(D)—r(D’
s [r(D) = (D)
which provides an upper bound on the necessary perturbation to its output for privacy preservation.
By appropriately selecting the value of o, this mechanism satisfies (e, §)-differential privacy.

D.3 Experiment details of differential privacy

In our experiments with UDP, we use WildChat dataset. For convenience, the batch size is 1 in all DP
experiments and other settings are the same as single-turn WildChat experiment setting, see details in
Section 4l

We add Gaussian noise cautiously controlled by o when local clients upload their local models to the
server, ensuring User-level differential privacy. Following [76]], the value of ¢ is calculated by:

W/Zqun%

€

0251

where ¢ is the sample fraction of clients each round, N is the federated learning communication
round, (e, ) is the DP parameters and deltq, is decided as follows:

2nC
o0 = ol

[n|

where 7 is the learning rate, C' is the maximum of gradients, | D] is the size of dataset and |n| is the
number of clients. Note that when expressed with (e, §), smaller e means smaller privacy budget, in
other words, better privacy and usually lower performance. However, when expressed with o, larger
o means better privacy and usually lower performance.

Our experiment results are shown in Figure [6| and Table [T4] Figure [6] shows that FedLLM with
(0.01, 1e~*)-DP still outperforms local training and differential privacy costs slight model perfor-
mance while ensuring user-level differential privacy.

In fact, the o calculated in Section[D.2]is a proper bound when ensuring user-level differential privacy
with given (¢, §). We also conduct experiments with fixed o and results are shown in Table
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Figure 9: The top 20 most common root verbs (inner circle) and their top 4 direct noun objects (outer
circle) in the instructions of Aya for 12 different %Iish clients. We select English clients on purpose.
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Figure 10: The top 20 most common root verbs (inner circle) and their top 4 direct noun objects
(outer circle) in the instructions of ChatbotIT for 20 different clients.
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Figure 11: The top 20 most common root verbs (inner circle) and their top 4 direct noun objects
(outer circle) in the instructions of WildChat for 20 different clients.
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Figure 12: The top 20 most common root verbs (inner circle) and their top 4 direct noun objects
(outer circle) in the instructions of ChatbotPA for 20 different clients.
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