
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WORKSHOP ON MULTI-AGENT LEARNING AND ITS OPPORTUNITIES IN THE ERA OF GENERATIVE AI

ABSTRACT

The rapid emergence of generative AI has revitalized interest in multi-agent learning as a foundation for building systems that can reason, coordinate, and adapt across diverse environments. This workshop seeks to explore the growing convergence between multi-agent learning and generative AI, emphasizing their mutual potential to advance both theoretical understanding and practical capability. We focus on three interrelated fronts where this integration is most visible: (1) LLM-based multi-agent systems, where large language models interact, cooperate, or compete in structured settings; (2) real-world distributed system control, where multi-agent learning offers scalable and data-driven coordination strategies for complex real-world systems such as smart cities; and (3) human-AI interaction, where generative AI enables richer modelling of human preferences, values, and behaviours, supporting more human-aligned multi-agent systems. By bringing together researchers from machine learning, game theory, cognitive science, and human-computer interaction, this workshop aims to bridge methodological insights and emerging applications, fostering a shared agenda for the age of multi-agent generative AI systems.

1 WORKSHOP SUMMARY

1.1 MOTIVATION

In the era of generative AI, **multi-agent generative systems** have emerged as a central paradigm driving progress across industry and research in AI, social science, and economics. This workshop aims to explore the evolving interplay between **multi-agent learning** and **generative AI**, focusing on three key domains where their integration is most evident: **LLM-based multi-agent systems**, **real-world distributed system control**, and **human-AI interaction**.

The rapid progress of large language models (LLMs) has increased interest in multi-agent learning, as these models increasingly operate within the framing of multi-agent systems that require coordination, communication, and adaptation. For example, LLM-based multi-agent systems are now used to explore novel social norms and conventions via simulating human behaviors (Park et al., 2023; Aher et al., 2023). As a further example, complex LLM agent systems (e.g. coding agents, deep research agents, etc.) are modularised via some structure like graphs or chains, where each module is an LLM exclusively responsible for a subtask (Hong et al., 2024; Qian et al., 2024). In these tasks, although the knowledge about traditional multi-agent systems can help clarify modelling specifications (Xi et al., 2025; Guo et al., 2024),¹ how agents can **learn** to complete a cooperative task in a theoretically justified manner, in multi-agent settings with incomplete and imperfect information still remain a question. To this end, multi-agent learning (Stone & Veloso, 2000; Albrecht & Stone, 2018) as an interdisciplinary research field connecting traditional multi-agent systems (Gasser, 1991; Wooldridge, 2009) and machine learning, is able to bridge this gap. Specifically, the long-standing and well-studied multi-agent learning paradigms of cooperative multi-agent learning, competitive multi-agent learning and ad hoc teamwork (Hernandez-Leal et al., 2019; Mirsky et al., 2022) have taken into consideration of environments. Therefore, it is evidential to predict that **the hands-on experience from multi-agent learning can potentially drive LLM system development in a more effective and rigorous manner**.

¹The traditional multi-agent systems primarily provide the modelling techniques for describing a multi-agent interaction process, e.g. game-theoretic models. In contrast, it lacks advanced techniques, like what today's multi-agent learning realized, to deal with some realistic situations when the game-theoretic models are not fully provided, e.g. partial observability.

054 Beyond the relation to LLMs, the multi-agent learning itself is useful for addressing complex, real-
055 world dynamic systems that require distributed control. For example, in a smart city where agents
056 are mixed with humans and AI agents (e.g., autonomous vehicles and smart household power gen-
057 erators), it would be non-trivial for any AI agent to make decisions when interacting with vari-
058 ous types of agents (Xing et al., 2021). The reason is that this emerging complicated scenarios
059 are difficult to be modelled at a fine granularity from the legacy mathematical perspectives (e.g.,
060 ODE and PDE) (Kundur et al., 2007; Chung et al., 2018), and therefore the traditional engineering
061 approaches—e.g., stochastic optimization (Fouskakis & Draper, 2002) and control theory (Khalil &
062 Grizzle, 2002)—strongly relying on the formally described environments could become insufficient
063 to deal with the upcoming challenges of AI. To overcome this challenge, multi-agent learning—
064 blending mathematical modelling in coarse granularity for describing interaction processes (and
065 environments) (Osborne et al., 2004; Oliehoek et al., 2016), and eliciting the fine-grained dynam-
066 ics through data (Albrecht et al., 2024)—is a promising solution. Although the pioneering work in
067 multi-agent learning has paid efforts on investigating novel paradigms (e.g., cooperative multi-agent
068 learning, competitive multi-agent learning and ad hoc teamwork), whether these paradigms are well-
069 defined enough to tackle the future challenges of AI is still an open question. To this end, **the strong**
070 **generative AI techniques is meaningful to be incorporated into modules of multi-agent learn-**
071 **ing** (e.g., reward models and agent-type inference), so that the extreme performance of the existing
072 multi-agent learning paradigms can be well explored.

072 More recently, the growing interest in human-AI interaction has highlighted the need for AI agents
073 to learn and make decisions in collaboration with people—receiving human feedback, following
074 instructions, and adapting to human goals within multi-agent settings. One example is human-
075 intervened multi-agent systems (Chung et al., 2020), where human knowledge represented in mul-
076 timodality (e.g., language, images, etc.) is potential to help guide multi-agent learning to solving
077 some emerging realistic scenarios (e.g., multi-robot teams for inventory logistics and smart cities).
078 Another example is configuring a human model to support an AI agent in learning to adapt to human
079 behaviours with no requirement of real-time human feedback, where the ecosystem consisting of a
080 human and an AI agent still forms a multi-agent system. Some recent works on **training a human**
081 **model through some generative AI techniques** have achieved success to some extent, such as the
082 LLMs that capture human preferences (Huang et al., 2023), reward models reflecting human value
083 systems (Wu et al., 2023), or behavioural models that simulate human decision-making patterns
084 enabling more human-aligned agents (Liang et al., 2024). Nevertheless, due to the recently increas-
085 ing awareness of AI safety/security in the society (Gyevnar & Kasirzadeh, 2025), **endowing those**
086 **human models with interpretability and predictable performance** remains a challenge.

087 1.2 OBJECTIVE 088

089 As per the above motivating examples, the main objective of this workshop is to **encourage thinking**
090 **and discussion about the opportunities of fundamental multi-agent learning research in the era**
091 **of generative AI**. A good adaptation of existing theoretical and methodological approaches to new
092 problems requires participation of all stakeholders (e.g., theorists, practitioners, and engineers). To
093 this end, we commit to

- 094 1. Designing a workshop involving speakers and panellists from diverse backgrounds to ex-
095 press various positions;
- 096 2. Gathering normal paper submissions about some matured ideas of related topics;
- 097 3. Initiating a 4-page blueprint paper track (tiny paper track) gathering open ideas about how
098 multi-agent learning will be benefited from and improve generative AI.

100 We believe this would be an effective way to align the prospects of all parties. Moreover, we will
101 initiate and share a networking deck with all participant information for attendees to get in touch
102 with others of like interests more easily. This workshop is expected to **advance both generative AI**
103 **and multi-agent learning, to support the age of multi-agent generative AI systems**.

106 1.3 OVERVIEW OF TOPICS OF INTEREST 107

The workshop will cover a range of topics, including but not limited to:

108 1. **Multi-Agent Learning Paradigms for LLMs**
109
110 (a) Cooperative multi-agent reinforcement learning for improving coordination between mod-
111 ules within the multi-agent system LLMs (LLM orchestration)
112 (b) Adversarial training for improving the generalizability of the single LLM training
113 (c) Open multi-agent reinforcement learning/ad hoc teamwork for a multi-agent system LLMs
114 to deal with some unknown and situational function/data providers
115 (d) Formalism of full/partial information required in modelling multi-agent system LLMs and
116 the minimal information each agent needs
117 (e) Strengths/weaknesses of natural language as both the action space and the observation space
118 in the multi-agent system LLMs
119 (f) Criteria for evaluating a “well structured” multi-agent system LLMs in completing a task
120 (e.g., game-theoretic approaches and models)
121 (g) Coordination mechanisms for improving performance of multi-agent system LLMs, which
122 can be either predefined or learned from data
123 (h) Structures (e.g., chains, graphs, etc.) to represent a multi-agent system for LLMs
124 (i) Application of coordination graphs (e.g., DAGs, factor graphs, etc.) on decomposing reward
125 functions for training multi-agent system LLMs

126 2. **Generative AI for Multi-Agent Learning**
127
128 (a) World models for improving the data quality for multi-agent learning
129 (b) Reward models for improving multi-agent learning with sparse rewards
130 (c) Generative AI to generate a diverse set of agent models
131 (d) Generative models (e.g., diffusion models) for improving multi-agent learning
132 (e) Graph-based generative AI for improving graph-structured multi-agent learning and emer-
133 gent communication between agents
134 (f) Multi-agent systems for the modular generative models

135 3. **Multi-Agent Exploration for Generative AI**
136
137 (a) Multi-agent exploration for coordinating modules in the modular generative AI models
138 (b) The role of entropy of agent policies (generators) in the modular generative AI learning

139 4. **Environments for Testing and Developing Multi-Agent Learning**
140
141 (a) Environments of real-world decentralised or distributed control problems
142 (b) Computationally efficient environments for generative AI-based multi-agent learning
143 (c) Light environments (without LLMs) for simulating the human-AI interaction process
144 (d) JAX environments for accelerating multi-agent simulation processes

145 5. **Human-AI Interaction**
146
147 (a) Learning paradigms for improving the capability of AI agents to adapt to human instructions
148 or proactively guide humans
149 (b) Capable and interpretable (explainable) human models trained by generative AI
150 (c) Appropriate medium of conveying human instructions to AI agents (e.g., natural language,
151 formal methods and learning embeddings)
152 (d) Approaches for estimating human intentions enabling AI agents to make better decision

153
154 2 CALL FOR PAPER SUBMISSIONS
155

156 We warmly invite submissions from researchers, practitioners, and students working at the inter-
157 section of multi-agent learning and generative AI. Our workshop aims to bring together diverse
158 perspectives to spark discussion, share insights, and inspire new research directions.
159

160 Accepted papers will be presented as posters, with a selection of outstanding submissions invited for
161 spotlight or oral presentations. The workshop is non-archival, meaning authors are free to submit
their work to other conferences or journals.

162 **TRACKS AND PAPER TYPES**
163

164 We welcome submissions from two tracks, where we specifically introduce a **Blueprint Track**
165 **supporting short or tiny papers**, designed to encourage early-stage, forward-looking, and inclusive
166 contributions. Alongside this, we also welcome full papers in the **Main Research Track**, which
167 **have not** been published in other conferences on machine learning.

168

- 169 • **Main Research Track (6-8 pages):** Full papers presenting novel methods, theoretical analyses,
170 or comprehensive empirical results related to the workshop topics.
- 171 • **Blueprint Track (2-4 pages):** Visionary, exploratory, or critical perspectives, including but not
172 limited to:
 - 173 ○ Conceptual framework for bridging multi-agent learning and generative AI
 - 174 ○ Preliminary research with modest but insightful conclusions or results
 - 175 ○ New perspectives, critiques, or re-analyses of existing findings
 - 176 ○ Tools, benchmarks, or environments for multi-agent learning and generative AI

177 This track particularly encourages submissions from newcomers, under-resourced researchers, and
178 under-represented groups, aligning with our workshop’s mission to “launch an initiative for encour-
179 aging thinking and discussion.”

180 All submissions must use the official ICLR 2026 LaTeX template. Page limits exclude references
181 and appendices.

182 **IMPORTANT DATES**

183

- 184 • **Paper Submission Deadline:** 5 February 2026, 11:59pm AOE
- 185 • **Notification of Acceptance:** 1 March 2026, 11:59pm AOE
- 186 • **Camera-Ready Due:** 3 April 2026, 11:59pm AOE

187 **REVIEW PROCESS**

188

- 189 • **Submission Platform:** All submissions will be managed through **OpenReview**.
- 190 • **Double-Blind Review:** We will enforce a double-blind review policy to ensure anonymity and
191 impartiality for both authors and reviewers.
- 192 • **Reviewer Assignment:** Each submission will be evaluated by **at least two members** of the pro-
193 gram committee with expertise in multi-agent learning, generative AI, or related fields.
- 194 • **Final Decisions:** Final acceptance decisions will be made by the organizing committee based on
195 reviewer feedback and a thorough discussion period.
- 196 • **Conflict of Interest:** We will strictly adhere to the ICLR policy on Conflicts of Interest (COI).
197 Reviewers will be required to declare any potential conflicts, and conflicted papers will be reas-
198 ssigned.
- 199 • **LLM Usage Policy:** We will follow the official [https://blog.iclr.cc/2025/08/26/policies-on-large-
200 language-model-usage-at-iclr-2026/](https://blog.iclr.cc/2025/08/26/policies-on-large-language-model-usage-at-iclr-2026/). In particular, AI systems may be used by workshop partic-
201 ipants or organizers for supportive roles (e.g., language refinement, brainstorming, or discussion
202 moderation), but **AI-generated papers are not permitted for normal or tiny paper submis-
203 sions**. All AI contributions must remain under human oversight and validation, and the role of AI
204 (if any) in the preparation of submissions must be transparently acknowledged.

205 **REVIEWER AND AREA CHAIR SCREENING CRITERIA**

206 The program committee will evaluate all submissions based on the following criteria:

207

- 208 • **Relevance:** Alignment with the workshop themes.
- 209 • **Novelty:** New methods, perspectives, or applications. For blueprint papers, forward-looking and
210 thought-provoking ideas are especially valued.
- 211 • **Technical Soundness:** Appropriateness and rigor of methods and analyses.

216 • **Impact:** Potential to inspire research, address core challenges, or influence the community.
217
218 • **Clarity:** Quality of writing, presentation, and accessibility.

219 For the blueprint track submissions, reviewers will emphasize on **insightfulness and potential to**
220 **spark discussion** rather than completeness of results.
221

222 **3 PANEL DISCUSSION TOPIC: BRIDGING THE GAP BETWEEN MULTI-AGENT**
223 **LEARNING AND GENERATIVE AGENTS**
224

226 The rapid emergence of multi-agent LLM systems presents an exciting new direction for AI research.
227 However, a significant gap has formed between this new wave of “generative agents” and the decades
228 of existing work on multi-agent learning (Stone & Veloso, 2000; Albrecht & Stone, 2018; Wellman
229 et al., 2025), creating a risk of ‘reinventing the wheel’ (Malfa et al., 2025; Franklin & Graesser,
230 1997). The panel will address this critical disconnect, aiming to ground the fast-paced development
231 of multi-agent LLM systems in the rigorous frameworks, methods, and knowledge of the multi-agent
232 systems community more broadly.

233 To this end, our panel will facilitate a discussion between leading researchers with established ex-
234 pertise in multi-agent learning and multi-agent systems, researchers investigating and developing
235 cutting edge multi-agent LLM systems, and industry experts exploring real-world use cases of gen-
236 erative agent systems. The conversation will focus on identifying the intersections and gaps be-
237 tween classic multi-agent learning and modern LLM agent systems, with the goal of charting a path
238 to unification. We will ask what core lessons from multi-agent learning can be directly applied to
239 understand the limitations of today’s generative agent systems, towards suggesting open problems.
240 Moreover, the panel will explore the potential for multi-agent learning techniques to improve the
241 core reasoning and planning abilities of LLMs even in single-agent scenarios (Zhang et al., 2025).

242 Given the explosion of interest in multi-agent LLM systems, for the ICLR audience, this discussion
243 promises to be an invaluable opportunity to connect cutting-edge generative AI researcher with the
244 principled, theoretical foundations needed to ensure its long-term success.

245
246 **4 INVITED KEYNOTE SPEAKERS AND PANELLISTS**
247

248 **4.1 KEYNOTE SPEAKERS**
249

250 **Yali Du (Kings College London)**
251

252 **Location:** UK

253 **Gender:** Female

254 **Short Bio:** Dr. Yali Du is a Senior Lecturer (Associate Professor) in AI at King’s College Lon-
255 don, and a Turing Fellow at The Alan Turing Institute. At King’s, she is the head of the Dis-
256 tributed AI Group. She directs the Cooperative AI Lab. Her research aims to enable machines
257 to exhibit cooperative and safe behaviour in intelligent decision making tasks. Her work fo-
258 cuses on reinforcement learning and multi-agent cooperation, with topics such as generalization,
259 zero-shot coordination, evaluation of human and AI players, and social agency (e.g., human-
260 involved learning, safety, and ethics). She was chosen for the AAAI New Faculty Highlights
261 award (2023), Rising Star in AI 2023. She has given tutorials on cooperative multi-agent learn-
262 ing at ACML 2022 and AAAI 2023. She serves as the editors for Journal of AAMAS and IEEE
263 Transactions on AI, Area Chair for NeurIPS 2024. She also serves in organising committee
264 for AAMAS 2023 and NeurIPS 2024. Her research is also supported by the Engineering and
265 Physical Sciences Research Council (EPSRC) and AI Safety Institute (AISI).

266 **Eugene Vinitsky (New York University)**
267

268 **Location:** USA

269 **Gender:** Male

270 **Short Bio:** Eugene Vinitsky is an Assistant Professor at NYU Tandon School of Engineering
271 with appointments in Civil and Urban Engineering, Computer Science and Engineering, and
272 C2SMARTER (a US DOT-funded Tier 1 University Transportation Center). His research fo-
273 cuses on enabling complex, human-like behavior to emerge from unsupervised interaction be-
274 tween groups of learning agents, with applications in autonomous vehicles and traffic control.
275 His work spans multi-agent reinforcement learning algorithms, data-driven simulators, and de-
276 ploying simulator-designed controllers into real-world systems. Previously, he received his PhD
277 from UC Berkeley, worked as a research scientist at Apple Special Projects Group, and has been a
278 visiting researcher at Facebook AI and interned at Tesla Autopilot and DeepMind's Multi-Agent
279 AI team. His contributions include the Flow framework for mixed-autonomy traffic control,
280 PAIRED for emergent complexity via unsupervised environment design (NeurIPS 2020 oral),
281 and recent work on adaptive AI systems that can quickly learn to cooperate with new partners.
282 He recently received a Google DeepMind grant to advance AI adaptation research.
283

283 **Peter Stone (University of Texas at Austin and Sony AI)**

284
285 **Location:** USA
286 **Gender:** Male
287
288 **Short Bio:** He is the Founder and Director of the Learning Agents Research Group (LARG)
289 within the Artificial Intelligence Laboratory in the Department of Computer Science at the Uni-
290 versity of Texas at Austin. He also serves as Department Chair and Founding Director of Texas
291 Robotics. He was a co-founder of Cogitai, Inc. and currently serves as Chief Scientist of Sony
292 AI. His primary research interest in artificial intelligence lies in understanding how to create
293 complete intelligent agents. He views adaptation, interaction, and embodiment as fundamental
294 capabilities of such agents, and his research therefore centers on machine learning, multi-agent
295 systems, and robotics. He is particularly drawn to research topics motivated by challenging real-
296 world problems and believes that impactful research should combine precise, novel algorithms
297 with fully implemented and rigorously evaluated applications. His application domains have in-
298 cluded robot soccer, autonomous bidding agents, autonomous vehicles, and human-interactive
299 agents.
300

300 **Natasha Jaques (University of Washington and Google DeepMind, Confirmed)**

301
302 **Location:** USA
303 **Gender:** Female
304
305 **Short Bio:** She is an Assistant Professor at the University of Washington's Paul G. Allen School
306 of Computer Science & Engineering, where she leads the Social RL Lab. She also holds a
307 position as a Senior Research Scientist at Google DeepMind. During her PhD at MIT, she
308 developed methods for fine-tuning language models using reinforcement learning and human
309 feedback—techniques that later influenced OpenAI's work on Reinforcement Learning from
310 Human Feedback (RLHF). In the multi-agent domain, she proposed approaches for enhancing
311 coordination through the optimization of social influence. She has held research positions at
312 DeepMind, Google Brain, and served as a mentor for the OpenAI Scholars program. Following
313 her PhD, she was a Visiting Postdoctoral Scholar at UC Berkeley in Sergey Levine's group and
314 later a Senior Research Scientist at Google Brain, where she worked on adversarial environment
315 generation to improve the robustness of reinforcement learning agents. Her research has been
316 recognized with several awards, including Best Demo at NeurIPS, an Honourable Mention for
317 Best Paper at ICML, and the Outstanding PhD Dissertation Award from the Association for the
318 Advancement of Affective Computing. Her work has been featured in Science Magazine, MIT
319 Technology Review, Quartz, IEEE Spectrum, Boston Magazine, and CBC Radio, among others.
320 She holds a Master's degree from the University of British Columbia and undergraduate degrees
321 in Computer Science and Psychology from the University of Regina.
322

322 **Zhijing Jin (University of Toronto)**

323
324 **Location:** Canada
325 **Gender:** Female

324 **Short Bio:** She is an incoming Assistant Professor at the University of Toronto, and currently a
325 research scientist at the Max Planck Institute with Bernhard Schoelkopf, based in Europe. She
326 is also a CIFAR AI Chair, faculty member at the Vector Institute, an ELLIS advisor, and fac-
327 ulty affiliate at the Schwartz Reisman Institute. Her research areas are Large Language Models
328 (LLMs), Causal Inference, and Responsible AI. Specifically, her vertical work focuses on Causal
329 Reasoning with LLMs (Causal AI Scientist, Corr2Cause, CLadder, Curiosity, Survey), Multi-
330 Agent LLMs (GovSim, SanctSim, MoralSim), and Moral Reasoning in LLMs (TrolleyProb-
331 lems, MoralLens, MoralExceptQA). To support the quality of her vertical work, her horizontal
332 work brings in Mechanistic Interpretability (CompMechs, Mem vs Reasoning), and Adversarial
333 Robustness (CRL Defense, TextFooler, AccidentalVulnerability, RouterAttack). Her research
334 contributes to AI Safety and AI for Science. She is the recipient of 3 Rising Star awards, 2 Best
335 Paper Awards at NeurIPS 2024 Workshops, and several fellowships at Open Philanthropy and the
336 Future of Life Institute. In the international academic community, She is a co-chair of the ACL
337 Ethics Committee, co-organizer of the ACL Year-Round Mentorship, and a main supporter of
338 the NLP for Positive Impact Workshop series. Her work is reported in CHIP Magazine, WIRED,
339 and MIT News. Her research is funded by NSERC, MPI, UofT, Schmidt Sciences, Open Phil,
340 AISF, and Cooperative AI Foundation.

341 4.2 PANELLISTS

342 **Moderator: Guohao Li (Eigent.AI)**

343 **Location:** UK

344 **Gender:** Male

345 **Short Bio:** Guohao Li is the founder and CEO of Eigent.AI. He is an artificial intelligence re-
346 searcher and an open-source contributor working on building intelligent agents that can perceive,
347 learn, communicate, reason, and act. He is the core lead of the open source projects CAMEL-
348 AI.org and DeepGCNs.org. He was a postdoctoral researcher at University of Oxford with Prof.
349 Philip Torr. He obtained his PhD degree in Computer Science at King Abdullah University of
350 Science and Technology (KAUST) advised by Prof. Bernard Ghanem. During his Ph.D. stud-
351 ies, he was fortunate to work at Intel ISL with Dr. Vladlen Koltun and Dr. Matthias Müller
352 as a research intern. He visited ETHz CVL as a visiting researcher. He also worked at Kumo
353 AI and PyG.org with Prof. Jure Leskovec and Dr. Matthias Fey as a PhD intern. His primary
354 research interests include Autonomous Agents, Graph Machine Learning, Computer Vision, and
355 Embodied AI. He has published related papers in top-tier conferences and journals such as ICCV,
356 CVPR, ICML, NeurIPS, RSS, 3DV, and TPAMI.

357 **Anna Helena Reali Costa (University of São Paulo)**

358 **Location:** Brazil

359 **Gender:** Female

360 **Short Bio:** Anna Reali Costa is a full professor in the Department of Computer Engineering at
361 the University of São Paulo (USP), Brazil, where she leads research at the intersection of artifi-
362 cial intelligence, machine learning, and autonomous agents. She earned her Ph.D. in Electrical
363 Engineering from University of São Paulo. Early in her career, she held visiting researcher
364 positions at the University of Karlsruhe (Germany), focusing on robotic vision and intelligent
365 mobile robots under Prof. Ulrich Rembold, and at Carnegie Mellon University (USA), collabo-
366 rating with Prof. Manuela Veloso on planning, learning, and execution for multi-robot systems.
367 Anna has been recognized as a leading figure in Brazilian AI, and she is actively involved in
368 major national initiatives. She is the Director of the Data Science Center (C2D), a partnership
369 between USP and Itau Unibanco, one of the largest banks in Latin America.

370 **Zhijing Jin (University of Toronto)**

371 **Location:** Canada

372 **Gender:** Female

373 **Short Bio:** She is an incoming Assistant Professor at the University of Toronto, and currently a
374 research scientist at the Max Planck Institute with Bernhard Schoelkopf, based in Europe. She

378 is also a CIFAR AI Chair, faculty member at the Vector Institute, an ELLIS advisor, and fac-
379 ulty affiliate at the Schwartz Reisman Institute. Her research areas are Large Language Models
380 (LLMs), Causal Inference, and Responsible AI. Specifically, her vertical work focuses on Causal
381 Reasoning with LLMs (Causal AI Scientist, Corr2Cause, CLadder, Curiosity, Survey), Multi-
382 Agent LLMs (GovSim, SanctSim, MoralSim), and Moral Reasoning in LLMs (TrolleyPro-
383 blems, MoralLens, MoralExceptQA). To support the quality of her vertical work, her horizontal
384 work brings in Mechanistic Interpretability (CompMechs, Mem vs Reasoning), and Adversarial
385 Robustness (CRL Defense, TextFooler, AccidentalVulnerability, RouterAttack). Her research
386 contributes to AI Safety and AI for Science. She is the recipient of 3 Rising Star awards, 2 Best
387 Paper Awards at NeurIPS 2024 Workshops, and several fellowships at Open Philanthropy and the
388 Future of Life Institute. In the international academic community, She is a co-chair of the ACL
389 Ethics Committee, co-organizer of the ACL Year-Round Mentorship, and a main supporter of
390 the NLP for Positive Impact Workshop series. Her work is reported in CHIP Magazine, WIRED,
391 and MIT News. Her research is funded by NSERC, MPI, UofT, Schmidt Sciences, Open Phil,
392 AISF, and Cooperative AI Foundation.

393 **Eugene Vinitsky (New York University)**

394 **Location:** USA

395 **Gender:** Male

396 **Short Bio:** Eugene Vinitsky is an Assistant Professor at NYU Tandon School of Engineering
397 with appointments in Civil and Urban Engineering, Computer Science and Engineering, and
398 C2SMARTER (a US DOT-funded Tier 1 University Transportation Center). His research fo-
399 cuses on enabling complex, human-like behavior to emerge from unsupervised interaction be-
400 tween groups of learning agents, with applications in autonomous vehicles and traffic control.
401 His work spans multi-agent reinforcement learning algorithms, data-driven simulators, and de-
402 ploying simulator-designed controllers into real-world systems. Previously, he received his PhD
403 from UC Berkeley, worked as a research scientist at Apple Special Projects Group, and has been a
404 visiting researcher at Facebook AI and interned at Tesla Autopilot and DeepMind's Multi-Agent
405 AI team. His contributions include the Flow framework for mixed-autonomy traffic control,
406 PAIRED for emergent complexity via unsupervised environment design (NeurIPS 2020 oral),
407 and recent work on adaptive AI systems that can quickly learn to cooperate with new partners.
408 He recently received a Google DeepMind grant to advance AI adaptation research.

409 **Marc Lanctot (Google DeepMind)**

410 **Location:** UK

411 **Gender:** Male

412 **Short Bio:** He is a Research Scientist at Google DeepMind. Previously, he was a Postdoctoral
413 Researcher at the Games and AI Group at Maastricht University, where he worked with Mark
414 Winands. During his PhD at the University of Alberta, he collaborated with Michael Bowling on
415 developing sampling algorithms for equilibrium computation and decision-making in games—a
416 topic detailed in his doctoral thesis. Before his PhD, he completed his undergraduate and Mas-
417 ter's studies at McGill University's School of Computer Science and Games Research @ McGill,
418 under the supervision of Clark Verbrugge. His research interests span general multi-agent learn-
419 ing and planning, computational game theory, reinforcement learning, and game-tree search. An
420 overview of his recent work can be found in his COMARL seminar (slides available online),
421 while a more personal account of his research journey and motivations is featured in an inter-
422 view with Sanyam Bhutani on Chai Time Data Science. In November 2019, he also delivered a
423 workshop on multi-agent reinforcement learning at Laber Labs, North Carolina State University,
424 led by Eric Laber.

425 **Bo An (Nanyang Technological University, Tentatively Confirmed)**

426 **Location:** Singapore

427 **Gender:** Male

428 **Short Bio:** Bo An is a President's Chair Professor and Head of the Division of Artificial Intelli-
429 gence at the College of Computing and Data Science, Nanyang Technological University (NTU),

432 Singapore, where he also directs the Centre for AI-for-X. He received his Ph.D. in Computer
433 Science from the University of Massachusetts Amherst and previously worked at the University
434 of Southern California with Prof. Milind Tambe. His research focuses on multi-agent systems,
435 computational game theory, reinforcement learning, and AI for social impact. His game-theoretic
436 research has led to real-world security applications deployed by the U.S. Federal Air Marshals
437 Service, Coast Guard, and wildlife conservation organizations. He has published extensively
438 in top AI venues and received numerous distinctions including the IFAAMAS Victor Lesser
439 Distinguished Dissertation Award, INFORMS Daniel H. Wagner Prize, and Nanyang Research
440 Awards. He was named to IEEE Intelligent Systems' "AI's 10 to Watch" list and currently serves
441 as Editor-in-Chief of IEEE Intelligent Systems and will be Program Chair of IJCAI 2027.
442

443 5 ORGANIZER INFORMATION 444

445 Our organizing committee brings together complementary expertise spanning multi-agent learning
446 and generative AI (large language models), with members representing academia, government, and
447 industry. Several organizers have extensive experience leading prior international workshops and
448 community initiatives in related fields, ensuring both technical depth and logistical excellence. The
449 committee reflects **balanced global representation**, with members based in the UK, Europe, Asia,
450 and North America, as well as **gender diversity** and **a range of career stages**, collectively strength-
451 ening the inclusiveness and reach of the event.

452 **Jianhong Wang.** Jianhong Wang is a Senior Research Associate working at INFORMED-AI Hub, a
453 UK national AI hub at University of Bristol, and a member of the European Laboratory for Learning
454 and Intelligent Systems (ELLIS). His research interest lies in multi-agent learning and reinforcement
455 learning, as well as their applications to real-world problems (e.g., energy systems, robotics, etc.).
456 His work has been published in the top-tier AI conferences, such as NeurIPS, ICML, ICLR, AAAI,
457 IJCAI, AAMAS, etc. Specifically, he has been focusing on developing cooperative multi-agent
458 reinforcement learning (MARL) algorithms grounded in cooperative game theory for more than 6
459 years. Further, he initiated an open-sourced MARL environment called MAPDN in 2021, the first
460 one targeting the distributed voltage control problem by inverter-based resources, a key challenge
461 of the ongoing decarbonization of energy systems. He is also a regular reviewer for the top-tier AI
462 conferences (e.g., NeurIPS, ICML, ICLR, AAAI, AAMAS, etc.). Moreover, he has organized the
463 workshop called CoCoMARL for promoting cooperative MARL at RLC 2024 and 2025.

464 **Caroline Wang.** Caroline Wang is a PhD student supervised by Prof. Peter Stone at the University
465 of Texas at Austin, and currently a student researcher at Google DeepMind. Previously, she received
466 a B.S. in Computer Science and Mathematics at Duke University. Her work is focused on under-
467 standing cooperative dynamics in multi-agent reinforcement learning, and on designing algorithms
468 to enable artificial agents to coordinate with previously unseen agents, and has been published at
469 premier venues such as NeurIPS, AAAI, AAMAS, and IJCAI. Simultaneously, Caroline is a regular
470 reviewer for premier AI conferences (NeurIPS, ICLR, ICML, AAAI, and AAMAS). Finally, she has
471 twice been an organizer of the Adaptive and Learning Agent Workshop at AAMAS 2023 and 2024,
472 a long-running workshop on adaptive agents and multi-agent systems.

473 **Feng Chen.** Feng Chen is a first-year PhD student supervised by Prof. Bo An at the Nanyang
474 Technological University. He obtained his Bachelor's and Master's degrees in Computer Science
475 and Technology from Nanjing University before. His research background is primarily centered
476 on multi-agent reinforcement learning (MARL), with a specific focus on developing algorithms for
477 cooperative multi-agent systems and enhancing multi-agent communication. His work on these ar-
478 eas has been published in premier AI conferences and journals, including NeurIPS, ICML, AAAI,
479 TNNLS, TMLR. Building upon his MARL foundation, he has recently been exploring the burgeoning
480 intersection of generative AI and multi-agent systems. This direction is informed by his practical
481 industry experience, where he spent nearly a year working with the ByteDance Seed team on the
482 crucial post-training of LLMs.

483 **Muhammad Arrasy Rahman.** Muhammad Arrasy Rahman is a postdoctoral research fellow at UT
484 Austin. He previously obtained his PhD in 2023 from the University of Edinburgh. His research
485 interests encompass the applications of deep reinforcement learning, transfer learning, and game
theory for designing adaptive agents that can coexist with humans and other autonomous agents in
shared environments. More recently, he has been exploring the design of LLM-based agents that

486 can assist humans and other LLMs in a broad range of tasks. Rahman has previously published his
487 works in flagship AI journals & conferences. He also regularly reviews for major AI conferences
488 (ICML, NeurIPS, ICLR, AAAI, AAMAS) and has been a program committee member for various
489 AI-related workshops in the past (ALA 2022, ALA 2023, CoCoMARL 2024). He also organized
490 the previous WAHT workshop at IJCAI 2022 and AAAI 2024.

491 **Felipe Leno da Silva (Leno).** Leno is currently a Senior Staff Researcher and Scientific Out-
492 reach Coordinator at the Lawrence Livermore National Laboratory, where he applies Reinforcement
493 Learning and Multiagent Learning to varied applications related to National Security. His Ph.D. was
494 on Transfer Learning for Multiagent RL systems.. He attends and acts as AC, SPC and PC member
495 regularly to conferences such as ICLR, RLC, NeurIPS, IJCAI, AAAI, AAMAS, ECAI, ICML, and
496 others. He will be one of the Silver Jubilee Chairs for AAMAS-26. He is also a seasoned work-
497 shop organizer having organized several workshop series including the ALA Workshop @ AAMAS
498 between 2020-2022, the Workshop on AI for Critical Infrastructure @ IJCAI (2024) and multiple
499 editions of the Latinx in AI workshop @ ICML and NeurIPS.

500 **Rupali Bhati.** Rupali is a third-year PhD student at Northeastern University, advised by Chris Am-
501 ato. Her primary area of research is solving problems of cooperation in multi-agent settings. In the
502 past, Rupali has organised the CoCoMARL Workshop at the Reinforcement Learning Conference
503 2024. Moreover, Rupali is the organiser of the Multi-Agent Learning Seminar. During her PhD,
504 Rupali has worked at the Center for Human-Compatible AI (CHAI) at UC Berkeley and has been a
505 scholar at the ML Alignment and Theory Scholars (MATS) program. Her work has been published
506 at many AI conferences and workshops, including AAMAS, NeurIPS, ICML, AAAI, and ICLR.

507 **Bo Liu.** Bo Liu is currently a fourth-year PhD student at National University of Singapore working
508 at the intersection of multi-agent reinforcement learning and generative AI, advised by Prof. Wee
509 Sun Lee and Prof. David Hsu. His research focuses on multi-agent learning paradigms for LLMs,
510 including competitive self-play and cooperative multi-agent systems. Currently a Research Scien-
511 tist Intern at Meta FAIR, previously contributed to DeepSeek’s foundation models (DeepSeek-V2,
512 DeepSeek-Prover, DeepSeek-VL). Recent work includes SPIRAL, a self-play framework demon-
513 strating how zero-sum games develop transferable reasoning in LLMs through multi-agent multi-
514 turn RL, and Natural Language Reinforcement Learning (NLRL), extending traditional MDP to nat-
515 ural language spaces. Co-created TextArena (<https://github.com/LeonGuerler/TextArena>), a plat-
516 form with 57+ competitive text-based environments for training and evaluating multi-agent behav-
517 iors in LLMs, addressing negotiation, theory of mind, and strategic reasoning. Also developed
518 TorchOpt (<https://github.com/metaopt/torchopt>), a PyTorch Ecosystem Project for differentiable op-
519 timization supporting multi-agent learning algorithms. Publications at ICLR, NeurIPS, JMLR, and
520 AAMAS span foundational topics including multi-agent communication topology learning, gradient
521 bias in meta-RL, and highly parallel environment execution engines, bridging theoretical multi-agent
522 learning with practical LLM systems.

523 **Mustafa Mert Çelikok.** Mustafa Mert Çelikok is an Assistant Professor at the University of South-
524 ern Denmark. His research focuses on multi-agent reinforcement learning for human–AI collabora-
525 tion and cooperative AI. He received a PhD in Computer Science from Aalto University under
526 Professor Samuel Kaski. Previously, he was a postdoctoral researcher at Delft University of Tech-
527 nology, working with Professor Frans A. Oliehoek and Jan-Willem van de Meent within the Hybrid
528 Intelligence Center. He co-organized the “Collaborative AI and Modelling of Humans” workshops
529 at AAAI in 2024 and 2025.

530 6 PREVIOUS RELATED WORKSHOPS

531 We list the previous related workshops that were held before as follows:

- 534 1. **Multi-Agent Systems in the Era of Foundation Models: Opportunities, Challenges
535 and Futures**, ICML 2025
- 536 2. **Collaborative and Federated Agentic Workflows**, ICML 2025
- 537 3. **Workshop on Human-AI Coevolution**, ICLR 2025
- 538 4. **Workshop on Bidirectional Human-AI Alignment**, ICLR 2025

540

541 5. **Towards Agentic AI for Science: Hypothesis Generation, Comprehension, Quantifi-**

542 **cation, and Validation**, ICLR 2025

543 6. **Workshop on Large Language Models for Agents**, ICLR 2024

544 Although the topics of our workshop may be overlapped with those in the previous workshops
 545 (e.g., human-AI interaction, multi-agent systems and agentic AI), **our workshop is uniquely more**
 546 **focused on bridging multi-agent learning techniques and generative AI**. In other words, it is
 547 aimed at encouraging the advancement of generic multi-agent learning techniques, rather than only
 548 concentrating on a broad class of applications or conceptions. We trust this is a meaningful and
 549 necessary step towards the success of machine learning breakthroughs in the era of generative AI.

550

551 7 ANTICIPATED AUDIENCE SIZE

552

553 We expect 50+ attendees in the room at all times and around 500 attendees cumulatively through-
 554 out our workshop, according to the expected growing attendance of ICLR 2026 and the increasing
 555 interest in multi-agent systems in the community of generative AI.

556

557 8 WORKSHOP STRUCTURE AND AGENDA

558

559 The workshop agenda is shared in Table 1. The workshop begins with opening remarks at 9:00 AM,
 560 followed by two invited keynotes that set the stage for the day. Then, a networking break encourages
 561 informal discussions, which allows for deeper engagement with presenters. After these, a session of
 562 two oral paper presentations (each lasting 15 minutes) provides an opportunity to highlight selected
 563 research contributions. The last session in the morning is the first poster session. Following lunch,
 564 two additional keynote talks are scheduled, offering further expert perspectives. Then, another net-
 565 working session is scheduled. After that, the final invited keynote and the second oral presentation
 566 session are arranged. After the second poster session, the workshop then transitions into a panel dis-
 567 cussion, fostering interactive dialogue among invited panellists and participants. Finally, the event
 568 concludes with closing remarks to wrap up the day’s discussions and insights.

569

570

Time	Session	Duration
09:00 - 09:15	Opening Remarks	15 minutes
09:15 - 09:55	Invited Keynote 1	40 minutes
09:55 - 10:35	Invited Keynote 2	40 minutes
10:35 - 10:55	Break & Networking	20 minutes
10:55 - 11:25	Oral Paper Presentation 1	15 x 2 minutes
11:25 - 12:05	Poster Session 1	40 minutes
12:05 - 13:10	Lunch & Networking	65 minutes
13:10 - 13:50	Invited Keynote 3	40 minutes
13:50 - 14:30	Invited Keynote 4	40 minutes
14:30 - 14:50	Break & Networking	20 minutes
14:50 - 15:30	Invited Keynote 5	40 minutes
15:30 - 16:00	Oral Paper Presentation 2	15 x 2 minutes
16:00 - 16:40	Poster Session 2	40 minutes
16:40 - 17:30	Panel Discussion	50 minutes
17:30 - 17:40	Closing Remarks	10 minutes

587 Table 1: Workshop agenda

588

589 9 PLAN TO GET AN AUDIENCE FOR OUR WORKSHOP

590

591 We will actively promote the workshop to researchers in multi-agent systems, reinforcement learning,
 592 and generative AI, emphasizing its unique focus on opportunities at their intersection. Organiz-
 593 ers and invited speakers will circulate the call through their academic and industry networks, as well

594 as relevant labs and groups (e.g., teams working on coordination, AI for science, and foundation
595 models). Beyond personal outreach, we will distribute the call on confirmed community channels
596 such as the RL-list Google Group, alongside community forums (Slack/Discord groups, Reddit's
597 r/MachineLearning, LinkedIn). To ensure consistent branding, we will create official workshop
598 accounts on Twitter/X, Bluesky, and Google (for a shared Gmail/Drive), which will host announce-
599 ments, teaser content, and media assets. We will also coordinate with the official ICLR social media
600 accounts to amplify visibility through retweets and reposts. A dedicated workshop website will link
601 to these channels and present the call, program, and speaker highlights.

602 To maximize participation, we will encourage submissions of short papers and posters on open-
603 ended or exploratory ideas, allowing contributions beyond mature results. Hybrid presentation op-
604 tions will be offered to increase accessibility, particularly for junior researchers and international
605 participants. Our outreach will follow a phased strategy: early announcements upon acceptance,
606 reminders during the submission window, and a final push close to the deadline. During ICLR, we
607 will leverage official channels, workshop social accounts, and live updates to attract attendees onsite,
608 and after the event we will release slides and recordings to ensure the workshop has lasting impact
609 and visibility.

610 611 10 DIVERSITY STATEMENT

612 Our organizing team is intentionally diverse in terms of geography, gender, career stage, and profes-
613 sional background. The eight organizers include six males and two females, spanning PhD students
614 to senior faculty and staff, and representing institutions in the UK, USA, Europe and Asia, across
615 both academia and national laboratories. This balance ensures that decisions **reflect a range of**
616 **perspectives and career experiences**. Importantly, our team also brings **varied levels of prior**
617 **workshop-organizing experience**, ranging from first-time organizers to members with extensive
618 experience in leading major international workshops, ensuring both fresh perspectives and proven
619 expertise in managing all aspects of the event.

620 We have further prioritized diversity among invited speakers and panelists. The invited speakers
621 comprise two males and two females, with representation from both industry and academia, and
622 across career levels from Assistant Professor to Full Professor. Our panel is balanced in terms of
623 gender and geography, with deliberate inclusion of local voices—most notably **Professor Anna**
624 **Helena Reali Costa from University of São Paulo**, ensuring regional representation from South
625 America. This commitment extends to the call for contributed work: we will explicitly encourage
626 participation from underrepresented groups and early-career researchers, offering flexible formats
627 (short/tiny papers, posters) and hybrid participation options to reduce barriers to engagement.

628 629 11 VIRTUAL ACCESS TO WORKSHOP MATERIALS AND OUTCOMES

630 To maximize accessibility and long-term impact, we will ensure that all workshop materials are
631 available virtually. Talks, panels, and keynote sessions will be recorded (subject to speaker consent)
632 and uploaded to the workshop website and YouTube. Accepted papers, posters, and presentation
633 slides will be archived openly, with links on the workshop webpage and on open-access repositories
634 such as OpenReview. We will also maintain a shared Google Drive for supplementary materials (e.g.,
635 datasets, code, or extended slides) and encourage presenters to share their artifacts. Live updates
636 will be posted via our official social channels (Twitter/X, Bluesky), and we will facilitate remote
637 participation through hybrid Q&A sessions and asynchronous discussion forums. This ensures that
638 the workshop's outcomes remain accessible to the broader community well beyond ICLR 2026,
639 including those unable to attend in person.

640 641 12 MANAGING CONFLICTS OF INTEREST

642 To ensure fairness and transparency, we will strictly follow ICLR's conflict-of-interest (COI) poli-
643 cies in reviewing submissions and organizing the program. Organizers will not handle papers from
644 their own students, collaborators, or institutions, and such submissions will be reassigned to other
645 reviewers without conflicts. We will maintain a clear COI tracking system—based on co-authorship,

648 institutional affiliation within the past three years, and advisor/advisee relationships—and will re-
649 quire all reviewers to declare potential conflicts before assignment. Reviewing will be conducted
650 via OpenReview, which provides built-in COI checks and reviewer assignment tools, ensuring that
651 papers are only evaluated by non-conflicted reviewers. Final acceptance decisions will be made
652 collectively by non-conflicted organizers.

653

654 REFERENCES

655

656 Gati V Aher, Rosa I Arriaga, and Adam Tauman Kalai. Using large language models to simulate
657 multiple humans and replicate human subject studies. In *International Conference on Machine
658 Learning*, pp. 337–371, 2023.

659 Stefano V. Albrecht and Peter Stone. Autonomous agents modelling other agents: A com-
660 pre-
661 hensive survey and open problems. *Artificial Intelligence*, 258:66–95, 2018. ISSN 0004-3702.
662 doi: 10.1016/j.artint.2018.01.002. URL <https://www.sciencedirect.com/science/article/pii/S0004370218300249>.

663 Stefano V Albrecht, Filippos Christianos, and Lukas Schäfer. *Multi-agent reinforcement learning: Foundations and modern approaches*. MIT Press, 2024.

664 Jonathan Chung, Anna Luo, Xavier Raffin, and Scott Perry. Battlesnake challenge: A multi-agent
665 reinforcement learning playground with human-in-the-loop. *arXiv preprint arXiv:2007.10504*,
666 2020.

667 Soon-Jo Chung, Aditya Avinash Paranjape, Philip Dames, Shaojie Shen, and Vijay Kumar. A survey
668 on aerial swarm robotics. *IEEE Transactions on robotics*, 34(4):837–855, 2018.

669 Dimitris Fouskakis and David Draper. Stochastic optimization: a review. *International Statistical
670 Review*, 70(3):315–349, 2002.

671 Stan Franklin and Art Graesser. Is It an agent, or just a program?: A taxonomy for autonomous
672 agents. In *Intelligent Agents III Agent Theories, Architectures, and Languages*, Berlin, Heidel-
673 berg, 1997. Springer. ISBN 978-3-540-68057-4. doi: 10.1007/BFb0013570.

674 Les Gasser. Social conceptions of knowledge and action: DAI foundations and open sys-
675 tems semantics. *Artificial Intelligence*, 47:107–138, 1991. ISSN 0004-3702. doi: 10.
676 1016/0004-3702(91)90052-L. URL <https://www.sciencedirect.com/science/article/pii/000437029190052L>.

677 Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
678 and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
679 challenges. In *Proceedings of the International Joint Conference on Artificial Intelligence*, pp.
680 8048–8057, 2024.

681 Balint Gyevnar and Atoosa Kasirzadeh. Ai safety for everyone. *Nature Machine Intelligence*, pp.
682 1–12, 2025.

683 Pablo Hernandez-Leal, Bilal Kartal, and Matthew E Taylor. A survey and critique of multiagent deep
684 reinforcement learning. *Autonomous Agents and Multi-Agent Systems*, 33(6):750–797, 2019.

685 Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin
686 Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a
687 multi-agent collaborative framework. In *International Conference on Learning Representations*,
688 2024.

689 Shijia Huang, Jianqiao Zhao, Yanyang Li, and Liwei Wang. Learning preference model for LLMs
690 via automatic preference data generation. In Houda Bouamor, Juan Pino, and Kalika Bali
691 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
692 cessing*, pp. 9187–9199, Singapore, December 2023. Association for Computational Linguis-
693 tics. doi: 10.18653/v1/2023.emnlp-main.570. URL <https://aclanthology.org/2023.emnlp-main.570/>.

702 Hassan K Khalil and Jessy W Grizzle. *Nonlinear systems*, volume 3. Prentice hall Upper Saddle
703 River, NJ, 2002.

704

705 Prabha Kundur et al. Power system stability. *Power system stability and control*, 10(1):7–1, 2007.

706

707 Yancheng Liang, Daphne Chen, Abhishek Gupta, Simon S Du, and Natasha Jaques. Learning to
708 cooperate with humans using generative agents. *Advances in Neural Information Processing
709 Systems*, 37:60061–60087, 2024.

710

711 Emanuele La Malfa, Gabriele La Malfa, Samuele Marro, Jie M. Zhang, Elizabeth Black, Michael
712 Luck, Philip Torr, and Michael Wooldridge. Large Language Models Miss the Multi-Agent Mark,
713 June 2025. URL <http://arxiv.org/abs/2505.21298>.

714

715 Reuth Mirsky, Ignacio Carlucho, Arrasy Rahman, Elliot Fosong, William Macke, Mohan Sridharan,
716 Peter Stone, and Stefano V Albrecht. A survey of ad hoc teamwork research. In *European
717 conference on multi-agent systems*, pp. 275–293. Springer, 2022.

718

719 Frans A Oliehoek, Christopher Amato, et al. *A concise introduction to decentralized POMDPs*,
720 volume 1. Springer, 2016.

721

722 Martin J Osborne et al. *An introduction to game theory*, volume 3. Springer, 2004.

723

724 Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
725 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings
726 of the ACM Symposium on User Interface Software and Technology*, pp. 1–22, 2023.

727

728 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
729 Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. In
730 *Proceedings of Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 15174–
731 15186, 2024.

732

733 Peter Stone and Manuela Veloso. Multiagent Systems: A Survey from a Machine Learning Perspec-
734 tive. *Autonomous Robots*, 8, 2000. doi: 10.1023/A:1008942012299.

735

736 Michael P. Wellman, Karl Tuyls, and Amy Greenwald. Empirical Game Theoretic Analysis: A
737 Survey. *Journal of Artificial Intelligence Research*, 82, 2025. ISSN 1076-9757. URL <https://dl.acm.org/doi/10.1613/jair.1.16146>.

738

739 Michael Wooldridge. *An introduction to multiagent systems*. John wiley & sons, 2009.

740

741 Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
742 Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
743 language model training. *Advances in Neural Information Processing Systems*, 36:59008–59033,
744 2023.

745

746 Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
747 Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
748 A survey. *Science China Information Sciences*, 68(2):121101, 2025.

749

750 Dong Xing, Qianhui Liu, Qian Zheng, Gang Pan, and Z Zhou. Learning with generated teammates
751 to achieve type-free ad-hoc teamwork. In *IJCAI*, pp. 472–478, 2021.

752

753 Guibin Zhang, Hejia Geng, Xiaohang Yu, Zhenfei Yin, Zaibin Zhang, Zelin Tan, Heng Zhou,
754 Zhongzhi Li, Xiangyuan Xue, Yijiang Li, Yifan Zhou, Yang Chen, Chen Zhang, Yutao Fan,
755 Zihu Wang, Songtao Huang, Yue Liao, Hongru Wang, Mengyue Yang, Heng Ji, Michael Littman,
Jun Wang, Shuicheng Yan, Philip Torr, and Lei Bai. The Landscape of Agentic Reinforcement
Learning for LLMs: A Survey, 2025. URL <http://arxiv.org/abs/2509.02547>.