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ABSTRACT

Subcutaneous Immunotherapy (SCIT) is the long-lasting causal treatment of aller-
gic rhinitis (AR). How to predict and enhance the adherence of patients to maximize
the benefit of allergen immunotherapy (AIT) plays a crucial role in improving the
efficiency of AIT management. To address this challenge, this study explores the
application of the sequential model of Stochastic Latent Actor-Critic (SLAC) and
Long Short-Term Memory (LSTM) models in predicting patient adherence and
symptom scores in AIT for allergic rhinitis. By developing and analyzing these
models, we creatively apply sequential models in the long-term management of
SCIT with promising accuracy in the prediction of SCIT adherence in AR patients.

1 INTRODUCTION

Allergic rhinitis (AR) is characterized by allergen-specific IgE-mediated inflammation in upper
respiratory inflammation with a prevalence of up to 30% worldwide (Meltzer, 2016). Allergen-
specific immunotherapy (AIT) aims to induce specific allergen immune tolerance, consequently
achieving a status of clinical symptom remission. Among these approaches of AIT, SCIT is a
clinic-dependent treatment in which the patient accepts an allergen extract injection subcutaneously.

Due to the long duration of SCIT, cumbersome process, slow onset, individual differences in treatment
effect, and other factors fundamentally impact the completeness of therapeutics. From the reported
studies on AIT, the rate of adherence ranged from around 25% to over 90% (Passalacqua et al., 2013).
Multiple approaches were introduced into the field of improving adherence and supervising patient
outcomes with systematic and technological interventions to prevent incomplete discontinuation of
the treatment. With a multitude of personalized patient data, it is promising to employ a clinical
prediction model to accurately identify and assess the risk of future non-adherent behavior. This
approach enables targeted measures to enhance compliance among non-adherent patients, thereby
improving efficiency.

Machine learning, particularly sequential models, is driving innovation in healthcare by analyzing
medical data and enhancing patient treatments. These models are adept at handling time-sensitive
data, crucial for forecasting patient compliance with treatments such as SCIT for AIT. Our study
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evaluated two sequential models, showing their effectiveness in predicting treatment adherence and
their significant impact on patient-focused healthcare. For those interested in a more comprehensive
analysis and additional results, the full version of this paper can be found in (Li et al., 2024).

2 STUDY DESIGN

The study design is a critical component that shapes the direction and reliability of our research. It
includes a systematic approach to selecting the study population, the treatment methods applied, and
the evaluation criteria.

Population A retrospective analysis including 205 AR patients who started SCIT treatment between
August 2018 and September 2019 in the Immunotherapy Center at the First People’s Hospital of
Foshan was performed. According to the Guidelines for the Diagnosis and Treatment of Allergic
Rhinitis (2015 Edition), the recruit criteria (Li et al., 2024) were formulated: According to the
guidelines for the diagnosis and treatment of allergic rhinitis (2015 Edition), the recruit criteria were
formulated: patients who exposure to dust mites was confirmed as the major allergen by allergen tests
with skin index (SI) of skin prick test (SPT) ++ or above or specific Immunoglobulin E(sIgE) level in
serum to Der p/Der f ≥ 0.35 kU/L.

SCIT treatment and evaluation Standard SCIT was performed according to the EAACI guideline
including dose accumulation phase and maintenance phase(Roberts et al., 2018). Patients receive
regular treatment evaluations, including symptom scores with visual analogue scale (VAS) and
medication scores(Roberts et al., 2018). Medication score recorded the use of current adjuvant
medication within 1 month to reach symptom relief. The use of oral antihistamines, antileukotrienes,
and bronchodilators were recorded as one point, local glucocorticoids as two points, oral glucocor-
ticoids or combined medication (hormones and β2 receptor agonists) as three points, and the total
cumulative score was the medication score. Symptom scores and medication scores were assessed
once at registration of SCIT and then thereafter. All the chosen patients completed the four months of
SCIT, and we chose the fourth month as the starting point of the observation. The data collection
spans six time steps: at 0, 4, 12, 18, 24, and 36 months.

Data Collection Data were collected from patient records in hospitals, and the following informa-
tion was extracted for analysis: patient age, gender, distance to clinic, ratio of AIT cost to family
income, allergen test results, etc., as well as patient VAS system score and medication score informa-
tion, including baseline data of patients before injection therapy, adverse reactions to SCIT. For the
descriptive analysis, categorical variables were given as numbers and percentages, and continuous
variables were presented using mean, standard deviation, median, interquartile range (IQR), and
minimum and maximum values. Further details about the data are available in Appendix A, and the
dataset for this study can be found in a GitHub repository1.

Survey methods Adherence was defined as the accomplishment of three years of AIT including the
patients further received AIT. Non-adherence was defined as discontinuation of AIT at random time
points during three years. The follow-up contents (see Appendix A) included (1) the main reasons
for patients’ discontinuation of treatment; (2) the duration of discontinuation of treatment, and (3)
Allergic symptoms after discontinuation of treatment.

1https://github.com/leexxe/Subcutaneous-Immunotherapy-Dataset
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3 SEQUENTIAL MODELS

Our study aims to develop sequential models for accurately predicting symptom progression and
patient adherence during SCIT. We explore and compare two distinct sequential models, SLVM
of Stochastic Latent Actor-Critic (SLAC) (Lee et al., 2020) and Long short-term memory (LSTM)
(Hochreiter & Schmidhuber, 1997).

Data We have a dataset D = {[x(i),y(i),a(i), s(i)], i ∈ {1, . . . , N}]} consisting of states x =

{xt ∈ R11}, t = 1 . . . T ; observations y = {yt ∈ R}, t = 1 . . . T − 1; and actions a = {at ∈ R},
t = 1 . . . T − 1. The observations yt indicate whether the patient will cease the treatment in the
interval between the scoring measurements at xt and xt+1. The actions at represent the ongoing
medical procedures in the period from t to t + 1. The state x consists of nasal itching, sneezing,
rhinorrhea, nasal congestion, ocular itching, lacrimination, shortness of breath, tightness in chest,
perennial cough, wheezing, and rescue medication score. For each patient we have basic information
s ∈ R14: age, gender, commute distance to clinic, ratio of cost to family income, eosinophils
count and percentage, nasal allergen provocation test (change of nasal resistance, ∆NR(%)), peak
nasal inspiratory flow; ∆PNIF(%)), serum total IgE level, sIgE of Dermatophagoides pteronyssinus
(Derp), sIgE of Dermatophagoides farinae (Derf), skin prick test (Derp, Derf).

Sequential latent variable models In our research, we use the SLAC model. However, our
application differs from the original use of SLAC which is typically associated with reinforcement
learning. Instead, we only use its sequential latent-variable model (SLVM) without the Actor-Critic.

z21 · · · z2t z2t+1

z11 · · · z1t z1t+1

x1 xt xt+1

a1 at

s

· · ·

· · ·

y1 yt yt+1

Figure 1: Schematic of the SLVM part of SLAC. Solid
and dashed lines denote the generative and inference
model pathways, respectively. The gray circles repre-
sent observed data, and the white circles denote latent
variables. The figure is adapted from (Lee et al., 2020).

SLVM consists of an inference model and
a generative model (see Fig. 1). The in-
ference model in SLVM typically aims to
approximate the posterior distribution of
the latent variables z1 and z2 given the ob-
served data, x and s. The generative model,
on the other hand, describes how the ob-
served data is generated from the latent
variables. qϕ and pϕ indicate the parame-
terized distributions. We have the evidence
lower bound (ELBO) in Eq. (14). We adapt
it to a constraint optimization problem:

min
ϕ

E
(x1:T ,a1:T−1)∼D

[
T−1∑
t=0

[DKL (qϕ(zt+1 | xt+1, zt, at) ∥ pϕ(zt+1 | zt, at))]
]

(1)

s.t. E
(x1:T ,a1:T−1)∼D

[
E

z1:T∼qϕ

[
T−1∑
t=0

− log pϕ(xt+1 | zt+1)

]]
≤ ξscore (2)

E
(x1:T ,a1:T−1,y1:T−1)∼D

[
E

z1:T∼qϕ

[
T−2∑
t=0

− log pϕ(yt+1 | zt+1)

]]
≤ ξadherence (3)

where ξ is a baseline error. We abbreviate q(z1 | x1, z0, a0) := q(z1 | x1, s) and p(z1 | z0, a0) :=
p(z1). In Eq. (2) we have regression with Gaussian distribution, and in Eq. (3) we use cross-binary
entropy loss for classification. Eq. (1) is the Kullback-Leibler (KL) divergence between the variational
distribution and the prior distribution of the latent variables. Implementation details are in App. B.
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Figure 2: (left) RMSE and (right) Accuracy of the one-step prediction. The red dashed line is the RMSE or
accuracy of random prediction with Uniform distribution.

4 RESULTS

We have a total of N = 205 samples, which we have randomly divided into a test dataset comprising
20%, i.e., 41 samples. For our analysis, we use a five-fold cross-validation approach. Additionally, we
apply zero-mean and unit standard deviation (STD) normalization to the variables x and s. The Root
Mean Square Error (RMSE) and classification accuracy metrics are used to evaluate the precision
of our medical score and adherence predictions, respectively. The uncertainties for both models are
calculated using five-fold cross-validation. In addition, as SLVM is a probabilistic model, we also
perform 100 samples from the latent space to compute its uncertainty.

One-step prediction and rollout In Fig. 2 (left, middle), our focus is on predicting the immediate
next step. As illustrated in Fig. 2 (left), SLVM surpasses LSTM in performance beginning at time
step three. The figure indicates that with an increased amount of historical data (additional time
steps), SLVM achieves better RMSE. Fig. 2 (right) demonstrates that from steps two to four, accuracy
in adherence predictions improves with the inclusion of additional information. The first step shows
a notable bias, since it only includes data from adherent patients, as detailed in (Li et al., 2024).
Nonetheless, both models adeptly manage this bias and achieve high-accuracy predictions. Prediction
for the sixth step is not conducted due to the cessation of treatment by the hospital. In the fifth step,
there is a decline in accuracy, likely due to the extended time interval of 12 months. Table 1 illustrates
details of the classification for one-step prediction. Both SLVM and LSTM perform considerably
better over random prediction methods. Our findings, while not depicted in the figures, indicate
comparable outcomes for the rollout process, i.e., when provided with one or more initial steps, we
are able to predict the subsequent steps.

Table 1: Comparison of LSTM and SLVM over different time steps. The results are expressed as a mean ±
standard deviation. The better results are highlighted in bold.

metric model time step 1 time step 2 time step 3 time step 4 time step 5

accuracy LSTM 1.00± 0.00 0.66± 0.03 0.80± 0.04 0.84± 0.05 0.74± 0.02
SLVM 1.00± 0.01 0.70± 0.06 0.72± 0.04 0.71± 0.04 0.60± 0.06

precision LSTM 1.00± 0.00 0.72± 0.01 0.86± 0.06 0.90± 0.05 0.62± 0.03
SLVM 1.00± 0.00 0.75± 0.03 0.74± 0.03 0.71± 0.03 0.44± 0.05

recall LSTM 1.00± 0.00 0.86± 0.06 0.83± 0.05 0.82± 0.08 0.61± 0.03
SLVM 1.00± 0.01 0.87± 0.06 0.90± 0.03 0.86± 0.04 0.70± 0.10

F1 score LSTM 1.00± 0.00 0.79± 0.03 0.84± 0.03 0.85± 0.05 0.62± 0.03
SLVM 1.00± 0.00 0.81± 0.04 0.81± 0.02 0.78± 0.03 0.54± 0.06
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Figure 3: Importance of the factors using SLVM.

Interpretability We use Integrated
Gradients of Captum (Kokhlikyan
et al., 2020) for interpreting the model
(see Fig. 3). The magnitude of fea-
tures highlights the significance of the
model’s prediction for a specific class.
The distance to the clinic significantly
impacts patient adherence, especially
if a patient is located far from the
clinic or has relocated, as they are
more likely to discontinue their vis-
its. Following the distance, SPT of Der f and sIgE of Der f greatly influence the adherence. In
contrast, ∆NR(%), EOS(%), and the cost/family income(%) have minimal impacts.

5 DISCUSSION AND CONCLUSION

The present study is the first research about the application of machine learning models in the
adherence prediction of SCIT in AR patients. Previous research primarily concentrated on non-
sequential prediction methods for adherence (Mousavi et al., 2022; Wang et al., 2020; Warren et al.,
2022; Ruff et al., 2019). This approach presents a significant limitation in treatment processes,
particularly for immunotherapy that often spans extended periods, such as three years. These
non-sequential methods tend to predict only the overall outcome, overlooking the intricacies of
intermediate time steps. To facilitate earlier intervention, a sequential model capable of making
predictions at any given time step would be markedly more beneficial. While some subsequent studies
have introduced sequential models (Hsu et al., 2022; Singh et al., 2022; Schleicher et al., 2023), their
scope was restricted to predicting adherence alone. Our study enhances this approach by incorporating
a state-action model, which can predict both adherence and score/state. This advancement allows for
more precise and detailed analysis of patient cases by medical professionals.

The comparison of the SLVM part of the SLAC model with LSTM reveals the distinct strengths
and limitations of each approach. This flexibility of SLVM is observed in its predictive capabilities.
SLVM can predict yt and use this prediction to influence the subsequent xt+1. In contrast, standard
LSTM only predicts a pair of yt and xt+1 simultaneously, implying that we cannot use yt to alter
xt+1. This advantage likely stems from its ability to efficiently learn and generalize in complex
environments. Additionally, the SLVM outperforms the LSTM in score prediction. Conversely, the
LSTM model shows better performance in predicting adherence, indicating its potential usage in
scenarios. Both models demonstrate the capability to handle longer sequences, extending beyond
one-step prediction. This ability is crucial in medical settings where long-term patient monitoring
and prediction are essential for effective treatment planning.

Overall, the study underscores the importance of selecting the appropriate model based on the
specific requirements of the task, whether it be flexibility, precision in score prediction, or adherence
prediction. The findings contribute to the growing field of machine learning applications in healthcare,
particularly in enhancing patient-centered treatment strategies through accurate and personalized
predictions. Future research could focus on evaluating the SLVM model’s performance in simulating
various actions, further enriching its applicability in clinical settings.
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A DATA STATISTICS

The statistics of our data are presented in Table 2, Table 3, and Figure 4.

variables patients

total adherent non-adherent

age ≤ 12 96 (46.7) 40 56
13–17 30 (14.6) 10 20
≥ 18 79 (38.7) 23 56

gender Female 62 (30.2) 22 40
Male 143 (69.8) 51 92

distance to clinic(km) ≤ 10 136 (66.3) 56 80
> 10 69 (33.7) 17 52

cost/family income(%) < 30 107 (52.4) 37 70
30–50 77 (37.4) 32 45
> 50 21 (10.2) 4 17

EOS(× 109/L) 0.37; 0.41 0.36; 0.52 0.38; 0.36
EOS % 0.05; 0.04 0.05; 0.05 0.05; 0.05
∆NR(%) 16.67; 59.70 30.00; 92.80 14.80; 50.00
∆PNIF(%) 11.90; 34.50 12.70; 39.30 11.10; 28.80
total IgE (kU/L) 286; 543 340; 487 226; 555
sIgE of Der p (kU/L) 30.80; 68.480 31.30; 74.40 30.40; 67.80
sIgE of Der f (kU/L) 40.00; 68.20 40.60; 75.10 37.10; 65.70
Der p SPT SI 1.04; 0.58 1.00; 0.59 0.82; 0.55
Der f SPT SI 1.00; 0.50 0.82; 0.51 0.80; 0.45

Table 2: Demographic and clinical data of the patients under subcutaneous immunotherapy. In the rows from
Age to Cost/Family income, values indicate the number of patients (percentage, if available). Other rows
represent the median and IQR. P-values are omitted due to their large values.

reasons for
SCIT withdrawal

number of non-adherent patients

5–12 mths 13–18 mths 19–24 mths 25–36 mths total by reason

no clinical improvement 18 11 8 21 58
medical issue 3 1 2 0 6
improved efficacy 0 0 0 24 24
schooling 3 3 0 5 11
side effects 2 1 1 2 6
COVID-19 9 7 3 1 20
personal issue 0 3 0 4 7
total by time period 35 26 14 57 132

Table 3: Detailed reasons for withdrawal from SCIT at different time points.

B IMPLEMENTATION DETAILS

B.1 SEQUENTIAL LATENT VARIABLE MODEL

The sequential latent variable model of the SLAC consists of an inference model and a generative
model (see Fig. 1). The inference model in a sequential latent-variable model typically aims to
approximate the posterior distribution of the latent variables given the observed data. It tries to
infer the hidden states z based on the observed inputs x and initial states s. The inference models
the probability distributions of the latent variables z1 and z2 at different time steps. qϕ denotes the

8
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Figure 4: Histogram of scores across six-time steps. Score value (horizontal axis) vs. count (vertical axis).

variational distribution parameterized by ϕ,

z11 ∼ qϕ(z
1
1 | x1, s) (4)

z21 ∼ pϕ(z
2
1 | z11) (5)

z1t+1 ∼ qϕ(z
1
t+1 | xt+1, z

2
t , at) (6)

z2t+1 ∼ pϕ(z
2
t+1 | z1t+1, z

2
t , at). (7)

The generative model, on the other hand, describes how the observed data is generated from the latent
variables. The generative model is the probability distribution of both the initial latent states and their
transitions over time, as well as the likelihood of the observations given the latent states, with pϕ
indicating the parameterized generative distribution.

z11 ∼ p(z11) (8)

z21 ∼ pϕ(z
2
1 | z11) (9)

z1t+1 ∼ pϕ(z
1
t+1 | z2t , at) (10)

z2t+1 ∼ pϕ(z
2
t+1 | z1t+1, z

2
t , at) (11)

xt ∼ pϕ(xt | z1t , z2t ) (12)

yt ∼ pϕ(yt | z1t , z2t ). (13)
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We have the evidence lower bound (ELBO):

log pϕ(x1:t+1|a1:t) ≥
[

E
(x1:T ,a1:T−1)∼D

[
E

z1:T∼qϕ

T−1∑
t=0

(
log pϕ(xt+1 | zt+1) (14)

−DKL

(
qϕ(zt+1 | xt+1, zt, at) ∥ pϕ(zt+1 | zt, at)

))]]
.

For ease of notation, we have q(z1 | x1, z0, a0) := q(z1 | x1, s) and p(z1 | z0, a0) := p(z1). The
ELBO provides a lower bound to the log-likelihood of the observed data, which is computationally
intractable to compute directly. It is composed of two terms: the expected log-likelihood of the
observed data given the latent variables, and the Kullback-Leibler (KL) divergence between the
variational distribution and the prior distribution of the latent variables. Minimizing the KL divergence
can be interpreted as enforcing the variational distribution to be as close as possible to the prior, while
maximizing the expected log-likelihood ensures that the model accurately captures the distribution of
the observed data. To predict the adherence, we have log pϕ(yt+1|zt+1) as a regularisor in the loss
function.

The objective is to compute the parameters ϕ that minimize the KL divergence between the variational
and prior distributions of the latent variables, subject to certain constraints. These constraints are
related to the expected log-likelihood of the data under the model and are represented by the
inequalities with thresholds ξ. These thresholds ensure that while minimizing the losses, the model
also satisfies a minimum standard for score prediction and adherence classification performances.

Latent variable models, such as Variational Autoencoders (VAEs) (Kingma & Welling, 2014; Rezende
et al., 2014) and their variants (e.g., SLAC), often encounter challenges (Sønderby et al., 2016;
Kingma et al., 2016). Furthermore, a higher ELBO does not always lead to enhanced predictive
performance, as discussed by Alemi et al. (2018); Higgins et al. (2017). However, the integration of
scheduling strategies inspired by constrained optimization methods has been shown to significantly
improve the training of latent variable models (Rezende & Viola, 2018; Klushyn et al., 2019; Sun
et al., 2024). Consequently, we formulate the training of our model into an optimization problem

min
ϕ

E
(x1:T ,a1:T−1)∼D

[
T−1∑
t=0

[DKL (qϕ(zt+1 | xt+1, zt, at) ∥ pϕ(zt+1 | zt, at))]
]

(1)

s.t. E
(x1:T ,a1:T−1)∼D

[
E

z1:T∼qϕ

[
T−1∑
t=0

− log pϕ(xt+1 | zt+1)

]]
≤ ξscore (2)

E
(x1:T ,a1:T−1,y1:T−1)∼D

[
E

z1:T∼qϕ

[
T−2∑
t=0

− log pϕ(yt+1 | zt+1)

]]
≤ ξadherence (3)

where in Eq. (2) we have regression with Gaussian distribution, and in Eq. (3) we use cross-binary
entropy loss for classification. To solve the optimization problem, we incorporate the constraints into
the objective function using Lagrange multipliers λ. We apply methods from (Chen et al., 2022) to
adapt λ. This allows the model to balance the importance of the constraints relative to the divergence
terms, which can help in avoiding common pitfalls in training such as suboptimal local minima and
posterior collapse.

To avoid over-fitting, we incorporate dropout (Srivastava et al., 2014) and Mixup (Zhang et al., 2017).
Subsequent research has extended the application of Mixup to latent variable models, specifically
within the latent space (e.g., (Chen et al., 2020)). However, considering our need for data augmentation
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across all data dimensions, not limited to latent variables, we have selected to implement the original
Mixup method in our experiments.

B.2 LSTM

The primary objective of this study is to forecast yt from historical data, formulated as yt =

f(x1:t, y1:t−1, s). To align this approach with the SLVM of SLAC for score prediction, an additional
term xt+1 is also predicted,

(xt+1, yt) = f(x1:t, y1:t−1, s) (15)

where f is a function represented by an LSTM. The loss consists of the cross entropy for adherence
classification and the Normalized Mean Squared Error Loss (NMSE) for score prediction.

In our scenarios, SLVM stands out due to its inherent flexibility over traditional sequential models
like LSTM. This flexibility is primarily observed in its predictive capabilities. SLVM can predict yt
and use this prediction to influence the subsequent xt+1. In contrast, LSTM only predicts a pair of
yt and xt+1 simultaneously, implying that we cannot use yt to alter xt+1. Although it is possible to
modify the LSTM model to predict a pair of yt and xt, this approach encounters a similar issue for
yt: it cannot predict yt using the information from xt.

B.3 ARCHITECTURE AND COMPUTATION

In this study, computational experiments were performed using an NVIDIA GeForce GTX 1080 Ti
GPU, with the implementation done in PyTorch, version 2.1.0.

The SLVM model’s architecture featured 32 hidden dimensions each for variables z1 and z2. Its
encoder and decoder were symmetrically structured, each comprising five layers with 128 units.
The primary activation function was LeakyReLU, set with a negative slope coefficient of 0.2. Both
the encoder and decoder’s mean output layers were linear, while the STD layer utilized a Softplus
activation. For binary classification tasks, a Sigmoid activation was used for output.

The LSTM architecture included a hidden dimension size of 128, with two LSTM layers. The output
activation function for score prediction was linear, and as in the SLVM model, a Sigmoid function
was used for binary classification outputs.

Both models shared the same optimization settings. They used the RAdam (Liu et al., 2019) optimizer
with a learning rate of 0.001. The batch size was set at 64, and a gradient clipping value of 0.8
was applied to ensure training stability. To prevent overfitting and enhance model generalization,
a dropout rate of 0.05 was introduced. Additionally, both models incorporated Mixup as a data
augmentation during training.
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