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ABSTRACT

Autoencoders are widely used in outlier detection due to their superiority in han-
dling high-dimensional and nonlinear datasets. The reconstruction of any dataset
by the autoencoder can be considered as a complex regression process. In re-
gression analysis, outliers can usually be divided into high leverage points and
influential points. Although the autoencoder has shown good results for the i-
dentification of influential points, there are still some problems when detect high
leverage points. Through theoretical derivation, we found that most outliers are
detected in the direction corresponding to the worst-recovered principal compo-
nent, but in the direction of the well-recovered principal components, the anoma-
lies are often ignored. We propose a new loss function which solve the above
deficiencies in outlier detection. The core idea of our scheme is that in order to
better detect high leverage points, we should suppress the complete reconstruction
of the dataset to convert high leverage points into influential points, and it is also
necessary to ensure that the differences between the eigenvalues of the covariance
matrix of the original dataset and their corresponding reconstructed results in the
direction of each principal component are equal. Besides, we explain the rational-
ity of our scheme through rigorous theoretical derivation. Finally, our experiments
on multiple datasets confirm that our scheme significantly improves the accuracy
of outlier detection.

1 INTRODUCTION

Outlier detection refers to the process of identifying data points that deviate significantly from nor-
mal data point clusters. Up to now, outlier detection has been wildly applied in diverse fields of
science and technology, such as credit card transactions (Sivakumar & Balasubramanian, 2016; Na-
mi & Shajari, 2018), intrusion detection (Aoudi et al., 2018), industrial control system inspection
(Lin et al., 2018; Das et al., 2020), text detection (Mahapatra et al., 2012; Gorokhov et al., 2017) and
outlier detection in biological data (Shetta & Niranjan, 2020; Tibshirani & Hastie, 2007; MacDon-
ald & Ghosh, 2006). For multidimensional data points, there are various outliers. In the process of
regression analysis, all outliers can be divided into two categories. One type of outliers is called in-
fluential points (IP), they have a huge influence on the fitting result of the model. Besides, the other
type of outliers is called high leverage points (HLP), they deviate from the center of the dataset but
do not necessarily have an effect on the model fit (Imon & Hadi, 2013).

According to whether the label information of the training dataset is required, outlier detection
schemes can be divided into two types: supervised and unsupervised (Lu & Traore, 2005). For
supervised outlier detection, the intrinsic information of the dataset is learned by training on the
labeled dataset. However, in the unsupervised mode, there is no need to label the dataset in advance,
and it is only necessary to assume that there are far more normal data points in the dataset than
anomalies (Chandola et al., 2009). Since it’s difficult to obtain well-labeled datasets in practical
applications or it will have huge consumption, nowadays, more and more studies have the prefer-
ence to use unsupervised method. Up to now, there have been many unsupervised outlier detection
schemes. PCA has been successfully used to detect outliers whose correlations between dimensions
differ from normal points (Shyu et al., 2003). But it works worse when the correlations between
different dimensions are nonlinear. KNN is another unsupervised outlier detection method, which
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is based on the distance of each data point to its nearest neighbor (Ramaswamy et al., 2000). LOF
is proposed to find outliers based on density (Breunig et al., 2000). However, these two methods
are less effective when the dimensionality of the dataset is high. Currently, in order to address the
constraints of dimensionality and linearity, unsupervised outlier detection based on neural networks
has attracted a great deal of attention.

Autoencoders are a type of neural network that has been successfully used for outlier detection in
most researches (Lyudchik, 2016). The autoencoder first encodes the training dataset which are
considered to be all normal into a low-dimensional space and then decodes them into the original
space (Kim et al., 2020). The difference between a reconstructed value and its corresponding input
value is the reconstruction error, and a low-dimensional representation of the training dataset can
be learned by minimizing the reconstruction error. Finally, the trained autoencoder can be used
to reconstruct the test dataset and measure the outlier degree of each data point according to its
reconstruction error.

In the training process, to minimize the reconstruction error of the training dataset, most studies
choose Mean Square Error (MSE) as the training loss function and force the autoencoder to com-
pletely reconstruct the training dataset (Antwarg et al., 2021). If a sample point cannot be recon-
structed well, it will generate a large reconstruction error and finally be identified as an outlier.
Besides, in the process of statistical regression analysis, IP are regarded as outliers because they
have a great impact on the model fit. Since the reconstruction of any dataset by the autoencoder can
be regarded as a process of regression, IP can be easily detected when using autoencoders for outlier
detection. However, there are many uncertainties about the detection effect of HLP. To solve this
problem, in our paper, we propose a new training loss function which properly suppress complete
reconstruction of the autoencoder to convert HLP into IP to improve the detection effect of HLP.

In Section 2, we introduce the existing related research results of outlier detection with autoencoders
and show the contributions in our paper. In Section 3, we highlight the importance of suppressing
complete reconstruction of the autoencoder for outlier detection and conduct a theoretical analysis.
Section 4 verifies the effectiveness of our scheme through presenting experimental results on both
synthetic and real datasets. Section 5 summarizes the work of the paper and gives directions worthy
of further study.

2 RELATED WORKS AND CONTRIBUTION

The main idea of outlier detection schemes based on reconstruction error is that normal data points
can be well reconstructed, while outliers will generate large reconstruction errors (Bergman &
Hoshen, 2020). In practical application, distance-based outlier detection methods (Ramaswamy
et al., 2000; Kamoi & Kobayashi, 2020) and density-based approaches (Breunig et al., 2000; Liu
et al., 2008) have problems of poor detection effect and large time cost when the dimension of the
dataset is too high. Nowadays, many outlier detection schemes based on reconstruction error re-
ly on neural network for reconstruction due to its high feature learning ability and the commonly
used scheme is based on autoencoders (Lyudchik, 2016). Recently, there are also some studies use
another neural network model GAN to detect outliers (Schlegl et al., 2017; Zenati et al., 2018).

Due to the strong representation learning and feature extraction capabilities, autoencoders are often
used for outlier detection and have achieved fruitful research results. However, some studies have
shown that the traditional autoencoder based outlier detection scheme still has defects, and there
are some improvement can be made to significantly improve the outlier detection effect (Zhou &
Paffenroth, 2017; Ning et al., 2022). Existing improvement schemes mainly focus on the structure
and loss function of the autoencoder. In Lai et al. (2020), a robust subspace recovery layer is added
to the autoencoder in order to make the results of outlier detection more robust to anomalies. Zhou &
Paffenroth (2017) combines autoencoders with RPCA and adds an outlier regularizing penalty based
on l1 or l2,1 norms to avoid the influence of noise on outlier detection results. Unfortunately, most
existing work pursues complete reconstruction of the training dataset to improve anomaly detection
effect. However, we reveal that complete reconstruction is not beneficial to identify HLP in this
paper.

In our work, we improve outlier detection ability by properly suppressing complete reconstruction
of the autoencoder to convert HLP into IP by improving the training loss function. Bao et al. (2020)
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and Oftadeh et al. (2020) reveal that autoencoders will eventually focus on recovering the principal
components of a dataset, which indicates that the occurrence of complete reconstruction can be
suppressed by suppressing the recovery of the principal components.

The main contributions of our work are as follows:

• Since the autoencoder can identify IP well but ignore the detection of HLP, we propose a
new training loss function which properly suppress complete reconstruction of the training
dataset and improve the detection effect of HLP while maintain the detection effect of IP.
Therefore, the outliers detected by our scheme cover both HLP and IP. Besides, we also
analyze how to determine the degree of reconstruction of the training dataset.

• Through rigorous theoretical analysis, we explain the detrimental effect of complete recon-
struction on HLP detection, and show that properly suppressing complte reconstruction is
beneficial for HLP detection.

• We test our outlier detection scheme on both synthetic and real datasets and confirm that
our scheme improves the overall detection effect of outliers.

3 METHOD

In this section, we will start describing our new method for detecting outliers based on the autoen-
coder and its theoretical support. Our innovative idea is to properly suppress complete reconstruction
of the autoencoder to convert HLP into IP to improve the detection effect of HLP. Firstly, we will
introduce the restrictions of HLP detection with MSE-trained autoencoders. Then, we theoretically
demonstrate the importance of suppressing complete reconstruction of the autoencoder. Finally, we
propose a new training loss function and analyze how to properly suppress reconstruction.

3.1 DEFICIENCIES OF OUTLIER DETECTION WITH MSE-TRAINED AUTOENCODERS

As is known, an autoencoder is a neural network formed of an encoder f and a decoder g. If
we denote the input data point and the output data point as variable X and X̂ respectively, where
X =

(
X1, X2, . . . , Xm

)>
and X̂ =

(
X̂1, X̂2, . . . , X̂m

)>
, and the number of sample points is n,

then we have X̂ = g ◦ f(X). Besides, X represents the whole input dataset and X ∈ X . xi
represents the ith sample point of the input dataset and its corresponding reconstruction result is x̂i.
Ideally, we would like to train the autoencoder with the training dataset to minimize the training loss
function, the generally used training loss function is MSE which can be represented as

LMSE(ω, b) =
1

n

n∑
i=1

(xi − x̂i)>(xi − x̂i),

where ω represents the weight between the input layer and the output layer and b is the bias value.

The purpose of training process is to guarantee that the intrinsic information of the training dataset
can be learned and most of the sample data points can be well reconstructed. It should be pointed
out that, although reconstructing training dataset well is beneficial for IP detection, it brings some
problems to the detection of HLP:

• For each input data point, if in one dimension, its value is not in the expected range, it can
be identified as an outlier. However, HLP whose values in each dimension are within the
normal range can hardly be detected.

• If some principal components are recovered better than others, then more HLP will be
detected along the direction of the poorly recovered principal components, while no HLP
is even detected in the direction of the better recovered principal components.

Here, we will show the shortcomings of MSE-trained autoencoders for HLP detection with some
examples. If the proportion of outliers is 5 percent, we can see that the two deficiencies in HLP
detection proposed above are prevalent in different datasets. As shown in Figure 1(a), we add non-
Gaussian noise to the dataset to make the difference in detection efficiency of HLP in different
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principal component directions more obvious, and the orange line and grey line represent two prin-
cipal directions. We can observe the distribution of HLP from Figure 1(a), most of the detected HLP
lie in the direction of the principal components indicated by the grey line but few lie in the other prin-
cipal direction. Besides, in Figure 1(b), we find almost all of the HLP are identified due to the value
anomalous in one dimension. In Figure 1(a), 1(b) and 1(c), the training datasets are two dimensions
and their intrinsic dimension are also two. Besides, the sample points follow two-dimensional Gaus-
sian distribution. In Figure 1(d), the dimension of the dataset is three and the intrinsic dimension is
two, the values of each dimension obey a Gaussian distribution. The structure of the autoencoder and
the setting of hyperparameters are described in Section 4. Below we will explain that the effect of the
saturation of the nonlinear activation functions on reconstruction lead to detection problems for HLP.

(a) (b)

(c) (d)

Figure 1: Examples of outlier detection with au-
toencoder when the loss function is MSE and
the outlier ratio is 0.05. In (a)-(c), the sample
points follow two-dimensional Gaussian distribu-
tion. (a) Covariance matrix diagonal and non-
Gaussian distributed noise exists, the orange line
and grey line represent two principal directions.
(b) Covariance matrix diagonal. (c) Covariance
matrix off-diagonal. (d) The intrinsic dimension
of the dataset is less than the actual dimension,
and the values in each dimension follow a Gaus-
sian distribution.

Usually, The dataset is normalized before be-
ing fed into the autoencoder, so the values of
each dimension of the dataset are distributed
in (0, 1). If we denote F = g ◦ f , F =
(F1, F2, . . . , Fm)>, since the output variable
X̂ and the input variable X satisfy that X̂ =
F (X), for each dimension of the input variable,
its corresponding reconstructuion result can be
fomulated as X̂k = Fk(X1, X2, · · · , Xm),
k = 1, 2, . . . ,m. Furthermore, the to-
tal reconstruction error of each dimension is∫ 1

0

(
Xk−Fk(X1, X2, · · · , Xm)

)2
dXk, ideally,

Fk(X1, X2, · · · , Xm) = Xk holds for almost
all data points after reconstruction. Thus, we
can conclude that (i) For each dimension of the
input dataset, X̂k increases monotonically with
Xk and X̂k ≈ Xk holds for most data points af-
ter reconstruction. Figure 6(a) in Appendix B.1
can typically reflect the detection defect of the
MSE-trained autoencoders for HLP. (ii) Due to
the saturation of the nonlinear activation func-
tions of the output layer, in each dimension, val-
ues close to 0 or close to 1 are more difficult to
reconstruct, and X̂k cannot be approximated to
Xk in this case. In Figure 1(a), data points with
large or small values in the direction of Param-
eter1 are identified as HLP. However, since val-
ues of Parameter2 of most data points signifi-
cantly larger than 0 or significantly smaller than 1 and most of them are between 0.15 and 0.85, they
can be reconstructed well. This makes it difficult to detect HLP in the direction of Parameter2. We
choose the dataset in Figure 1(a) for further validation, see Appendix B.1.

3.2 THE IMPORTANCE OF SUPPRESSING COMPLETE RECONSTRUCTION

In this part, we will present rigorous theoretical analysis to explain why MSE-trained autoencoders
are insufficient in outlier detection, and further analyze how to solve these problems. The analysis
process will be based on the following assumption.

Assumption 1. Since most datasets follow a multidimensional Gaussian distribution, we assume
that the input variable X follows m-dimensional Gaussian distribution.

As we know, autoencoders will focus on recovering the principal components of a dataset eventually
(Bao et al., 2020; Oftadeh et al., 2020), it is necessary to use the unit orthogonal eigenvectors as the
basis vectors to further study the influence of the loss function on the outlier detection results of
the autoencoder. Under Assumption 1, if the eigenvalues of the covariance matrix Σx are λ1, λ2,
. . ., λm, the corresponding unit orthogonal eigenvectors (i.e., principal directions) are η1, η2, . . .,
ηm, and the new coordinate of the variable X is Y =

(
Y1, Y2, . . . , Ym

)>
when the unit orthogonal
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eigenvectors are the basis vectors, then we can denote an orthogonal matrix P , where the ith column
of P is unit eigenvector ηi. It’s obvious that Y = P−1X = P>X and Yk = η>k X , k = 1, 2, . . . ,m.
Thus, in the new coordinate system, the variable of input data X is converted to variable Y . Then
we can get the formulation for the covariance matrix of variable Y which will be proved in detail in
Appendix A.1.
Result 1. The covariance matrix of variable Y can be derived as

ΣY = diag(λ1, λ2, . . . , λm).

If we denote ν = (ν1, ν2, . . . , νm)> as the mean vector of variable Y , since X follows m-
dimensional Gaussian distribution, we can conclude that Y also follows m-dimensional Gaus-
sian distribution, i.e., Y ∼ N (ν,ΣY ). What’s more, it’s easy to get that Yk ∼ N (νk, λk),
k = 1, 2, . . . ,m. Then, we denote Ŷ as the output variable of Y and its mean vector and eigenvalues
of the covariance matrix are ν̂ =

(
ν̂1, ν̂2, . . . , ν̂m

)>
and λ̂k, k = 1, 2, . . . ,m, respectively. As is

mentioned above, autoencoders will mainly recover the principal components of any datasets, it’s
reasonable for us to make the following assumption.

Assumption 2. For each element Ŷk of the output variable Ŷ , its data distribution is the same as
the corresponding input element Yk. Since Yk ∼N (νk, λk), then Ŷk ∼N (ν̂k, λ̂k), k = 1, 2, . . . ,m.
Besides, whether each eigenvalue after reconstruction is close to 0 is the same as its corresponding
original eigenvalue.

In the following, we will theoretically analyze the restrictions of MSE in detecting HLP. First, we
can get the relationship between the difference between the reconstructed data and its mean and
the difference between the original data and its mean in each principal component direction. The
following result can be obtained and we will prove it in Appendix A.2
Result 2. Under Assumptions 1 and 2, the difference between the reconstructed data and its mean is
proportional to the difference between the original data and its mean in each principal component
direction. The specific relationship is

R̂k(Y ) =

√
λ̂k√
λk
Rk(Y ). (1)

Where Rk(Y ) = Yk − νk and R̂k(Y ) = Ŷ − ν̂k. Based on equation (1), we can further determine
the specific reconstruct error of each input data point.
Result 3. The reconstruction error of each input data point measured by MSE can be formulated as

W (Y ) =
(
Y − Ŷ

)>(
Y − Ŷ

)
=

m∑
i=1

(√
λi −

√
λ̂i

)2
R2
i (Y )

λi
. (2)

Ideally, we hope each principal component contributes equally to the reconstruction error of any
input data point. Recall the definition of R(Y ), it’s easy to know that Rk(Y )

λk
∼N (0, 1), so equation

(2) indicates that the reconstruction degree of each principal component by the autoencoder will
affect the proportion of this principal component in the reconstruction error. This brings a lot of
uncertainty for HLP detection.
Result 4. HLP are difficult to identify as outliers if the input dataset is completely reconstructed.

When the input dataset is well reconstructed, in equation (2), it means that
√
λk −

√
λ̂k = 0, k =

1, 2, . . . ,m. Then, the reconstruction error of each data point in training dataset is 0. As the result,
each data point in the training dataset is considered normal. However, HLP exist in any dataset
follows m-dimensional Gaussian distribution. Generally, the larger the Mahalanobis distance is, the
more abnormal the data point is. Therefore, although completely reconstructing the training dataset
is beneficial for IP detection, but it ignores the detection of HLP.
Result 5. HLP whose values in each dimension are within the normal range can not be identified as
outliers. Besides, most HLP will be detected in the direction corresponding to the worst-recovered
principal component, but in the direction of the well-recovered principal components, the anomalies
are often ignored.
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From equation (2), we know
√
λk−

√
λ̂k is equivalent to the weight of the reconstruction error of the

kth principal component direction of each data point to the total reconstruction error. Therefore, if
the data reconstruction in the ith principal component direction is better than that in the jth principal

component direction, then
√
λi −

√
λ̂i <

√
λj −

√
λ̂j , i 6= j. As the result, the detected outliers

are more distributed in the jth principal component direction.
Result 6. If we ensure the differences between the eigenvalues of the covariance matrix of the
original dataset and their corresponding reconstructed results in the direction of each principal
component are equal, the value of the reconstruction error for each data point will be proportional
to its Mahalanobis distance.

If we suppress complete reconstruction of the autoencoder, then
√
λk−

√
λ̂k > 0, k = 1, 2, . . . ,m.

Based on equation (1), we can obtain

(Yk − Ŷk)2 =

(√
λk −

√
λ̂k

)2
λk

(Yk − νk)2, k = 1, 2, . . . ,m.
(3)

It means that for each principal component direction of the input data, there is a reconstruction
error. Specifically, the further away the values are from the mean, the larger the reconstruction error.
Therefore, in each principal component direction, the outliers detected by the reconstruction error
are the same as the outliers defined by the Gaussian distributed data. Besides, if

√
λk−

√
λ̂k = β >

0, k = 1, 2, . . . ,m, according to equation (2), the reconstruction error of each input data point is

W (Y ) =
(
Y − Ŷ

)>(
Y − Ŷ

)
= β2

m∑
i=1

R2
i (Y )

λi
. (4)

Since ΣY = diag(λ1, λ2, . . . , λm), it’s easy to obtain Σ−1Y = diag
(

1
λ1
, 1
λ2
, . . . , 1

λm

)
. So the

Mahalanobis distance of the input variable Y is

M(Y ) =
(
Y − ν

)>
Σ−1Y

(
Y − ν

)
=

m∑
i=1

R2
i (Y )

λi
. (5)

It indicates that the reconstruction error of each data point is proportional to its Mahalanobis dis-
tance. Therefore, if we control

√
λk −

√
λ̂k = β > 0, k = 1, 2, . . . ,m, almost all HLP will

be converted to IP and cannot be well reconstructed. As the result, the detected HLP will evenly
distributed in each principal component direction.

3.3 IMPROVEMENT OF LOSS FUNCTION

Based on the above discussion, in this part we will propose a new loss function that adds an appro-
priate penalty term based on MSE to properly suppress complete reconstruction of the autoencoder.

In fact, if the intrinsic dimension of the dataset is l, then there will be l eigenvalues that are not close
to 0. We denote the l eigenvalues that are not close to 0 as λ

′

k and their corresponding reconstruction
results are λ̂

′

k, k = 1, 2, . . . , l. According to Assumption 2, λ̂
′

k is also not close to 0. Then, we con-
sider two losses in our training loss function. One of them is LMSE(ω, b), which aims to reconstruct

the input dataset well. In addition, we define the other loss LEIG(ω, b) =
∑l
i=1

(√
λ

′
i−
√
λ̂

′
i−β

)2
which can avoid the autoencoder from completely reconstructing the input dataset. β > 0 is a hy-
perparameter that can adjust the degree of data reconstruction. The final training loss function is a
combination of the two, we refer to it as MSE-eig,

LMSE−eig(ω, b) = θ1LMSE(ω, b) + θ2LEIG(ω, b).

Here, θ1, θ2 > 0 are hyperparameters that need to be predetermined.

Although hyperparameter β > 0 is beneficial for HLP detection, as the value of β increases, the
data reconstruction ability of the autoencoder will become worse and worse, which is similar to the
model not being well fitted during regression analysis. This adversely affects the detection of IP.
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Therefore, in the following, it’s important for us to determine how to choose the appropriate value
of β.

It should be pointed out that the determination of β depends on the structure of the net-
work and the settings of other hyperparameters. For example, in this paper, the structure of
the autoencoder and the setting of hyperparameters are described in Section 4 and all out-
lier detection experiments are based on this criterion. After analysis and estimation, when
max1≤i≤m(0.3

√
λi) ≤ min1≤i≤m(

√
λi), we can set β = max1≤i≤m(0.3

√
λi). Otherwise,

we set β = min1≤i≤m(
√
λi). Besides, if the intrinsic dimension of the dataset is l, we

choose to control the l eigenvalues that are not close to 0. Then, the detection effect of HLP
in each dataset is significantly improved. We offer a more specific analysis process in Ap-
pendix C and summarize the training process of our anomaly detection scheme in Appendix D.

(a) Reconstruction result (b) Outlier detection re-
sult

Figure 2: Reconstruction result and outlier detec-
tion result for the dataset in Figure 1(a) when the
loss function of the autoencoder is MSE-eig.

Similar to Section 3.1, we perform outlier de-
tection on the same dataset in Figure 1(a) with
our loss function. The reconstruction result and
reconstruction error of any input value in each
dimension is shown in Appendix B.2, which
is consistent with our theoretical result of e-
quation (3). Figure 2(a) shows the reconstruc-
tion result of the whole dataset. If the ratio of
outliers is 0.05, the HLP detected by the au-
toencoder are shown in Figure 2(b), we can in-
tuitively see that all points with large Maha-
lanobis distance are detected as HLP, therefore,
this result is consistent with the conclusion in
Result 6. Besides, we also test the detection effect of our scheme for HLP with the dataset in Figure
1(b), see Appendix B.3. In particular, it can be seen clearly from Figure 11(a) in Appendix B.3 that
MSE-trained autoencoders can’t detect HLP whose values in each dimension are within the normal
range, and Figure 11(b) can reflect that most HLP with large Mahalanobis distance can be identified
using our loss function.

4 EXPERIMENTS

In this section, we will evaluate loss function MSE-eig on different datasets, low-dimensional syn-
thetic datasets, high-dimensional synthetic datasets and a real dataset from International Mouse
Phenotyping Consortium (IMPC). AUC (Area Under Curve) score is used to evaluate the accuracy
of outlier detection results. Specifically, for the detection results of HLP, we compare our training
loss function MSE-eig with MSE, and compute their AUC scores by regarding the HLP as positive.
In addition, in order to reflect the detection effect of MSE-eig on IP, we compare the detection results
of the autoencoder with the loss function MSE-eig, the autoencoder with the loss function MSE and
the Mahalanobis distance for IP. In this case, IP are regarded as positive.

For each experiment, the structure of the autoencoder is as follows. The dimension of the hidden
layer is the intrinsic dimension of the input dataset, and its activation function is RELU. Besieds,
the activation function of the output layer is sigmoid. All datasets are normalized before outlier
detection. During the autoencoder training process, Adam is used to optimize the loss function and
the learning rate is 10−3. For our new training loss MSE-eig, we always set θ1 = 0.008 and θ2 = 1.

4.1 SYNTHETIC DATA EXPERIMENTS

In this part, we test our method on both low-dimensional and high-dimensional datasets. First-
ly, we generate a 3D dataset whose intrinsic dimension is two. The dimensions represented by
Parameter1 and Parameter3 follow 2-dimensional Gaussian distribution and the correlation coef-
ficient between them is almost 0. The value on the dimension represented by Parameter2 is e-
qual to the square of the corresponding value on the dimension represented by Parameter1. We
use this dataset as the training dataset (as shown in Figure 3(a)). It can be seen that the data
points of the training dataset form a 2-dimensional manifold. Then, we generate the correspond-
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ing test set. The specific generation scheme is that based on the training set, we additionally
generate some points that are not on the manifold of the training set, and these points are IP (as
shown in Figure 3(b)). If the ratio of IP is δ1 and the number of sample points of the training
dataset is n, we generate bδ1nc data points that fall out of the manifold and consider these da-
ta points as positive. The corresponding AUC score of IP detection result is shown in Figure
4(a). We can see that although the detection effect of MSE-eig for IP is slightly worse than that
of MSE, it is still significantly better than the detection effect based on Mahalanobis distance.

(a) Training dataset (b) Test dataset

Figure 3: Low-dimensional synthetic datasets,
their actual dimension is 3 and intrinsic dimension
is 2. (a) Training dataset, the value of Parameter2
is equal to the square of the value of Parameter1.
(b) Test dataset, the correlation between the di-
mensions of the blue sample points is the same as
the training dataset, while the correlation between
the dimensions of the orange sample points is dif-
ferent from the training dataset.

As is known, in the 3D training dataset gen-
erated above, HLP still exists. We also test
the detection effect of MSE-eig on HLP in this
training dataset. Since the dimensions repre-
sented by Parameter1 and Parameter3 obey 2-
dimensional Gaussian distribution and the cor-
relation coefficient between them is almost 0,
the values of the dimension represented by Pa-
rameter2 can be generated from the values of
the dimension represented by Parameter1, for
each data point, we only calculate its Maha-
lanobis distance based on parameter1 and pa-
rameter3. If the number of sample points of
training dataset is n and the ratio of HLP is
δ2, we treat the top bδ2nc points in Maha-
lanobis distance as positive. Figure 4(b) indi-
cates that the detection effect of MSE-eig for
HLP is comparable to that of Mahalanobis dis-
tance, but significantly better than that of MSE.

In addition, we treat both HLP and IP as positive to test outlier detection effect of MSE-eig. In our
experiment, we assume that the ratio of HLP and the ratio of IP are equal, i.e., δ1 = δ2. Figure 4(c)
shows that MSE-eig works best for anomaly detection. In conclusion, MSE has the best detection
effect for IP, but the detection effect for HLP is very poor. Conversely, Mahalanobis distance has the
best detection results for HLP, but the detection effect for IP is the worst. However, MSE-eig can
detect both very well.

(a) (b) (c)

Figure 4: AUC scores for outlier detection results for the datasets in Figure 3 when the loss function
of the autoencoder is MSE, MSE-eig or directly based on Mahalanobis distance. (a) Comparison
result when IP present in the test dataset and only IP are considered as positive. (b) Comparison
result when IP are not present in the test dataset and only HLP are considered as positive. (c)
Comparison result when IP exist in the test dataset and both IP and HLP are considered as positive.
We assume the same ratio of IP and HLP.

Then, we generate three different datasets with 2D Gaussian distribution whose intrinsic dimension
are also 2 to evaluate our scheme. We find that MSE-eig outperforms MSE in detecting HLP in all
three datasets at any outlier ratio. The specific results can be found in Appendix E.1. Besides, since
autoencoders are often used for outlier detection in high-dimensional datasets, we also analyse the
outlier detection results of MSE-eig on two high-dimensional synthetic datasets. MSE-eig is still
better than MSE for HLP detection, see Appendix E.2 for details.
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4.2 REAL DATA EXPERIMENTS

IMPC1 is committed to phenotypic analysis of 20000 mouse mutants, so that we can further pre-
dict the causative genes of various human genetic diseases. We download the experimental data
from the official website of IMPC, which record the data of various physiological indicators of each
gene knockout mouse. In our experiment, we select the data of 2 physiological indicators for out-
lier detection and the joint distribution of this 2-dimensional dataset approximates a 2-dimensional
Gaussian distribution. Besides, the training dataset has 6640 sample points, and the test dataset
has 15699 sample points (as shown in Figures 5(a) and 5(b) respectively). The two physiological
indicators we observe are Calcium and Total protein. It’s easy to see that outliers in these datasets
are all HLP. Then we test the effectiveness of MSE-eig on the selected IMPC datasets and the cor-
responding result is presented in Figure 5(c). In real datasets, MSE-eig also outperforms MSE in
outlier detection. This shows that our solution has extremely high application value.

(a) Training dataset (b) Test dataset (c) Comparison result

Figure 5: IMPC datasets for outlier detection and AUC scores that reflect the outlier detection
efficiency of MSE and MSE-eig.

5 CONCLUSION AND FUTURE WORK

In this paper, we analyze the deficiencies of MSE-trained autoencoders for HLP detection. Through
theoretical analysis, we demonstrate that properly suppressing complete reconstruction of the au-
toencoder is beneficial to improve the detection effect of HLP. Besides, we propose a new training
loss function which can suppress complete reconstruction of the autoencoder during the training
process to convert HLP into IP. Therefore, the outliers detected by our scheme cover both HLP and
IP. Finally, we test our outlier detection scheme on both synthetic and real datasets and confirm the
superiority of our approach.

It should be pointed out that there are still some interesting reseach directions that deserve further
study. In the process of theoretical analysis, we assume that the dataset follows a multidimensional
Gaussian distribution. However, for datasets that do not conform to a multidimensional Gaussian
distribution, we would like to know how to obtain a scheme that controls their complete reconstruc-
tion through theoretical analysis. Besides, we are also curious about how to get the most reasonable
value of β through rigorous theoretical derivation.
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A MORE THEORETICAL ANALYSIS FOR THE IMPORTANCE OF SUPPRESSING
COMPLETE RECONSTRUCTION

In this section, we will offer more detailed proofs for Result 1 and Result 2.

A.1 PROOF OF RESULT 1

Proof. Let ν =
(
ν1, ν2, . . . , νm

)>
and ΣY represent the mean vector and covariance matrix of

variable Y respectively, we have ν = P>µ and νk = E(Yk) = η>k µ, k = 1, 2, . . . ,m. Furthermore,
we can gain the variance of the kth element of variable Y is

D(Yk) = COV
(
Yk, Yk

)
= E

((
Yk − νk

)(
Yk − νk

))
= E

(
η>k
(
X − E(X)

)
η>k
(
X − E(X)

))
= η>k E

((
X − E(X)

)(
X − E(X)

)>)
ηk

= η>k Σxηk

= η>k λkηk

= λk,

(6)

and the covariance of Yi and Yj (i 6= j) is

COV (Yi, Yj) = E
((
Yi − E(Yi)

)(
Yj − E(Yj)

))
= E

(
η>i
(
X − E(X)

)
η>j
(
X − E(X)

))
= η>i E

((
X − E(X)

)(
X − E(X)

)>)
ηj

= η>i Σxηj

= η>i λjηj

= 0.

(7)

Thus, the covariance matrix of variable Y is ΣY = diag(λ1, λ2, . . . , λm).

A.2 PROOF OF RESULT 2

Proof. As we know, the loss functhion of MSE can be formulated as

LMSE(ω, b) =
1

n

n∑
i=1

(yi − ŷi)>(yi − ŷi)

= E
(
Y >Y − 2Y >Ŷ + Ŷ >Ŷ

)
= E

(
Y >Y

)
− 2E

(
Y >Ŷ

)
+ E

(
Ŷ >Ŷ

)
=

m∑
i=1

E
(
Y 2
i

)
− 2

m∑
i=1

E
(
YiŶi

)
+

m∑
i=1

E
(
Ŷ 2
i

)
,

(8)

where yi and ŷi represent the ith sample point of the input and output dataset in the new coordinate
system respectively.

First, if the autoencoder can properly reconstruct the input dataset, we will analyse the mean vector
of the output variable Ŷ . Based on Assumption 2 and equation (8), we have

LMSE(ω, b) =

m∑
i=1

λi +

m∑
i=1

λ̂i +

m∑
i=1

ν2i +

m∑
i=1

ν̂2i − 2

m∑
i=1

νiν̂i − 2

m∑
i=1

COV
(
Yi, Ŷi

)
≥

m∑
i=1

(
νi − ν̂i

)2
+

m∑
i=1

(√
λi −

√
λ̂i

)2

.

(9)
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In order to reach the minima of LMSE(ω, b), the mean vector of output variable ν̂ must satisfy
ν̂k = νk, k = 1, 2, . . . ,m. That is to say, the mean vector of output data is the same as input data.

Next, we will specifically analyze the reconstruction error of each data point. According
to Assumptions 1 and 2, the input and output variable satisfy Yk ∼ N (νk, λk) and Ŷk ∼
N (νk, λ̂k), k = 1, 2, . . . ,m. Denote R(Y ) =

(
R1(Y ), R2(Y ), . . . , Rm(Y )

)> (
R̂(Y ) =(

R̂1(Y ), R̂2(Y ), . . . , R̂m(Y )
)>)

as the difference between variable Y
(
Ŷ
)

and its mean vector
ν, i.e., R(Y ) = Y − ν and R̂(Y ) = Ŷ − ν. It’s easy to see that Rk(Y ) ∼ N (0, λk) and R̂k(Y ) ∼
N (0, λ̂k). Then the following equation can be obtained.

LMSE(ω, b) = E
((
Y − Ŷ

)>(
Y − Ŷ

))
= E

((
R(Y )− R̂(Y )

)>(
R(Y )− R̂(Y )

))
= E

(
R>(Y )R(Y )

)
− 2E

(
R>(Y )R̂(Y )

)
+ E

(
R̂>(Y )R̂(Y )

)
=

m∑
i=1

E
(
R2
i (Y )

)
+

m∑
i=1

E
(
R̂2
i (Y )

)
− 2

m∑
i=1

E
(
Ri(Y )

)
E
(
R̂i(Y )

)
− 2

m∑
i=1

COV
(
Ri(Y ), R̂i(Y )

)
=

m∑
i=1

λi +

m∑
i=1

λ̂i − 2

m∑
i=1

ρi
√
λi

√
λ̂i,

(10)

where ρk represents the correlation coefficient of Rk(Y ) and R̂k(Y ), and −1 ≤ ρk ≤ 1, k =
1, 2, . . . ,m. In equation (10), only when ρk = 1, can LMSE(ω, b) reach its minima. In this case,
there is a positive linear correlation betweenRk(Y ) and R̂k(Y ), specifically, there exist constants ak
and ck such that R̂k(Y ) = akRk(Y )+ck, thenE

(
R̂k(Y )

)
= akE

(
Rk(Y )

)
+ck andD

(
R̂k(Y )

)
=

a2kD
(
Rk(Y )

)
. Since E

(
R̂k(Y )

)
= E

(
Rk(Y )

)
= 0, D

(
Rk(Y )

)
= λk and D

(
R̂k(Y )

)
= λ̂k, we

can obtain ck = 0 and ak =

√
λ̂k√
λk

. Therefore, equation (1) is proved.
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B RECONSTRUCTION AND OUTLIER DETECTION RESULTS

In this section, we provide more material showing the reconstruction results of MSE and MSE-eig
for the datasets in Figures 1(a) and 1(b).

B.1 RECONSTRUCTION RESULTS OF THE MSE-TRAINED AUTOENCODER FOR THE DATASET
IN FIGURE 1(A)

Figures 6(a) and 6(b) show the relationship between the reconstruction values and the corresponding
input values in each dimension. For Parameter1 and Parameter2, we can see that reconstruction val-
ue increases monotonically with its corresponding input value. When the input values are between
0.15 and 0.85, they can be reconstructed well and the reconstructed values are approximately equal
to the corresponding input values. Otherwise, if the values are very large or very small, the dif-
ferences between the reconstructed values and the input values will be large and the corresponding
reconstructed errors are large (as shown in Figures 6(c) and 6(d)). This confirms the correctness of
our conclusions in Section 3.1.

(a) Reconstruction result
of parameter1

(b) Reconstruction result
of parameter2

(c) Reconstruction error of
parameter1

(d) Reconstruction error of
parameter2

Figure 6: Reconstruction errors and reconstruction results for the dataset in Figure 1(a) when the
loss function of the autoencoder is MSE. (a) and (b) present the reconstruction results of the values
in each dimension. (c) and (d) show the reconstruction errors of the values in each dimension.

B.2 RECONSTRUCTION RESULTS OF MSE-EIG FOR THE DATASET IN FIGURE 1(A)

We perform outlier detection on the same dataset in Figure 1(a) with MSE-eig. By calculation, we
get max(0.3

√
λ1, 0.3

√
λ2) = 0.05, min(

√
λ1,
√
λ2) = 0.13 and the mean vector of this dataset is

(0.51, 0.58)>. So we set the hyperparameter β = 0.05 in our loss function. Figures 7(a) and 7(b)
show that for each dimension, all the input values can’t be well reconstructed. Figures 7(c) and 7(d)
specifically show that the reconstruction error of any input value in each dimension is proportional
to the square of the distance of the value from the mean, which is consistent with our theoretical
analysis in Result 6.
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(a) Reconstruction result
of parameter1

(b) Reconstruction
result of parameter2

(c) Reconstruction error
of parameter1

(d) Reconstruction error
of parameter2

Figure 7: Reconstruction results and reconstruction errors for the dataset in Figure 1(a) when the loss
function of the autoencoder is MSE-eig. (a) and (b) present the reconstruction results of the values
in each dimension. (c) and (d) show the reconstruction errors of the values in each dimension.

B.3 RECONSTRUCTION RESULTS FOR THE DATASET IN FIGURE 1(B)

By calculation, for dataset in Figure 1(b), we get max(0.3
√
λ1, 0.3

√
λ2) = 0.04 and

min(
√
λ1,
√
λ2) = 0.12. Therefore, when using MSE-eig, we set β = 0.04. Figures 8 and 9

present the reconstruction results of MSE and MSE-eig respectively, and Figure 10 show the re-
construction result of MSE-eig for the whole dataset and the corresponding outlier detection result.
Figure 11 show the distribution of reconstruction errors for the whole dataset.

(a) Reconstruction result
of parameter1

(b) Reconstruction re-
sult of parameter2

(c) Reconstruction error
of parameter1

(d) Reconstruction error
of parameter2

Figure 8: Reconstruction results and reconstruction errors for the dataset in Figure 1(b) when the
loss function of the autoencoder is MSE. (a) and (b) present the reconstruction results of the values
in each dimension. (c) and (d) show the reconstruction errors of the values in each dimension.
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(a) Reconstruction result
of parameter1

(b) Reconstruction result
of parameter2

(c) Reconstruction error of
parameter1

(d) Reconstruction error
of parameter2

Figure 9: Reconstruction results and reconstruction errors for the dataset in Figure 1(b) when the loss
function of the autoencoder is MSE-eig. (a) and (b) present the reconstruction results of the values
in each dimension. (c) and (d) show the reconstruction errors of the values in each dimension.

(a) Reconstruction result (b) Outlier detection result

Figure 10: Reconstruction result and outlier detection result for the dataset in Figure 1(b) when the
loss function of the autoencoder is MSE-eig.
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(a)

(b)

Figure 11: Reconstruction errors for the whole dataset in Figure 1(b) when the loss function of the
autoencoder is MSE or MSE-eig. (a) When the loss function is MSE. (b) When the loss function is
MSE-eig.

17



Under review as a conference paper at ICLR 2023

C DETERMINATION OF HYPERPARAMETER β

If the intrinsic and actual dimensions of the dataset are equal, i.e., l = m, then most of the outliers
in the dataset are HLP. In this case, considering that

√
λk −

√
λ̂k > 0 and λ̂k > 0, k = 1, 2, . . . ,m,

Therefore, the value of the hyperparameter β should satisfy 0 < β < min1≤i≤m(
√
λi). According

to the previous analysis, as long as β > 0, the detection effect of HLP can be improved. Meanwhile,
in order to maintain the detection effect of IP, the value of β must be small enough.

According to equation (1), if β = 0, then R̂k(Y ) = Rk(Y ), i.e., Ŷk = Yk, k = 1, 2, . . . ,m.
However, we will add nonlinear activation functions to the autoencoder to learn nonlinear features
in the input dataset. For example, in our work, we add sigmoid activation function to the output
layer. Since commonly used nonlinear activation functions are saturated, When the input values are
very large or very small, the corresponding output values hardly change with the change of the input
values. As the result, for each dimension of the input data, when the values are very large or very
small, their reconstruction results are poor. Otherwise, the values can be reconstructed well. Then,
most HLP detected by the autoencoder are anomalous in one dimension, but HLP whose values in
each dimension are within the normal range are ignored. It can be seen from this that when β is
small enough, it not only adversely affects the detection effect of HLP, but also rarely improves the
detection effect of IP. That is to say, there exists ξ > 0, when β < ξ, there is not much improvement
in the detection effect of IP.

If we determine the value of ξ and let β = ξ, on the one hand, the detection effect of the autoencoder
for IP can be maintained. On the other hand, we can suppress complete reconstruction of the autoen-
coder and avoid the influence of the saturation of the activation function on the data reconstruction
at the same time, which can improve the detection effect for HLP.

In our work, the structure of the autoencoder and the setting of hyperparameters are described in
Section 4. For each dimension of any dataset, input values between 0.15 and 0.85 are hardly af-
fected by the saturation of the nonlinear activation function. Therefore, we hope that the value of
β selected can make the output value of each dimension between 0.15 and 0.85. As the result, for
each dimension, the interval length of the output value is 0.7 times the interval length of the input
value. Before outlier detection, the input dataset is normalized, so the input value of each dimension
is between 0 and 1. Recall that Yk ∼ N (νk, λk) and Ŷk ∼ N (νk, λ̂k), k = 1, 2, . . . ,m, The proba-
bility that Yk is distributed in (νk − 3

√
λk, νk + 3

√
λk) is 0.9974, so its distribution interval length

is approximately 6
√
λk. Similarly, the distribution interval length of Ŷk is approximately 6

√
λ̂k. So

we can control
√
λ̂k = 0.7

√
λk, then

√
λk −

√
λ̂k = 0.3

√
λk, k = 1, 2, . . . ,m.

Based on the above discussion, we can summarize how to determine the value of the hyperparameter
β when l = m. If max1≤i≤m(0.3

√
λi) ≤ min1≤i≤m(

√
λi), we can set β = max1≤i≤m(0.3

√
λi).

Otherwise, we set β = min1≤i≤m(
√
λi).

In practical applications, we usually encounter this type of dataset whose intrinsic dimension l is
smaller than the actual dimension m. In this case, there are only l eigenvalues of the covariance
matrix of the dataset that are not close to 0, we denote them as λ

′

k, k = 1, 2, . . . , l. In the training

process, we only need to control such l eigenvalues and make
√
λ

′
k −

√
λ̂

′
k = 0.3

√
λ

′
k, k =

1, 2, . . . , l. Besides, since λ
′

k > 0, β should satisfy 0 ≤ β ≤ min1≤i≤l(
√
λ

′
i). Actually, if l <

m, there will be some data points that have a large impact on the reconstruction ability of the
autoencoder (i.e., IP), it is very important to not only improve the detection effect of HLP, but
also maintain the detection effect of IP. Therefore, we have to make sure that the value of β is small
enough but not equal to 0. For convenience, we also set 0 < β < min1≤i≤m(

√
λi) in this case.

Finally, the determination scheme for the value of β is the same as when l = m.
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D TRAINING PROCESS OF OUR OUTLIER DETECTION SCHEME

Algorithm 1 specifically describes the process of training the autoencoder with the improved loss
function.

Algorithm 1: Training process with MSE-eig
Input: Training dataset D, hyperparameters θ1, θ2, β, and intrinsic dimension of training dataset l
Output: Outlier detection autoencoder with parameters ω, b
foreach Epoch do

foreach Batch A do
if The dimension of the training dataset m = l then

Calculate λi, λ̂i, ı = 1, . . . ,m
Get LMSE(ω,b) and LEIG(ω, b)
Updata the parameters ω and b by minimizing LMSE−eig(ω, b)

end
if The dimension of the training dataset m > l then

Calculate λi, λ̂i, ı = 1, . . . ,m
Select the l eigenvalues λ

′

i that are not close to 0 in the eigenvalues of the input dataset
and their corresponding eigenvalues of the reconstruction result λ̂

′

i, i = 1, 2, . . . , l
Get LMSE(ω,b) and LEIG(ω, b)
Updata the parameters ω and b by minimizing LMSE−eig(ω, b)

end
end

end
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E MORE SYNTHETIC DATA EXPERIMENTS

In this section, we test the detection effect of MSE-eig on HLP on more synthetic datasets. In
Section E.1, we conduct experiments on 3 low-dimensional datasets. In Section E.2, experiments on
2 high-dimensional datasets are provided.

E.1 LOW-DIMENSIONAL DATA EXPERIMENTS

We generate three datasets with 2D Gaussian distribution, and their intrinsic dimension are also 2.
In one of the datasets, the correlation between the two dimensions is small (as shown in Figure
12(a)); the correlation between the two dimensions in another dataset is relatively large (as shown in
Figure 12(b)); in the last dataset, the correlation between the two dimensions is also small and non-
Gaussian distributed noise exist (as shown in Figure 12(c)). Obviously, the outliers in these three
datasets are all HLP. Then we set different outlier ratios and calculate the corresponding AUC scores
of the outlier detection results when the autoencoder uses MSE-eig and MSE as the loss function,
respectively. To be specific, if the outlier ratio is δ and the number of sample points is n. Then the
input data is sorted according to their Mahalanobis distance, and the first bδnc sample points are
regarded as positive. Figures 12(d), 12(e) and 12(f) show the test results on these three datasets. It’s
easy to see that MSE-eig outperforms MSE in detecting HLP in all three datasets at any outlier ratio.

(a) Dataset1 (b) Dataset2 (c) Dataset3

(d) AUC scores for Dataset1 (e) AUC scores for Dataset2 (f) AUC scores for Dataset3

Figure 12: Low-dimensional synthetic datasets and their outlier detection results. All datasets fol-
low a two-dimensional Gaussian distribution. (a), (b) and (c) are data point distribution plots for
each dataset. (a) Covariance matrix diagonal. (b) Covariance matrix off-diagonal. (c) Covariance
matrix diagonal and non-Gaussian distributed noise exist. (d), (e) and (f) are AUC scores for outlier
detection results for each dataset when the loss function of the autoencoder is MSE or MSE-eig.
(d) Comparison result of Dataset1. (e) Comparison result of Dataset2. (f) Comparison result of
Dataset3.

E.2 HIGH-DIMENSIONAL DATA EXPERIMENTS

Since autoencoders are often used for outlier detection in high-dimensional datasets, we also analyse
the outlier detection result of MSE-eig on two high-dimensional synthetic datasets. Both datasets
follow multidimensional Gaussian distribution and their covariance matrices are both diagonal ma-
trices. So the intrinsic dimension of these two datasets are equal to their actual dimension. One of
the datasets is 50 dimensional and the other dataset is 100 dimensional. It’s obvious that outliers in
these two datasets are all HLP. Similar to Section E.1, we evaluate the outlier detection results of
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these two datasets by the AUC score, which are shown in Figure 13(a) and Figure 13(b) respectively.
We can see that on high-dimensional datasets, MSE-eig is still better than MSE for HLP detection.

(a) 50-dimensional (b) 100-dimensional

Figure 13: AUC scores for outlier detection result for high-dimensional datasets when the loss func-
tion of the autoencoder is MSE or MSE-eig. Both datasets synthesized follow a multidimensional
Gaussian distribution, and their covariance matrices are diagonal.
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