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Abstract: Dropped into an unknown environment, what should an agent do to
quickly learn about the environment and how to accomplish diverse tasks within
it? We address this question within the goal-conditioned reinforcement learning
paradigm, by identifying how the agent should set its goals at training time to
maximize exploration. We propose “Planning Exploratory Goals” (PEG), a method
that sets goals for each training episode to directly optimize an intrinsic exploration
reward. PEG first chooses goal commands such that the agent’s goal-conditioned
policy, at its current level of training, will end up in states with high exploration
potential. It then launches an exploration policy starting at those promising states.
To enable this direct optimization, PEG learns world models and adapts sampling-
based planning algorithms to “plan goal commands”. In challenging simulated
robotics environments including a multi-legged ant robot in a maze, and a robot
arm on a cluttered tabletop, PEG exploration enables more efficient and effective
training of goal-conditioned policies relative to baselines and ablations. Our ant
successfully navigates a long maze, and the robot arm successfully builds a stack
of three blocks upon command. Project website: https://sites.google.com/
view/peg-corl22
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1 Introduction
Complex real-world environments such as kitchens and offices afford a large number of configurations.
These may be represented, for example, through the positions, orientations, and articulation states of
various objects, or indeed of an agent within the environment. Such configurations could plausibly
represent desirable goal states for various tasks. Given this context, we seek to develop intelligent
autonomous agents that, having first spent some time exploring an environment, can afterwards
configure it to match commanded goal states.

The goal-conditioned reinforcement learning paradigm (GCRL) [1] offers a natural framework to
train such goal-conditioned agent policies on the exploration data. Within this framework, we seek to
address the central problem: how should a GCRL agent explore its environment during training
time so that it can achieve diverse goals revealed to it only at test time? This requires efficient
unsupervised exploration of the environment.

Exploration in the GCRL setting can naturally be reduced to the problem of setting goals for the
agent during training time; the current GCRL policy, commanded to the right goals, will generate
exploratory data to improve itself [2, 3]. Our question now reduces to the goal-directed exploration
problem: how should we choose exploration-inducing goals at training time?

Prior works start by observing that the final GCRL policy will be most capable of reaching familiar
states, encountered many times during training. Thus, the most direct approach to exploration is to
set goals in sparsely visited parts of the state space, to directly expand the set of these familiar states
[2, 4, 5]. While straightforward, this approach suffers from several issues in practice. First, the GCRL
policy during training is not yet proficient at reaching arbitrary goals, and regularly fails to reach
commanded goals, often in uninteresting ways that have low exploration value. For example, a novice
agent commanded to an unseen portion of a maze environment might respond by instead reaching
a previously explored part of the maze, encountering no novel states. To address this, prior works

6th Conference on Robot Learning (CoRL 2022), Auckland, New Zealand.

https://sites.google.com/view/peg-corl22
https://sites.google.com/view/peg-corl22


[5, 6] set up additional mechanisms to filter out unreachable goals, typically requiring additional
hyperparameters.

Second, recent works [2, 7, 5] have observed improved exploration in long-horizon tasks by extending
training episodes. Specifically, rather than resetting immediately after deploying the GCRL policy
to a goal, these methods launch a new exploration phase afterwards, such as by selecting random
actions [5, 8] or by maximizing an intrinsic motivation reward [9]. In this context, even successfully
reaching a rare state through the GCRL policy might be suboptimal; many such states might be poor
launchpads for the exploration phase that follows. For example, the GCRL policy might end up in a
novel dead end in the maze, from which all exploration is doomed to fail.

Figure 1: PEG exploration in a U-maze.
Brown background dots: explored states,
commanded goals: ⋆, resulting paths:
colored lines. (Left) PEG optimizes di-
rectly for exploration, even setting un-
seen goals, and achieving farther paths.
(Right) Setting goals at the frontier of
the seen state distribution yields less ex-
ploration.

To avoid these shortcomings and focus exploration on
the most promising parts of the environment, we propose
to leverage planning with world models in a new goal-
directed exploration algorithm, PEG (short for "Planning
Exploratory Goals"). Our key idea is to optimize directly
for goal commands that would induce high exploration
value trajectories, cognizant of current shortcomings in
the GCRL policy, and of the exploration phase during
training. Note that this does not mean merely command-
ing the agent to novel or rarely observed states. Instead,
PEG commands might be to a previously observed state,
or indeed, even to a physically implausible state (see Fig-
ure 1). PEG only cares that the command will induce the
chained GCRL and exploration phases together to generate
interesting training trajectories.

Our key contributions are as follows. We propose a novel paradigm for goal-directed exploration
by directly optimizing goal selection to generate trajectories with high exploration value. Next, we
show how learned world models permit an effective implementation of goal command planning, by
adapting planning algorithms that are often used for low-level action sequence planning. We validate
our approach, PEG, on challenging simulated robotics settings including a multi-legged ant robot in a
maze, and a robot arm on a cluttered tabletop. In each environment, PEG exploration enables more
efficient and effective training of generalist GCRL policies relative to baselines and ablations. Our
ant successfully navigates a long maze, and the robot arm stacks three blocks upon command.

2 Problem Setup and Background
We wish to build agents that can efficiently explore an environment to autonomously acquire diverse
environment-relevant capabilities. Specifically, in our problem setting, the agent is dropped into an
unknown environment with no specification of the tasks that might be of interest afterwards. Over
episodes of unsupervised exploration, it must learn about its environment, the various “tasks” that it
affords to the agent, and also how to perform those tasks effectively. We focus on goal state-reaching
tasks. After this exploration, a successful agent would be able to reach diverse previously unknown
goal states in the environment upon command.

To achieve this, our method, planning exploratory goals (PEG), focuses on improving unsupervised
exploration within the goal-conditioned reinforcement learning framework. We set up notation and
preliminaries below, before discussing our approach in Section 3.

Preliminaries. We formalize the unsupervised exploration stage within a goal-conditioned Markov
decision process, defined by the tuple (S,A, T ,G). The unsupervised goal-conditioned MDP does
not contain the test-time goal distribution, nor a reward function. At each time t, a goal-conditioned
policy πG(· | st, g) in the current state st ∈ S , under goal command g ∈ G, selects an action at ∈ A,
and transitions to the next state st+1 with probability T (st+1|st, at). To enable handling of the most
broadly expressive goal-reaching tasks, we set the goal space to be identical to the state space: G = S ,
i.e., every state maps to a plausible goal-reaching command.
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In our setting, an agent must learn a goal-conditioned reinforcement learning (GCRL) policy πG(· |
s, g) as well as collect exploratory data to train this policy on. Thus, as motivated in Section 1, it is
critical to pick good goal commands during training because it generates useful data to improve the
policy’s ability to achieve diverse goals.

Critical to our method’s design is the specific mechanism through which goal commands influence the
exploration data. We follow the recently popular “Go-explore” procedure [2, 10, 11] for exploration-
intensive long-term GCRL settings. Every training episode starts with the selection of a goal command
g. Then, a goal-directed "Go-phase" starts, where the GCRL policy πG is executed, conditioned
on g, producing a final state sT after T steps. Immediately, an “Explore-phase” commences,
with an undirected exploration policy πE(· | s) taking over for the remaining TE timesteps. For
example, πE(· | s) could be an RL policy trained to maximize an intrinsic exploration reward rE

[12, 13, 14, 15]. This structure of training episodes has been shown to result in richer exploration
[10]. Intuitively, the goal-conditioned policy efficiently brings an agent to an interesting goal, and the
undirected exploration policy efficiently explores around the goal.

In our method, we build upon a recently proposed, powerful goal-conditioned model-based RL
framework, the latent explorer achiever (LEXA) [16], after extending it to incorporate Go-explore.
We briefly summarize the LEXA framework below and refer the reader to Appendix A.2 and the
paper for details. LEXA learns the following components:

World model: T̂θ(st|st−1, at−1)

Exploration policy: πE
θ (at|st) Goal Reaching policy: πG

θ (at|st, g)
Exploration value: V E

θ (st) Goal Reaching value: V G
θ (st, g)

(1)

The world model is trained as a variational recurrent state space model (RSSM) following [17]. The
explorer and goal reaching policies are trained with the model-based on-policy actor-critic Dreamer
algorithm [18]. Both policies are trained purely in imagination through world model “rollouts”, i.e.,
the world model acts as a learned simulator in which to run entire training episodes for training these
policies. The explorer reward is the Plan2Explore [15] disagreement objective, which incentivizes
reaching states that cause an ensemble of world models to disagree amongst themselves. The goal
reaching reward rG is the self-supervised temporal distance objective [16], which rewards the policy
for minimizing the number of actions between the current state and a goal state.

3 Planning Goals for Exploration
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Figure 2: PEG proposes goals for Go-explore style exploration. 1) We start by sampling goal
candidates g1 . . . gN . 2) For each goal g, we execute the goal-conditioned policy πG(· | ·, g) in the
world model T̂ to generate trajectories. 3) We score each goal by seeing how useful their trajectories
are for launching an exploration policy. 4) Explore using the best g.

Having set up the preliminaries, we return to the core question of this paper: how should we pick
exploration-inducing goals to help acquire diverse skills? We have argued above that the answer
is not to pick goals at the frontier of previously explored states, as in prior work. Instead, at the
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beginning of each training episode, we propose to optimize directly for goals that would lead to the
highest exploration rewards during the episode’s Explore-phase:

max
g

EpπG(·|·,g)(sT )

[
V E(sT )

]
, (2)

where V E(sT ) = EπE

[
T+TE∑
t=T+1

γt−T−1rEt

]
, (3)

and where pπG(·|·,g)(sT ) is the distribution of terminal states generated when πG runs for T steps
conditioned on goal g. V E , which we call exploration value, is the expected discounted intrinsic
motivation return of the exploration policy, when launched from state sT . Please refer to Figure 2 for
a detailed visualization.

Importantly, this objective involves computing the expected exploration value of terminal states sT .
The exploration value measures how interesting will the Explore-phase be as measured by intrinsic
motivation rewards. Next, note that the expectation in Equation (2) is over the terminal states induced
by the current GCRL policy. This way, it accounts for the capabilities of the current GCRL policy,
regardless of whether it is a novice or an expert at achieving the selected goal g. If we had instead
sought to optimize for goals g with high exploratory value, in similar spirit to prior works [4, 5, 2],
the objective of Equation (2) would instead be replaced by V E(g), the exploration value of the goal,
which is naively agnostic to the capabilities of the GCRL policy. As we have argued above, this would
then require additional mechanisms to account for reachability of the specified goal etc., bringing new
hyperparameters and related overheads. Instead, PEG offers a unified and compact solution. In plain
English, “first command goals that lead the goal policy to states that have high future exploration
potential, then explore.”

The objective in Equation (2) is not straightforward to compute, because it relies on the terminal
state distribution induced by the goal-conditioned policy pπG(·|·,g)(sT ). This distribution can change
rapidly throughout training, as the policy evolves. To explore well, it is important to use an up-to-date
estimate. We leverage the learned world model T̂ to achieve this: p̂πG(·|·,g)(τ) can be represented as
the product of the transition and goal-conditioned policy distributions.

p̂πG(·|·,g)(τ) = p(s0)

[
T∏

t=1

T̂ (st | st−1, at−1)π
G(at−1 | st−1, g)

]
(4)

Now, we may approximate the expectation over the marginal pπG(·|·,g)(sT ) in the objective Equa-
tion (2) by sampling trajectories τ from the learned world model and using the last state sT :

Ep̂πG(·|·,g)(sT )[V
E(sT )] ≈

1

K

∑
k

V E
θ (skT ) where skT ∼ p̂πG(·|·,g)(τ) (5)

This permits on-the-fly generation of an up-to-date estimate of our objective from Equation (2),
using a recent goal-conditioned RL policy. Then, we can optimize over goals g using sample-based
optimization. Following Equation (5), to evaluate a goal g, we condition the goal-conditioned policy
on g, and roll it out for K trajectories τk within the learned world model. We then estimate the
terminal state exploration value for each trajectory with the learned exploration value function V E

θ (skT )
(Equation (1)), and average the estimates. For optimizing the goal variable g, we use model predictive
path integral control [19] (MPPI, see Appendix A.3 for details). In Appendix A.3, we show that the
specific choice of optimizer is not critical and other optimizers like cross entropy method (CEM) [20]
also work well. More broadly, while these sampling-based optimizers are popular for optimizing
action trajectories with dynamics models [21, 22, 23, 17], PEG uses them instead for optimizing
goal commands; this lower-dimensional search space enables easy optimization, independent of the
task horizon, permitting handling long-term tasks. Equipped with this goal setting procedure, we
can now train a goal-conditioned policy by alternating between goal-conditioned exploration and
policy / world model updates. Algorithm 1 outlines the full procedure and see Appendix A.3 for
implementation details.
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4 Experiments
Our experiments evaluate goal-reaching tasks that require non-trivial exploration and skill acquisition
to solve. We aim to answer: (1) Does PEG result in better exploration and downstream goal-reaching
behavior? (2) What qualitatively distinguishes PEG goals and exploration from previous goal-directed
exploration methods? (3) What components of PEG contribute to its success?

4.1 Setup
We evaluate PEG and other goal-conditioned RL agents on four different continuous-control environ-
ments, described below. For each environment, we define an evaluation set of goals — as a general
principle, we pick evaluation goals in each environment that require extensive exploration in order
for the agent to learn a successful evaluation goal reaching policy. Recall that we assume the fully
unsupervised exploration setting; the agent does not have access to the evaluation set during training
time. So, for all the agent knows at training time, any environment state could plausibly be a test
goal. During evaluation, we run 10 goal-reaching episodes to account for environmental noise (e.g.
initial position noise) for each goal, and report the aggregate success rates for each environment. All
methods are run with 5 seeds. The success metric d(s, g) used for evaluation is an indicator function
checking if any state in the episode is within ϵ distance of the goal state. See Appendix A.1 for details.

Figure 3: We evaluate PEG across four diverse environments, selecting evaluation tasks to stress-test
exploration. From left to right: Point Maze requires the agent to move from the bottom left to top
right. Walker evaluates if the agent can walk to different positions on the plane. In Ant Maze, the ant
is required to move to the farthest end of the maze. Finally, in 3-Block Stack, the robot must stack
the blocks into the goal configuration (colored orbs).

See Figure 3 for images of each environment, and Appendix A.1 for more details.

• Point Maze: The agent, a 2D point, is noisily initialized in the bottom left. At test time, we
evaluate it on reaching the right corner. The 2-D state and action space correspond to the planar
position and velocity respectively. The episode length is 50 steps. The top right corner is the hardest
to reach, so we set this to be the test-time goal.

•Walker: In this environment from [24], a 2D 2-legged robot moves on a flat plane. The state
space is 9-D and contains the walker’s XZ position and joint angles. The action space is 6-D and
represents joint torques. The episode length is 150 steps. To evaluate the ability to learn different
locomotion behaviors of varied difficulty, the test goal commands are standing states that are placed
±7, and ±12 meters from the initial pose.

• Ant Maze: We increased exploration difficulty in the Ant Maze environment from MEGA [5] by
placing one additional turn in the maze. Further, we set the GCRL goal space to the full 29-D ant
state space, rather than reduce it to 2-D xy position as in MEGA. The ant robot must learn complex
4-legged locomotion behavior and navigate around the hallways (see Figure 3). The episode length
is 500 steps. We evaluate the ant on reaching 4 hard goals that are placed in the top left room, the
furthest area from the start, and 4 intermediate goals in the middle hallway.

• 3-Block Stacking: Here, a robot arm operates on a tabletop with 3 blocks and boundary walls. The
state space is the gripper and object xyz positions (14-D), and actions are gripper velocity and force
(4-D). At evaluation time, the robot is commanded to stack three blocks into a tower configuration.
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The episode length is 150 timesteps. Note that 3+block stacking is a classic and open exploration
challenge in robot RL; to our knowledge, all prior solutions assume expensive forms of supervision or
computational resources to overcome the exploration challenge, such as demonstrations, curriculum
learning, or billions of simulator samples [2, 25, 26, 27], highlighting task difficulty.

4.2 Baselines

PEG aims to improve goal-directed exploration by improving goal selection during GCRL. To
specifically evaluate the goal selection logic, we implemented all baselines on top of LEXA [16],
the backbone goal-conditioned MBRL framework and Go-Explore [2] GCRL, unless mentioned.
Our first two baselines, Skewfit and MEGA, are alternative goal setting approaches: both follow
Algorithm 1 and differ only in the goal selection logic (line 4). Skewfit [4] estimates state densities,
and chooses goals from the replay buffer inversely proportional to their density, resulting in uniform
state sampling. MEGA [5] similarly uses kernel density estimates (KDE) of state densities, and
chooses low density goals from the replay buffer. MEGA is close to the original Go-explore approach
[2]; rather than Go-explore’s hand-designed pseudocount metric, MEGA uses KDE to choose goals.
MEGA relies on a heuristic Q-function threshold to prune unachievable low density goals since many
rare states may not be achievable by πG. This requires tuning and prior knowledge of the test goal
during training time to set. We also run vanilla LEXA itself as a baseline. LEXA does not perform
Go-explore style exploration, instead using an exploration policy for some exploration episodes and
the goal-conditioned policy conditioned on random goals for others. In addition, we evaluate against
a variant of LEXA that uses only the exploration policy without a Go-phase. We denote this baseline
Plan2Explore (P2E) after the intrinsic motivation objective it uses [15]. See Appendix A.2 for details.

Figure 4: Performance of agents with different goal setting strategies. All methods are run with 5
seeds. PEG outperforms all baselines, and its performance gain increases with environment difficulty.

4.3 Results

Test task success rates. Figure 4 shows the evaluation performance across training time. PEG com-
pares favorably to baselines both in final success rate and learning speed. PEG reaches near-optimal
behavior earlier than any other baseline. PEG outperforms goal-setting baselines (MEGA and Skewfit)
across all tasks, which shows that PEG goal setting is superior to alternative goal-setting strategies.
On the hardest task, block stacking, PEG is the only method to achieve any significant non-zero task
performance: PEG achieves about 30% success rate on this challenging exploration task, all other
baselines are close to 0%.

Goal selection behaviors. Next, Figure 5 visualizes the goal-picking and exploration behaviors for
PEG and baselines. A trend across tasks is that PEG consistently picks goals (red points) beyond the
frontier of seen data. In Point Maze, the middle right region forms a natural barrier for the exploration
policy to overcome. The policy must find a rather tortuous path from the bottom left through the
middle right hallways in order to reach the top right corner. As a result, top right states beyond the
middle right region are very sparsely represented. With similar states in the replay buffer (blue dots),
we find that PEG generates many more goals in the top right region than MEGA, thus accelerating
exploration. Similarly, in Walker, PEG selects goals to the far left and right of the walker, where
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Figure 5: We plot the achieved states (blue / green dots) and goals (red dots) for PEG and baselines
in the Point Maze (top left), Walker (top right), and Ant Maze (bottom) halfway through training.
PEG picks goals in areas (orange boxes) that lead to more exploration whereas baselines do not.
Walker and Ant states are high dimensional so we just plot their central xz or xy positions.

data support is the sparsest. MEGA fails to pick goals to the left. In Ant Maze (Figure 5), we see
that PEG explores the most deeply into the maze of all methods, at this halfway point. Counting the
total number of state visitations in the farthest top-left reaches of the maze for each method, we find
that PEG has ∼68K states whereas MEGA, the closest baseline, only has ∼3K. Looking at Figure 5,
MEGA does pick a few “rare” goals in the top left, but πG has not visited the top left area, either
because πG is not capable of reaching the rare goals and/or the frontier. Skewfit samples no goals in
the top left region, because it does not prioritize rare states.

Table 1: Number of 3-
block stacks experienced.

Method Count

P2E 1± 1.55
LEXA 0± 0
MEGA 1± 2
Skewfit 1± 0.4
PEG 523± 614

In the 3-Block Stack environment, as discussed above, PEG is the only
method to train any meaningful policy. The space of configurations of
the three blocks and the robot in this setting is extremely large, and
all methods struggle with this challenge. We observed that PEG and
baselines all spent significant amounts of time exploring peculiar states
such as throwing blocks over the workspace walls. However, critically,
PEG ’s exploration is comprehensive enough to also explore more “useful”
and hard-to-reach behaviors such as 3-block stacking. We analyzed the
replay buffers (1M steps) across all methods (5 seeds per method) and
logged the mean number of states and standard deviation that are ϵ-close to the 3-block stacks we use
as test goals (see Table 1). PEG experiences such states on average ∼500 times, whereas no baseline
experiences this more than 3 times throughout training! This suggests that PEG more thoroughly
explores the environment in general, including the most challenging 3-block stacking states. Did the
PEG agent reach these block stacking states during Go-phase or Explore-phase? We found that 75%
of the 3-block states come in Go-Phase. In other words, PEG sets goals that induce this stacking
behavior, and moreover, the GCRL policy is able to achieve such behaviors quite frequently during
training (see website for videos).

Figure 6: PEG ablations.

Ablation Analysis. What components of PEG are impor-
tant to its performance? We run ablation studies in Ant
Maze. First, we ablate PEG’s goal sampling: Rand-Goal
PEG replaces PEG’s goal sampling with randomly sam-
pled goals. In Seen-Goal PEG, we forego optimizing the
goal with MPPI and simply choose goals from the replay
buffer that score highly according to Equation (5). Go-
Value PEG chooses to optimize the exploration rewards
achieved during the imagined Go-phase instead of during
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the Explore-phase, by replacing V E(sT ) in Equation (5) with
∑T

t=1 r
E
t — note that this still runs Ex-

plore after Go in the environment. Next, we ablate PEG’s Go-explore mechanism itself, by replacing
the explorer policy with a random action policy (Rand-Explore PEG), and removing Explore-phase
completely (No-Explore PEG).

Figure 6 shows the results. PEG is clearly better than all ablations, suggesting that all components of
the method contribute to performance. Explore-phase is particularly important; No-Explore PEG
achieves 0% success. Rand-Explore PEG performs poorly, showing the need for a learned Explore-
phase policy like P2E. Next, Rand-Goal PEG, Seen-Goal PEG, and Go-Value PEG all perform worse
than PEG; the specifics of the objective function for goal sampling defined in Equation (5), and its
optimization procedure, are important.

5 Other Related Work
PEG leverages an unsupervised exploration policy. One family of unsupervised exploration ap-
proaches trains a reinforcement learning (RL) agent to maximize an intrinsic motivation reward corre-
lated with exploration [28, 13]. Common forms of intrinsic reward incentivize visiting rare states with
count-based methods [29, 12, 14] or finding states that maximize prediction error [30, 13, 31, 32, 15].

More specifically related to PEG, goal-directed exploration is a special class of unsupervised explo-
ration, applicable in the challenging goal-conditioned RL (GCRL) setting. To develop generalist
GCRL policies, these methods command the goal-conditioned policy towards exploratory goals at
training time. Broadly, the idea is to pick goals that are difficult for the current policy, but not com-
pletely out of reach, i.e., within the “zone of proximal development.” Within that broad framework,
however, prior works propose many different metrics for goal choosing, such as learning progress
[33, 34], goal difficulty [35], “sibling rivalry” [36], or value function disagreement [37]. Within this
family, we have already discussed and compared against the most closely relevant methods MEGA
and Skew-Fit [4, 5] (see Section 4.2 and Section 4.3) which command the agent to rarely seen states
to increase the number of seen and familiar states, reasoning that this will enable broader expertise in
the trained GCRL policies.

Closely related to unsupervised goal-directed exploration is unsupervised skill discovery, which
aims to train a skill-conditioned policy [38, 39]. The main difference between PEG and skill
discovery is that skill discovery optimizes latent skill variables to acquire a diverse set of skills,
whereas PEG optimizes observed goal variables for exploration. Skill discovery objectives do not
necessarily encourage exploration, and can even fall into local minima where the agent is penalized
for exploration [40], or fail to learn state-covering skills [41]. As such, these are usually weak
baselines for exploration; for example, our goal-directed exploration baselines, LEXA and MEGA,
both report clearly favorable results against such methods [38, 42].

6 Conclusions

We have presented planning exploratory goals (PEG), an approach for goal setting to train goal-
conditioned reinforcement learning agents to become “generalists” in a novel environment, with
no supervision. PEG plans exploratory goals through a world model, directly optimizing for the
exploration value of the training trajectory. It thus provides a simple and principled objective for
goal selection. PEG depends on a learned world model to plan goals, and may suffer in prediction
performance and computation time for longer prediction horizons. An interesting direction would
be to combine PEG with temporally abstracted world models [43, 44] to handle such cases. Further,
while empirically PEG produces performant goal-conditioned policies, it only explores by maximizing
novelty. In harder tasks it might be necessary to explicitly consider also exploring with "practice
goals" that best improve the goal-conditioned policy. Finally, while we focus on purely unsupervised
exploration, in practice some sparse feedback from a human might be provided. Leveraging such
feedback to focus exploration on the space of tasks preferred by the user would make GCRL and
PEG more practical. By presenting a principled algorithm for goal setting, we hope that PEG will
enable future advances and extensions to address these challenges.
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A Appendix

A.1 Environments

Point Maze: The agent, a 2D point spawned on the bottom left of the maze, is evaluated on reaching
the top right corner within 50 timesteps. The two-dimensional state and action space correspond
to the planar position and velocity respectively. Success is based upon the L2 distance between the
position of the agent and the goal being less than 0.15. The entire maze is approximately 10 x 10.
This environment is taken directly from [5] with no modifications.

Walker: Next, the walker environment tests the locomotion behavior of a 2D walker robot on a flat
plane. The agent is evaluated on its ability to achieve four different standing poses that are placed
±7, and ±12 meters in the x axis away from the initial pose. For success, we check if the agent’s x
position is within a small threshold from the goal pose’s x position. The state and goal space is 9
dimensional, containing the walker’s xz positions and joint angles. The environment code was taken
from [16].

Ant Maze: A high-dimensional ant robot needs to move through hallways from the bottom left to
top left (see Fig. 3). This environment is a long-horizon challenge due to the long episode length (500
timesteps) and traversal distance. We evaluate the ant on reaching 4 hard goals at the top left room,
and 4 intermediate goals in the middle hallway. Ant Maze has the highest dimensional state and goal
spaces: 29 dimensions that correspond to the ant’s position, joint angles, and joint velocities. The
first three dimensions of the state and goal space represent the xyz position. The next 12 dimensions
represent the joint angles for each of the ant’s four limbs. The remaining 14 dimensions represent the
velocities of the ant in the x-y direction and the velocities of each of the joints. Ant Maze also has
an 8 dimensional action space. The 8 dimensions correspond to the hip and ankle actuators of each
limb of the ant. Success is based upon the L2 distance between the xy position of the ant and the
goal being less than 1.0 meters, which is approximately the width of a cell. The dimensions of the
entire maze is approximately 6 x 8 meters. This environment is a modification from the Ant Maze
environment in [5]. We modified the environment so that the state and goal space now includes the
ant’s xyz positions along with the joint positions and velocities instead of just the xy positions. We
also added an additional room in the top left in order to evaluate against a harder goal.

3-Block Stack: A robot has to stack three blocks into a tower configuration. The state and goal
space for this environment is 14 dimensional. The first five dimensions represent the gripper state
and the other nine dimensions represent the xyz positions of each block. The action space is 4
dimensional where the first three dimensions represent the xyz movement of the gripper and the last
dimension represents the movement of the gripper finger. Success is based upon the L2 distance
between the xyz position of all of object and the goal position of the corresponding object being less
than 3cm. This environment is a modification from the FetchStack3 environment in [5].

A.2 Baselines

LEXA LEXA [16] is trains goal-conditioned policies with model-based RL. It trains two policies,
an exploration policy and a goal-conditioned “achiever” policy. The original LEXA codebase was
designed for image-based environments, so we implemented a state-based LEXA agent by modifying
DreamerV2 [18]. To do so, we added the πG and πE policies, goal-conditioning logic, and the
temporal distance reward network.

Original MEGA codebase We used the original MEGA codebase to train a MEGA and a Skewfit
agent [5, 4] for 1 million environmental steps to solve the Pointmaze, Ant Maze, and 3-Block
Stack tasks mentioned in Section 6. We used the original MEGA implementation with the same
hyperparameters except for their goal-conditioned policy training scheme.
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MEGA proposes Rfaab, a custom goal relabeling strategy to train the goal-conditioned policy. By
default Rfaab relabels transitions with test time goals to train the goal-conditioned policy, which is not
possible in our unsupervised exploration setup. Therefore, we changed the Rfaab hyperparameters to
rfaab_0_4_0_5_1, which no longer grants access to test goals.

We find that both MEGA and Skewfit agent fail to scale to the harder environments (Ant Maze and
3-Block Stack) as seen in Figure 7. One reason could be that the MEGA codebase uses model-free
RL, which is more sample inefficient. Therefore, we reimplemented MEGA and Skewfit with LEXA,
the backbone MBRL agent that PEG uses as well.

MEGA Skewfit
Point Maze 90% 0%
Ant Maze 0% 0%

3-Block Stack 0% 0%

Figure 7: Success Rate of MEGA and Skewfit Agent

Model-based MEGA For model-based MEGA, we simply port over MEGA’s KDE model. Conve-
niently, LEXA already trains a goal-conditioned value function, which we use for filtering out goals
by reachability. We use the same KDE hyperparameters as the original MEGA paper. As seen in
in Figure 4, our MEGA implementation gets non-trivial success rates, improving over the original
MEGA baseline.

Model-based Skewfit For Skewfit, we port over the Skewfit baseline in MEGA’s codebase. The
implementation is straightforward and similar to model-based MEGA. Instead of picking the mini-
mum density goal, Skewfit picks goals inversely proportional to their density. As seen in in Figure 4,
our Skewfit implementation gets non-trivial success rates.

Plan2Explore Our Plan2Explore baseline uses a Plan2Explore exploration policy to gather data for
the world model and trains a goal-conditioned policy in imagination. Our LEXA implementation
already uses Plan2Explore, so this variant simply requires us to only rollout the exploration policy in
the real world.

A.3 Implementation Details

Algorithm 1 Training
1: Input: goal / expl. policies πG, πE , world

model T̂ , rewards rG, rE
2: D ← {} Initialize buffer.
3: for Episode i = 1 to Ntrain do
4: Compute goal g by optimizing Eq. 5 with

MPPI
5: τ ← GO-EXPLORE(g, πG, πE)
6: D ← D ∪ τ
7: Update model T̂ with (st, at, st+1) ∼ D

8: Update πG in imagination with T̂ to maxi-
mize rG

9: Update πE in imagination with T̂ to maxi-
mize rE

10: end for

We implement PEG on top of authors’ code from DreamerV2 [18], LEXA [16], and MPPI implemen-
tation from Rybkin et al. [45]. We used the default hyperparameters for training the world model,
policies, value functions, and temporal reward functions. For PEG, we tried various values of K
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for simulating trajectories of πG for each goal and found K = 1 to be sufficient. We found PEG to
be relatively efficient - optimization only takes a few seconds, as PEG only needs to optimize a
goal variable. We use the same Go-explore mechanism across all goal-setting methods: the Go and
Explore phases’ time limits are set to half of the maximum episode length for all environments, while
non-Go-explore baselines use the full episode length for exploration.

MPPI MPPI is a popular optimizer for planning actions with dynamics models [19, 21]. Instead of
planning sequences of actions, which grows linearly with horizon, PEG only needs to “plan” with
a goal variable, making the search space independent of the horizon. First, we present a high-level
summary of MPPI, and refer interested readers to [21] for a more detailed look at MPPI.

The process begins by randomly sampling N goal candidates g from a Gaussian distribution. These
candidates are then evaluated as described in Figure 2 - we generate goal-conditioned trajectories for
each goal gk through the world model, and compute the expected exploration value Vk for each goal.
This exploration value acts as the “score” for the goal candidate. Once we have scores for each goal
candidate, the Gaussian distribution is refit according to the rule:

µt =

∑N
k=0(e

γ·Vk)(gk)∑N
k=0(e

γ·Vk)
(6)

where γ is the reward weight hyperparameter. We repeat this process of sampling, evaluation, and
updating for multiple iterations.

In our environments, we sample 500 goal candidates in Maze, Walker, and Ant, and 2000 goal
candidates in 3-Block stack. We used reward weights of 1,2,2, and 10 for Maze, Walker, Ant, and
3-Block Stack respectively. We optimize the goal variable for 5 iterations across all environments.
We did not find MPPI optimization to be slow; it takes a few seconds. This computational time is
further amortized since we do not generate a goal every policy update, rather we generate it once
every 50 episodes.

A.4 How do PEG goals change?

20% 40% 60% 80% 100%

Figure 8: The evolution of achieved states (colored dots) and goals (red dots) of PEG throughout
training in the Ant Maze. Lighter states are more recent. PEG samples goals to maximize exploration,
sometimes picking goals that are outside the seen data or even physically implausible.

We further examine the training evolution of PEG goals in Ant Maze to analyze how they contribute
to exploration. We plot the achieved states and goals proposed by PEG periodically throughout
its training in Figure 8. PEG goals, optimized to induce the goal-conditioned policy to visit high-
exploration value states, are not always predictable. PEG commonly chooses goals outside of the
data distribution. For example, PEG chooses goals near the top wall for the entire training duration.
We can also see it choosing physically impossible goals in the middle wall at 20%, but these goals
disappear as the goal-conditioned policy and world model are updated over time.

A.5 PEG with other exploration methods

While we chose to train our exploration policy and value function with Plan2Explore, PEG can
work with any exploration method as long as it provides an exploration reward and policy. Random
Network Distillation (RND) is another powerful exploration method that rewards discovering new
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Figure 9: P2E vs. RND

states. We run both variants with 5 seeds in the Ant environment Figure 9. We find that the RND
variant still explores the environment, albeit not as well as P2E. We hypothesize P2E exploration is
particularly synergistic with our model-based RL framework, since the P2E explorer explicitly seeks
transitions (s, a, s′) that improve the model. As the model accuracy increases, so does the quality of
the goals generated by PEG .

Figure 10: MPPI vs. CEM

A.6 MPPI vs CEM for Goal Optimization

We investigate the impact of the goal optimizer on PEG . We choose two popular optimizers, MPPI
and CEM, to optimize our objective, and run 5 seeds of each variant in the stacking environment. As
seen in Fig. 10, the two agents perform similarly, showing that the PEG objective is robust to the
choice of optimizer.

A.7 Does conditioning on PEG goals maximize exploration?

Figure 11: PEG exploration in a U-maze. Brown background dots: explored states, commanded goals:
⋆, resulting paths: colored lines. (Left) PEG optimizes directly for exploration, even setting unseen
goals, and achieving farther paths. (Right) Setting goals at the frontier of the seen state distribution
yields less exploration.

We assess the importance of accounting for the goal-conditioned policy’s capabilities. To do so, we
evaluate if states coming from a policy conditioned on PEG goals are more novel than states coming
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from the same policy conditioned on other goal strategies. In Figure 11, we take a partially trained
agent and its replay buffer, and plot the proposed goals and resulting trajectories for PEG and MEGA
(called Frontier in the figure). We find that PEG goals lead the ant to the top left more often.
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