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ABSTRACT

In causal inference, encouragement designs (EDs) are widely used to analyze causal
effects, when randomized controlled trials (RCTs) are impractical or compliance
to treatment cannot be perfectly enforced. Unlike RCTs, which directly allocate
treatments, EDs randomly assign encouragement policies that positively motivate
individuals to engage in a specific treatment. These random encouragements act as
instrumental variables (IVs), facilitating the identification of causal effects through
leveraging exogenous perturbations in discrete treatment scenarios. However, real-
world implementations of EDs often deviate from ideal conditions. Specifically,
encouragements are frequently nonrandom, the number of available encouragement
policies is limited, and sample sizes are often small—posing significant challenges
to reliable causal estimation. To address this, we propose a novel identifiability
theory that leverages variations in encouragement to identify the Conditional Aver-
age Treatment Effect (CATE). Building on this foundation, we develop a new IV
estimator, named Encouragement-based Counterfactual Regression (EnCounteR),
to effectively estimate causal effects even when the number of instruments is
smaller than the number of treatments. Extensive experiments on both synthetic
and real-world datasets demonstrate the superiority of the proposed EnCounteR.

1 INTRODUCTION

Causal inference is a powerful tool for explanatory analysis and plays a crucial role in fields such as
healthcare, economics, and social sciences (Imbens et al., 2015; Wooldridge et al., 2016; Burgess
et al., 2017; Devriendt et al., 2020; Kuang et al., 2020). Although Randomized Controlled Trials
(RCTs) are the gold standard for identifying causal relationships under unmeasured confounders, they
often face issues such as noncompliance and ethical concerns (Kohavi & Longbotham, 2011; Bottou
et al., 2013; Wu et al., 2022b). As an alternative, randomized encouragement designs (EDs), which
randomly assign encouragement policies to positively influence individuals’ likelihood of receiving a
treatment, have gained popularity (Small et al., 2008; West et al., 2008) and are increasingly used to
estimate causal effects in practice (Holland, 1988; Small, 2007; Kang & Imbens, 2016). For example,
Sexton & Hebel (1984) and Permutt & Hebel (1989) encouraged physicians to advise against smoking
to study its impact on birth weight, while Angrist et al. (1996), Bang & Davis (2007), and Kang &
Imbens (2016) employed randomized intent-to-treat designs to address treatment non-compliance.

In the above encouragement designs, random encouragements serve as instrumental variables (IVs),
positively influencing treatment uptake without directly affecting the outcome, thereby satisfying
the relevance, exclusion restriction, and exogeneity assumptions (Angrist & Imbens, 1995; Angrist
et al., 1996; Hartford et al., 2017). However, such discrete encouragement-based IVs are typically
limited to identifying the local average treatment effect (LATE) in discrete treatment settings under
the monotonicity assumption (Angrist et al., 1996; Pearl, 2010; Wooldridge et al., 2016). When the
number of encouragements is substantially smaller than the number of treatment options — especially
in the case of continuous treatments — the induced variation in treatment tends to be weak and sparse.

Such settings, where treatment is continuous while encouragement has multiple but limited values,
are ubiquitous and prevalent in many real-world applications. For example, as shown in Figure
1, on online course platforms such as Coursera, edX, and Udacity (Breslow et al., 2013; Reich,
2015; Anderson et al., 2014; Kizilcec et al., 2014), instructors apply various encouragements (e.g.,
eA = None, eB = Praise, eC = Points) to motivate students toward longer forum participation
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Figure 1: Framework overview.

(i.e., treatments T ), while these en-
couragements do not have a direct im-
pact on exam scores Y , which offers
opportunities to identify causal effects
in the presence of unmeasured con-
founders U . In this case, the type of
encouragement is limited while the
forum participation time is continu-
ous. Such insufficient and unevenly
distributed treatment variation poses
significant challenges in identifying
causal effects, violating the condition
that the support set of IVs must exceed
that of treatments. Moreover, in real-
world applications, instructors often
select encouragements based on class

characteristics, resulting in nonrandom encouragement assignments. This introduces endogeneity
issues and further exacerbates the challenge of accurately identifying causal effects.

In this paper, we aim to address the challenges inherent in settings with limited encouragement
and continuous treatment, including: (1) limited experimental data, (2) non-random encouragement
assignments, and (3) a small number of encouragement strategies. First of all, to improve sam-
ple efficiency, we treat the large observational data {X(0), T (0), Y (0)} as arising from a special
encouragement condition e = e0, and leverage it as auxiliary information to identify the CATE
through small-scale encouragement experiments. We then apply covariate shift balancing, a tech-
nique that simulates random encouragement assignments and mitigates endogeneity issues caused
by non-random encouragement. Based on this encouragement data, we propose novel identifiability
theory and develop a new IV estimator, named Encouragement-based Counterfactual Regression
(EnCounteR), to estimate causal effects. Notably, conventional two-stage IV regression is a special
case of our EnCounteR. Empirical evaluations demonstrate the superiority of EnCounteR.

2 RELATED WORK

Encouragement designs have been widely used to analyze causal effects, when RCTs are impractical
or compliance and treatment cannot be perfectly enforced (Sexton & Hebel, 1984; Permutt & Hebel,
1989; Angrist et al., 1996; Bang & Davis, 2007; Zhang et al., 2022). Angrist et al. (1996), Hirano
et al. (2000), Bang & Davis (2007), and Kang & Imbens (2016) employed random intent-to-treat as
instruments to encourage treatment for addressing non-compliance issues. Fletcher (2010), An (2015),
and Kang & Imbens (2016) utilized personalized encouragement assumptions to study the peer effect
in school settings. However, real applications of encouragement designs often pose challenges,
including non-randomized encouragements, limited experimental data, and a smaller number of
encouragements compared to continuous treatments, hindering precise causal effect estimation.

Instrumental variables induce exogenous perturbations to the treatment variable, allowing for the
estimation of causal effects in the presence of unmeasured confounders (Hirano et al., 2000; Sovey
& Green, 2011; An, 2015; Cheng et al., 2023; Sun et al., 2024; Zhao et al., 2024). Traditional IV
two-stage regression first identifies treatment variation caused by IVs and then uses it to estimate the
dependent variable (Wald, 1940; Angrist & Imbens, 1995; Angrist et al., 1996). Based on sieve theory
(Newey & Powell, 2003), researchers have developed numerous non-linear IV variants (Hartford
et al., 2017; Singh et al., 2019; Muandet et al., 2020; Bennett et al., 2019; Dikkala et al., 2020; Xu
et al., 2021; Wu et al., 2022a). However, in continuous treatments with limited IVs, the identification
condition of IVs, requiring that the support set of IVs be larger than that of treatments, can be violated.

Multiple Environments: Invariant learning across multiple environments (Arjovsky et al., 2019;
Duchi & Namkoong, 2021; Creager et al., 2021; Liu et al., 2021a;b; Wang et al., 2023) has been
studied. Arjovsky et al. (2019) identified causally invariant relationships in different environments,
assuming their existence for exploration. Liu et al. (2021a;b) generated environments and proposed
a maximal invariant predictor, integrating environment inference with invariant learning. However,
these works can only estimate the total effect, rather than the pure causal effect of treatments.
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3 PROBLEM SETUP AND SOLUTIONS

3.1 NOTATIONS

Following Liu et al. (2021a;b), we consider a dataset D = {D(ek)}ek∈E , which comprises multiple
datasets D(ek) = {x(ek)i , t

(ek)
i , y

(ek)
i | u(ek)i }nk

i=1 under different encouragement designs ek in E =

{e0, e1, · · · , eK}, and nk is sample size in encouragement ek. Within each dataset D(ek), the
variables x(ek)i ∈ X and u(ek)i ∈ U are respectively the observable and unmeasured confounders,
potentially confounding the analysis of the causal effect of the treatment variables t(ek)i ∈ T on the
outcome variables y(ek)i ∈ Y . As illustrated in Figure 1, observational data alone cannot identify the
Conditional Average Treatment Effects (CATE) due to unmeasured confounders. Therefore, we apply
K different encouragement policies to promote treatment adoption without directly manipulating the
treatment in certain candidate groups D(ek) = {x(ek)i , t

(ek)
i , y

(ek)
i | u(ek)i }nk

i=1:

t
(ek)
i = f

(ek)
Φ (x

(ek)
i , u

(ek)
i ), y

(ek)
i = gΨ(t

(ek)
i , x

(ek)
i ) + ε(u

(ek)
i ), (1)

where f (ek)Φ (·) denotes different treatment assignment mechanisms with unknown parameters Φ(ek)

for various encouragements ek ∈ E , gΨ(·) is the heterogeneous treatment effect with unknown
parameters Ψ, and ε(·) embeds the unmeasured confounding effects from u

(ek)
i , additive noise that is

commonly assumed in causality (Newey & Powell, 2003; Imbens et al., 2015; Hartford et al., 2017).

Traditional approaches assume that encouragements are randomly assigned and exogenous, i.e.,
U ⊥⊥ E , to ensure valid causal estimation. However, in real-world applications, practitioners often
assign encouragements non-randomly to pre-existing groups—such as classes or cities—introducing
potential endogeneity. For example, if encouragement is given in classes led by more experienced
teachers, it becomes difficult to discern whether improved student outcomes stem from the encour-
agement or the teacher’s quality. To mitigate this issue, we collect rich covariates X as proxies for U
and propose a covariate balancing module that addresses distribution shifts induced by non-random
encouragements. This allows us to relax the independence assumption to conditional independence.

To simplify notation, we denote random variables as uppercase notation, X = {X(ek)}e∈E , where
X(ek) = {x(ek)i }n(ek)

i=1 signifies the sample vector of observed pre-treatment variables for each encour-
agement design ek. Similarly, we define U (ek), T (ek), and Y (ek) as the corresponding vectors under
each ek. We use E[X(ek)], Var(X(ek)), and Cov(Y (ek), X(ek)) to denote the expectation, variance,

and covariance between Y (ek) and X(ek), respectively. We then define β(ek)
Y |X =

Cov(Y (ek),X(ek))
Var(X(ek))

.

3.2 ASSUMPTIONS AND THEOREMS

In many real applications, encouragement designs suffer from nonrandom encouragements, limited
samples, and sparse encouragement policies, resulting in unreliable causal estimations. To address
this, we leverage both observational and encouragement data D = {D(ek)}ek∈E and develop novel
theory and algorithms to identify causal effects on outcomes. To this end, we naturally start with a
linear setting to build intuition on the necessary assumptions and corresponding theorems, and then
put efforts into generalizing these insights to more complex nonlinear settings.

3.2.1 FORMALIZATION IN LINEAR SETTING

For illustration, consider a linear reformulation of Eq. 1:

y
(ek)
i = ψtt

(ek)
i + ψxx

(ek)
i + ψuu

(ek)
i . (2)

where the coefficient ψt is the constant causal effect of interest, and the treatment assignments
t
(ek)
i = f

(ek)
Φ (x

(ek)
i , u

(ek)
i ) can be arbitrary functions across encouragements ek. Under Assumption

1 and 2, we propose a novel identification theorem of causal effect ψt.

Assumption 1 (Linearity). The outcome variable Y is a linear function of variables T ,X , and U .

Assumption 2 (Independence). X and U are independent of the encouragements, i.e., {X,U} ⊥⊥ E .

3
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This assumption arises from the common linear case. In subsequent non-linear settings, we will relax
the full independence assumption and retainretain only U ⊥⊥ E | X for greater flexibility.
Theorem 1. Under Assumptions 1 & 2, given datasets {D(e0),D(e1), · · · , ,D(eK)} with different

encouragements {e0, e1, · · · , eK} ∈ E , the causal effect ψt is identified by ψt =
β
(e1)

Y |X−β(e0)

Y |X

β
(e1)

T |X−β(e0)

T |X
,

regardless of whether the treatment T is binary, multi-valued, or continuous.

The proofs are deferred to Appendix A. Traditional IV regression can be seen as a special case of our
framework, where X serves as the instrument for T on Y . For example, in observational IV data
D(e0), if X are instrumental variables that are independent of unmeasured confounders U and have
no direct effect on Y , then the causal effect is given by ψt = β

(e0)
Y |X/β

(e0)
T |X .

Corollary 1. With ψx = 0 and X ⊥⊥ U in linear model Eq. 2, given the observations D(e0), then ψt
is identifiable by ψt = Cov(Y,X)/Cov(T,X) = β

(e0)
Y |X/β

(e0)
T |X .

Theorem Contribution: The existing IV literature (Angrist & Imbens, 1995; Cameron & Trivedi,
2005; Wooldridge, 2010; Hernan & Robins, 2010; Hayashi, 2011; Wooldridge, 2015; Hansen, 2022)
has primarily focused on addressing unobserved confounding. In these frameworks, observed
covariates are often either ignored or implicitly absorbed into the treatment variable, resulting
in identification theorems that typically model {Z,X} → {T,X} → Y . Consequently, most
approaches implicitly assume that the number of valid instruments must be at least as large as the
number of treatment variables to ensure identification (Angrist & Krueger, 2001; Cameron & Trivedi,
2005; Dougherty, 2011; Wooldridge, 2010; 2015). To the best of our knowledge, we are the first
to propose a theoretical framework that accommodates binary or discrete instrumental variables in
continuous treatment cases, while actively leveraging heterogeneity in observed covariates X across
different IV strata to facilitate identification. This novel approach allows for the identification of
causal effects even when the number of instruments is smaller than the number of treatment variables.

3.2.2 GMM REFORMULATION

Theorem 1 provides a linear analytical solution (LAS) for encouragement datasets. When the number
of encouragements exceeds two, the system becomes over-identified, as it contains more equations
than unknowns. To resolve this, we reformulate the issue as a generalized method of moments
(GMM) problem. We use a residual ϵ(ek)i to identify the parameters {ψt, b = ψx + ψuβ

(ek)
U |X}, where

the residual is defined as: ϵ(ek)i = y
(ek)
i − ψtt(ek)i − bx(ek)i = ψu(u

(ek)
i − β(ek)

U |Xx
(ek)
i ). Here, ϵ(ek)i is

not simply u(ek)i but a transformed residual designed to remove its correlation with x(ek)i .

Theorem 2. Under Linearity Assumption 1, 1
ψu

Cov(ϵ(ek), X(ek)) = Cov
(
U (ek), X(ek)

)
−

Cov(U(ek),X(ek))
Var(X(ek))

Var
(
X(ek)

)
. Accordingly, Cov(ϵ(ek), X(ek)) = 0 for any ek ∈ E .

Define ϵ̃(ek) = ϵ(ek) − E[ϵ(ek)] = Ỹ (ek) − ψtT̃
(ek) − bX̃(ek), where {T̃ , X̃, Ỹ } are de-meaned

variables. Based on Theorem 2, i.e., E[ϵ̃(ek)X̃(ek)] = Cov(ϵ(ek), X(ek)) = 0, we can derive K + 1
moments for E = {e0, e1, · · · , eK}:

gX (ψt, b) =

 E[(Ỹ (e0) − ψtT̃ (e0) − bX̃(e0))X̃(e0)]
· · ·

E[(Ỹ (eK) − ψtT̃ (eK) − bX̃(eK))X̃(eK)]

. (3)

Since the function Y (ek) − Ŷ (ek)
ψt,b

is only related to U and X , where Ŷ (ek)
ψt,b

= ψ̂tT
(ek) + b̂X(ek),

under Independence Assumption 2, we can conclude that [Y (ek) − Ŷ (ek)
ψt,b

] ⊥⊥ E :

gE (ψt, b) =

[
E[Y (ei) − Ŷ (ei)

ψt,b
]− E[Y (ej) − Ŷ (ej)

ψt,b
]

Var[Y (ei) − Ŷ (ei)
ψt,b

]−Var[Y (ej) − Ŷ (ej)
ψt,b

]

]
i̸=j

, (4)

and the GMM estimator can be written as follows with non-negative definite matrices {WX ,WE}:
(ψ∗
t , b

∗) = argmin
ψ̂t,b̂

[g′X ·WX · gX + g′E ·WE · gE ] . (5)

The optimal W ∗ depends on the moments covariance matrix.
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3.2.3 GENERALIZATION TO NON-LINEAR SETTINGS

Recall the generalized non-linear settings in Eq. 1, i.e., y(ek)i = gΨ(t
(ek)
i , x

(ek)
i ) + ε(u

(ek)
i ), where

the outcome response function gΨ(·) and noise ε(·) remain constant across different encouragements.
Under the classical IV assumptions (Newey & Powell, 2003; Hartford et al., 2017), one can first
identify the transformed outcome:

hθ(T,X) = gΨ(T,X) + E[ε(U) | X]. (6)

Assumption 3 (Encouragement-Based Instrumental Variable). The adopted encouragement policies
e ∈ E serve as IVs, which only positively motivate the choice of treatments, without directly affecting
the outcome response, which satisfies the following three IV conditions:
(a) Relevance: IVs would directly affect T e, i.e., T e ⊥̸⊥ e;
(b) Exclusion: IVs do not directly affect Y e, i.e., Y ei(t, x) = Y ej (t, x) for ei ̸= ej and all t and x;
(c) Exogeneity: IVs are conditional independent of the error ε(U), i.e., e ⊥⊥ ε(U) | X .

Assumption 4 (Additive Noise). ε(u(ek)i ) embeds the confounding effect from u
(ek)
i as an additive

noise term with E[ε(U (ek))] = 0 (Hartford et al., 2017).

Under Assumptions 3 and 4, the encouragements could be seen as valid IVs, Then the CATE is
identified by CATE(T,X) = hθ(T,X)− hθ(0, X).
Theorem 3. When the relevance between T and e is strong, the unique solution hθ(T,X) is identified
by the inverse problem given E[Y | e, T,X] and conditional treatment distribution dF (T | e,X):

E[Y | e, T,X] =
∫
[hθ(T,X)] dF (T | e,X). (7)

Its proof can be found in (Newey & Powell, 2003).

However, discrete encouragements e may only introduce a minor exogenous disturbance to the
continuous treatment that is too small to accurately estimate CATE. To address this issue, we propose
a novel discrete encouragement algorithm by combining Theorems 1 and 3 to extend the moment
conditions in Eq. 5 to a non-linear setting:

gR (θ, ξ) =

 E[(Y (e0) − hθ(T (e0), X(e0)))rξ(X
(e0))]

· · ·
E[(Y (eK) − hθ(T (eK), X(eK)))rξ(X

(eK))]

. (8)

gE (θ) =

 E[Y (ei) − Ŷ (ei)
θ ] + E[Y (ej) − Ŷ (ej)

θ ]

E[Y (ei) − Ŷ (ei)
θ ]− E[Y (ej) − Ŷ (ej)

θ ]

Var[Y (ei) − Ŷ (ei)
θ ]−Var[Y (ej) − Ŷ (ej)

θ ]


i̸=j

. (9)

where Ŷθ = hθ(T,X) and rξ(·) is the representations of X , providing non-linear moments. Eq. 9
ensures the expectation of residual is zero and independent of E .

(θ∗, ξ∗) = argminθ̂ supξ̂

[
l(Y, Ŷθ) + g′RWRgR + g′EWEgE

]
, (10)

where l(·) represents the cross-entropy loss for binary outcomes or mean squared error for continuous
outcomes, while the moments constraints g′RWRgR and g′EWEgE act as penalties aiding in the
estimation of Ŷθ, where {WR,WE} are non-negative definite weighting matrices, with the optimal
W ∗ determined by the moments covariance matrix.
Corollary 2. Under Assumptions 3 & 4, the result of estimated θ∗ in Eq. 10 equals hθ(T,X) .

Our algorithm differs from DeepGMM (Bennett et al., 2019) and AGMM (Dikkala et al., 2020) that
require X to be exogenous. This condition is hard to satisfy in reality. Besides, these methods ignore
keeping the residual expectation to be zero while minimizing the regression error. To this end, under
nonrandom encouragements and continuous treatments, we develop novel theory and algorithms for
identifying and estimating CATE. When the covariates X(e) shift slightly across encouragements, we
reweight samples to estimate causal effects, with the Exogeneity Assumption 3(c).

4 METHODOLOGY

Combining observational and encouragement data in D = {D(ek)}ek∈E , we follow the theoreti-
cal insights from the previous sections to train neural networks hθ with moment constraints for

5
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Encouragement-based Counterfactual Regression (EnCounteR). Specifically, our model’s overall
architecture comprises the following components: (1) Covariate balancing under Exogeneity Assump-
tion 3(c); (2) full moment constraints with adversarial representation matrices; (3) counterfactual
regression with moment constraints. Next, we will introduce each module step by step.

4.1 COVARIATE SHIFT BALANCING

As depicted in Figure 1, we collect large observational data D(e0) from previous samples and
implement K encouragements {D(ek)}1≤k≤K in new samples to examine the causal effect of T on
Y . However, samples under different encouragements may exhibit slight covariate shifts, such as
minor differences between two different classes in the same school. Therefore, we introduce the
following Reweighting module to balance observed covariates across various environments:

Lω =
∑
j ̸=k(EωX(ej) − EωX(ek))2 + (CovωX(ej) − CovωX(ek))2,

EωX(ek) = ω(ek)
′
X(ek),CovωX(ek) = X̃(ek)

′
ωX̃(ek), (11)

ω(ek) = [(1 + 3σ(w(ek)))/2]/[
∑nj

i (1 + 3σ(w(ek)))/2],

where σ(·) is the sigmoid function, and w(ek) are trainable parameters with nk units. The term
1+3σ(w)

2 ∈ [ 12 , 2] serves to limit extreme values during the reweighting process.

4.2 MOMENT CONSTRAINT LEARNING

Following the weight ω from Eq. 11, we define Eω as weighted expectation and Varω as weighted
variance, and then construct moment constraints to learn hθ(T,X) and rξ(X).

(I) Encouragement-Independent Moments:

LE = g′E (θ) ·WE · gE (θ) , gE (θ) =

 Eω[Y (ei) − Ŷ (ei)
θ ] + Eω[Y (ej) − Ŷ (ej)

θ ]

Eω[Y (ei) − Ŷ (ei)
θ ]− Eω[Y (ej) − Ŷ (ej)

θ ]

Varω[Y
(ei) − Ŷ (ei)

θ ]−Varω[Y
(ej) − Ŷ (ej)

θ ]


i̸=j

, (12)

where Ŷθ = hθ(T,X) and residual ϵ = Y − Ŷθ. Eq. 12 guarantees that ϵ ⊥⊥ e.
(II) Covariate-Independent Moments:

LX = g′X (θ, ξ) ·WX · gX (θ, ξ) , gX (θ, ξ) =

 Eω[(Y (e0) − hθ(T (e0), X(e0)))X̃(e0)]
· · ·

Eω[(Y (eK) − hθ(T (eK), X(eK)))X̃(eK)]

. (13)

Equation 13 ensures that the residual (ϵ = Y − Ŷθ) and covariates are linearly independent.

(III) Adversarial Representation-Independent Moments:

LR = g′R (θ, ξ) ·WR · gR (θ, ξ) , gR (θ, ξ) =

 Eω[(Y (e0) − hθ(T (e0), X(e0)))rξ(X
(e0))]

· · ·
Eω[(Y (eK) − hθ(T (eK), X(eK)))rξ(X

(eK))]

. (14)

In complex non-linear settings, the underlying independence assumptions typically entail an infinite
set of moment conditions. Consequently, we employ Adversarial Representation Learning to learn
non-linear factors R = rξ(X) ∈ Rdr for adaptively constructing the top-dr moment conditions
in minimax criterion (see Eq. 16). In Eqs. (12-14), WE , WX and WR are non-negative definite
weighting matrices, and the optimal W ∗ depends on the moments covariance matrix.

4.3 COUNTERFACTUAL REGRESSION

Before proceeding with counterfactual regression hθ(·), we conduct a statistical test to check if the
mean and covariance of X are independent of encouragements; if not, we perform a preprocessing
step to learn ω for achieving covariate balance, as detailed in Section 4.1. We employ two-layer
neural networks with ELU activation, where each layer comprises dh hidden units for dr-dimensional
Representation R = rξ(X) and Counterfactual Regression Ŷθ = hθ(T,X):

LREG = Eω[l(Y, hθ(T, Y ))]. (15)
Following Theorems 3 and Corollary 2, the complete objective function is formulated as follows:

argminθ supξ L = LREG + α(LE + LX + LR), (16)
where α is a hyper-parameter. More implementation details can be found in Appendix B.
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Figure 2: Results (εCE) of LAS, GMM, and Our EnCounteR in Linear Simulations, with varying
sample sizes n0 ∈ {500, 1000, 2000, 5000} for observational dataset D(e0) and varying sample sizes
n1 = n0 × ρ with ρ = {10%, 20%, 30%, 50%, 100%} for encouragement experiments D(e1) across
various dimensions dx = {2, 5, 10} of X .

5 EMPIRACAL EXPERIMENTS

5.1 BASELINES AND METRICS

For comparison, we choose baselines from two groups. The first are instrument-based methods:
(1) KernelIV (Singh et al., 2019) and DualIV (Muandet et al., 2020) implement kernel ridge
regression derived from reproducing kernel Hibert spaces. (2) DeepGMM (Bennett et al., 2019)
and AGMM (Dikkala et al., 2020) construct structural functions and search moment conditions via
adversarial training. (3) DeepIV (Hartford et al., 2017), DFIV (Xu et al., 2021) and CBIV (Wu et al.,
2022a) run two-stage regression using deep neural networks. The other group is covariate-based
methods: (1) CFRNet (Shalit et al., 2017) and DRCFR (Hassanpour & Greiner, 2020) use mutual
information to learn balanced representations in continuous cases, while VCNet (Nie et al., 2021) is
tailored to continuous treatment, preserving the continuity of the estimated counterfactual curve. (2)
CEVAE (Louizos et al., 2017) and TEDVAE (Zhang et al., 2021) employ latent variable modeling to
concurrently estimate the latent space summarizing confounders and the causal effects. (3) KerIRM
and KerHRM aim to identify causally invariant relationships in different environments, with the
former using known encouragement labels and the latter not using them (Arjovsky et al., 2019; Liu
et al., 2021a;b). Additionally, we employ the VANILLA network regression as a baseline.

In this section, we use three key metrics for evaluation purposes: εCE = |ψ̂t−ψt| measures causal pa-
rameter estimation accuracy in linear simulations; εCFR = E(Ŷθ(do(t), X)−Y (do(t), X))2 assesses
the precision of counterfactual outcome predictions using mean square error, where do(t) denotes do
operations randomly sampled from a uniform distribution Unif[0, 1]; and the Precision in Estimation
of Heterogeneous Effect is measured by εPEHE =

√
E(CATE(do(t), X)− CATE(do(0), X))2.

5.2 EXPERIMENTS ON LINEAR SIMULATIONS

Datasets In linearity scenarios, we collect samples D(e0) with varying sizes n0 ∈
{500, 1000, 2000, 5000}. Then, we conduct a single encouragement experiment e1 on a smaller
dataset De1 , where we manipulate the experimental data size by setting n1 = n0 × ρ with dif-
ferent proportions ρ = {10%, 20%, 30%, 50%, 100%} to investigate the impact of sample size on
performance of our EnCounteR. Subsequently, we generate a combined dataset {D(ek)}k∈{0,1} =

{X(ek), U (ek), T (ek), T (ek)}k∈{0,1} with T (ek) = ϕ
(ek)′
x X(ek)+ϕ

(ek)′
u U (ek) and Y (ek) = ψtT

(ek)+

ψ′
xX

(ek) + ψ′
uU

(ek), where dx-dimensional X and du-dimensional U are generated from a Normal
Distribution N (0, 1) with common covariance of 0.3, and we set dx ∈ {2, 5, 10} and du = 2. The
corresponding coefficients {ϕ(ek)x , ϕ

(ek)
u , ψx, ψu} are independently sampled from a Uniform distri-

bution Unif(0, 1). In our experiments, ψt is the causal parameter of interest, and we set it to ψt = 0.5.
We leverage {D(ek)}k∈{0,1} as training data, reserving 10%-30% of D(e0) as validation data, and
generate 20,000 additional samples with random treatments do(t) ∼ Unif[0, 1] and its corresponding
outcome Y (do(t), X) as testing data. We conduct 10 replications for each experiments.
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Table 1: Results (mean±std) of ϵCFE and ϵPEHE on Simulation, IHDP and ACIC Datasets.

Simulation (MULT) IHDP ACIC

Methods ϵCFE ϵPEHE ϵCFE ϵPEHE ϵCFE ϵPEHE

KernelIV 17.44±2.147 0.611±0.153 3.808±1.279 0.581±0.046 38.82±2.457 0.602±0.023

DualIV 92.64±44.39 2.454±0.679 19.60±4.877 2.537±0.248 28.41±3.384 0.752±0.047

DeepGMM 6.340±2.177 0.584±0.105 1.967±0.514 0.478±0.029 10.09±1.798 0.551±0.070

AGMM 5.941±0.994 0.274±0.045 1.556±0.252 0.414±0.033 13.84±1.340 0.375±0.018

DeepIV 19.13±2.327 0.662±0.021 2.065±0.305 0.642±0.024 40.79±13.15 0.605±0.031

DFIV 11.73±0.894 0.563±0.025 2.928±0.500 0.476±0.025 24.78±3.108 1.247±0.097

CBIV 11.61±2.675 0.551±0.116 6.540±1.465 0.760±0.195 11.37±3.168 0.414±0.058

CFRNet 6.600±0.606 0.290±0.041 3.155±2.893 0.482±0.166 9.305±1.370 0.387±0.079

DRCFR 6.410±0.533 0.310±0.027 0.866±0.298 0.447±0.034 9.329±1.685 0.348±0.025

VCNet 7.490±0.289 0.309±0.026 0.611±0.128 0.229±0.031 8.298±2.338 0.263±0.072

CEVAE 9.899±0.592 0.525±0.053 4.585±0.539 0.722±0.038 21.88±2.148 0.867±0.061

TEDVAE 16.24±0.379 0.702±0.013 6.546±0.768 0.691±0.023 29.77±2.955 0.764±0.019

KerIRM 13.12±2.589 0.479±0.073 3.696±0.978 0.649±0.042 23.93±2.944 0.627±0.031

KerHRM 17.94±3.808 0.547±0.083 5.383±1.588 0.581±0.077 24.61±2.974 0.659±0.093

VANILLA 7.512±1.048 0.348±0.067 2.068±1.917 0.510±0.323 19.66±14.98 0.656±0.317

EnCounteR 4.816±0.609 0.210±0.026 0.582±0.130 0.188±0.021 5.751±0.606 0.186±0.038

Results In the linear simulation experiments (Figure 2), we employ three parametric estimators:
the linear analytical solution (LAS) from Theorem 1, the GMM reformulation in Eq. 5, and our
EnCounteR in Eq. 10. The LAS method relies on a substantial variation, β(e1)

T |X − β
(e0)
T |X , and is

limited to estimating ϕt using only a single X variable. As data dimensions increase in Figure
2, the influence of variations in single X on T diminishes, which would introduce larger errors
in εCE. Moreover, inaccuracies in estimating β

(ek)
Y |X and β

(ek)
T |X could exacerbate LAS errors by

magnifying them further. To address the over-identification issue, we use GMM and EnCounteR
reformulations to identify the causal parameter leveraging moments on residuals from full variables
X . As shown in Figure 2, regardless of varying dimensions of X , both GMM and EnCounteR
consistently exhibit robustness in estimating causal effects. Following Corollary 2, EnCounteR with
novel moments (Eq. 8) yields more accurate estimates of causal parameters with lower variance.
Furthermore, with varying encouragement proportions, ρ = {10%, 20%, 30%, 50%, 100%}, our
EnCounteR consistently performs well when n1 ≥ n0 × 30%, greatly reducing the experiments costs
and the computational expenses. Therefore, in subsequent studies, we set nk = n0 × 30% for k ≥ 1.

5.3 EXPERIMENTS ON COMPLEX DATASETS

Datasets In complex non-linear setting with heterogeneous treatment effects, we evaluate the
EnCounteR method on Simulations (MULTs) and two real datasets (IHDP and ACIC2016).
First, we synthesize Simulations (MULTs) with Covariate Shifts across various encourage-
ments ek ∈ {e0, e1, · · · , eK}: X(ek) ∼ N (µ

(ek)
x , σ

(ek)
x ) with fixed covariance 0.3, where

µ
(ek)
x ∼ Unif(−0.2, 0.2) and σ

(ek)
x ∼ Unif(0.7, 1.3), and U

(ek)
i ∼ N (0.3(X

(ek)
2i−1 + X

(ek)
2i ), 1),

where subscript i denotes the i-th variable in U . In the main experiments, guided by the findings
in Section 5.2, we set observational data at n0 = 2,000 and experimental data at nk = 600 for
1 ≤ k ≤ K, with parameters K = 1, dx = 5, and du = 3. The treatment and outcome generation
with non-linear multiplicative cross-terms for the MULT dataset is detailed in Appendix C. Moreover,
we generate four MULT datasets with more encouragements (K > 1) and different sample sizes nk,
keeping n0 = 2,000. Furthermore, to simulate complex scenarios, we add three non-linear terms into
outcome functions to evaluate our EnCounteR, as outlined in Table 2.

We also apply two widely-adopted benchmarks: IHDP (Hill, 2011; Shalit et al., 2017) of 747 samples
with 5 observed and 20 unmeasured confounders, ACIC 2016 (Dorie et al., 2019) of 4, 802 samples
with 12 observed and 46 unmeasured confounders. More details are provided in Appendix C.

Main Results We compare our method with baselines for estimating the counterfactual outcomes
and CATE on the above datasets, each with 10 replications. The mean and standard deviation of
εCFR and εPEHE are shown in Table 1, and the optimal and second-optimal performance are bold and
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Figure 3: Box Plot of ϵPEHE in Simulation (MULTs): Varying Encouragements and Volume K × nk.

underlined, respectively. First, from Table 1, we can find that IV-based methods are limited in fully
capturing exogenous variations in continuous treatments due to discrete encouragements, failing to
precisely estimate causal effects as the exogeneity is insufficient for confounding effects. Second,
covariate-based methods such as CFRNet, DRCFR, and VCNet also underperform because the
unconfoundedness assumption is violated; as seen from the results, CEVAE and TEDVAE are prone
to overfit; and methods including KerIRM and KerHRM fail to deal with unmeasured confounding
and observed variables’ entanglements. Third, the proposed EnCounteR outperforms all baselines
across various datasets, achieving state-of-the-art performance. Compared to the second-optimal
method, our EnCounteR on Simulation, IHDP, and ACIC datasets further reduce ϵCFE by 19%, 10%,
and 31%, and ϵPEHE by 23%, 18%, and 29%, respectively. These results highlight the scalability of
our method to complex data, demonstrating its potential for real applications.

The scalability of our EnCounteR across varying encouragements K and sub-data volume nk
We evaluate EnCounteR’s scalability with varying K and data volumes (K×nk = 600, n0 = 2, 000)
on MULT1, MULT2, and MULT3. As shown in Figure 3, larger K and smaller nk lead to higher
errors and variance. In contrast, on MULT1, MULT4, and MULT5 with fixed nk = 600, increasing K
reduces variance without affecting mean error. These results suggest that EnCounteR’s performance
benefits from larger nk in at least one encouragement group and higher K, implying that employing
a single encouragement with more samples can be more effective than using many small groups.

The supplementary experiments on additional non-linear scenarios, ablation study, and hyperparame-
ter optimization are provided in Appendix D.1, Appendix D.2, and Appendix D.3, respectively.

6 CONCLUSION

Despite the growing body of literature on encouragement designs (EDs) for estimating causal
effects, real-world applications often face challenges such as limited experimental data, non-random
encouragement assignments, and a small number of encouragement strategies. To address these
challenges, we introduce a generalized instrumental variables estimator called Encouragement-based
Counterfactual Regression (EnCounteR), which provides identifiability guarantees and efficient
methods for estimating CATE under positive encouragement experiments. EnCounteR enables
accurate and low-variance estimation of treatment effects in both discrete and continuous treatment
settings. Notably, it supports causal identification even when the number of instrumental variables is
smaller than the number of treatments—a scenario traditionally considered problematic. By extending
the boundaries of classical IV approaches, EnCounteR offers a robust framework for causal inference
in complex and data-limited environments.

REPRODUCIBILITY STATEMENT

Theoretical claims and required assumptions are clarified in Section 3.2, with proofs in Appendix A.
More details of algorithm implementation and datasets are included in Appendices B-C.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Heejung Bang and Clarence E Davis. On estimating treatment effects under non-compliance in
randomized clinical trials: are intent-to-treat or instrumental variables analyses perfect solutions?
Statistics in medicine, 26(5):954–964, 2007.

Andrew Bennett, Nathan Kallus, and Tobias Schnabel. Deep generalized method of moments for
instrumental variable analysis. Advances in neural information processing systems, 32, 2019.
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A THEOREMS AND PROOFS

A.1 THE PROOFS OF THEOREMS 1

Theorem 1. Under Assumptions 1 & 2, given datasets {D(e0),D(e1), · · · , ,D(eK)} with different

encouragements {e0, e1, · · · , eK} ∈ E , the causal effect ψt is identified by ψt =
β
(e1)

Y |X−β(e0)

Y |X

β
(e1)

T |X−β(e0)

T |X
,

regardless of whether the treatment T is binary, multi-valued, or continuous.

Proof. Without loss of generality, we consider two datasets, D(e0) and D(e1), for the proof.

First, we define β(ek)
Y |X , β(ek)

T |X , and β(ek)
U |X for any ek:

β
(ek)
Y |X =

Cov
(
Y (ek), X(ek)

)
Var

(
X(ek)

) , β
(ek)
T |X =

Cov
(
T (ek), X(ek)

)
Var

(
X(ek)

) , β
(ek)
U |X =

Cov
(
U (ek), X(ek)

)
Var

(
X(ek)

) (17)

Then, we can reformulate β(ek)
Y |X as follows:

β
(ek)
Y |X =

Cov
(
ψtT

(ek) + ψxX
(ek) + ψuU

(ek), X(ek)
)

Var
(
X(ek)

) = ψtβ
(ek)
T |X + ψx + ψuβ

(ek)
U |X . (18)

Given {X,U} ⊥⊥ E , the covariance between U (ek) and X(ek), and hence β(ek)
U |X remains constant

across encouragements. Then, we define b = ψx + ψuβ
(ek)
U |X . For encouragements e0 and e1:

β
(e0)
Y |X = ψtβ

(e0)
T |X + b, β

(e1)
Y |X = ψtβ

(e1)
T |X + b, (19)

The causal effect is identified by ψt =
β
(e1)

Y |X−β(e0)

Y |X

β
(e1)

T |X−β(e0)

T |X
.

A.2 THE PROOFS OF COROLLARY 2

Corollary 2. Under Assumptions 3 & 4, the result of the estimated θ∗ in Eq. 10 equals hθ(T,X).

Proof. Under Assumptions 3 and 4, Theorem 3 guarantees the existence of a unique solution
hθ(T,X), which accounts for the correlation between the additional noise and observed covariates
E[ε(U) | X]. Furthermore, moment condition 9 guarantees that the residual (ϵ = Y − Ŷθ) remains
independent of encouragements (e). These conditions collectively enable us to minimize the loss
function, l(Y, Ŷθ), to approximate hθ(T,X) accurately.

B IMPLEMENTATION DETAILS

In this paper, we use two-layer neural networks with ELU activation, with each layer containing dh

hidden units, for both Counterfactual Regression Ŷθ = hθ(T,X) and dr-dimensional Representation
R = rξ(X). We adopt full-batch training for the proposed EnCounteR algorithm, optimize it with
the objective function 16, and set the maximum number of training epochs to 1,000. EnCounteR
contains three hyperparameters, i.e., dr ∈ {1, 5, 8, 10, 12, 20}, dh ∈ {16, 32, 64, 128, 256}, and
α ∈ {1, 2, 5, 12, 15, 20}. We utilize the minimum regression error on the validation dataset to
optimize hyper-parameters. The pseudocode is placed in Algorithm 1.
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Algorithm 1 EnCounteR: Encouragement-Based Counterfactual Regression

Input: Encouragement designs D = {D(ek)}ek∈{e0,e1,··· ,eK}, each with D(ek) =

{x(ek)i , t
(ek)
i , y

(ek)
i }nk

i=1; Hyper-parameters {dh, dr, α};Trainable Weighting Vectors ω(ek) =
1+3σ(w(ek))∑nk

i (1+3σ(w(ek)))
with default w(ek) = 1; Counterfactual Regression Network hθ(·) with Train-

able Parameters θ; Adversarial Representation Network rξ(·) with Trainable Parameters ξ;
Reweighting-Training-Epoch I1 = 10; Adversarial-Training-Epoch I2 = 100; Full-Training-
Epoch I3 = 1,000.
Output: Counterfactual Outcome Function Ŷθ(t,X) = hθ(do(t), X), and Conditional Average
Treatment Effect CATE(t,X) = Ŷθ(t,X)− Ŷθ(0, X).
Loss function: Lω in Eq. 11, LR in Eq. 14, and L = LREG + α(LE + LX + LR) in Eq. 16.
Reweighting for Covariate Balance:
for itr = 1 to I1 do
Eω[X(ek)] =

∑nk

i ω
(ek)
i x

(ek)
i ,

Covω[X(ek)] =
[∑nk

i ω
(ek)
i (x

(ek)
i,a − Eω[X(ek)

a ])(x
(ek)
i,b − Eω[X(ek)

b ])
]
1≤a,b≤dx

, where a de-

notes a-th variable in X ,
Lω =

∑
j ̸=k(Eω[X(ej)]− Eω[X(ek)])2 + (Covω[X(ej)]− Covω[X(ek)])2,

update ω ← Adam{Lω} using Adaptive Moment Estimation.
end for
Counterfactual Regression:
for itr = 1 to I3 do

if itr ≤ I2 then
{X(ek), T (ek), Y (ek)}0≤k≤K → LR = g′R (θ, ξ) ·WR · gR (θ, ξ),
update ξ ← Adam{−LR} in representation network hθ(·) using Adaptive Moment Estima-
tion.

end if
{X(ek), T (ek), Y (ek)}0≤k≤K → L = LREG + α(LE + LX + LR),
update θ ← Adam{L} in counterfactual regression hθ(·) using Adaptive Moment Estimation

end for

Hardware used: Ubuntu 16.04.3 LTS operating system with 2 * Intel Xeon E5-2660 v3 @ 2.60GHz
CPU (40 CPU cores, 10 cores per physical CPU, 2 threads per core), 256 GB of RAM, and 4 *
GeForce GTX TITAN X GPU with 12GB of VRAM.

Software used: Python 3.7.15 with TensorFlow 1.15.0, Pytorch 1.7.1, and NumPy 1.18.0.

C DESCRIPTION OF USED COMPLEX DATASETS

In this section, we present an overview of the complex datasets used in our study. Within the main text,
we evaluate the performance of the EnCounteR method on five simulations (MULTs) and two real-
world datasets (IHDP and ACIC2016), with results shown in Tables 1 & 3 and Figure 4. To further
evaluate the robustness of the EnCounteR algorithm in more complex scenarios, we introduce three
additional non-linear terms into the outcome function, with these extended experiments presented in
Table 2. Next, we provide a detailed description of these datasets.

Simulations Firstly, we introduce the generation process of Simulations (MULTs) with Covariate
Shifts across different encouragements ek ∈ {e0, e1, · · · , eK}. For each encouragements ek, we
generate the observed covariates by X(ek) ∼ N (µ

(ek)
x ,Σ

(ek)
x ), µ

(ek)
x ∼ Unif(−0.2, 0.2) with:

Σx =


σ
(ek)
x 0.3 · · · 0.3

0.3 σ
(ek)
x · · · 0.3

...
...

. . .
...

0.3 0.3 · · · σ
(ek)
x

 ,

σ(ek)
x ∼ Unif(0.7, 1.3).
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where dx denotes the dimension of X , and X1···dx = {X1, X2, · · · , Xdx}. Then, the unmeasured
confounders would beU (ek)

i ∼ N (0.3(X
(ek)
2i−1+X

(ek)
2i ), 1), where subscript i denotes the i-th variable

in U and i ∈ {1, 2, · · · , du}. In the main experiments, guided by the findings in Section 5.2, we set
observational data at n0 = 2,000 and experimental data at nk = 600 for 1 ≤ k ≤ K, with parameters
K = 1, dx = 5, and du = 3. Define C ∈ Rdx+du as the concatenation of all confounders X and U ,
we generate the treatments and outcomes with non-linear multiplicative cross-terms as follows:

T (ek) =

∣∣∣∣∣
dx+du−1∑
i=1

[
ϕ
(ek)
i C

(ek)
i C

(ek)
i+1

]
+

dx+du∑
i=1

[
ϕ
(ek)
i C

(ek)
i

]∣∣∣∣∣ ,
Y

(ek)
MULT = T (ek) × (0.5 +X

(ek)
0 ) +

dx−1∑
i=1

[
ψiX

(ek)
i X

(ek)
i+1

]
+

du−1∑
i=1

[
ψiU

(ek)
i U

(ek)
i+1

]
+

dx+du∑
i=1

[
ψiC

(ek)
i

]
,

where, the coefficients {ϕ(ek)1···(dx+du)
, ψ1···(dx+du)} are independently sampled from a Uniform distri-

bution Unif(0, 1) In the above equations, we name this simulation with non-linear multiplicative
cross-terms as MULT.

MULTs with Varying Encouragements K and Data Volume K × nk for 1 ≤ k ≤ K We name
the above original dataset as MULT1 with K = 1, nk = 600 and total volume K × nk = 600 for
k > 0. To further explore the effects of increased encouragements and varying data volumes, we
generate four additional datasets with more encouragements (K > 1), keeping the observational data
size at n0 = 2,000 and varying the sample sizes nk for 1 ≤ k ≤ K. Keeping a fixed total volume of
encouragement data at K × nk = 600 for k > 0, we construct two additional datasets: MULT2 with
K = 2 and nk = 300 for k > 0, and MULT3 with K = 4 and nk = 150 for k > 0. This allows us
to analyze the effects of varying the number of encouragements while keeping the total volume of
encouragement data constant. With fixed size nk = 600, we create two additional datasets: MULT4
with K = 2 and a total encouragement data volume of K × nk = 1,200 for k > 0, and MULT5 with
K = 4 and a total encouragement data volume of K × nk = 2,400 for k > 0. This enables us to
conduct a comprehensive analysis of the influence of varying numbers of encouragements and total
encouragement data volumes on our study’s outcomes.

Simulations with Additional Non-linear Terms: POLY, ABS and SIN To simulate real-world
conditions, we add three additional non-linear terms in the outcome function for assessing the
EnCounteR algorithm:

Y
(ek)

POLY = Y
(ek)

MULT + T (ek) ×
(
X

(ek)
1

)2

+

dx+du∑
i=1

[
ψi

(
C

(ek)
i

)2
]
/dx,

Y
(ek)

ABS = Y
(ek)

MULT + T (ek) ×
∣∣∣X(ek)

1

∣∣∣+ dx+du∑
i=1

[
ψi

∣∣∣C(ek)
i

∣∣∣] /dx,

Y
(ek)

SIN = Y
(ek)

MULT + T (ek) × sin
(
X

(ek)
1

)
+

dx+du∑
i=1

[
ψisin

(
C

(ek)
i

)]
/dx.

We name these three simulations with additional non-linear terms as POLY, ABS and SIN, respectively.
For each data, we combine {Dek}ek∈E as training data, reserving 10%-30% of De0 as validation
data, and generate 20,000 additional samples with random treatments do(t) ∼ Unif[0, 1] and the
outcomes Y (do(t), X) as testing data.

Real-World Data Although massive open online courses (MOOCs) like Coursera, edX, and Udac-
ity bring a deluge of data about student behavior in classrooms (Breslow et al., 2013; Kizilcec et al.,
2014; Reich, 2015), due to concerns over information privacy, we lack access to complete data on stu-
dent behavior in MOOCs. Furthermore, based on the publicly available data, specifically https://
doi.org/10.7910/DVN/26147 and http://moocdata.cn/data/user-activity,
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Table 2: Results (mean±std) on Complex Simulation with Additional POLY, ABS and SIN Terms.

POLY ABS SIN

Methods ϵCFE ϵPEHE ϵCFE ϵPEHE ϵCFE ϵPEHE

KernelIV 25.31±1.906 0.585±0.040 21.44±2.115 0.593±0.106 19.67±2.625 0.644±0.189

AGMM 6.502±0.954 0.294±0.022 6.133±0.896 0.256±0.024 6.674±1.018 0.281±0.030

CBIV 11.64±4.388 0.506±0.102 10.01±2.869 0.499±0.123 10.03±2.921 0.538±0.142

VCNet 7.628±0.605 0.301±0.035 7.083±0.532 0.283±0.044 8.384±0.317 0.341±0.023

CEVAE 11.93±1.212 0.559±0.032 10.69±0.770 0.526±0.050 10.74±0.417 0.556±0.035

KerIRM 19.52±2.365 0.506±0.057 16.35±3.090 0.488±0.061 15.24±2.957 0.495±0.080

VANILLA 8.362±0.972 0.352±0.080 8.425±0.929 0.343±0.081 7.708±1.171 0.348±0.036

EnCounteR 5.294±0.434 0.214±0.033 5.029±0.446 0.226±0.026 4.840±0.616 0.222±0.033

we cannot construct complete encouragement data for evaluating our algorithm. Therefore, similar
to previous work (Shalit et al., 2017; Yao et al., 2021), we validate our algorithm on the IHDP and
ACIC2016 datasets.

IHDP The Infant Health and Development Program (IHDP1) (Hill, 2011) studies the effect of
specialist home visits on the future cognitive test scores of premature infants, which comprises
747 units, with 139 in the treated group and 608 in the control group. There are 25 pre-treatment
variables (C ∈ R25) related to the children and their mothers. In the IHDP study, to create multi-
encouragement data, the large control group is used as D(e0), and the small treated group as D(e1).
We select dx = 5 continuous variables from the IHDP as observed covariates and use the expected
potential outcomesm0 for control outcomes andm1 for treated outcomes as unmeasured confounding
effects from the remaining du = 20 unmeasured variables. The encouraged treatments are from
T (ek) = |

∑dx−1
i=1 [ϕ

(ek)
i X

(ek)
i X

(ek)
i+1 ] +

∑dx
i=1[ϕ

(ek)
i X

(ek)
i ] +m

(ek)
0 |, and outcomes are determined

by Y (ek)
IHDP = T (ek) × (0.5 +X

(ek)
0 ) +

∑dx−1
i=1 [ψiX

(ek)
i X

(ek)
i+1 ] +

∑dx
i=1[ψiX

(ek)
i ] +m

(ek)
1 . From the

control group D(e0), We split 75 samples for validation data and another 75 for pre-testing data,
leaving n0 = 458 samples as encouragement data with e0, while maintaining n1 = 139 in the treated
group. The pre-testing data is replicated 100 times to create 7,500 samples with random treatments
do(t) ∼ Unif[0, 1], and for these samples, we regenerate the corresponding outcomes Y (do(t), X)
to be used as testing.

ACIC2016 The 2016 Atlantic Causal Inference Challenge (ACIC 20162) (Dorie et al., 2019) holds
the causal inference data analysis challenge, which creates 4,802 units, with 858 in the treated group
and 3,944 in the control group. The two expected potential outcomes are m0 for control outcomes
and m1 for treated outcomes. The covariates are real-world data from the full Infant Health and
Development Program dataset, which consists of 58 variables (C ∈ R58). In the above ACIC study,
we use the large control group as D(e0), and the small treated group as D(e1). We select dx = 12
continuous variables from the ACIC as observed covariates and use the expected potential outcomes
m0 and m1 as unmeasured confounding effects from the remaining du = 46 unmeasured variables.
The encouraged treatments are from T (ek) = |

∑dx−1
i=1 [ϕ

(ek)
i X

(ek)
i X

(ek)
i+1 ] +

∑dx
i=1[ϕ

(ek)
i X

(ek)
i ] +

4m
(ek)
0 |, and outcomes are determined by Y (ek)

IHDP = T (ek)× (0.5+X
(ek)
0 )+

∑dx−1
i=1 [ψiX

(ek)
i X

(ek)
i+1 ]+∑dx

i=1[ψiX
(ek)
i ] + 4m

(ek)
1 . From the control group D(e0), We split 480 samples for validation data

and 480 for pre-testing data, leaving n0 = 2,984 samples as encouragement data, while maintaining
n1 = 858 in the treated group. We then replicate the pre-testing data 20 times, creating 9,600 samples
with random treatments do(t) ∼ Unif[0, 1], and regenerate outcomes Y (do(t), X) for testing.

1IHDP datasets are available at: https://www.fredjo.com/.
2ACIC 2016 datasets are available at: https://github.com/vdorie/aciccomp/tree/master/

2016.
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Table 3: Ablation Study of EnCounteR Framework on Simulation, IHDP, and ACIC Datasets.
EnCounteR is composed by four core modules: (a) ω: Sample Reweighting Module in Eq. 11; (b)
LE : Encouragement-Independent Moments in Eq. 12; (c) LX : Covariate-Independent Moments in
Eq. 13; (d) LR: Adversarial Representation-Independent Moments in Eq. 14.

Modules Simulation (MULT) IHDP ACIC
EnCounteR +ω +LE +LX +LR ϵCFE ϵPEHE ϵCFE ϵPEHE ϵCFE ϵPEHE

LREG 7.512±1.048 0.348±0.067 2.068±1.917 0.510±0.323 19.66±14.98 0.656±0.317

LREG ✓ 7.311±1.020 0.344±0.056 1.565±0.984 0.452±0.208 14.78±6.163 0.587±0.197

LREG ✓ ✓ 7.841±1.487 0.343±0.082 1.306±0.521 0.378±0.124 12.31±5.429 0.457±0.126

LREG ✓ ✓ ✓ 5.191±0.533 0.224±0.036 0.665±0.213 0.215±0.066 12.58±5.421 0.476±0.121

LREG ✓ ✓ ✓ 5.733±0.816 0.259±0.036 0.710±0.156 0.229±0.024 5.689±0.669 0.204±0.022

LREG ✓ ✓ ✓ 4.847±0.607 0.220±0.037 0.641±0.203 0.199±0.025 6.067±0.927 0.218±0.036

LREG ✓ ✓ ✓ ✓ 4.816±0.609 0.210±0.026 0.582±0.130 0.188±0.021 5.751±0.606 0.186±0.038

dh

PEHE on Different Hyper-parameters {dh, 𝜶} 

𝜖𝐏𝐄𝐇𝐄

PEHE on Different Hyper-parameter dr

Hyper-parameter 𝜶 Hyper-parameter dr

Figure 4: Hyper-Parameter Optimization: The minimum regression error on the validation data
implies the optimal hyper-parameters. The optimal hyper-parameters are dh = 32, dr = 5, α = 10.

D SUPPLEMENTARY EXPERIMENTS

D.1 THE SCALABILITY OF OUR ENCOUNTER ACROSS VARYING NON-LINEAR

We evaluate EnCounteR on outcome functions incorporating POLY, ABS, and SIN non-linear terms,
compare it against advanced IV-based methods (KernelIV, AGMM, CBIV) and covariate-based
methods (VCNet, CEVAE, KerIRM). As shown in Table 2, while most traditional methods under-
perform, including some worse than direct regression (VANILLA), only AGMM and VCNet show
improvements. Compared to the optimal-second AGMM algorithm, our EnCounteR further reduces
the ϵCFE by 18%, 18%, and 27% and the ϵPEHE by 27%, 11%, and 21% on the Simulation, IHDP, and
ACIC datasets, respectively. Our EnCounteR exhibits robust and outstanding performance.

D.2 ABLATION STUDIES

EnCounteR is composed by four core modules: (a) ω: Sample Reweighting Module in Eq. 11; (b)
LE : Encouragement-Independent Moments in Eq. 12; (c) LX : Covariate-Independent Moments
in Eq. 13; (d) LR: Adversarial Representation-Independent Moments in Eq. 14. Table 3 reports
the effects of each module of the EnCounteR by conducting ablation experiments on Simulation,
IHDP and ACIC datasets. From Tables 1 and Table 3, we can draw the following conclusions: (I)
Each component in our EnCounteR is essential, since missing any one of them would confuse the
encouragement learning and damage the performance of potential outcome prediction and conditional
average treatment estimation on three datasets. (II) When all components are fully utilized in
EnCounteR, our method achieves optimal performance in causal effect estimation. The results
demonstrate that each component of EnCounteR is crucial for estimating causa effects.

D.3 THE OPTIMIZATION OF HYPER-PARAMETERS

In this paper, we adopt the minimum counterfactual regression error εCFR on the validation data
to determine the optimal hyper-parameters {dh, dr, α}. Our approach follows this strategy: firstly,
we search for dh ∈ {16, 32, 64, 128, 256} and α ∈ {1, 2, 5, 12, 15, 20}, while fixing dr = dx,
corresponding to the minimum validation error εCFR. Then, fixing the optimal dh and α, we search
for dr ∈ {1, 5, 8, 10, 12, 20} corresponding to the minimum validation error εCFR again. Taking the
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Table 4: Optimal Parameters on MULT, POLY, ABS, SIN, IHDP and ACIC Datasets.

Params MULT POLY ABS SIN IHDP ACIC

α 10 8 10 8 5 8
dh 32 128 128 32 128 32
dr 5 2 5 12 15 12

ϵPEHE 0.210±0.026 0.214±0.033 0.226±0.026 0.222±0.033 0.188±0.021 0.186±0.038

main experiment MULT as an example, as depicted in Figure 4, we determine the hyper-parameters
that correspond to the smallest εCFR on the validation, which also indicates the smallest εPEHE on
MULT. The optimal hyper-parameters are dh = 32, dr = 5, α = 10 for MULT. Table 4 shows the
optimal hyper-parameters for each dataset.

E LARGE LANGUAGE MODEL USAGE STATEMENT

We used Large Language Models (LLMs) to polish up our writing. The models provided suggestions
for grammatical corrections, sentence adjustments, and more precise vocabulary choices. We carefully
reviewed and integrated these suggestions to improve the readability of the manuscript.
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