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ABSTRACT

Retrieving gene functional networks from knowledge databases presents a chal-
lenge due to the mismatch between disease networks and subtype-specific vari-
ations. Current solutions, including statistical and deep learning methods, of-
ten fail to effectively integrate gene interaction knowledge from databases or ex-
plicitly learn subtype-specific interactions. To address this mismatch, we pro-
pose GeSubNet, which learns a unified representation capable of predicting
gene interactions while distinguishing between different disease subtypes. Graphs
generated by such representations can be considered subtype-specific networks.
GeSubNet is a multi-step representation learning framework with three modules:
First, a deep generative model learns distinct disease subtypes from patient gene
expression profiles. Second, a graph neural network captures representations of
prior gene networks from knowledge databases, ensuring accurate physical gene
interactions. Finally, we integrate these two representations using an inference
loss that leverages graph generation capabilities, conditioned on the patient sep-
aration loss, to refine subtype-specific information in the learned representation.
GeSubNet consistently outperforms traditional methods, with average improve-
ments of 30.6%, 21.0%, 20.1%, and 56.6% across four graph evaluation metrics,
averaged over four cancer datasets. Particularly, we conduct a biological simu-
lation experiment to assess how the behavior of selected genes from over 11,000
candidates affects subtypes or patient distributions. The results show that the gen-
erated network has the potential to identify subtype-specific genes with an 83%
likelihood of impacting patient distribution shifts. The GeSubNet resource is
available: https://anonymous.4open.science/r/GeSubNet/

1 INTRODUCTION

Biological knowledge bases such as STRING (Szklarczyk et al., 2023) and KEGG (Kanehisa &
Goto, 2000), and wet-lab experimental datasets such as gene expression data are crucial for under-
standing disease-gene association. While the knowledge bases are comprehensive, they often lack
specificity for disease subtypes. This work introduces a deep learning method to integrate general
knowledge bases with disease-subtype-specific experimental data to create more targeted knowledge
graphs.

Decades of research have generated extensive disease-gene association data, compiled into various
biological knowledge databases (Goh et al., 2007b; Szklarczyk et al., 2023; Kanehisa & Goto, 2000).
These databases integrate known and predicted gene interactions, forming gene functional networks
that describe how gene behaviors relate to disease processes. They support disease research by
interpreting experimental results (Vella et al., 2017), facilitating biomarker discovery, and enabling
personalized treatment (Goossens et al., 2015).

Besides the general knowledge base, there are also in-lab experimental data, such as patient gene
expression profiles. These experiments filter candidate genes, and the interactions in databases
supported by these candidates are considered more relevant to subtypes. However, a mismatch
exists between generic knowledge bases and experimental data when studying disease subtypes. For
instance, as shown in Figure 1, breast cancer comprises multiple subtypes (luminal A, luminal B,
and Basal-like), but databases like STRING provide only a general gene network for all subtypes.
This generalization can lead to misinterpretations of gene behaviors across subtypes.
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Figure 1: An example illustrating the mismatch issue in cancer gene networks. The BRCA gene
network from the STRING database shows general interactions across various subtypes. Although
a gene set with consistent behavior leads to the discovery of a sub-network, this sub-network cannot
be directly linked to specific subtypes, such as Luminal A, Luminal B, or Basal-like.

While biological researchers have proposed a data generation approach to construct meaningful
subtype-specific networks (Zaman et al., 2013), these approaches often require extensive in-lab
analyses such as pair-wise gene examination among hundreds to thousands of genes. This paper
introduces a novel data-driven approach to address this mismatch, automating the integration of
gene expression data and knowledge databases to directly generate gene functional networks for
various disease subtypes.

Related Works. Existing methods for generating subtype gene networks can be categorized into
two groups: statistical and deep learning-based methods. Statistical methods focus on speeding up
gene filtering by mining experimental data. These methods employ similarity metrics to measure
the correlation between genes. High correlations, such as co-expressed genes (Zhang & Horvath,
2005), are marked as functional interactions. For example, ARACNe (Margolin et al., 2006) uses
mutual information to measure expression similarity and removes indirect links with low similar-
ity. WGCNA (Langfelder & Horvath, 2008) calculates Pearson correlation to support large-scale
comparisons, while wTO (Gysi et al., 2018) transforms the correlations into probabilistic measures.
However, gene interaction retrieval still prioritizes genes of interest.
A few deep learning methods leverage both knowledge databases and experimental datasets. They
form disease networks as graphs and embed gene expression data, containing different patient infor-
mation, as node embeddings. They set up link prediction and reconstruction using graph neural net-
works (GNNs). The newly reconstructed graphs can be viewed as specific networks. Representative
methods include GAERF (Wu et al., 2021a), which learns node features with a graph auto-encoder
and then uses a random forest to predict links. CSGNN (Zhao et al., 2021) predicts gene interactions
using both a mix-hop aggregator and a self-supervised GNN. LR-GNN (Kang et al., 2022) proposes
a dynamic graph method to gradually reconstruct graph structure, mitigating the constraints of prior
general disease network information. Recent works focus on improving the accuracy of gene-gene
link prediction (Li et al., 2024; Pang et al., 2024). However, their objective is only to reconstruct
general disease-gene associations, including irrelevant interactions. This approach does not explic-
itly learn the distinct gene interactions unique to disease subtypes.

Contributions and Novelty. We present a new solution for leveraging distinct subtype information
from experimental data, i.e., gene expression profiles, to directly infer Gene interactions specific to
disease Subtype Networks. This leads us to GeSubNet, which learns a unified representation that
can accurately predict prior gene interactions while being able to distinguish different subtypes of
a disease. Graphs generated by such representations can be considered subtype-specific networks.
GeSubNet is a multi-step learning framework with independent data representation learning and
integration. The first step uses a deep generative model to learn gene expression representations.
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These representations capture distinct data distributions and can distinguish subtypes in a latent fea-
ture space. The second step employs a GNN to learn graph representations of prior gene networks.
This step ensures GeSubNet captures true gene-gene functional interactions collected in knowl-
edge databases. Finally, we integrate the two representations, updating graph representations and
inferring subtype-specific gene interactions using a reconstruction loss on the gene expression data.
Our experiments confirm that GeSubNet can simultaneously generate different subtype networks
within a general cancer. The contributions lie in:
• Formulating New Gene Problem. We first frame this problem as how to infer gene interactions

can help models distinguish subtypes in experimental datasets. We investigate a method that
automates the integration of gene expression data and knowledge databases, explicitly generating
disease subtype networks.

• Proposing automated data integration methodology. GeSubNet is an effective architecture
that combines a VQ-VAE and Neo-GNN, achieving average improvements of 30.6%, 21.0%,
20.1%, and 56.6% across three metrics on four cancer datasets. More advanced models can be
easily integrated into GeSubNet.

• Impacting Broad Biological Relevance. We propose impactful biological evaluations and a new
metric. The experiments involving 11,327 gene evaluations demonstrate that genes selected by
GeSubNet are highly related to specific subtypes. We are the first to conduct a simulated exper-
iment, termed Knock-out (Bergman & Siegal, 2003), to assess how the behavior of genes affects
different subtypes. The proposed metric evaluates the reliability of selected gene interactions. The
results show that GeSubNet effectively narrows down key genes.

• Integrated Datasets for Cancer Subtyping. We collect physical cancer-gene networks across
four knowledge databases and construct machine-learning-ready datasets for experiments and
evaluation. We release our datasets with this paper to support continued investigation. The GeSub-
Net resource is available at: https://anonymous.4open.science/r/GeSubNet/

2 PRELIMINARY AND PROBLEM SETTING

2.1 BACKGROUND: CANCER SUBTYPE

Cancer is a major public health concern with increasing incidence and leading to mortality. The Na-
tional Cancer Institute (NCI) reports that the high costs of cancer care have been projected to grow
to $246.6 billion by 2030 (COS, 2023). A key driver of these high costs and morbidity is cancer’s
inherent heterogeneity. Each cancer type is made up of multiple subtypes, characterized by distinct
biochemical mechanisms, requiring specific therapeutic approaches (Balmain et al., 2003). While
these subtypes may differ biochemically, they often share similar morphological traits, such as the
physical structure and form of the organism (Yang et al., 2023), complicating precise diagnosis and
treatment responses. This complexity highlights the need for deeper research into gene networks
specific to cancer subtypes. However, as shown in Figure 1, current databases like STRING provide
only broad cancer gene networks without distinguishing between subtypes such as Luminal A, Lu-
minal B, and Basal-like in breast cancer. This limitation in specificity creates a gap in effectively
targeting treatments based on unique subtype characteristics. Our paper addresses this problem by
focusing on advancing research and tools that differentiate these subtypes at a more granular level.

2.2 PROBLEM SETTING

Definition 1 (Gene expression data). The fundamental entity in gene expression profile data is the
individual patient. Each patient profile comprises tens of thousands of genes with measured features.
Let X = {x(m)}Mm=1 denote a dataset of M patients. Each patient can be represented as N sequence
of gene measures x(m) = {x(m)

1 , x
(m)
2 , · · · , x(m)

N }. Let Y = {y1, y2, · · · , y|Y|} denotes the set of
subtypes for a cancer. Each x(m) is associated with a label y.

Definition 2 (Knowledge gene networks). A gene network, as compiled in knowledge databases,
can be represented as a general graph G = (V, E) cross all M patients, where V denotes the set of
vertices, corresponding to the genes and E is the set of edges representing the gene interactions/links.
Here, a link can be represented as eij = (vi, vj), where i, j ∈ N .
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Figure 2: Overview of GeSubNet. GeSubNet consists of three modules. Step 1: Patient-M sets
up an unsupervised cancer subtyping task to learn the patient sample representation (Zp) from the
input gene expression data (X), which can distinguish subtypes. Step 2: Graph-M sets up a link
prediction task to train the GNN encoder and decoder, learning the graph representation (Zg) from
the input gene graph (G) and expression data (X). Step 3: Infer-M uses an objective function that
integrates representations to generate subtype-specific networks. The reconstruction from Patient-
M, conditioned on the GNN training in Graph-M (qθ(zg|G)), refines the graph structure, which can
maintain accurate patient profile reconstruction (pϕ(x|x̃)).
Problem (Subtype-specific gene network inference). Given a general disease-gene network G, we
assume that it can be decomposed into a set of sub-graphs Gy = {G1,G2, . . . ,G|Y|}, corresponding
to Y subtypes. The links, as defined in knowledge databases, are directly transformed into a set of
edges {0, 1}N K.I.→ eij ∈ [0, 1]N , where K.I. denote knowledge-based initialization for graph con-
struction. We aim to integrate the gene expression profile X to identify specific link sets relevant to a
given subtype, formalized as F (·) : eij → {0, 1}(y). Notably, these sub-graphs are not independent.

Remark. The function F (·) is designed by existing methods focusing on reconstructing the general
graph G. The learned representations only carry information for accurate reconstruction. In contrast,
we investigate how to learn a representation from both data sources, one that captures essential
information from gene interactions while distinguishing different subtypes. Our investigation is
based on the following observation: the onset of complex diseases is typically attributed to changes
(e.g., perturbations or disruptions) within a limited subset of genes (Goh et al., 2007a).

Formally, given X and a knowledge graph G, we have {G1,G2, . . . ,G|Y|} = F (X;G). We aim to
learn a unified representation Z with two properties: ( i ) Encode high-quality Z from gene expres-
sion profiles X, that is, any z(m) and x(m) should correspond to the same patient group y; ( ii )
Enable Z to predict gene interactions in E . For the sub-graphs, we have two hypotheses:
• Hypothesis-1. The size of the sub-graph should be |G|y ≪ |G|, in terms of both the node set V

and the link set E , while having large margin differences with other sub-graphs.
• Hypothesis-2. Gy must maintain physical and biological meaningfulness. This is an impor-

tant metric evaluated in our two evaluations, particularly in the Gene Knockout Simulation in
Experiment-II, as detailed in Section 4.

3 GESUBNET

3.1 FRAMEWORK

GeSubNet consists of three modules: patient sample representation learning module (Patient-M),
graph representation learning module (Graph-M), and network inference module (Infer-M).
• Patient-M: This module sets up a cancer subtyping task, aiming to project patient gene expression

profiles into a latent representation Zp, which can distinguish subtypes. This is typically an un-
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supervised learning task (Withnell et al., 2021; Yang et al., 2021b;a; 2023). GeSubNet employs
a Vector Quantized-Variational AutoEncoder (VQ-VAE) (Van Den Oord et al., 2017) for two pur-
poses: (i) to model this discriminative latent space using a flexible categorical distribution (Chen
et al., 2023a), and (ii) to use the decoder as a key component of Infer-M.

• Graph-M: This module forms a link prediction task, leveraging both knowledge databases and
gene expression data to learn Zg. The goal is to train a well-performed GNN autorencoder, where
the encoder learns holistic gene interactions, and the decoder is used to generate new graphs. Since
we focus on interactions, GeSubNet employs Neo-GNN (Yun et al., 2021), which combines
structural information with node representations to prevent over-smoothing of node features.

• Infer-M: This module involves a novel objective function that integrates Zp and Zg. GeSubNet
uses the information from Patient-M, the decoder, and the reconstruction loss to optimize the prior
knowledge in the gene network, i.e., the GNN encoder, for generating subtype-specific networks.

3.2 SUBTYPE GENE NETWORK INFERENCE

Gene Expression Representation Learning - Patient-M Given a gene expression dataset X ∈
RM×N , we first encode the gene expression profile to a low-dimensional embedding Ze ∈ RM×D

through linear layers with ReLU activation function: Ze = ReLU(Linear(X)), where D is the di-
mension of Ze. We apply a Batch Normalization operation to prevent overfitting the limited patient
gene expression samples. The Ze is then projected along the D-axis into a set of feature vectors
Zc ∈ RM×D×S , where S denotes the vector dimension. Then, we project Zc into a discrete code-
book (Van Den Oord et al., 2017; Chen et al., 2023b). This involves encoding each dimension of
gene features into a code, resulting in Zp The codebook consists of K latent vectors P1:K , which
defines a K-way categorical distribution. The projection is conducted using the nearest neighbor
search. Then, a decoder, consisting of linear layers with ReLU activations, reconstructs the original
gene expression profiles, X̃ ∈ RM×N .

Gene Interactions Representation Learning - Graph-M. Given general graphs G represented
by an adjacency matrix A and gene expression data X, we learn structural feature representations
X′ ∈ Rv×u using two MLPs: X′ = MLPnode(

∑j
i=1 MLPedge(Aij),X), where the first MLP handles

edges and the second handles nodes. Next, we encode X′ with A to obtain graph representations
Zg ∈ RN×D. The GNN decoder computes similarity scores between paired node embeddings by
first computing the element-wise product of Z(i)

g and Z
(j)
g . The resulting D-dimensional product is

then aggregated into a single value as the similarity score. Finally, we train a binary classification

MLP to perform the link prediction task: Ẽij :=

{
1, Similarity Score ≥ 0.5

0, Otherwise
where 1 indicates

the presence of a link between node vi and vj, and 0 indicates the absence of a link. We use the
predicted result Ẽij to guide Graph-M in learning prior gene interaction knowledge.

Subtype Network Inference - Infer-M. This module integrates information from both Patient-M
and Graph-M to optimize the prior cancer network and generate subtype-specific networks. We
propose an objective function that uses Graph-M’s graph generation capabilities, conditioned on the
patient separation loss in Patient-M. GeSubNet follows three independent training phases.

Recall that we first train a well-initialized Patient-M to learn Zp using gene expression profiles X.
This captures distinct subtype information through the following loss function:

L(ϕ;x) := −Eqϕ(ze|x)[log pϕ(x|zq)] (1)

where ϕ represents the parameters of the encoder and decoder.
Next, we implement Graph-M to map predefined gene interactions for a given cancer into Zg:

L(θ;ω) := − 1

E

E∑
i=1

[he log(ĥe(ω; ze(θ))) + (1− he) log(1− ĥe(ω; ze(θ)))] (2)

where θ and ω are the parameters of the encoder and decoder in the GNNs, and he represents the
ground truth for the presence of a gene interaction. After training L(ϕ;x) and L(θ;ω), we first fix the
model parameters ϕ and ω, and reconstruct a new gene expression profile via matrix multiplication:
X̃ = Zp · Zg

T . The reconstruction error between the integrated X̃ and the original patient gene
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expression profile X is used to optimize the parameters θ of the graph encoder by:
L(θ;x) = −Eqθ(zg|G)[log pϕ(x|x̃)] (3)

Here, the graph encoder conditions the reconstruction of patient or subtype-specific gene expression
profiles. This ensures that graph representations capture the subtle characteristics of each patient’s
gene expression profile, inferring the newly generated links/interactions more relevant to subtypes.

4 EXPERIMENTS

4.1 DATASET AND PREPROCESSING

Cancer gene expression dataset. We collected the gene expression datasets from the world’s largest
cancer gene information database, The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas
Research Network, 2013), across four cancer types: breast invasive carcinoma (BRCA) (Sharma
et al., 2010), glioblastoma multiforme (GBM) (Urbańska et al., 2014), brain lower grade glioma
(LGG) (Forst et al., 2014), and ovarian serous cystadenocarcinoma (OV) (Jayson et al., 2014). De-
tailed information can be found in Table 1 and Appendix B.1.
- Preprocessing: TCGA collected cancer samples from various experimental platforms with differ-
ent patient information, such as gene sequencing results, and lacked alignments. First, we removed
the unmatched gene IDs across cancer samples to ensure platform independence. Then, we identified
and eliminated genes with zero expression (based on a threshold of more than 10% of samples) or
missing values. Finally, we converted the scaled estimates in the original gene-level RSEM (RNA-
Seq by expectation maximization) files to FPKM (fragments per kilo-million base) mapped reads
data. The detailed data preprocessing pipeline can be found in Appendix B.2.

Gene network dataset. We collected gene functional networks corresponding to these four cancer
types from four well-used knowledge databases, including KEGG (KE) (Kanehisa & Goto, 2000),
STRING (ST) (Szklarczyk et al., 2015), InterPro (Int) (Paysan-Lafosse et al., 2023), and Monarch
(Mona) (Mungall et al., 2017).

- Preprocessing: We searched and downloaded raw network data through website APIs. We mapped
the gene IDs in the expression dataset to the standard format of Entrez Gene IDs (Maglott et al.,
2010) in the networks. We stored gene interactions with the shared gene IDs across both datasets.
Finally, we reconstructed the raw data as a binary matrix to initialize the gene graph construction.
More details of the datasets and preprocessing can be found in Appendix B.3 and B.4.

Table 1: Summary of gene expression profile data and gene network data for four cancer types.

Cancer Gene Expression Matrix Gene Network Knowledge Databases

#Subtypes #Features #Patients #Nodes #Edges KE ST Int Mona

BRCA 5 11327 638 146 868 ✓ ✓ ✓ ✓
GBM 5 11273 416 102 203 ✓ ✓ ✓
LGG 3 11124 451 103 345 ✓ ✓ ✓
OV 4 11324 291 109 159 ✓ ✓

Baselines. We collected baselines from both the statistical methods and GNN-based methods. (1)
The statistical methods include WGCNA (Langfelder & Horvath, 2008), which identifies mod-
ules of highly correlated genes using Pearson correlation; wTO (Gysi et al., 2018), which normal-
izes correlation by all other correlations and calculates probabilities for each edge in the network;
ARACNe (Margolin et al., 2006), which calculates mutual information between pairs of nodes and
removes indirect relationships; and LEAP (Specht & Li, 2017), which utilizes pseudotime order-
ing to infer directional relationships. (2) The GNN-based methods include GAERF (Wu et al.,
2021a), which learns node features with a graph auto-encoder and a random forest classifier; LR-
GNN (Kang et al., 2022), which generates node embeddings with a GCN encoder and applies the
propagation rule to create links; and CSGNN (Zhao et al., 2021), which predicts node interactions
using a mix-hop aggregator and a self-supervised GNN. More details are provided in Appendix C.

4.2 EXPERIMENT-I: NETWORK INFERENCE

Objective: This experiment evaluates the effectiveness of subtype-specific networks, following our
Hypothesis-1: (1) |G|y ≪ |G|, ensuring the generated network is sparse compared to the original;
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Table 2: Baseline comparison results on GED, DCS, and CDV for the proposed and baselines. GED,
DCS, and CDV are subjected to min-max normalization. The best-performing results are highlighted
in bold. The second-best results are highlighted in underline.

Method BRCA GBM LGG OV
CDV (↑) GED (↑) DCS (↓) CDV (↑) GED (↑) DCS (↓) CDV (↑) GED (↑) DCS (↓) CDV (↑) GED (↑) DCS (↓)

WGCNA 0.42 ± 0.02 0.39 ± 0.03 0.83 ± 0.04 0.43 ± 0.02 0.47 ± 0.03 0.83 ± 0.04 0.45 ± 0.03 0.53 ± 0.02 0.82 ± 0.04 0.24 ± 0.02 0.25 ± 0.03 0.83 ± 0.04
wTO 0.44 ± 0.02 0.43 ± 0.02 0.79 ± 0.03 0.45 ± 0.02 0.47 ± 0.02 0.83 ± 0.04 0.43 ± 0.03 0.59 ± 0.03 0.76 ± 0.04 0.26 ± 0.02 0.25 ± 0.03 0.83 ± 0.04
ARACNe 0.47 ± 0.02 0.45 ± 0.03 0.73 ± 0.03 0.44 ± 0.02 0.43 ± 0.02 0.79 ± 0.03 0.43 ± 0.03 0.57 ± 0.03 0.76 ± 0.04 0.23 ± 0.02 0.25 ± 0.03 0.81 ± 0.03
LEAP 0.49 ± 0.03 0.44 ± 0.03 0.78 ± 0.03 0.48 ± 0.03 0.45 ± 0.03 0.78 ± 0.03 0.44 ± 0.03 0.55 ± 0.02 0.77 ± 0.04 0.22 ± 0.02 0.24 ± 0.03 0.84 ± 0.04
GAERF 0.54 ± 0.06 0.58 ± 0.07 0.64 ± 0.05 0.46 ± 0.04 0.48 ± 0.06 0.76 ± 0.05 0.55 ± 0.05 0.56 ± 0.06 0.83 ± 0.07 0.34 ± 0.05 0.36 ± 0.06 0.82 ± 0.06
LR-GNN 0.54 ± 0.05 0.59 ± 0.06 0.62 ± 0.04 0.57 ± 0.06 0.61 ± 0.07 0.75 ± 0.05 0.56 ± 0.06 0.66 ± 0.07 0.72 ± 0.05 0.34 ± 0.05 0.37 ± 0.06 0.82 ± 0.07
CSGNN 0.65 ± 0.06 0.66 ± 0.07 0.52 ± 0.06 0.65 ± 0.07 0.64 ± 0.06 0.74 ± 0.05 0.58 ± 0.06 0.68 ± 0.07 0.73 ± 0.06 0.35 ± 0.05 0.35 ± 0.06 0.80 ± 0.05
GeSubNet 0.75 ± 0.04 0.78 ± 0.04 0.47 ± 0.05 0.73 ± 0.04 0.74 ± 0.05 0.67 ± 0.04 0.67 ± 0.05 0.74 ± 0.04 0.62 ± 0.05 0.45 ± 0.04 0.44 ± 0.04 0.75 ± 0.04

(2) each subtype network exhibits structural differences from the others.
Setup and Metrics: We train GeSubNet for each cancer (the parameter settings can be found in
Appendix D), and then evaluate the generated graphs for subtypes on two factors:
• Sparsity Assessment: we utilize the Coefficient of Degree Variation (CDV) (Pržulj, 2007) to mea-

sure the variability in gene nodes within a network. A higher CDV value indicates that most genes
have very few interactions (edges). Thus, GeSubNet infers that the network becomes sparser
because only a few active genes dominate the interactions in this subtype network.

• Graph Structural Differences: we employ the Graph Edit Distance (GED) (Gao et al., 2010) and
the DeltCon Similarity (DCS) (Koutra et al., 2013) to measure structural differences in gene net-
works. GED captures local changes in gene interactions, while DCS evaluates global structural
similarities. A high GED value indicates significant differences in gene interactions. Conversely,
a high DCS implies high similarity.

Results. Table 2 presents GeSubNet significantly outperforms all baseline methods in terms of
GED, DCS, and CDV metrics across four cancer types. Compared with the second-best base-
line, CSGNN, GeSubNet achieves improvements of 35.8%/32.4%/20.2%/34.1% in terms of GED
across all four tasks. Additionally, it delivers a relative reduction of 29.8%/13.5%/21.6%/19.3% in
terms of DCS. For CDV, the improvements are 33.4%/13.7%/17.9%/15.3%, respectively. In sum-
mary, when evaluating BRCA, GBM, LGG, and OV, GeSubNet consistently achieves lower DCS
scores and higher GED and CDV scores. This indicates that the generated subtype-specific gene net-
works are sparse but structurally unique, i.e., they are significantly different from each other. The OV
results are apparently unsatisfactory, but this aligns with existing knowledge (Lawler et al., 2017)
that OV is a challenging cancer type due to the limited available samples (only 291 patients in Table
1) and the lack of information on their pathogenic mechanisms in existing knowledge databases.

4.3 EXPERIMENT-II: BIOLOGICAL MEANINGFULNESS

Objective: While three graph metrics show the statistical significance of the generated network, this
experiment further evaluates their biological relevance, following our Hypothesis-2. (1) Instead of
structural differences, we further assess whether each network shows biologically functional differ-
ences from other networks. (2) We examine whether the generated networks have the potential to
narrow down key genes that contribute more specifically to their respective subtypes.

Setup and Metrics: We hence conduct two experiments as follows:
• Gene Ontology (GO) Analyses (Ashburner et al., 2000a): This method counts the number of

unique GO terms (under the category Biological Process (Desmedt et al., 2008)) associated with
the genes in each network. GO terms describe gene functions across biological processes, molec-
ular functions, and cellular components, enabling comparisons between gene networks. For ex-
ample, if GO(G1) := {A,B,C} and GO(G2) := {A,D,E}, where G1 and G2 represent two
generated subtype gene networks. GO(·) denotes the sets of GO terms for two networks. Here the
number of Enriched Biological Functions (#EBF) is 4, i.e., {B,C,D,E}, since A is the shared
GO term. We evaluate GO for each cancer dataset across all baselines. A high #EBF value indi-
cates greater functional diversity and biological differences between subtypes.

• Simulated Gene Knockout: This is a computational technique that mimics the effects of gene
knockout experiments without physically altering the genome (Bergman & Siegal, 2003). In this
simulation, a gene is either deleted or deactivated to study its role within a specific subtype by
observing changes in the patient sample distribution. As we described in an observation in Sec. 2,
the key genes with significant expression differences form a small, limited set (Goh et al., 2007a),
which leads to a distribution shift in patient samples during simulation experiments.
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Figure 3: The Venn diagrams illustrate the overlap in GO terms resulting from different methods
(WGCNA, CSGNN, LR-GNN, and GeSubNet) across four cancers. Shared and unique function
items are listed here. A full list is provided in Appendix G. We highlight some unique function items
that are well-supported by biological evidence in bold.

Our experiments follow three steps: (1) Rank all genes based on node degree disparities between
the generated networks. (2) Group the genes into two sets: a high-ranking gene set and a low-
ranking gene set, based on a threshold. (3) Individually simulate the knockout for high-ranking
and low-ranking gene sets by transforming their expression values to a non-expression level.
To evaluate the results, this paper proposes a new metric Shift Rate (∆SR) to measure the likelihood
of distributional shifts in a subtype after a set of genes is knocked out. It calculates the average
distance between the sample distributions before and after the knockout. We set a threshold (σt)
based on the sample spread to assess the significance of distance. The ∆SR is defined by :

∆SR =
1

T

∑
t=1

(
1

n

n∑
i=1

∥xbefore
i − xafter

i ∥ > k · σt

)
(4)

where T is the total number of knockout tests, n is the number of patient samples within a subtype,
xi represents an individual patient sample, k is a scaling factor (e.g., 1.0 or 1.5) used to adjust the
threshold, and σj is the standard deviation of sample distances. Notably, this metric is only used
after model training and cannot be involved in modeling training. More details on the simulated
Gene Knockout can be found in Appendix H.

Results. Table 3 presents the GO analysis results, where our method consistently achieves the
highest #EBF value across all datasets. These higher values indicate that the generated networks not
only exhibit structural differences but also show functional distinctions from others from a biological
perspective (Ashburner et al., 2000b; Wu et al., 2021b).

Table 3: The comparison results on
#EBF between GeSubNet and the
baselines. Only biological functions
with high statistical significance (p-
value < 0.05) are reported.

Method #EBF(↑)

BRCA GBM LGG OV

WGCNA 5 3 2 2
wTO 4 4 2 2
ARACNe 4 4 1 2
LEAP 3 3 2 3
GAERF 5 3 3 2
LR-GNN 6 4 3 3
CSGNN 3 5 4 4
GeSubNet 8 6 6 5

Figure 3 presents Venn diagrams of detailed GO analysis
for four cancer datasets, highlighting overlaps/unique in
biological functions among three selected baselines and
our method. GeSubNet consistently identifies several
unique functions across all datasets, while other meth-
ods rarely uncover unique functions, even when they
achieve a comparable #EBF. For instance, in the LGG
cancer dataset, CSGNN identifies 4 #EBF but finds no
unique functions, whereas GeSubNet identifies 6 #EBF
with 3 unique functions. From a biological perspective,
GeSubNet demonstrates a robust array of enriched GO
terms across different cancers, including pathways like
Apoptotic signaling, Wnt signaling, Tumor necrosis fac-
tor signaling, and Cell proliferation. These terms repre-
sent critical cancer-related biological functions common
to many cancers (Aktipis & Nesse, 2013), as shown in Ta-
ble 9 in Appendix G. For unique functions, GeSubNet identified the ”Immune diseases” function
in BRCA, which has evident support as being related to breast cancer (McAlpine et al., 2012), and
the ”DNA damage checkpoint signaling” pathway, which is specific to GBM (Cheng et al., 2011).

Figure 4 illustrates the results of the simulated gene knockout experiments. Subfigure (a) visualizes
an example of patient distribution before (red-marked points) and after (green-marked points) the
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Figure 4: (a) UMAP visualization of an example showing patient distribution before and after the
simulated gene knockout for a target subtype. The gray points in the main figure represent the
negative control groups (subtypes). The small figures at the bottom left represent the original distri-
butions of different subtypes. In the right subfigure, high-ranking genes are knocked out, while in
the left, low-ranking genes are knocked out. (b) Table: shift rates (∆SR) on knocking out high- and
low-ranking genes, found by different baselines. The best results are highlighted in bold.
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Figure 5: The obtained gene networks for two BRCA patient groups: the Normal-like group (net-
work A) and the Basal-like group (network B). Comparisons were made between our method and
two baseline methods, CSGNN and WGCNA.

Simulated Gene Knockout in both target and control groups (subtypes). In the left subfigure, there
are almost no differences between the before and after distributions for the low-ranking gene set.
In contrast, the right subfigure shows a significant shift in patient distribution, indicating that the
suppression of high-ranking genes has a greater impact.
Figure 4(b) provides a statistical summary of the results across 11,327 genes in BRCA. GeSubNet
achieves the highest ∆SR for high-ranking genes, with an 83% likelihood of significantly shifting
sample distributions. Meanwhile, the 12% ∆SR for low-ranking genes suggests that GeSubNet
effectively filters out common genes. Other methods show much lower ∆SR values for high-ranking
genes, ranging from 20%-30%, nearly matching those for low-ranking genes. Notably, while GNN-
based methods like LR-GNN and CSGNN achieve comparable results in graph statistical metrics,
their biological relevance is lower. This discrepancy arises because their objective functions aim only
to reconstruct general disease networks, including irrelevant gene interactions, for all subtype sam-
ples. Although gene expression data embeddings result in different graph structures, these methods
do not explicitly learn the distinct gene interactions unique to disease subtypes. However, learning
a representation that incorporates prior knowledge while explicitly distinguishing patient samples in
different subtypes is the key focus of this paper. This simulation experiment further validates the
effectiveness of our method and demonstrates that GeSubNet maintains biological significance.
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Figure 6: (1) expression level distributions and (2) the expression heatmaps of the top-3 genes from
the high-ranking and low-ranking gene sets among different patient groups. Different colors in heat
maps indicate the gene expression level.

4.4 CASE STUDY

The case study on BRCA follows established protocols in bioinformatics gene function stud-
ies (Huang et al., 2009). The analysis workflow is available in Appendix I.1 and I.2.
Figure 5 shows the gene networks A and B obtained for two BRCA subtypes. We observe that
GeSubNet generated gene networks with more distinct gene nodes. The networks show significant
differences between the two subtypes, whereas the baselines produce more similar networks.
Figure 6(1) presents the gene expression distribution for the high-ranking and low-ranking gene
sets. Different patient groups are marked in various colors to represent the ground truth. In the first
column, we observe minimal differences in the expression distribution of low-ranking genes across
patient groups. However, significant differences are evident in the high-ranking gene sets, as shown
by the noticeable shift in distribution peaks.
Figure 6(2) presents expression heatmaps for the top three genes in both the high- and low-ranking
gene sets. For the high-ranking set, the genes are ERBB2, CCNA2, and CCNE1, while the low-
ranking set includes HHIP, MAPK1, and STK4. The high-ranking genes exhibit large differences in
expression across subtypes, reflected by distinct color variations corresponding to the labels.

5 CONCLUSIONS

This paper introduced GeSubNet, a framework for inferring disease subtype-specific gene net-
works. GeSubNet includes sample and gene embedding learning modules that capture the charac-
teristics of both patients and the prior gene graph. These embeddings are then utilized to reconstruct
the input gene profile in the network inference module. This approach incorporates patient group
information into the updated gene embeddings, enabling more accurate gene network inference
specific to patient groups. As a result, GeSubNet offers a unified framework for group-specific
gene network inference on real-world clinical data. Importantly, we demonstrated the reliability of
GeSubNet through a series of biological validations. We believe that GeSubNetwill be a valuable
tool for disease research and other gene function-related applications.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Financial burden of cancer care. https://progressreport.cancer.gov/after/
economic_burden, 2023. Cancer Trends Progress Report.

C Athena Aktipis and Randolph M Nesse. Evolutionary foundations for cancer biology. Evolution-
ary applications, 6(1):144–159, 2013.

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
for the unification of biology. Nature genetics, 25(1):25–29, 2000a.

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler, J Michael
Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al. Gene ontology: tool
for the unification of biology. Nature genetics, 25(1):25–29, 2000b.

Avi Ashkenazi, Wayne J Fairbrother, Joel D Leverson, and Andrew J Souers. From basic apoptosis
discoveries to advanced selective bcl-2 family inhibitors. Nature reviews drug discovery, 16(4):
273–284, 2017.

Allan Balmain, Joe Gray, and Bruce Ponder. The genetics and genomics of cancer. Nature genetics,
pp. 238–244, 2003.

Aviv Bergman and Mark L Siegal. Evolutionary capacitance as a general feature of complex gene
networks. Nature, 424(6948):549–552, 2003.

Alvis Brazma and Jaak Vilo. Gene expression data analysis. FEBS letters, 480(1):17–24, 2000.

Reinaldo D Chacón and Marı́a V Costanzo. Triple-negative breast cancer. Breast cancer research,
12(Suppl 2):S3, 2010.

Zheng Chen, Ziwei Yang, Lingwei Zhu, Peng Gao, Takashi Matsubara, Shigehiko Kanaya, and
Md Altaf-Ul-Amin. Learning vector quantized representation for cancer subtypes identification.
Computer Methods and Programs in Biomedicine, 236:107543, 2023a.

Zheng Chen, Lingwei Zhu, Ziwei Yang, and Takashi Matsubara. Automated cancer subtyping
via vector quantization mutual information maximization. In Machine Learning and Knowledge
Discovery in Databases (ECML-PKDD), pp. 88–103, 2023b.

Lin Cheng, Qiulian Wu, Zhi Huang, Olga A Guryanova, Qian Huang, Weinian Shou, Jeremy N
Rich, and Shideng Bao. L1cam regulates dna damage checkpoint response of glioblastoma stem
cells through nbs1. The EMBO journal, 30(5):800–813, 2011.

Christine Desmedt, Benjamin Haibe-Kains, Pratyaksha Wirapati, Marc Buyse, Denis Larsimont, Gi-
anluca Bontempi, Mauro Delorenzi, Martine Piccart, and Christos Sotiriou. Biological processes
associated with breast cancer clinical outcome depend on the molecular subtypes. Clinical cancer
research, 14(16):5158–5165, 2008.

Deborah A Forst, Brian V Nahed, Jay S Loeffler, and Tracy T Batchelor. Low-grade gliomas. The
oncologist, 19(4):403–413, 2014.

Xinbo Gao, Bing Xiao, Dacheng Tao, and Xuelong Li. A survey of graph edit distance. Pattern
Analysis and applications, 13:113–129, 2010.

Kwang-Il Goh, Michael E Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-László
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A NOTATIONS

All the mathematical notations and explanations used in the paper are summarized in Table 4.

Table 4: Mathematical notations and explanations.

Notations Explanations
M Number of patients
N Number of genes
X Longitudinal gene expression data for patient m
Y Set of patient groups

G(V, E) Gene network represented as a graph
V Vertex (or node) set representing genes in G
E Set of edges representing associations between genes in G

Gy(Vy, Ey) Sub-graph for patient group y
G′ Reconstructed gene network
F (·) Function to generate sub-graphs from edge information
fθ Function representing the model with parameters θ
eij Edge between gene i and gene j

Z, Zp, Zg Lower-dimensional feature representation

B DATASET

B.1 GENE EXPRESSION DATA

Gene expression refers to the process by which information from a gene is used to synthesize func-
tional gene products, typically proteins. This process is tightly regulated and varies between cell
types, tissues, and environmental conditions, such as the tumor microenvironment (Brazma & Vilo,
2000). By measuring gene expression levels, researchers can determine the activity of specific genes
within a cell or tissue at any given moment.

Gene expression data has a long history been used in cancer research (Zhang et al., 1997) because
cancer is driven by the dysregulation of cellular processes, which often manifests in abnormal gene
expression patterns. High-throughput technologies, such as RNA sequencing (RNA-Seq) and mi-
croarrays, gather patient gene expression profiles and simultaneously enable large-scale measure-
ment of gene expression across thousands of genes (Liang & Pardee, 2003). Gene expression data
allows researchers to study the molecular mechanisms hidden deeply in tumor development and
progression.

The gene expression data used in this study were collected from The Cancer Genome Atlas
(TCGA) (The Cancer Genome Atlas Research Network, 2013), obtained through the world’s largest
cancer gene information database Genomic Data Commons (GDC) portal (Grossman et al., 2016).
All candidate patient samples were generated across various experimental platforms from cancer
samples before treatment. For the cancer research community, it is common for available data to be
contributed from various cancer study projects and institutions. As a result, the data are typically
generated from different assay platforms. This non-uniformity of assay platforms introduces tech-
nical variations, such as differences in experimental protocols. These inherent batch effects pose a
challenge as they can significantly impact downstream model training and any further analysis.

B.2 PREPROCESSING OF GENE EXPRESSION DATA

To ensure platform independence, we initially removed the cross-platform lost genes. For the gene
expression (transcriptomics) data generated from the Hi-Seq platform, we converted the scaled es-
timates in the original gene-level RSEM (RNA-Seq by expectation maximization) files to FPKM
(fragments per kilo-million base) mapped reads data. We initially identified and removed all non-
human expression features for the remaining data generated from the Illumina GA and Agilent array
platforms. Subsequently, we applied a logarithmic transformation to the converted data. To elimi-
nate potential noise, we identified and eliminated features with zero expression levels (based on a
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threshold of more than 10% of samples) or missing values (designated as N/A). Table 5 describes
the details of all experimental cancer gene expression datasets.

Preprocessing pipeline in R (Ver.4.2.1):

(1) Data Import: Gene expression data were loaded after download.

data <- read.csv("gene expression data.csv")

(2) Filtering Low-Quality Samples: Samples with a low number of expressed genes were removed
using a default cutoff based on counts per million (CPM) values calculated with the edgeR pack-
age (Robinson et al., 2010).

keep <- rowSums(cpm(data) > 1) >= 10 filtered data <- data[keep, ]

(3) Normalization: To account for differences in sequencing depth across samples, normalization
was performed using the TMM (Trimmed Mean of M-values) method from the edgeR package.

norm factors <- calcNormFactors(filtered data)

normalized data <- cpm(filtered data, log=FALSE,
normalized.lib.sizes=TRUE)

(4) Batch Effect Correction: To minimize batch effects arising from non-uniform experimental
protocols, the ’ComBat’ function from the SVA package (Leek et al., 2012) was applied to remove
unwanted variation across different platforms and projects.

corrected data <- ComBat(dat=normalized data, batch=batch info)

(5) Log Transformation: The gene expression data were log-transformed to stabilize variance
across genes.

log data <- log2(normalized data + 1)

(6) Missing Data Imputation: Missing expression values were imputed using the ’impute’ function
from the impute package (T et al., 2022).

imputed data <- impute.knn(log data)$data

B.3 GENE NETWORK DATA

To obtain refined and coherent prior gene networks, we curated a comprehensive dataset by
amalgamating information from diverse sources, including KEGG (Kanehisa & Goto, 2000),
STRING (Szklarczyk et al., 2015), InterPro (Paysan-Lafosse et al., 2023), and Monarch (Mungall
et al., 2017). These repositories collectively provide information on a broad spectrum of gene in-
teraction corroborated by evidence from high-throughput lab experiments, co-expression analyses,
genomic context predictions, disease-related gene pathways, and previously published knowledge.

B.4 PREPROCESSING OF GENE NETWORK DATA

Our detailed preprocessing follows: We initiated the network construction process by retrieving re-
lated gene information through database APIs for a specified target cancer entry available in the
databases above. To ensure uniformity in gene identifiers across disparate datasets, we harmonized
gene IDs to the standard format of Entrez Gene IDs (Maglott et al., 2010). Subsequently, we identi-
fied and included common genes across all database sources as candidate nodes for constructing the
prior network. Next, we retained common gene-gene associations obtained from multiple databases
for each candidate node pair as the final edges to be preserved. Concurrently, isolated nodes were
systematically removed from the network. During this curation of edges, we implemented two
distinct screening strategies to elucidate two types of networks with edges embodying distinct cor-
relation properties: (1) we identified edges denoting that the proteins are integral components of a
physical complex, denoted as edges of Type I; and (2) we retained edges indicative of functional and
physical protein associations, denoted as edges of Type II. This approach enhances our prior gene
network by capturing diverse aspects of gene relationships and interactions. Table 6 describes the
details of all experimental cancer gene network datasets. KEGG, STRING, InterPro, and Monarch
are abbreviated as KE, ST, Int, and Mona, respectively.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 5: Descriptions of four cancer gene expression datasets.

Cancer Raw Transcriptomics Gene Expression Matrix

#Gene #Patient #Group Sample size Feature size

BRCA 19537 638 5 {320, 124, 119, 54, 21} 11327
GBM 17455 416 5 {125, 111, 80, 68, 32} 11273
LGG 16245 451 3 {213, 151, 87} 11124
OV 17226 291 4 {81, 76, 68, 66} 11324

Table 6: Descriptions of the four cancer gene network datasets.

Cancer Data Source #Node #Edge
(Type I)

#Edge
(Type II)KE ST Int Mona

BRCA ✓ ✓ ✓ ✓ 146 289 579
GBM ✓ ✓ ✓ 102 75 128
LGG ✓ ✓ ✓ 103 206 139
OV ✓ ✓ 109 46 95

C BASELINES

C.1 THE PRINCIPLE OF SELECTING BASELINE METHODS

We collected baselines from both statistical methods and GNN-based methods. For statistical meth-
ods that do not involve neural networks, we first included two of the most classical and widely
used methods in the bio-network computing field: WGCNA (Langfelder & Horvath, 2008) and
ARACNe (Margolin et al., 2006). These methods have continually contributed to bio-network stud-
ies for many years.

In addition, we want to include more recently proposed methods in this category. Our selection
principles were as follows: (1) the method was recently published (and approximately a decade
after the above classical methods), (2) it provides open-source code (available on platforms such as
GitHub), (3) it is easy to use (with outputs compatible with popular analysis packages), and (4) it
has been used as a baseline in related bio-network research. Based on these criteria, we selected two
methods, wTO (Gysi et al., 2018) and LEAP (Specht & Li, 2017).

For the GNN-based methods, our principles aligned with the above five lines for selecting newly
proposed statistical methods. We selected three methods (i.e., GAERF (Wu et al., 2021a), LR-
GNN (Kang et al., 2022), and CSGNN (Zhao et al., 2021)) that meet these principles.

C.2 BASELINE METHODS

(1) Weighted Gene Co-expression Network Analysis (WGCNA) (Langfelder & Horvath, 2008)
utilizes Pearson correlation to identify modules of highly correlated genes, where genes within the
same module are likely to be functionally related or involved in similar biological processes. (2)
Weighted Topological Overlap (wTO) (Gysi et al., 2018) normalizes the chosen correlation by all
other correlations and calculates a probability for each edge in the network. (3) Algorithm for the
Reconstruction of Accurate Cellular Networks (ARACNe) (Margolin et al., 2006) calculates the
mutual information between pairs of nodes and then removes indirect relationships during network
building. (4) Lag-based Expression Association for Pseudotime-series (LEAP) (Specht & Li,
2017) utilizes pseudotime ordering to infer the directionality between genes in the network. (5)
Graph Auto-encoder and Random Forest (GAERF) (Wu et al., 2021a) learns features of nodes
by a graph auto-encoder and concatenates features of two nodes as input for the random forest clas-
sifier. (6) Link Representation-Graph Neural Network (LR-GNN) (Kang et al., 2022) generates
embeddings using a GCN encoder and then applies a propagation rule to create link representations
for predicting associations in networks. (7) Contrastive Self-supervised Graph Neural Network
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Table 7: Hyperparameter sensitivity experiment. The best-performing results are highlighted in
bold, and the checkmark indicates our choice of the optimal settings.

Hyperparameters etrics GED (↑) DCS (↓) CDV (↑)
Latent Dim = 16 0.76 0.49 0.74
Latent Dim = 32 (✓) 0.78 0.47 0.75
Latent Dim = 64 0.79 0.48 0.73

#Code Book = 16 0.72 0.51 0.68
#Code Book = 32 (✓) 0.78 0.47 0.75
#Code Book = 64 0.75 0.54 0.63

Batch Size = 16 0.76 0.48 0.73
Batch Size = 32 (✓) 0.78 0.47 0.75
Batch Size = 64 0.77 0.49 0.68

(CSGNN) (Zhao et al., 2021) predicts node interactions in networks by employing a mix-hop aggre-
gator and a contrastive self-supervised GNN. WGCNA, wTO, ARACNe, and LEAP are well-used
traditional methods that use only non-graph gene expression data as input, while GAERF, LR-GNN,
and CSGNN are deep learning-based methods that use known paired integrations or networks as
input. These methods are reported to have competitive performance for similar tasks like molecu-
lar interaction prediction. It is also worth noting that these methods tend to perform better when
supplementary data, such as sequence data, is available.

D HYPERPARAMETER SETTING

We conducted parameter sensitivity experiments to determine the optimal hyperparameters. The
results are presented in Table 7. Overall, the findings indicate that the model’s performance is not
significantly affected by changes in the hyperparameters.

E COMPUTATIONAL REQUIREMENTS

Table 8: The computational requirements of the proposed method, including both runtime (training
and inference time) and memory usage, across different cancer datasets.

Dataset Training Time (sec) Inference Time (sec) GPU Memory Usage (MB)
BRCA 2.21 ± 0.05 6.23 ± 0.03 4393 ± 152
GBM 1.44 ± 0.07 3.64 ± 0.04 2764 ± 117
LGG 1.98 ± 0.04 5.96 ± 0.03 3834 ± 122
OV 1.25 ± 0.04 3.45 ± 0.04 2583 ± 108
Pan-cancer 142.86 ± 5.2 454.47 ± 12.2 15893 ± 733

We evaluated the computational requirements of the proposed method, including runtime (training
and inference time) and memory usage, across four cancer datasets. While cancer patient gene
expression datasets typically contain hundreds of patients for each cancer type, we assessed the
method’s scalability by conducting an additional test using the TCGA Pan-Cancer expression dataset
based on the BRCA graph. This dataset includes 8,314 patient samples and is one of the largest pan-
cancer datasets. The results are summarized in the Table 8. We find that the computational require-
ments of the proposed method are manageable for real-world cancer datasets and scale effectively
to larger datasets with more patient samples.

F EVALUATION METRICS

(1) Graph Edit Distance (GED). GED (Gao et al., 2010) measures dissimilarity between graphs by
quantifying the minimum cost required to transform one graph into another through a series of edit
operations, such as adding or deleting nodes and edges and modifying node or edge attributes. GED
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between two gene networks N1 and N2 is defined as: GED(N1, N2) = minπ
∑

(u,v)∈π c(u, v).
Here π is a set of edit operations, typically represented as a set of pairs (u, v) where u is a
node in N1 and v is a node in N2. This set π represents the optimal alignment or correspon-
dence between nodes in the two networks. c(u, v) is the cost associated with aligning nodes u
and v, depending on factors such as node attributes, edge attributes, or the type of edit opera-
tion. We calculate the overall GED among n inferenced networks as: GED(N1, N2, . . . , Nn) =

1
n(n−1)

∑n
i=1

∑n
j=1,j ̸=i GED(Ni, Nj).

(2) DeltCon Similarity (DCS). It is a similarity score calculated through the DeltCon algo-
rithm (Koutra et al., 2013). DCS quantifies the structural similarity between two graphs by com-
paring the influence of nodes across these graphs. It relies on the computation of the influence
matrix derived from the graph Laplacian. The similarity is based on how the node influences
the change in values between the two graphs. DCS is mathematically defined as:DCS(G1, G2) =

1− 1
2

∑N
i=1

∑N
j=1

(√
1
N

∑N
i=1 (IG1

(i, j)− IG2
(i, j))

2

)
, where N is the number of nodes in the

graphs, and IG1
(i, j) and IG2

(i, j) represent the influence of node i on node j in graphs G1 and
G2, respectively.

(3) Coefficient of Degree Variation (CDV). The degree distribution of a gene network represents
the frequency distribution of node degrees, indicating the number of interactions with each gene. In
other words, this variation in connectivity suggests that the network’s degree distribution implies that
certain genes are more central or connected than others, and these central genes may have crucial
roles in defining or influencing specific cancer subtypes. CDV (Pržulj, 2007) also decreases as the

average degree (k̄) of the network increases. CDV is defined as: CDV =

√
1
N

∑N
i=1(ki−k̄)2

k̄
√
N

× 1
k̄

.
Here, N is the total number of nodes, ki is the degree of node i, and k̄ is the average degree.

(4) Number of enriched biological functions (#EBF). Corresponding to the differences in graph
properties of gene networks, we also explore their biological significance. A commonly used method
for this is functional enrichment analysis, which identifies biological functions, pathways, and
molecular activities that are overrepresented within a gene set when compared to a random selection
of genes with a similar size and degree distribution from the genome. In our study, we performed
Gene Ontology (GO) enrichment analysis using the R package clusterProfiler (Ashburner
et al., 2000a), which leverages data from databases such as KEGG and GO to identify enriched
biological terms. A greater degree of enrichment suggests that the network exhibits more meaning-
ful gene interactions than would be expected by chance. This unique enrichment across subtypes
implies that the gene networks represent biologically significant interactions, where genes within
specific cancer subtype networks are functionally connected as a group. To evaluate the func-
tional diversity between two gene networks, we conducted an experiment using GO to count the
number of unique GO terms associated with the genes in each network. Specifically, we used the
enrichGO() function from clusterProfiler to map the genes from both networks to their
corresponding GO terms. The compareCluster() function was applied to compare the sets
of GO terms associated with each network and to identify differences, focusing on the number of
enriched biological functions. To quantify the differences, we calculated the number of enriched
biological functions (#EBF) using the symmetric difference between the sets of GO terms. Math-
ematically, this is represented as: #EBF = (GO(G1) \ GO(G2)) ∪ (GO(G2) \ GO(G1)). This
operation captures the unique functions present in one network but not another. Enrichment was
evaluated based on statistical significance, where the biological functions with a p-value < 0.05
were reported. A higher #EBF indicates that the networks capture different biological processes
or molecular functions, potentially reflecting the underlying biological differences between the net-
works’ contexts.

G GO FUNCTION ENRICHMENT ANALYSIS

G.1 GO (GENE ONTOLOGY) AND BIOLOGICAL PROCESS

Gene Ontology (GO) (Ashburner et al., 2000a) is a comprehensive and standardized framework for
annotating genes based on their functions in biological contexts. It provides a structured vocabulary
to describe the roles of genes in three broad categories:
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• Biological Process (BP): This category defines the biological objectives or events that the gene
products are involved in. BP terms focus on cellular functions that go awry in diseases like cancer.
It includes essential processes such as ”signal transduction”, ”cell cycle regulation”, ”immune
response”, and ”metabolic processes”.

• Cellular Component (CC): This category defines the cellular locations where the gene products
carry out their functions. CC terms focus on the spatial aspect of gene activity. Examples include
terms like ”cytosol”, ”nucleus”, ”mitochondrion”, and ”plasma membrane”.

• Molecular Function (MF): This category outlines the biochemical activities of the gene product.
MF terms focus on how genes contribute to cellular machinery on a molecular level. Examples
include terms like ”ATP binding”, ”enzyme activity”, and ”protein binding”.

The Biological Process (BP) category is of particular relevance to cancer research because it di-
rectly reflects the underlying mechanisms that drive cancer development and progression and, there-
fore, serves as a suitable representative class for cancer-related GO terms (Desmedt et al., 2008).
Identifying disruptions in BP terms related to cancer mechanisms can also help guide therapeutic
strategies. For instance, drugs targeting cell cycle checkpoints, such as cyclin-dependent kinase
inhibitors, or those promoting apoptosis, like Bcl-2 family inhibitors, are being developed to specif-
ically correct or mitigate BP-related dysfunctions (Shapiro, 2006; Ashkenazi et al., 2017).

G.2 GO FUNCTION ENRICHMENT ANALYSIS RESULTS

Table 9 presents the enriched Gene Ontology (GO) terms associated with various biological func-
tions across four cancer types (BRCA, GBM, LGG, and OV), as identified using different methods
in the GO analysis of Experiment II. The Venn diagrams in Figure 3 illustrate the overlaps among
the results from the different methods. Due to the complexity of comparing multiple methods, we
present a four-way Venn diagram focusing on four selected methods (WGCNA, CSGNN, LR-GNN,
and GeSubNet) for clarity.

GeSubNet findings: GeSubNet shows a robust array of enriched GO terms across different can-
cers, including:

• Apoptotic signaling pathway: A series of biochemical events leading to programmed cell death,
which is essential for eliminating damaged or unwanted cells and maintaining tissue homeostasis.
Dysregulation of apoptosis is a hallmark of cancer.

• Wnt signaling pathway: A network of proteins involved in cell signaling that regulates important
processes such as cell proliferation, migration, and differentiation. Aberrant Wnt signaling is often
implicated in cancer development.

• Tumor necrosis factor signaling: A signaling pathway that can induce inflammation, apoptosis,
or cell survival, depending on the context. It is involved in various aspects of cancer biology,
including tumorigenesis and immune response.

• Cell proliferation: The process by which cells divide and multiply, essential for growth and tissue
repair. In cancer, deregulated cell proliferation leads to tumor growth and cancer progression.

This set of terms encompasses a range of crucial cancer-related biological functions shared by most
cancers. This indicates that the resulting gene network maintains physical and biological meaning-
fulness, i.e., the backbone consists of genes involving the main cancer progression.

Comparison: The proposed method identifies a broader range of distinct GO terms compared to
other methods, and the GO term set identified by GeSubNet constitutes a superset of the terms
determined by different methods.

For instance, in BRCA, WGCNA and CSGNN identify terms primarily focusing on cell cycle reg-
ulation, DNA repair, and apoptosis. wTO and ARACNe report similar functionalities with notable
overlaps. GAERF and LR-GNN overlap more with the proposed method but still do not capture as
many terms as the proposed method. The proposed method’s overlap with other approaches is sig-
nificant, particularly regarding core cancer pathways such as DNA repair (present in all methods),
Cell cycle arrest (common in most methods), and Apoptotic signaling pathways (reported by several
methods). However, the proposed method finds unique terms, such as immune diseases in BRCA,
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DNA damage checkpoint signaling in GBM, and the Notch signaling pathway in LGG. They are
absent in other method’s results, yet evidence has proven their relevance to cancers.

H SIMULATED GENE KNOCKOUT EXPERIMENT

H.1 WORKFLOW

Step 1: The simulation begins by ranking all genes based on node degree disparities calculated from
the connectivity matrices of the sub-networks. Node degree is quantified as the number of direct
connections each gene has to other genes within the network, serving as a measure of its centrality
and influence across different cancer subtypes. To derive the connectivity matrices, we analyze the
interactions between genes, where each gene is represented as a node and each interaction as an
edge. The degree of each node is then computed to identify highly interconnected genes.

Step 2: After ranking, we categorize the genes into two sets: a high-ranking gene set, which includes
genes exhibiting the largest degree disparities (above a defined threshold based on node degree vari-
ance), and a low-ranking gene set, composed of genes with minimal degree differences (below the
same threshold). Using node degree variance as a threshold ensures our classification is statistically
grounded. This method isolates genes that play critical roles in the network dynamics.

Step 3: Next, we individually simulate the knockout of genes within the high-ranking and low-
ranking gene sets. This process involves transforming their expression values to a baseline non-
expression level, which is defined as either zero or a predefined low expression value (such as the
mean expression level of the lowest 10% of genes). This transformation mimics the functional loss
of these genes. For each gene target in the selected sets, we systematically replace its expression
value in the patient samples with the baseline non-expression level.

To ensure robustness and statistical validity, we repeat the simulations multiple times, typically run-
ning each simulation for a predetermined number of iterations (e.g., 100 or 1000). Each simulation
involves the random selection of a subset of genes from the respective gene set. For the random
selection, we define the number of genes to be included in each subset based on a fraction of the
total genes in the gene set. For instance, we set p(select) to 10%, which means we select 10%
of the genes from the high-ranking gene set and 10% from the low-ranking gene set in each itera-
tion. This approach allows us to assess the impact of knocking out varying combinations of genes
while maintaining a consistent sample size across runs. The random selection is performed using a
uniform sampling technique to ensure that each gene has an equal chance of being included in the
knockout simulation for that run. After each knockout simulation, we record the changes in patient
distributions regarding the Shift Rate (SR).

H.2 SHIFT RATE

Shift Rate: The shift rate measures the likelihood of sample groups shifting significantly after a
set of genes is knocked out. It accounts for the average distance between samples within a patient
group before and after the knockout and compares this distance to an adaptive threshold based on
the spread (standard deviation) of samples. Let the distance between a sample within a given group
before gene knockout, denoted as xbefore

i , and after gene knockout, denoted as xafter
i , be expressed

as ∥xbefore
i − xafter

i ∥. The spread of samples within the group before knockout in knockout test j is
quantified by the standard deviation σj of their distances to the centroid of the before group. The
shift rate (SR) is defined as: ∆SR = 1

m

∑m
j=1

(
1
n

∑n
i=1 ∥xbefore

i − xafter
i ∥ > k · σj

)
Where m is the

total number of knockout tests, n is the number of samples within the group, σj is the standard
deviation of the distances between the samples before knockout and the centroid of the group in
knockout test j, and k is a scaling factor (e.g., 1.0 or 1.5) used to determine the threshold for
considering a shift.
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I CASE STUDY

I.1 BREAST INVASIVE CARCINOMA

Breast Invasive Carcinoma, commonly called BRCA, holds a significant position in cancer research
due to its prevalence and clinical importance (Sharma et al., 2010). BRCA represents the most
common form of breast cancer, accounting for a substantial portion of cancer-related morbidity and
mortality worldwide. Moreover, it is a heterogeneous disease with diverse molecular subtypes, each
with distinct clinical behaviors and therapeutic responses. This molecular complexity and clinical
diversity make it an ideal candidate for investigating gene networks and deciphering the intricacies
of cancer biology. Therefore, in cancer studies, BRCA serves as a cornerstone. Insights gained
from BRCA research have huge implications for cancer biology and precision oncology, extending
beyond breast cancer to other malignancies.

- BRCA Subtypes. Within the used BRCA dataset are various molecular subtypes (patient groups).
They are identified based on distinct genetic alterations and clinical features. These subtypes include
luminal A, luminal B, HER2-enriched, basal-like, and normal-like subtypes, each characterized
by specific gene expression patterns and clinical behaviors (Orrantia-Borunda et al., 2022). We give
a brief overview of these subtypes:

• Luminal A: This subtype is characterized by the expression of estrogen receptor (ER) and/or
progesterone receptor (PR) and low levels of the HER2 protein. Luminal A tumors typically have
a favorable prognosis and are often responsive to hormone-based therapies.

• Luminal B: Luminal B tumors also express ER and/or PR but may have higher proliferation
markers such as Ki-67 levels (Sobecki et al., 2017). They can be divided into luminal B HER2-
positive (ER/PR-positive, HER2-positive) and luminal B HER2-negative (ER/PR-positive, HER2-
negative) subtypes. Luminal B tumors generally have a poorer prognosis compared to luminal A
tumors.

• HER2-enriched: HER2-enriched tumors overexpress the HER2 protein without expressing hor-
mone receptors (ER/PR-negative, HER2-positive). They are typically aggressive and associated
with a higher risk of recurrence. Targeted therapies directed against HER2, such as trastuzumab
(Herceptin), are often effective in treating HER2-enriched tumors.

• Basal-like: Basal-like tumors are characterized by the absence of hormone receptors (ER/PR-
negative) and HER2 amplification (HER2-negative). They often display features similar to
basal/myoepithelial cells of the mammary gland and are associated with a poor prognosis. Basal-
like tumors are frequently referred to as ”triple-negative” (Chacón & Costanzo, 2010) breast
cancers due to the lack of expression of ER, PR, and HER2.

• Normal-like: Normal-like tumors have gene expression profiles resembling normal breast tissue.
They are less common and less well-defined than other subtypes, and their clinical significance is
not fully understood.

I.2 EXPERIMENTS AND ANALYSIS PROTOCOLS

We briefly introduce the background and application cases of the experiments and analysis protocols
in the biological validation.

- Gene Expression Distribution Analysis. This analysis involves examining the distribution of
gene expression levels across different experimental conditions or patient groups to visualize the dis-
tribution of expression levels for genes. This analysis has been extensively used in cancer research to
explore the expression patterns of key oncogenes and tumor suppressor genes across different cancer
types and stages. In studies of cancer patients, researchers may compare the expression distributions
of oncogenes and tumor suppressor genes between tumor samples and adjacent normal tissue sam-
ples. Differences in expression distributions may indicate dysregulation of these genes in cancer. For
instance, gene expression distribution analysis was employed to investigate the expression levels of
TP53, a well-known tumor suppressor gene, in various cancer types (Olivier et al., 2010). This
analysis revealed significant alterations in the distribution of TP53 expression in different cancer
cohorts, showing its potential role as a diagnostic or prognostic marker in malignancies.
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- Differential Gene Expression Analysis. Differential gene expression analysis has been a corner-
stone of transcriptomic studies. This analysis compares gene expression levels between different
experimental conditions or sample groups to identify significantly upregulated or downregulated
genes. Statistical tests such as t-tests or non-parametric tests are commonly used. For example,
cancer patients’ and healthy controls’ gene expression profiles can be compared to identify dys-
regulated genes in cancer. Genes with significant differences in expression levels may be further
investigated as potential biomarkers or therapeutic targets. For example, researchers performed dif-
ferential gene expression analysis on RNA-seq data from Alzheimer’s disease patients and healthy
controls (Twine et al., 2011). This analysis identified a panel of differentially expressed genes im-
plicated in neuroinflammation and synaptic dysfunction, showing molecular pathways associated
with Alzheimer’s disease progression.

J ABLATION STUDIES

In this section, we introduce the ablation studies. We designed the ablations and model variants for
each module. This is to verify the effectiveness of the proposed method’s core concepts across a
diverse set of deep structures and training strategies.

Firstly, we executed experiments utilizing various deep generative models to learn sample embed-
dings in the sample embedding learning module. The experiment comprised the following model
variants:

• GeSubNet-VAE: It uses basic VAE to learn sample embeddings by performing clustering tasks
on patient samples.

• GeSubNet-VQVAE: It uses VQ-VAE to learn sample embeddings by performing clustering
tasks on patient samples.

• GeSubNet-GAN: It incorporates a GAN structure on top of a basic AE. This model performs
sample augmentation while performing clustering tasks on patient samples.

Next, in the gene embedding learning module, we conducted experiments using various graph neural
network models to learn gene embeddings. The experiment included the following model variants:

• GeSubNet-GCN: A variant utilizes GCN to learn gene embeddings through the link prediction
task.

• GeSubNet-GAT: A variant utilizes GAT to learn gene embeddings through the link prediction
task.

Finally, in the ablation study on the gene network inference module, we experimented and included
the following model variants:

• GeSubNet-OneStep: A variant removes the entire module and substitutes it with a one-step
model.

• GeSubNet-Conca: Another one-step variant contains an additional neural layer that uses con-
catenated sample embeddings and gene embeddings for network classification tasks.

Ablation. We conduct three detailed ablation studies to evaluate the impact of each module
in GeSubNet. More details can be found in Appendix J. Figure 7 presents the results of the
three ablation studies across all variant models. For Patient-M, the proposed sample encoder sig-
nificantly outperforms all other DGM models across the four network inference tasks (BRCA,
GBM, LGG, and OV). For instance, the proposed method achieves an average improvement of
32.3%/31.2%/22.1%/32.3% in terms of GED. The Graph-M ablations show that the method using
Neo-GNN consistently performs best, while the other GNN models yield comparable results. For
Infer-M ablation, GeSubNet significantly outperforms the other objective functions, achieving ap-
proximately twice the metric values of its counterparts.
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Figure 7: Ablation Study results on GED, DCS, and CDV for the proposed method and all compared
methods. GED, DCS, and CDV are subjected to Min-Max normalization.
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Figure 8: Compare GNN model learning results based on general and patient group-specific gene
networks. The latent sample space was gained via training the GNN model based on the general and
patient group-specific gene networks.

K PRIOR GRAPH V.S. NEWLY GENERATED GRAPH

We evaluated the performance of patient group learning by inputting the newly generated graph from
the GeSubNet into a plain GCN and comparing the results. Figure 8 presents a UMAP visualization
of the learned latent sample spaces, with the prior graph initialization (Left) and the generated graph
GCN initialization (Right). The left sub-figure shows that different patient groups appear mixed in
the latent sample space derived from the prior gene network. However, there are clearer boundaries
between various patient groups, as shown on the right side. Such results confirm the redundancy
of information in the common prior gene networks. It demonstrates that the GeSubNet provides
more structured information and potential for cancer studies.
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