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Abstract

We study the discriminative probabilistic modeling problem over a continuous1

domain for (multimodal) self-supervised representation learning. To address the2

challenge of computing the integral in the partition function for each anchor data,3

we leverage the multiple importance sampling (MIS) technique for robust Monte4

Carlo integration, which can recover the InfoNCE-based contrastive loss as a spe-5

cial case. Within this probabilistic modeling framework, we reveal the limitation of6

current InfoNCE-based contrastive loss for self-supervised representation learning7

and derive insights for developing better approaches by reducing the error of Monte8

Carlo integration. To this end, we propose a novel non-parametric method for ap-9

proximating the sum of conditional densities required by MIS through optimization,10

yielding a new contrastive objective for self-supervised representation learning.11

Moreover, we design an efficient algorithm for solving the proposed objective.12

Experimental results on bimodal contrastive representation learning demonstrate13

the overall superior performance of our approach on downstream tasks.14

1 Introduction15

Self-supervised learning (SSL) of large models has emerged as a prominent paradigm for building16

artificial intelligence (AI) systems [1]. Although self-supervision differs from human supervision,17

SSL and supervised learning share similarities. For instance, many successful self-supervised learning18

models (e.g., CLIP [2]) still use the softmax function and cross-entropy loss to define their objective19

functions, similar to traditional multi-class classification in supervised learning. The key difference is20

that self-supervised learning focuses on predicting relevant data instead of relevant labels.21

Discriminative probabilistic modeling (DPM) uses a parameterized model to capture the conditional22

probability Pr(a∣o) of a target a ∈ A given an input data point o, which is a fundamental supervised23

learning approach. For example, logistic regression for multi-class classification (MCC) uses Pr(a∣o)24

to define the probability of a label a given data o, whose maximum likelihood estimation (MLE)25

yields the cross-entropy (CE) loss. Similarly, DPM approaches such as ListNet [3] have been used26

for learning to rank (L2R) to model the probability of a candidate a in a list given a query o. In these27

supervised learning problems, the target a is from a finite set A (e.g. class labels or candidate list).28

What if the target a in DPM is from a continuous domain A? This is particularly useful for29

modeling the prediction task of self-supervised representation learning. Considering that each30

underlying object in the real world generates various forms of observational data, such as images,31

texts, and audio, DPM is a natural choice to model the probability of observing a data point from32

a continuous domain (e.g., the space of natural images, audio, or the continuous input embedding33

space of texts) given an “anchor” data point. The anchor data may come from a different modality.34
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Figure 1: Discriminative probabilistic modeling
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However, solving DPM over a continuous domain35

is deemed as a challenging task (c.f. Section 1.3 in36

[4]). Compared to the probabilistic modeling over37

discrete and finite sets, such as in traditional super-38

vised learning tasks like MCC and L2R, the DPM39

problem over a continuous domain (real vector space)40

necessitates computing the partition function (i.e., the41

normalizing constant) for each anchor. This involves42

an integration over an underlying continuous space,43

rather than a finite summation. In this work, we study44

DPM over a continuous domain for self-supervised45

representation learning by investigating a computa-46

tional framework of robust Monte Carlo integration47

of the partition functions based on multiple importance sampling (MIS) [5]. Related works are48

discussed in detail in Appendix A.49

The multiple importance sampling (MIS) approach [5, 6] was originally introduced to address the50

glossy highlights problem for image rendering in computer graphics, which involves computing51

several integrals of the form g(r, s) = ∫X f(x; r, s)µ(dx) corresponding to variations in light size s52

and surface glossiness r. For Monte Carlo integration of g(r, s), importance sampling based on a53

sample from a single distribution may lead to a large variance under some light size/surface glossiness.54

To address this issue, the MIS approach constructs an unbiased estimator ∑n
j=1 ω

(j)(xj)
f(xj ;r,s)

pj(xj)
55

by combining samples x1 . . . ,xn from different strategies (distributions) p1, . . . , pn, where ω =56

(ω(1), . . . , ω(n)) is a weighting function satisfies that ∑n
i=1 ω

(j)(x) = 1 whenever f(x; r, s) ≠ 057

and ω(j)(x) = 0 whenever pi(x) = 0. In particular, [5] proposed the “balance heuristic” ω(j)(x) =58
pj(x)

∑
n
j′=1 pj′(x)

, ∀j ∈ [n],x ∈ X and proved that this choice of ω is near-optimal in terms of variance59

among all possible weighting functions. Empirically, MIS combined with the balance heuristic leads60

to improved rendering performance compared to importance sampling using a single distribution.61

2 DPM over a Continuous Domain62

When choosing O as the anchor space, we model the probability density p(a ∣ o) of an object a ∈ A63

given an anchor object o ∈ O by the following DPM parameterized by w.64

pw(a ∣ o) =
exp(ew(o,a)/τ)

∫A exp(ew(o,a′)/τ)µ(da′)
, (1)

where τ > 0 is a temperature parameter for flexibility, ew ∶ O ×A → R is a parameterized prediction65

function, which could be based on a “two-tower” model, like the one in SimCLR [7], or a “one-66

tower” model, similar to the one used in BERT [8]. We assume that exp(ew(o,a)/τ) is Lebesgue-67

integrable for w ∈ W , W ⊂ Rd. Here pw(a ∣ o) is a valid probability density function because68

∫A pw(a ∣ o)µ(da) = 1. Given a sample {(o1,a1), . . . , (on,an)} from the joint distribution po,a,69

the maximum likelihood estimation (MLE) is done by:70

min
w
{−

1

n

n

∑
i=1

τ log
exp(ew(oi,ai)/τ)

∫A exp(ew(oi,a′)/τ)µ(da′)
} . (2)

Remark 1. Learning the DPM pŵ∗ via MLE for self-supervised pretraining naturally provides71

some performance guarantees for downstream discriminative tasks. Suppose that the true con-72

ditional density function is parameterized by some w∗ ∈ W , i.e., p = pw∗ and pw∗(a ∣ o) =73
exp(ew∗(o,a)/τ)

∫A exp(ew∗(o,a′)/τ)µ(da′)
for any o ∈ O,a ∈ A. Then, the maximum likelihood estimator ŵ∗ =74

argmaxw∈W
1
n ∑

n
i=1 log pw(ai ∣ oi) with the sample {(oi,ai)}

n
i=1 converges in probability to w∗75

under some mild assumptions (see Theorem 2.1 in [9]). Due to the continuous mapping theorem, the76

learned model satisfies eŵ∗(o,a)
p
→ ew∗(o,a) if the parameterized models ew has measure-zero dis-77

continuity points onW , which naturally provides a statistical guarantee for cross-modality retrieval.78

In Appendix E, we also discuss the performance of DPM on downstream classification tasks.79

When choosing A as the anchor space, we can also model the probability density of an object o ∈ O80

given an anchor a ∈ A by the parameterized model pw(o ∣ a) =
exp(ew(o,a)/τ)

∫O exp(ew(o′,a)/τ)µ(do′)
similar to (1).81
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Based on a sample {(o1,a1), . . . , (on,an)} from the joint distribution po,a, we can simultaneously82

model pw(a ∣ o) and pw(o ∣ a) via the objective below, which resembles the symmetric loss in [2].83

min
w
−
1

n

n

∑
i=1

(τ log
exp(ew(oi,ai)/τ)

∫A exp(ew(oi,a′)/τ)µ(da′)
+ τ log

exp(ew(oi,ai)/τ)

∫O exp(ew(o′,ai)/τ)µ(do′)
) .

2.1 An MIS-based Empirical Risk for Maximum Likelihood Estimation84

For simplicity, let us focus on the case where O is the anchor space. The main challenge85

of MLE in (2) based on the sample {(o1,a1), . . . , (on,an)} lies in computing the integral86

g(w;oi,A) ∶= ∫A exp (ew(oi,a
′)/τ)µ(da′) for each i ∈ [n], which is infeasible unless A is fi-87

nite and sufficiently small. For the importance sampling method for Monte Carlo integration, it88

is difficult, if not impossible, to select a single instrumental distribution that works well for all89

integrals g(w;oi,A), i ∈ [n]. Moreover, drawing additional samples from q to construct an unbiased90

estimator of g(w;oi,A) leads to extra costs. Recall that we have a sample aj drawn from the91

distribution p⋅∣oj
for each anchor oj , j = 1,2, . . . , n. Thus, we employ the MIS method with bal-92

ance heuristic [5] to construct the estimator ĝ(w;oi, Â) = ∑
n
j=1

1
∑

n
j′=1 p(aj ∣oj′)

exp (ew(oi,aj)/τ) of93

g(w;oi,A) = ∫A exp (ew(oi,a
′)/τ)µ(da′) by combining samples a1, . . . ,an from n distributions94

p⋅∣o1
, . . . , p⋅∣on

. In Appendix D, we show the unbiasedness of the estimator ĝ(w;oi, Â) and explain95

why we choose the balance heuristic over other possible weighting functions for MIS.96

However, a remaining issue prevents us from using the MIS-based estimator ĝ(w;oi, Â). Unlike the97

rendering problem considered in [5], we do not have access to the conditional probability densities98

p(aj ∣ oj′), j, j′ ∈ [n]. Thus, there is a need for a cheap approximation q̃(j) of the sum of conditional99

densities q(j) ∶= ∑n
j′=1 p(aj ∣ oj′), ∀j ∈ [n]. It is worth noting that q(j) can be viewed as a measure100

of popularity of aj on the dataset {(oi,ai)}
n
i=1. With a general approximation q̃ = (q̃(1), . . . , q̃(n))⊺101

of q = (q(1), . . . , q(n))⊺, the MLE objective in (2) with MIS can be written as102

L̂(w; Ô, Â) = −
1

n

n

∑
i=1

τ log
exp(ew(oi,ai)/τ)

g̃(w;oi, Â)
, g̃(w;oi, Â) =

n

∑
j=1

exp (ew(oi,aj)/τ)

q̃(j)
. (3)

Remark 2. If we simply choose the uniform approximation q̃(j) = ∑n
j′=1

1
µ(A)

= n
µ(A)

, minimizing103

L̂(w; Ô, Â) in (3) is equivalent to minimizing the InfoNCE-based loss in [10] (also see Appendix A).104

2.2 Non-parametric Method for Approximating the Measure of Popularity105

In Appendix C, we show that simply choosing a uniform q̃ in the InfoNCE-based loss to approximate106

the measure of popularity q (i.e. the sum of conditional densities) leads to a non-diminishing107

term in generalization error. In this section, we aim to find a way to approximate the measure of108

popularity q1. For brevity, we denote e(⋅, ⋅) = ew∗(⋅, ⋅) that corresponds to the real conditional density109

p(a ∣ o) = pw∗(a ∣ o) =
exp(ew∗(o,a)/τ)

∫A exp(ew∗(o,a′)/τ)µ(da′)
. Thus, for any j ∈ [n] we have110

q(j) =
n

∑
j′=1

p(aj ∣ oj′) =
n

∑
j′=1

exp(e(oj′ ,aj)/τ)

∫A exp(e(oj′ ,a)/τ)µ(da)

♢

≈
n

∑
j′=1

exp(e(oj′ ,aj)/τ)

∑
n
i′=1

1
q(i′) exp(e(oj′ ,ai′)/τ)

, (4)

where the last step ♢ is due to the MIS-based Monte Carlo integration and becomes an equality111

when n → ∞ (See Prop. 1 in Appendix D). Since the expression in (4) is implicit, we propose a112

non-parametric method to approximate q by solving the following convex optimization problem.113

min
ζ∈Rn

⎧⎪⎪
⎨
⎪⎪⎩

−
1

n

n

∑
i=1

τ log(
exp(e(oi,ai)/τ)

∑
n
j=1 exp((e(oi,aj) − ζ(j))/τ)

) +
1

n

n

∑
j=1

ζ(j)
⎫⎪⎪
⎬
⎪⎪⎭

. (5)

The following theorem characterizes the set of optima of (5) and its relationship to q.114

1Note that our goal is neither estimating the sum of probability densities q(a) = ∑n
j′=1 p(a ∣ oj′) for any

a ∈ A nor estimating the conditional density p(a ∣ o) in general for any o ∈ O,a ∈ A.
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Theorem 1. Any optimal solution ζ
∗

to (5) satisfies the following implicit expression115

exp(ζ
(j)
∗ /τ) =

n

∑
j′=1

exp(e(oj′ ,aj)/τ)

∑
n
i′=1 exp((e(oj′ ,ai′) − ζ

(i′)
∗ )/τ)

, ∀j ∈ [n]. (6)

Moreover, the optimal solutions are on a line ζ
∗
= z1n +b∗ for any z ∈ R and a unique b∗ ∈ Rn, i.e.,116

the optimal solution ζ
∗

is unique up to an additive scalar z. Additionally, the true q in (4) can be117

approximated as q(j) ≈ q̃(j) = exp(ζ
(j)
∗ /τ)
Z

, ∀j ∈ [n], where Z = exp(z/τ) > 0.118

Remark 3. Theorem 1 shows that we can find an approximation q̃ of q by solving the convex119

optimization problem in (5) (up to a constant scaling factor Z). Note that there is no need to know the120

value of Z for empirical risk minimization. If we plug q̃′ = Zq̃ = exp(ζ
∗
/τ) into (3), the empirical121

risk becomes L̂(w; Ô, Â) − z and does not change the empirical risk minimizer ŵ∗.122

Appendix B provides a synthetic experiment to show the effectiveness of our non-parametric method.123

2.3 Application to Self-Supervised Representation Learning124

By substituting the q̃ from the non-parametric method described in Section 2.2 into the empirical risk125

of DPM in (3), the empirical risk minimization (ERM) problem becomes126

min
w∈W

L̂(w; Ô, Â), L̂(w; Ô, Â) ∶= −
1

n

n

∑
i=1

τ log
⎛

⎝

n

∑
j=1

exp(ew(oi,ai)/τ)

exp((ew(oi,aj) − ζ
(j)
∗ )/τ)

⎞

⎠
,

where ζ
∗

is solved from (5). Since the true similarity function e ∶ O ×A → [−c, c] in (5) is unknown,127

we replace e(⋅, ⋅) by the parametric model ew(⋅, ⋅) to reach the following joint minimization problem.128

min
w∈W,ζ∈Rn

⎧⎪⎪
⎨
⎪⎪⎩

−
1

n

n

∑
i=1

τ log(
exp(ew(oi,ai)/τ)

∑
n
j=1 exp((ew(oi,aj) − ζ(j))/τ)

) +
1

n

n

∑
j=1

ζ(j)
⎫⎪⎪
⎬
⎪⎪⎭

. (7)

A straightforward approach for solving the above problem is taking an alternating algorithm: opti-129

mizing over ζ with fixed w, then optimizing over w with fixed ζ. However, this is costly as both130

w and ζ are high-dimensional variables. Next, we propose an efficient gradient-based algorithm131

NUCLR described in Appendix G to minimize the loss in (7) by formulating the problem as a132

finite-sum coupled compositional optimization (FCCO) problem [11].133

3 Experiments on Bimodal Representation Learning134

We apply our algorithm to bimodal self-supervised representation learning on the CC3M [12] and135

CC12M [13] datasets. Detailed settings of our experiments can be found in Appendix H. We compare136

the testing performance of our method on downstream tasks with CLIP [2], SigLIP [14], CyCLIP [15],137

and SogCLR [10]. Compared to those baselines, our NUCLR achieves overall superior performance.138

Table 1: A comparison of test performance. The best result in each column is highlighted in black.

Dataset Algorithm MSCOCO Flickr30k CIFAR100 ImageNet1k Mean

CC3M

CLIP 24.23 ± 0.14 46.33 ± 0.76 33.94 ± 0.87 35.91 ± 0.33 35.10 ± 0.22
SigLIP 23.21 ± 0.14 44.95 ± 0.45 35.70 ± 0.84 37.53 ± 0.09 35.35 ± 0.31

CyCLIP 24.47 ± 0.25 47.10 ± 0.83 37.27 ± 0.61 36.63 ± 0.04 36.37 ± 0.42
SogCLR 28.54 ± 0.25 52.20 ± 0.64 35.50 ± 1.71 40.40 ± 0.12 39.16 ± 0.33

NUCLR (Ours) 29.55 ± 0.26 53.55 ± 0.22 37.45 ± 0.45 40.49 ± 0.30 40.26 ± 0.19

CC12M

CLIP 30.30 ± 0.15 55.21 ± 0.45 25.35 ± 0.64 44.28 ± 0.22 38.79 ± 0.30
SigLIP 30.13 ± 0.45 55.40 ± 0.32 26.60 ± 1.89 46.12 ± 0.12 39.56 ± 0.68

CyCLIP 30.35 ± 0.24 54.63 ± 0.20 26.71 ± 2.09 44.94 ± 0.02 39.15 ± 0.50
SogCLR 33.91 ± 0.26 59.28 ± 0.07 26.10 ± 0.88 49.82 ± 0.14 42.28 ± 0.27

NUCLR (Ours) 34.36 ± 0.13 60.45 ± 0.03 28.16 ± 1.35 49.82 ± 0.23 43.20 ± 0.39
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A Related Work292

Probabilistic Models for Self-Supervised Representation Learning: Discriminative probabilistic293

models learn the conditional probability mass/density function p(y ∣ x) of y given data x. Recently,294

some works have focused on modeling the conditional probability density function p(y ∣ x) for295

the unsupervised representation learning task, where both x and y may belong to uncountable296

spaces. [16] studied the identifiability (i.e., the learned representations are unique up to a linear297

transformation) of DPM and showed its connection to nonlinear ICA models. [17] improved the298

Langevin MCMC method to handle the partition function in DPM for learning implicit representations299

of behavior-cloned policies in robotics. By discarding the partition function, [18] and [19] proposed300

the energy-based models I-JEPA and V-JEPA to learn visual representations by predicting the301

relevance between data representations. Although the high-level concept of JEPA is similar to our302

work in that both aim to predict the relevance between data representations, our approach is grounded303

in discriminative probabilistic modeling, whereas JEPA is an energy-based model that omits the304

partition function. Consequently, JEPA lacks some statistical guarantees of probabilistic models, such305

as the convergence of the maximum likelihood estimator, which have implications for performance306

on downstream tasks (See Section 2.1). Furthermore, JEPA is designed specifically for the visual307

modality whereas our algorithm applies to multimodality.308

Besides, a discriminative model p(y ∣ x) and a generative model p(x) can be connected by modeling309

the joint distribution p(x,y). Hybrid models [20, 21, 22, 23] simultaneously perform discriminative310

and generative modeling, while our work focuses on learning the conditional density for downstream311

discriminative tasks. Although the generative component in hybrid models might offer some benefits312

for representation learning, such as achieving reasonably good performance with small batch size,313

[22] have pointed out that current hybrid models significantly increase the computational burden314

and are difficult to apply to large-scale datasets such as ImageNet1k due to the expensive inner315

loops of SGLD. In contrast, our method achieves good performance with a small batch size using316

techniques based on the finite-sum coupled compositional optimization (FCCO) [11, 10], which317

only introduces marginal computational overhead even on large-scale datasets. Furthermore, it is318

mentioned in [23] that hybrid models like SimVAE face difficulties scaling to large-scale, complex319

datasets, as “learning representations for complex data distributions under a generative regime remains320

a challenge compared to discriminative approaches.”321

Theory of Contrastive Learning: The InfoNCE loss is the most widely used objective function in322

contrastive learning [7, 2]. Given a dataset of pairs {(oi,ai)}
n
i=1 from two views or modalities, the323

InfoNCE loss contrasts each positive data with k negative data in the sampled batch. Both empirical324

observations [7, 2, 10] and theoretical analysis [10] demonstrate that algorithms based on InfoNCE325

perform well only when the batch size is sufficiently large (e.g. 32,768 for CLIP training), which326

demands a lot of computational resources. Besides, several works analyze the generalization error327

of InfoNCE [24, 25]. However, these analyses have a critical limitation: the generalization error328

increases with k, contradicting practical observations.329

To address the issue of large batch size of InfoNCE, [10] studied the global contrastive loss (GCL),330

which can be expressed as − 1
n ∑

n
i=1 log

exp(ew(oi,ai)/τ)

∑
n
j=1 exp(ew(oi,aj)/τ)

, which can be viewed as a variant of331

InfoNCE loss that contrasts each positive data with all negative data. By formulating the minimization332

of GCL as a finite-sum compositional optimization (FCCO) problem [11], they developed the SogCLR333

algorithm, which converges to a neighborhood of GCL’s stationary point even with small batch sizes334
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(e.g., 256). Using an MCMC-based negative sampling approach, [26] introduced the EMC2 algorithm,335

which converges to the stationary point of GCL with a small batch size. However, EMC2 appears to336

perform worse than SogCLR on larger datasets such as ImageNet1k. Besides, [27] established the337

generalization bound of the kernel contrastive loss (KCL), which is a lower bound of GCL when the338

kernel is bilinear.339

B Synthetic Experiment340

We design a synthetic experiment to verify the effectiveness of our non-parametric method in341

Section 2.2. Consider anchor data space and O = {(x, y) ∣ x2 + y2 ≤ 1, x ∈ [−1,1] , y ∈ [0,1]} and342

contrast data space A = {(x, y) ∣ x ∈ [0,1] , y ∈ [0,1]}. Let o be uniformly distributed on O and the343

conditional density of an a ∈ A given o ∈ O is p(a ∣ o) = exp(e(o,a)/τ)

∫A exp(e(o,a)/τ)µ(da)
, where τ = 0.2 and344

e(o,a) ∶= o⊺a. In this problem, ∫A exp(e(o,a)/τ)µ(da) can be exactly computed.345

1

1
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Figure 2: Left: Illustration of spaces O and A; Middle: RBF interpolated heatmaps of the true q and our
estimated q̃ on data {aj}

n
j=1 when n = 100; Right: Comparing our non-parametric method’s and GCL’s

generalization error ∣L̂(Ô, Â) − L∣ and error term E(q̃,q, Ô, Â) in Theorem 2 across various n. “MLE” refers
to the MLE objective in (2) with the exact partition function.

We construct a dataset {(oi,ai)}
n
i=1 as follows: First, we uniformly sample o1, . . . ,on from O;346

Then, we sample each ai from p⋅∣oi
using rejection sampling. The ground-truth q can be computed as347

q(j) = ∑
n
j′=1 p(aj ∣ oj′) using the analytic expression of p(a ∣ o). To solve the convex minimization348

problem in (5), we initialize ζ0 = 0n and obtain ζ
∗

by running gradient descent until the gradient norm349

is below 10−15, yielding q̃′ = exp(ζ
∗
/τ). We approximate the true risk L = Eo,a[−τ log p(a ∣ o)]350

using the exact expression of p(a ∣ o) on N = 50,000 sampled pairs. Besides, we estimate Z by351

maxj exp(ζ
(j)
∗ /τ)

maxj q(j)
to obtain q̃ = q̃′

Z
. It is worth noting that computing the true risk L and the constant Z352

is only for generating the plots in Figure 2, which is neither necessary nor feasible for the empirical353

risk minimization problem on high-dimensional real data.354

As shown in the first two columns of Figure 2, our method effectively approximates the true q up to a355

constant Z. Moreover, the right column in Figure 2 confirms the result in Theorem 2 and Remark 2356

that the uniform approximation of q in GCL results in a non-diminishing term in generalization error357

as n increases. In contrast, our method achieves a significantly smaller generalization error, which358

almost matches the MLE objective in (2) with the exact partition function.359

C Finite-Sample Generalization Analysis360

Corresponding to the empirical risk of MLE in 2, the true (expected) risk can be defined as361

L(w) ∶= Eo,a [−τ log
exp(ew(o,a)/τ)

∫A exp(ew(o,a′)/τ)µ(da′)
] . (8)

Next, we analyze the error between the empirical risk L̂(w; Ô, Â) in (3) with a general approx-362

imation q̃ and the true risk L(w) in (8) for discriminative probabilistic modeling via MLE. This363

analysis provides (i) insights into the statistical error of GCL [10], and (ii) guidance on finding an364

approximation q̃ better than the uniform one used by GCL as discussed in Remark 2. First, we state365

the necessary assumptions of our analysis.366

Assumption 1. There exist c1, c2 > 0 such that ∥o∥2 ≤ c1, ∥a∥2 ≤ c2 for any o ∈ O,a ∈ A.367
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We focus on representation learning, where the prediction function ew(o,a) is based on the inner368

product between the feature e1(w1;o) of o ∈ O and the feature e2(w2;a) of a ∈ A, where w1 and w2369

are the encoders+projection heads of the first and second views/modalities, respectively. In our theory,370

we consider the case that both w1 and w2 are L-layer neural networks2 with positive-homogeneous371

and 1-Lipschitz continuous activation function σ(⋅) (e.g. ReLU).372

Assumption 2. Suppose that e1(w1;o) ∈ RdL , e2(w2;a) ∈ RdL for some dL ≥ 1. Moreover, we373

have ∥e1(w1;o)∥2 ≤
√
c, ∥e2(w2;a)∥2 ≤

√
c for some c > 0 such that ew(o,a) ∈ [−c, c].374

Based on the assumptions above, we provide a finite-sample generalization error bound between the375

empirical risk L̂(w; Ô, Â) in (3) and the true risk L(w) in (8).376

Theorem 2. Suppose that Assumptions (1), (2) hold. Consider the prediction function ew param-377

eterized by two branches of L-layer deep neural networks and an approximation q̃ of q, where378

q(j) = ∑
n
j′=1 p(aj ∣ oj′) ≥ Ω(n) almost surely, ∀j ∈ [n]. With probability at least 1 − δ, δ ∈ (0,1),379

∣L̂(w; Ô, Â) − L(w)∣ ≤ O
⎛

⎝

1

n
+

√
dL
n
+

√
log(1/δ)

n
+ Ew(q̃,q; Ô, Â)

⎞

⎠
, (9)

where E(q̃,q; Ô, Â) ∶= 1
n ∑

n
i=1∑

n
j=1 ∣

1
q̃(j) −

1
q(j) ∣ exp((ew(oi,ai) − c)/τ) is an error term.380

The proof can be found in Appendix I.381

Remark 4. (i) The global contrastive loss (GCL) with a uniform q̃(j) = n
µ(A)

leads to a non-382

diminishing error term E(q̃,q; Ô, Â) when used as an objective for discriminative probabilistic383

modeling over a continuous domain; (ii) Moreover, the bias term E(q̃,q; Ô, Â) vanishes when A is384

a finite set. Then, the result reproduces the classical result in the literature for supervised learning.385

D MIS with A General Weight Function for DPM386

We consider the following MIS-based estimator with a size-m sample from each distribution p⋅∣oj
387

and a general weight function ω for the integral g(w;oi,A) = ∫A exp(ew(oi,a)/τ)µ(da). The388

estimator ĝ(w;oi, Â) can be covered as a special case when m = 1.389

ĝ(w;oi, Â,ω) =
n

∑
j=1

1

m

m

∑
l=1

ω(j)(aj,l)

p(aj,l ∣ oj)
exp (ew(oi,aj)/τ) , Â =

n

⋃
j=1

{aj,1, . . . ,aj,m}, (10)

where ω is a weighting function such that ω(a) is on a probability simplex, ∀a ∈ A. We denote Ô ∶=390

{o1, . . . ,on}, Ξi,j(ω,aj,l) ∶=
ω(j)(aj,l)

p(aj,l∣oj)
exp (ew(oi,aj)/τ). We consider the “balance heuristic”391

ω
(j)
bl (a) =

p(a∣oj)

∑
n
j′=1 p(a∣oj′)

, ∀a ∈ A and ∀j ∈ [n] proposed in [5]. Proposition 1 shows the unbiasedness392

of estimator in (10) and justifies why we choose the balance heuristic.393

Proposition 1. For each ω, we have that ĝ(w;oi, Â,ω) is an unbiased estimator of the integral394

g(w;oi,A); (ii) The balance heuristic ωbl minimizes 1
m
E[∑

n
j=1∑

m
l=1Ξi,j(ω,aj,l)

2 ∣ Ô] among all395

possible weighting functions for any i, where 1
m
E[∑

n
j=1∑

m
l=1Ξi,j(ω,aj,l)

2 ∣ Ô] is an upper bound396

of the variance Var[ĝ(w;oi, Â,ω) ∣ Ô]; (iii) If∑n
j′=1 p(a ∣ oj′) ≥ Ω(n) almost surely for any a ∈ A397

and Assumptions 2 holds, the variance goes to zero when n→∞ or m→∞.398

Proof. Since for any j ∈ [n] aj,1, . . . ,aj,m are i.i.d. distributed, we have399

E [ĝ(w;oi, Â,ω) ∣ Ô] =
n

∑
j=1

E [
ω(j)(aj,1)

p(aj,1 ∣ Ô)
exp (ew(oi,aj,1)/τ) ∣ Ô]

=
n

∑
j=1
∫
A

ω(j)(a)

p(a ∣ oj)
p(a ∣ oj) exp (ew(Oi,a)/τ)µ(da)

⋆

= ∫
A

n

∑
j=1

ω(j)(a) exp (ew(Oi,a)/τ)µ(da)

= ∫
A

exp (ew(Oi,a)/τ)µ(da), (11)

2Our results could potentially be extended to other neural networks, such as ConvNets, using the correspond-
ing Rademacher complexity bounds (See e.g., 28).
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where ⋆ is due to Tonelli’s theorem. We denote that Ξi,j(ω,a) ∶=
ω(j)(a)
p(a∣oj)

exp (ew(oi,a)/τ). Since400

{aj,l}j∈[n],l∈[m] are mutually independent and for a specific j, aj,1, . . . ,aj,l are also identically401

distributed, the variance of the estimator in (10) can be upper bounded as402

Var[ĝ(w;oi, Â,ω) ∣ Ô] =
1

m

n

∑
j=1

E[Ξi,j(ω,aj,1)
2
∣ Ô] −

1

m

n

∑
j=1

E[Ξi,j(ω
(j),aj,1) ∣ Ô]

2 (12)

≤
1

m

n

∑
j=1

E[Ξi,j(ω,aj,1)
2
∣ Ô] =

1

m

n

∑
j=1
∫
A

ω(j)(a)2 exp (ew(oi,a)/τ)
2

p(a ∣ oj)
µ(da).

Due to Tonelli’s theorem, we have
n

∑
j=1
∫
A

ω(j)(a)2 exp (ew(oi,a)/τ)
2

p(a ∣ oj)
µ(da) = ∫

A

n

∑
j=1

ω(j)(a)2 exp (ew(oi,a)/τ)
2

p(a ∣ oj)
µ(da).

We can instead minimize the variance upper bound at each a pointwise. Then, minimizing403

∑
n
j=1

ω(j)(a)2 exp(ew(oi,a)/τ)
2

p(a∣oj)
subject to the simplex constraint leads to ω

(j)
bl (a) =

p(a∣oj)

∑
n
j′=1 p(a∣oj′)

.404

Plugging this into (12) and using Assumption 2 and ∑n
j′=1 p(a ∣ oj′) ≥ Ω(n) a.s., we have405

Var[ĝ(w;Oi, Â,ωbl) ∣ Ô] ≤
1

m

n

∑
j=1
∫
A

p(a ∣ Oj) exp (ew(Oi,a)/τ)
2

(∑
n
j′=1 p(a ∣ Oj′))2

µ(da) = O (
1

mn
) .

406

Interestingly, the minimizer ωbl of 1
m
E[∑

n
j=1∑

m
j=1Ξi,j(ω,aj,l)

2 ∣ Ô] does not depend on oi. Plug-407

ging the balance heuristic ωbl into (10), we can obtain the estimator ĝ(w;oi, Â) in the main paper.408

E Performance of DPM on Downstream Zero-Shot Classification409

Suppose that the true conditional density function p(a ∣ o) is generated by some w∗ ∈ W , i.e.,410

p(a ∣ o) = pw∗(a ∣ o) =
exp(ew∗(o,a)/τ)

∫A exp(ew∗(o,a′)/τ)µ(da′)
. Then, the maximum likelihood estimator ŵ∗ =411

argmaxw∈W
1
n ∑

n
i=1 log pw(ai ∣ oi) with the sample {(oi,ai)}

n
i=1 converges in probability to w∗412

under some mild assumptions (see Theorem 2.1 in [9]).413

Let us consider the downstream multi-class classification problem with K > 1 distinct classes. The
task is to predict the ground-truth label y ∈ {1, . . . ,K} of a data point o ∈ O. Suppose that there are
K subsets A1, . . . ,AK of A and any a ∈ Ak belongs to the k-th class. Moreover, assume that the
ground-truth label y(o) of data o is y(o) = argmaxy∈[K]Pr(y ∣ o). Given the model ŵ∗ trained via
MLE, the predicted label sŵ∗(o) of a data o ∈ O can be obtained by the following 1-nearest neighbor
(1-NN) classifier:

sŵ∗(o) = argmax
k∈[K]

eŵ∗(o,ak),

where ak ∈ A is an example of the k-th class. For instance, the example ak of the k-th class of the414

downstream image classification could be “a photo of {class_k}” when O is the image domain and415

A is the text domain [2]. Due to the monotonicity of the function exp(⋅/τ) and the expression of416

pw in (1), we have sŵ∗(o) = argmaxk∈[K] eŵ∗(o,ak) = argmaxk∈[K] pŵ(ak ∣ o). As long as the417

probability mass Pr(k ∣ o) on class k is proportional to the probability density pw∗(ak ∣ o) on the418

example ak of class k, the zero-one loss ℓ0/1(o, y(o); ŵ∗) = I[sŵ∗(o) ≠ y(o)] on the data-label419

pair (o, y(o)) of the downstream classification approaches zero when ŵ∗
p
→w∗.420

F Proof of Theorem 1421

Proof. The problem in (5) is equivalent to422

min
ζ∈Rn

⎧⎪⎪
⎨
⎪⎪⎩

1

n

n

∑
i=1

τ log
⎛

⎝

n

∑
j=1

exp((e(oi,aj) − ζ
(j)
)/τ)
⎞

⎠
+
1

n

n

∑
j=1

ζ(j)
⎫⎪⎪
⎬
⎪⎪⎭

. (13)
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We define that Φ(ζ) ∶= 1
n ∑

n
i=1 τ log (∑

n
j=1 exp((e(oi,aj) − ζ

(j))/τ)) + 1
n ∑

n
j=1 ζ

(j). Due to the423

first-order optimality condition, setting ∂
∂ζ(j)Φ(ζ) to 0 results in (6).424

Due to the property of the log-sum-exp function and e(oi,aj) ∈ [−c, c], we have425

Φ(ζ) ≥
1

n

n

∑
i=1

max
j∈[n]
{e(oi,aj) − ζ

(j)} +
1

n

n

∑
j=1

ζ(j) ≥ −c − min
j∈[n]

ζ(j) +
1

n

n

∑
j=1

ζ(j) ≥ −c.

Thus, the function Φ(ζ) is proper convex. Recall that the log-sum-exp function is affine on the426

diagonal and parallel lines ζ = z1n+b, where b ∈ Rn and z ∈ R. Thus, Φ(ζ) is affine on ζ = z1n+b.427

On each line ζ = z1n + b with a specific b ∈ Rn and varying z ∈ R, we have428

Φ(ζ) =
1

n

n

∑
i=1

τ log
⎛

⎝

n

∑
j=1

exp((e(oi,aj) − z + b
(j)
)/τ)
⎞

⎠
+ z +

1

n

n

∑
j=1

b(j)

=
1

n

n

∑
i=1

τ log
⎛

⎝
exp(−z/τ)

n

∑
j=1

exp((e(oi,aj) − b
(j)
)/τ)
⎞

⎠
+ z +

1

n

n

∑
j=1

b(j)

=
1

n

n

∑
i=1

τ log
⎛

⎝

n

∑
j=1

exp((e(oi,aj) − b
(j)
)/τ)
⎞

⎠
+
1

n

n

∑
j=1

b(j).

Note that the expression on the R.H.S is fixed when z varies, i.e., Φ(ζ) has zero directional derivatives429

along each of diagonal and parallel lines ζ = z1n + b. Recall that the log-sum-exp function is strictly430

convex along any direction other than the diagonal and parallel lines ζ = 1n + b. Since a sum of431

strictly convex functions is strictly convex and 1
n ∑

n
j=1 ζ

(j) is affine, Φ(ζ) is also strictly convex432

along any direction other than the diagonal and parallel lines ζ = z1n + b.433

Note that each ζ ∈ Rn is uniquely located on a line ζ = z1n + b for some specific b and the function434

values Φ(ζ) of different points on the same line ζ = z1n + b are the same. Thus, if ζ
∗

is a minimum435

of Φ(ζ), then any point on the line ζ = z1n + b∗ is a minimum of Φ(ζ), where b∗ is uniquely436

determined by ζ
∗
. Since the set of minima of a convex function is convex, there may exist an437

uncountably infinite number of consecutive lines parallel to the diagonal such that each point on438

those lines is a minimum of Φ(ζ). However, we can rule out such a possibility since Φ(ζ) is strictly439

convex in any direction other than ζ = z1n + b such that points on two consecutive lines parallel to440

the diagonal cannot be minimums simultaneously. Thus, there exists a unique b∗ ∈ Rn such that any441

point on the line ζ = z1n + b∗ is a minimum of Φ(ζ), i.e., the minimum of Φ(ζ) is unique up to442

an arbitrary scalar additive term z ∈ R. Finally, notice that τ logq is approximately on this line of443

minima ζ = z1n + b∗ by comparing (4) and (6).444

445

G NUCLR for Self-Supervised Representation Learning446

The problem in (7) can be formulated as a finite-sum compositional optimization problem [11].447

min
w,ζ
L̂(w,ζ) =

1

n

n

∑
i=1

log (
1

n − 1
exp(−ζ(i)/τ) + gi(w,ζ)) +

1

n

n

∑
j=1

ζ(j),

gi(w,ζ) =
1

n − 1
∑
j∈S−i

exp((ew(oi,aj) − ew(oi,aj) − ζ
(j)
)/τ), S

−

i ∶= {1, , . . . , n}/{i}.

In each iteration, we first sample a mini-batch of pairs {(oi, si)}i∈B. Based on the sampled mini-batch,448

we can construct unbiased estimators g̃i(w,ζ;B), ∇wg̃i(w,ζ;B), ∂
∂ζ(j) g̃i(w,ζ;B) of gi(w,ζ),449

∇wgi(w,ζ), and ∂
∂ζ(j) gi(w,ζ). However, directly combining these unbiased estimators does not450

lead to unbiased estimators of ∇wL̂(w,ζ) and ∇ζ(j)L̂(w,ζ) because the problem is compositional.451

Consequently, the resulting algorithm requires a large batch size ∣B∣ to converge.452

Motivated by the SOX algorithm [11] for general FCCO problems and the SogCLR algorithm [10]453

for GCL, we propose NUCLR (Algorithm 1) to minimize the loss in (7). First, we keep track of454
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an exponential moving average (EMA) estimator u(i) of gi(w,ζ) for each i ∈ [n] as in Step 5455

in Algorithm 1 to resolve the large batch issue. Based on {u(i)}i∈B, the stochastic estimator of456

∇wL̂(w,ζ) can be computed as in Step 6 in Algorithm 1. Then, we can update the model parameter457

w based on an optimizer, e.g., AdamW. Next, we update the auxiliary variable ζ based on the458

mini-batch B and the EMA estimators {u(i)}i∈B. To efficiently update the n-dimensional variable459

ζ, we adopt the randomized block coordinate approach [29]: We only update those ζ(j), j ∈ B for460

one step by a gradient-based optimizer while keeping ζ(j), j ∉ B unchanged. Based on {u(i)}i∈B,461

the stochastic estimator of the partial derivatives ∂
∂ζ(j) L̂(w,ζ) for any j in the minibatch B can be462

computed as in Step 9 in Algorithm 1.

Algorithm 1 NUCLR Algorithm for Self-Supervised Representation Learning

1: Initialize w0, u0, ζ = ζ01n and set up ξ0 > ζ0, η, γ
2: for t = 0,1 . . . , T − 1 do
3: Sample Bt ⊂ {1, . . . , n}
4: Compute Σ

(i,j)
t = ewt(oi,aj) − ewt(oi,ai) for i, j ∈ Bt

5: Update u(i)t+1 =

⎧⎪⎪
⎨
⎪⎪⎩

(1 − γ)u
(i)
t + γ

1
B−1 ∑j∈Bt/{i} exp((Σ

(i,j)
t − ζ

(j)
t )/τ), i ∈ Bt

u
(i)
t , i ∉ Bt

6: Compute Ĝ(wt) =
1
B ∑i∈Bt

1

u
(i)
t+1+

1
n−1 exp(−ξt/τ)

( 1
B−1 ∑j∈Bt/{i} exp((Σ

(i,j)
t − ζ

(j)
t )/τ)∇wΣ

(i,j)
t )

7: Update wt+1 by a momentum or adaptive method with Ĝ(wt) as the gradient estimator
8: Compute Ĝ(ζ(j)t ) = −

1
n−1

1
B ∑i∈Bt

1

u
(i)
t+1+

1
n−1 exp(−ζ

(i)
t /τ)

exp((Σ
(i,j)
t −ζ

(j)
t )/τ)+

1
n

for j ∈ Bt

9: Update ζ(j)t+1 =

⎧⎪⎪
⎨
⎪⎪⎩

ζ
(j)
t − ηĜ(ζ

(j)
t ), j ∈ Bt

ζ
(j)
t , j ∉ Bt

10: Update ξt+1 =max{ξ0,maxj∈[n] ζ
(j)
t+1}

11: end for
463

Computational and Memory Overheads of NUCLR: Compared to the O(Bd) per-iteration com-464

putational cost of the SimCLR/CLIP algorithm [7, 2], our proposed NUCLR leads to a computational465

overhead O(B) similar to SogCLR [10] for updating the scalars {u(i)}i∈Bt and {ζ(i)}i∈Bt . This466

extra O(B) cost can be ignored since d is extremely large in modern deep neural networks. Owing467

to the moving average estimator u, our NUCLR does not require a huge batch size B for good468

performance, unlike SimCLR/CLIP. Thus, NUCLR is also more memory-efficient, making it suitable469

for environments with limited GPU resources, similar to SogCLR. NUCLR needs to store one extra470

n-dimensional vector ζ. Maintaining ζ in GPU only requires less than 100MB for 12 million data471

points, which is negligible compared to the GPU memory required for backpropagation. Moreover,472

we may instead maintain the vector ζ in CPU and only transfer those needed {ζ(j)}j∈Bt to GPU in473

each iteration. The overhead can be further reduced by overlapping communication and computation.474

Freeze period of ζ: At the beginning of training when w is far from w∗, then the optimal ζ in (7)475

may be far from the optimal solution to (5). So the learned ζ values at the earlier iterations may not476

be accurate enough, which could hurt the learning. To mitigate this issue, we freeze ζ in the first T0477

iterations, where T0 is much smaller than the total number of iterations T .478

Downweighting the Positive Pairs: In (7), the denominator ∑n
j=1 exp((ew(oi,aj) − ζ

(j))/τ) in479

the log-likelihood can be seen as the weighted variant ∑n
j=1 exp(−ζ

(j)/τ) exp((ew(oi,aj))/τ) of480

the standard term in GCL, where exp(−ζ(j)/τ) can be viewed as the “strength” of pushing aj away481

from oi. In each iteration of our algorithm, the gradient w.r.t. w is computed using the current value482

of the auxiliary variable ζ ∈ Rn, whose all coordinates are updated from the same initialized value483

ζ0 ∈ R. Consequently, we assign almost the same weight to the positive pair (oi,ai) and negative484

pairs {(oi,aj)}j≠i at the beginning of training, which may slow down the learning process. To485

address this issue, we introduce a scalar ξt = ∥ζt∥∞ to reduce the weight of positive pair (oi,ai)486

from exp(−ζ
(i)
t /τ) to exp(−ξt/τ), which prevents the positive pair has a larger weight than negative487

pairs. The value of ξt is updated at the end of each iteration. It is worth noting that the value of ξt is488

adaptively updated in Algorithm 1 and there is no need to tune it as a hyperparameter.489
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Margin Interpretation of NUCLR: Cross-entropy and contrastive losses with an additive margin490

m > 0 have been widely studied in the literature [30, 31, 32, 33, 34, 35], which can be viewed as a491

smooth version of the hinge loss to separate the matching (positive) pair (oi,ai) from negative pairs492

{(oi,aj) ∣ aj ≠ ai,aj ∈ A}. In supervised learning tasks such as face verification and multi-class493

classification, using a relatively large margin has been shown to be beneficial [32, 33]. However, the494

“false negative” issue is more pronounced in self-supervised learning. Determining the appropriate495

margin becomes more difficult, as aggressively and uniformly pushing away all positive and negative496

pairs may hurt the performance [36]. As shown in Line 7 of Algorithm 1, our NUCLR algorithm497

adopts an individualized margin −ζ(j) for each negative data aj when updating the model parameter498

w. Rather than relying on an expensive grid search for individualized margins, our method learns499

them in a principled way. Intuitively, the margin between (oi,ai) and (oi,aj) should be smaller500

when aj is popular, as it is more likely to be a false negative. We observe that ζ(j) can also serve as a501

measure of the popularity since q̃(j) ∝ exp(ζ(j)/τ) when ζ(j) is optimized. As a result, NUCLR can502

help tolerate potential false negatives because the margin −ζ(j) between pairs (oi,ai) and (oi,aj)503

is smaller when the popularity proxy ζ(j) is larger.504

H Detailed Settings of Experiments on Bimodal Representation Learning505

The training set of CC3M contains n = 2,723,200 image-text pairs, while that of CC12M contains506

n = 9,184,256 image-text pairs. We evaluate the performance of trained models on downstream507

zero-shot image-text retrieval and image classification tasks. Retrieval performance is evaluated on508

the test splits of the Flickr30k [37] and MSCOCO [38] datasets, in terms of the mean Recall@1 score509

for image-to-text and text-to-image retrievals. The top-1 classification accuracy is evaluated on the510

ImageNet1k [39] and CIFAR100 [40] datasets. We compare our proposed NUCLR algorithm with511

baselines CLIP [2], SigLIP [14], DCL [41],CyCLIP [15], and SogCLR [10].512

We focus on the limited-resource setting: All experiments utilize distributed data-parallel (DDP)513

training on two NVIDIA A100 GPUs with 40GB memory and the total batch size B in each iteration514

is 512. Besides, we use ResNet-50 as the vision encoder and DistilBert as the text encoder. The output515

embedding of each encoder is projected by a linear layer into a 256-dimensional feature representation516

for computing the losses. We run each algorithm 3 times with different random seeds and each517

run contains 30 epochs. We tune the hyperparameters of all algorithms based on the performance518

on the validation splits. The optimizer for the model parameter w is AdamW [42] with a weight519

decay of 0.02 and a cosine annealing learning rate schedule [43]. For all algorithms, we choose a520

fixed temperature parameter τ tuned within {0.005,0.01,0.03,0.05}. It is worth noting that both521

our algorithm and the baselines have the option to set the temperature τ as a learnable parameter or522

utilize some more sophisticated strategies [44, 45, 46]. However, we do not explore that in this paper.523

For SogCLR and our algorithm NUCLR, we set γ = 0.8. For our NUCLR, we select ζ0 = −0.05 on524

the CC3M dataset and ζ0 = 0 on the CC12M dataset. Besides, we freeze ζ in the first 5 epochs.525

I Proof of Theorem 2526

The structure of our proof is as follows:527

• Section I.1 presents necessary lemmas for our generalization analysis;528

• Section I.2 decomposes the generalization error into two parts, which are handled by529

Section I.3 and Section I.4, respectively;530

• Section I.5 provides bounds for Rademacher complexities of function classes parameterized531

by deep neural networks.532

The main theorem can be proved by combining (15), (16), (17), (18), (19), (22), (25), (26).533

I.1 Lemmas534

The following two lemmas provide contraction lemmas on Rademacher complexities. Lemma 1535

considers the class of real-valued functions, and Lemma 2 considers the class of vector-valued536

functions [47, 25]. Let ϵi and ϵi,j be Rademacher variables.537
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Lemma 1 (Contraction Lemma, Thm 11.6 in [48]). Let τ ∶ R+ ↦ R+ be convex and nondecreasing.538

Suppose ψ ∶ R↦ R is contractive (∣ψ(t) − ψ(t̃)∣ ≤ G∣t − t̃∣) and ψ(0) = 0. Then for any F̃ we have539

Eϵτ( sup
f∈F̃

n

∑
i=1

ϵiψ(f(xi))) ≤ Eϵτ(G sup
f∈F̃

n

∑
i=1

ϵif(xi)).

We say that a functionψ ∶ Rd → R isG-Lipschitz continuous w.r.t. ∥⋅∥2 if ∣ψ(x)−ψ(x)∣ ≤ G ∥x − x′∥2540

for a G > 0 and any x,x′ ∈ Rd.541

Lemma 2. Let F be a class of bounded functions f ∶ Z ↦ Rd which contains the zero function. Let542

τ ∶ R+ → R+ be a continuous, non-decreasing, and convex function. Assume g̃1, . . . , g̃n ∶ Rd → R are543

G-Lipschitz continuous w.r.t. ∥ ⋅ ∥2 and satisfy g̃i(0) = 0. Then544

Eϵ∼{±1}nτ( sup
f∈F

n

∑
i=1

ϵig̃i(f(xi))) ≤ Eϵ∼{±1}ndτ(G
√
2 sup
f∈F

n

∑
i=1

d

∑
j=1

ϵi,jfj(xi)). (14)

The following lemma estimates the moment generation function of a Rademacher chaos variable of545

order 2 [49].546

Lemma 3. Let ϵi, i ∈ [n] be independent Rademacher variables. Let ai,j ∈ R, i, j ∈ [n]. Then for547

Z = ∑1≤i<j≤n ϵiϵjaij we have548

Eϵ exp (∣Z ∣/(4es)) ≤ 2, where s2 ∶= ∑
1≤i<j≤n

a2i,j .

The following lemma is a version of Talagrand’s contraction lemma.549

Lemma 4 (Lemma 8 in [50]). Let H be a hypothesis set of functions mapping X to R and ψ is550

G-Lipschitz functions for some G > 0. Then, for any sample S of n points x1, . . . , xn ∈ X , the551

following inequality holds.552

1

n
Eϵ1∶n [sup

h∈H

n

∑
i=1

ϵiψ(h(xi))] ≤
G

n
Eϵ1∶n [sup

h∈H

n

∑
i=1

ϵih(xi)] .

I.2 Error Decomposition553

Considering loge x ≤ x − 1 for any x > 0, we have554

L̂(w; Ô, Â) − L(w)

= Eo,a[ew(o,a)] −
1

n

n

∑
i=1

ew(oi,ai) +
1

n

n

∑
i=1

τ log(g̃(w;oi, Â)) −E [τ log g(w;o,A)]

= Eo,a[ew(o,a)] −
1

n

n

∑
i=1

ew(oi,ai) +
1

n

n

∑
i=1

Eo

⎡
⎢
⎢
⎢
⎢
⎣

τ log
∑

n
j=1

1
q̃(j) exp((ew(oi,aj) − c)/τ)

∫A exp((ew(o,a) − c)/τ)µ(da)

⎤
⎥
⎥
⎥
⎥
⎦

≤ Eo,a[ew(o,a)] −
1

n

n

∑
i=1

ew(oi,ai)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I

+
C

n

n

∑
i=1

n

∑
j=1

1

q̃(j)
exp(ēw(oi,aj)) −CEo [∫

A

exp(ēw(o,a))µ(da)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II

,

(15)

where we define ēw(o,a) ∶=
ew(o,a)−c

τ
∈ [−2c/τ,0] such that exp(ēw(o,a)) ∈ [exp(−2c/τ),1].555

Besides, and C ∶= supo∈O
τ

∫A exp(ēw(o,a))µ(da)
. Due to Assumption 2, C ≤ τ exp(2c/τ)

µ(A)
< ∞. In556

practice, C could be much smaller than the worst-case value τ exp(2c/τ)
µ(A)

. Similarly, we have557

L(w) − L̂(w; Ô, Â) ≤
1

n

n

∑
i=1

ew(oi,ai) −E[ew(o,a)] (16)

+C
′

E [∫
A

exp(ēw(o,a))µ(da)] −
C
′

n

n

∑
i=1

n

∑
j=1

1

q̃(j)
exp(ēw(oi,aj)),

where C
′

=
τ∥q̃∥∞

n
exp(2c/τ).558
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I.3 Bounding Term I559

Define the function class E ∶= {(o,a) ↦ ew(o,a) ∣ w ∈ W}. Since (o1,a1), . . . , (on,an) are i.i.d.560

and Assumption 1 (ew(o,a) ∈ [−c, c] for any w ∈ W), we can apply the McDiarmid’s inequality to561

Eo,a[ew(o,a)] −
1
n ∑

n
i=1 ew(oi,ai) and utilize the symmeterization argument following Theorem562

3.3 in [51]. With probability at least 1 − δ
4

,563

Eo,a[ew(o,a)] ≤
1

n

n

∑
i=1

ew(oi,ai) + 2Rn(E) + 6c

√
log(8/δ)

2n
,

where Rn(E) ∶= EÔ,Â[R̂
+

n(E)], R̂+n(E) ∶= Eϵ1∶n [supe∈E
1
n ∑

n
i=1 ϵie(oi,ai)] is the empirical564

Rademacher complexity of E on the sample Ô× Â, and ϵ1, . . . , ϵn are Rademacher random variables.565

Similarly, we can also apply McDiarmid’s inequality to 1
n ∑

n
i=1 ew(oi,ai) − Eo,a[ew(o,a)] and566

then use the symmetrization argument. With probability at least 1 − δ
4

,567

1

n

n

∑
i=1

ew(oi,ai) ≤ Eo,a[ew(o,a)] + 2Rn(E) + 6c

√
log(8/δ)

2n
,

Thus, with probability at least 1 − δ
2

, we have568

∣
1

n

n

∑
i=1

ew(oi,ai) −Eo,a[ew(o,a)]∣ ≤ 2Rn(E) + 6c

√
log(8/δ)

2n
. (17)

I.4 Bounding Term II569

We decompose the term II in (15) as follows.570

II =
1

n

n

∑
i=1

n

∑
j=1

1

q̃(j)
exp(ēw(oi,aj)) −Eo [∫

A

exp(ēw(o,a))µ(da)]

=
1

n

n

∑
i=1

n

∑
j=1

(
1

q̃(j)
−

1

q(j)
) exp(ēw(oi,aj))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II.a

+
1

n

n

∑
i=1

n

∑
j=1

1

q(j)
exp(ēw(oi,aj)) −Eo [∫

A

exp(ēw(o,a))µ(da)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
II.b

.

(18)
Thus, we have ∣II∣ ≤ ∣II.a∣ + ∣II.b∣.571

Since exp(ēw(o,a)) = exp((ew(o,a) − c)/τ) ≤ 1 for any o ∈ O,a ∈ A, we have572

∣II.a∣ ≤
1

n

n

∑
i=1

n

∑
j=1

∣
1

q̃(j)
−

1

q(j)
∣ exp(ēw(oi,aj)) ≤

n

∑
j=1

∣
1

q̃(j)
−

1

q(j)
∣ . (19)

We define Ψ(Ô, Â) ∶== supw {
1
n ∑

n
i=1∑

n
j=1

1
q(j) exp(ēw(oi,aj)) −Eo [∫A exp(ēw(o,a))µ(da)]}.573

We denote that Ôℓ = (Ô/{oℓ}) ∪ {o
′

ℓ}, Âℓ = (Â/{aℓ}) ∪ {a
′

ℓ}, where (o′1,a
′

1), . . . , (o
′

n,a
′

n) are574

i.i.d. to (o1,a1), . . . , (on,an). We denote that q(a; Ô) ∶= ∑n
o∈Ô

p(a ∣ o) such that q(j) = q(aj ; Ô).575

If q(j) = ∑n
j′=1 p(aj ∣ oj′) ≥ Ω(n) almost surely, we have576

∣Ψ(Ô, Â) −Ψ(Ôℓ, Â)∣ =
RRRRRRRRRRR

sup
w

1

n

n

∑
j=1

1

q(j)
exp(ēw(Oℓ,Aj)) − sup

w

1

n

n

∑
j=1

1

q(Aj ; Ôℓ)
exp(ēw(O

′

ℓ,Aj))

RRRRRRRRRRR

≤ O(1/n),

∣Ψ(Ô, Â) −Ψ(Ô, Âℓ)∣ =

RRRRRRRRRRR

sup
w

1

n

n

∑
i=1

1

q(Aℓ; Ô)
exp(ēw(oi,Aℓ)) − sup

w

1

n

n

∑
i=1

1

q(A′ℓ; Ô)
exp(ēw(oi,A

′

ℓ))

RRRRRRRRRRR

≤ O(1/n).

Since oi and Aj are mutually dependent only when i = j, we then apply the McDiarmid-Type577

inequalities for graph-dependent variables (Theorem 3.6 in [52]) to the term II.b and −II.b. With578

probability at least 1 − δ
4

, δ ∈ (0,1), we have579

II.b ≤ E [sup
w

II.b] +O
⎛

⎝

√
10 log(4/δ)

n

⎞

⎠
. (20)
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Similarly, with probability at least 1 − δ
4

, δ ∈ (0,1), we have580

−II.b ≤ E [sup
w
{−II.b}] +O

⎛

⎝

√
10 log(4/δ)

n

⎞

⎠
. (21)

Let (o′1,a
′

1), . . . , (o
′

n,a
′

n) be a virtual sample i.i.d. to (o1,a1), . . . , (on,an). Denote that Ô′ ∶=581

{o′1, . . . ,o
′

n}, Â
′ ∶= {a′1, . . . ,a

′

n}. Due to (11), we have582

Eo [∫
A

exp(ēw(o,a))µ(da)] = EÔ′,Â′

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
i=1

n

∑
j=1

1

q(a′j ; Ô
′)
exp(ēw(o

′

i,a
′

j))

⎤
⎥
⎥
⎥
⎥
⎦

.

We can rewrite and decompose the E [supw II.b] term as583

E [sup
w

II.b] = E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

⎧⎪⎪
⎨
⎪⎪⎩

1

n

n

∑
i=1

n

∑
j=1

1

q(j)
exp(ēw(oi,aj)) −Eo [∫

A

exp(ēw(o,a))µ(da)]

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

= E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

⎧⎪⎪
⎨
⎪⎪⎩

1

n

n

∑
i=1

n

∑
j=1

1

q(j)
exp(ēw(oi,aj)) −EÔ′,Â′

⎡
⎢
⎢
⎢
⎢
⎣

1

n

n

∑
i=1

n

∑
j=1

1

q(a′j ; Ô
′)
exp(ēw(o

′

i,a
′

j))

⎤
⎥
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

≤ EÔ,Â,Ô′,Â′ [sup
w
{
1

n

n

∑
i=1

1

q(ai; Ô)
exp(ēw(oi,ai)) −

1

n

n

∑
i=1

1

q(a′i; Ô
′)
exp(ēw(o

′

i,a
′

i))}]

+EÔ,Â,Ô′,Â′

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

⎧⎪⎪
⎨
⎪⎪⎩

1

n

n

∑
i=1

∑
j≠i

1

q(j)
exp(ēw(oi,aj)) −

1

n

n

∑
i=1

∑
j≠i

1

q(a′j ; Ô
′)
exp(ēw(o

′

i,a
′

j))

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

≤ O(1/n) +E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

⎧⎪⎪
⎨
⎪⎪⎩

1

n

n

∑
i=1

∑
j≠i

1

q(j)
exp(ēw(oi,aj)) −

1

n

n

∑
i=1

∑
j≠i

1

q(a′j ; Ô
′)
exp(ēw(o

′

i,a
′

j))

⎫⎪⎪
⎬
⎪⎪⎭

⎤
⎥
⎥
⎥
⎥
⎦

,

the last step is due to the assumption q(ai; Ô) = ∑n
j′=1 p(ai ∣ oj′) ≥ Ω(n). Next, we adapt the proof584

technique in Theorem 6 of [27]. W.l.o.g., we assume that n is even (If n is odd, we can apply the585

following analysis to the first n − 1 terms in the summation, where n − 1 is even. The last term in586

the summation is a O(1/n) term, which does not change the result). Suppose that Sn is the set of587

all permutations (the symmetric group of degree n). Then, for each s ∈ S, pairs (os(2i−1)),as(2i))588

(i = 1, . . . , n/2) are mutually independent. Consider the alternative expression of a U-statistics of589

order 2 (See Appendix 1 in [53]).590

1

n(n − 1)

n

∑
i=1

∑
j≠i

1

q(j)
exp(ēw(oi,aj)) =

1

n!(n/2)
∑
s∈Sn

n/2

∑
i=1

1

q(as(2i); Ô)
exp(ēw(os(2i−1),as(2i))).

It then follows that591

E [sup
w

II.b] ≤ O(1/n) +
n−1

n/2
E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

1

n!
∑
s∈Sn

n/2

∑
i=1

⎛

⎝

exp(ēw(os(2i−1),as(2i)))

q(as(2i); Ô)
−
exp(ēw(o

′

s(2i−1),a
′

s(2i)))

q(a′
s(2i)

; Ô′)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ O(1/n) +
n−1

n/2

1

n!
∑
s∈Sn

E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

n/2

∑
i=1

⎛

⎝

exp(ēw(os(2i−1),as(2i)))

q(as(2i); Ô)
−
exp(ēw(o

′

s(2i−1),a
′

s(2i)))

q(a′
s(2i)

; Ô′)

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= O(1/n) +
n−1

n/2
E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

n/2

∑
i=1

(
exp(ēw(o2i−1,a2i))

q(a2i; Ô)
−
exp(ēw(o

′

2i−1,a
′

2i))

q(a′2i; Ô
′)

)

⎤
⎥
⎥
⎥
⎥
⎦

= O(1/n) +
n−1

n/2
E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

n/2

∑
i=1

ϵi (
exp(ēw(o2i−1,a2i))

q(a2i; Ô)
−
exp(ēw(o

′

2i−1,a
′

2i))

q(a′2i; Ô
′)

)

⎤
⎥
⎥
⎥
⎥
⎦

≤ O(1/n) +
2(n − 1)

n/2
E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

n/2

∑
i=1

ϵi exp(ēw(o2i−1,a2i))

q(a2i; Ô)

⎤
⎥
⎥
⎥
⎥
⎦

,
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where we have used the symmetry between the permutations in Sn and (oi,ai), (o
′

i,a
′

i). By Lemma 4592

and the assumption q(a2i; Ô) = ∑n
j′=1 p(a2i ∣ oj′) ≥ Ω(n), we further get593

E [sup
w

II.b] ≤ O(1/n) +O(1/n)E

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

n/2

∑
i=1

ϵi exp(ēw(o2i−1,a2i))

⎤
⎥
⎥
⎥
⎥
⎦

.

Define the function class Ḡ = {(o,a) ↦ exp(ēw(o,a)) ∣ w ∈ W}. Then, we define the following
empirical Rademacher complexity

R̂−n/2(Ḡ; s) ∶=
2

n
Eϵ1∶n/2

⎡
⎢
⎢
⎢
⎢
⎣

sup
w

n/2

∑
i=1

ϵi exp(ēw(os(2i−1),as(2i)))

⎤
⎥
⎥
⎥
⎥
⎦

.

We further define the Rademacher complexity R−n/2(Ḡ) ∶=maxs∈Sn EÔ,Â[R̂
−

n/2(Ḡ; s)]. We can also594

apply the symmetrization argument above to bound E[supw{−II.b}]. Due to Assumption 1, we can595

bound the II.b term as: With probability 1 − δ
2

, δ ∈ (0,1), we have596

∣II.b∣ ≤ O(1)R̂−n/2(Ḡ; s) +O
⎛

⎝

1

n
+

√
10 log(4/δ)

n

⎞

⎠
. (22)

I.5 Bounding Rademacher Complexities597

We consider the specific similarity function:598

ew(o,a) = e1(w1;o)
⊺e2(w2;a).

We consider L-layer neural networks599

e1(w1;o) ∈ F1,L = {o→ σ(W1,Lσ(W1,L−1 . . . σ(W1,1o))) ∶ ∥W1,l∥F ≤ Bl},

e2(w2;a) ∈ F2,L = {a→ σ(W2,Lσ(W2,L−1 . . . σ(W2,1a))) ∶ ∥W2,l∥F ≤ Bl}.

Suppose that W1,l ∈ Rd1,l×d1,l−1 , W2,l ∈ Rd2,l×d2,l−1 and d1,0 = d1, d2,0 = d2, d1,L = d2,L = dL.600

Define W ⊺

l = (W
(1)
l , . . . ,W

(dl)

1 ), where W (ι)
l is the ι-th row of matrix Wl. The following results601

are adaptions of the results in [54].602

I.5.1 Bounding Rn(E)603

Define h ∶ R2d → R as h(y) = y⊺1y2, where y = (
y1

y2
) and y1,y2 ∈ Rd. It is clear that ew(o,a) =604

h(e1(w1,o), ew(w2,a)). Due to Assumption 2, we have ∥e1(w1,o)∥2 ≤
√
c and ∥ew(w2,a)∥ ≤605

√
c. For any y = (

y1

y2
) ,y′ = (

y′1
y′2
) and y1,y2,y1,y

′

2 ∈ [0,
√
c]d, we have606

(h(y) − h(y′))
2
≤ 2(y⊺1(y2 − y

′

2))
2
+ 2((y1 − y

′

1)
⊺y′2)

2
≤ 2c ∥y − y′∥

2
2 ,

where we have used (a + b)2 ≤ 2a2 + 2b2 and the decomposition y⊺1y2 − (y
′

1)
⊺y′2 = y

⊺

1(y2 − y
′

2) +607

(y1 − y
′

1)
⊺y′2. Thus, we can conclude that h is

√
2c-Lipschitz continuous to y and apply Lemma 2608

to the function ew(o,a) = h(e1(w1,o), ew(w2,a)).609

R̂+n(E) = Eϵ1∶n [sup
e∈E

1

n

n

∑
i=1

ϵie(oi,ai)] ≤

√
2c

n
Eϵ1,ϵ2∈{±1}ndL [sup

w

n

∑
i=1

dL

∑
ι=1

(ϵ
(i,ι)
1 e

(ι)
1 (w1,oi) + ϵ

(i,ι)
2 e

(ι)
2 (w2,ai))]

≤

√
2c

n
Eϵ1∈{±1}ndL [sup

w

n

∑
i=1

dL

∑
ι=1

ϵ
(i,ι)
1 e

(ι)
1 (w1,oi)] +

√
2c

n
Eϵ1,ϵ2∈{±1}ndL [sup

w

n

∑
i=1

dL

∑
ι=1

ϵ
(i,ι)
2 e

(ι)
2 (w2,ai)]

=

√
2c

n
Eϵ1∈{±1}ndL [ sup

W1,L,f1,L−1∈F1,L−1

n

∑
i=1

dL

∑
ι=1

ϵ
(i,ι)
1 σ(f1,L−1(oi)

⊺W
(ι)
1,L)]

+

√
2c

n
Eϵ2∈{±1}ndL [ sup

W2,L,f2,L−1∈F2,L−1

n

∑
i=1

dL

∑
ι=1

ϵ
(i,ι)
2 σ(f2,L−1(ai)

⊺W
(ι)
2,L)] .
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For simplicity, we can only consider one of the terms above and neglect the index of embedding610

networks (1 or 2). Let xi be one of oi and ai. Cauchy-Schwarz and (supx)2 ≤ supx2 imply611

Eϵ∈{±1}ndL [ sup
WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L )] ≤

⎛

⎝
Eϵ∈{±1}ndL

⎡
⎢
⎢
⎢
⎢
⎣

( sup
WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

1
2

≤
⎛

⎝
Eϵ∈{±1}ndL

⎡
⎢
⎢
⎢
⎢
⎣

sup
WL,f∈FL−1

(
n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

1
2

. (23)

For a λ > 0, Jensen’s inequality implies that612

Eϵ∈{±1}ndL

⎡
⎢
⎢
⎢
⎢
⎣

sup
WL,f∈FL−1

(
n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2⎤
⎥
⎥
⎥
⎥
⎦

=
1

λ
log exp

⎛

⎝
λEϵ

⎡
⎢
⎢
⎢
⎢
⎣

sup
WL,f∈FL−1

(
n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2⎤
⎥
⎥
⎥
⎥
⎦

⎞

⎠

≤
1

λ
log
⎛

⎝
Eϵ exp

⎛

⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2
⎞

⎠

⎞

⎠
. (24)

We utilize the following facts: (i) supx x
2 ≤max{(supx x)

2, (supx(−x))
2} and for a Rademacher613

random variable ϵ, we have ϵ,−ϵ are i.i.d.; (ii) Lemma 1 with τ(t) = exp(λt2) and σ is 1-Lipschitz;614

(iii) (supx)2 ≤ supx2; (iv) ∥Wl∥F ≤ Bl for each l ∈ [L]:615

Eϵ exp
⎛

⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2
⎞

⎠

(i)
≤ 2Eϵ exp

⎛

⎝
λ( sup

WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2
⎞

⎠

(ii)
≤ 2Eϵ exp

⎛

⎝
λ( sup

WL,f∈FL−1

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)f(xi)
⊺W

(ι)
L )

2
⎞

⎠

(iii)
≤ 2Eϵ exp

⎛

⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)f(xi)
⊺W

(ι)
L )

2
⎞

⎠

≤ 2Eϵ exp
⎛

⎝
λ sup

WL,f∈FL−1
(
dL

∑
ι=1

∥
n

∑
i=1

ϵ(i,ι)f(xi)∥

2

∥W
(ι)
L ∥2

)

2
⎞

⎠

≤ 2Eϵ exp
⎛

⎝
λ sup

WL,f∈FL−1
∥WL∥

2
F

dL

∑
ι=1

∥
n

∑
i=1

ϵ(i,ι)f(xi)∥

2

2

⎞

⎠

(iv)
≤ 2Eϵ exp

⎛

⎝
λB2

L sup
f∈FL−1

dL

∑
ι=1

∥
n

∑
i=1

ϵ(i,ι)f(xi)∥

2

2

⎞

⎠

= 2Eϵ exp
⎛

⎝
λB2

L sup
WL−1,f∈FL−2

dL

∑
ι=1

∥
n

∑
i=1

ϵ(i,ι)σ(WL−1f(xi))∥

2

2

⎞

⎠
.

Due to the positive-homogeneous property of the activation function σ(⋅), we have616

dL

∑
ι=1

∥
n

∑
i=1

ϵ(i,ι)σ(WL−1f(xi))∥

2

2

=
dL

∑
ι=1

XXXXXXXXXXXXXX

⎛
⎜
⎝

∑
n
i=1 ϵ

(i,ι)σ(f(xi)
⊺W

(1)
L−1)

⋮

∑
n
i=1 ϵ

(i,ι)σ(f(xi)
⊺W

(dL−1)
L−1 )

⎞
⎟
⎠

XXXXXXXXXXXXXX

2

2

=
dL

∑
ι=1

dL−1
∑
r=1

(
n

∑
i=1

ϵ(i,ι)σ(f(xi)
⊺W

(r)
L−1))

2

=
dL−1
∑
r=1

∥W
(r)
L−1∥

2

2

dL

∑
ι=1

⎛
⎜
⎝

n

∑
i=1

ϵ(i,ι)σ
⎛
⎜
⎝
f(xi)

⊺
W
(r)
L−1

∥W
(r)
L−1∥2

⎞
⎟
⎠

⎞
⎟
⎠

2

≤ ∥WL−1∥
2
F max

r∈[dL−1]

dL

∑
ι=1

⎛
⎜
⎝

n

∑
i=1

ϵ(i,ι)σ
⎛
⎜
⎝
f(xi)

⊺
W
(r)
L−1

∥W
(r)
L−1∥2

⎞
⎟
⎠

⎞
⎟
⎠

2

≤ B2
L−1 sup

w∶∥w∥2≤1

dL

∑
ι=1

(
n

∑
i=1

ϵ(i,ι)σ (f(xi)
⊺w))

2

.
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Thus, we can obtain617

Eϵ exp
⎛

⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2
⎞

⎠

≤ 2Eϵ exp
⎛

⎝
λB2

LB
2
L−1 sup

∥w∥2≤1,f∈FL−2

dL

∑
ι=1

(
n

∑
i=1

ϵ(i,ι)σ(f(xi)
⊺w))

2
⎞

⎠

≤ 2Eϵ1∶n exp
⎛

⎝
dLλB

2
LB

2
L−1 sup

∥w∥2≤1,f∈FL−2
(

n

∑
i=1

ϵiσ(f(xi)
⊺w))

2
⎞

⎠
.

Applying Lemma 1 with τλ(t) = exp(dLλB2
LB

2
L−1t

2) gives618

Eϵ exp
⎛

⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2
⎞

⎠
≤ 2Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

τλ
⎛

⎝
sup

∥w∥2≤1,f∈FL−2
∣
n

∑
i=1

ϵiσ(f(xi)
⊺w)∣

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

τλ
⎛

⎝
sup

∥w∥2≤1,f∈FL−2

n

∑
i=1

ϵiσ(f(xi)
⊺w)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

+ 2Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

τλ
⎛

⎝
sup

∥w∥2≤1,f∈FL−2
−

n

∑
i=1

ϵiσ(f(xi)
⊺w)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= 4Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

τλ
⎛

⎝
sup

∥w∥2≤1,f∈FL−2

n

∑
i=1

ϵiσ(f(xi)
⊺w)
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ 4Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

τλ
⎛

⎝
sup

∥w∥2≤1,f∈FL−2

n

∑
i=1

ϵif(xi)
⊺w
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ 4Eϵ1∶n [τλ ( sup
WL−2,f∈FL−3

∥
n

∑
i=1

ϵiσ(WL−2f(xi))∥

2

)] ≤ 4Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

τλ
⎛

⎝
BL−2 sup

∥w∥2≤1,f∈FL−3
∣
n

∑
i=1

ϵif(xi)
⊺w∣
⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

,

where in the last step we have used the positive-homogeneous property of σ(⋅) (e.g., analysis similar619

to handling the supremum over WL, f ∈ FL−1). Applying the inequality above recursively over the620

layers leads to621

Eϵ exp
⎛

⎝
λ sup

WL,f∈FL−1
(

n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2
⎞

⎠
≤ 2LEϵ1∶n [τλ (

L−2

∏
l=1

Bl ∥
n

∑
i=1

ϵixi∥

2

)] .

Plug the inequality above into (24).622

Eϵ∈{±1}ndL

⎡
⎢
⎢
⎢
⎢
⎣

sup
WL,f∈FL−1

(
n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2⎤
⎥
⎥
⎥
⎥
⎦

≤
1

λ
log
⎛

⎝
2LEϵ1∶n exp

⎛

⎝
dLλ(

L

∏
l=1

B2
l )∥

n

∑
i=1

ϵixi∥

2

2

⎞

⎠

⎞

⎠
.

Let λ̃ = dLλ (∏L
l=1B

2
l ) and choose λ = 1

8esdL(∏
L
l=1 B2

l
)
, s = (∑1≤i≤ĩ≤n(x

⊺

iXĩ)
2)

1
2 . Then, λ̃ =623

1/(8es) and we can apply Lemma 3 to show Eϵ1∶n [exp (2λ̃∑1≤i≤ĩ≤n ϵiϵĩx
⊺

iXĩ)] ≤ 2 such that624

Eϵ1∶n exp
⎛

⎝
λ̃∥

n

∑
i=1

ϵixi∥

2

2

⎞

⎠
= Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
λ̃

n

∑
i=1

∥xi∥
2
2 + 2λ̃ ∑

1≤i≤ĩ≤n

ϵiϵĩx
⊺

iXĩ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= exp(λ̃
n

∑
i=1

∥xi∥
2
2)Eϵ1∶n

⎡
⎢
⎢
⎢
⎢
⎣

exp
⎛

⎝
2λ̃ ∑

1≤i≤ĩ≤n

ϵiϵĩx
⊺

iXĩ

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

≤ 2 exp(λ̃
n

∑
i=1

∥xi∥
2
2) .

Since λ = 1
8esdL(∏

L
l=1 B2

l
)

and s2 ≤ ∑1≤i≤ĩ≤n ∥xi∥
2
2 ∥xĩ∥

2
2 ≤ (∑

n
i=1 ∥xi∥

2
2)

2
, we can obtain625

Eϵ∈{±1}ndL

⎡
⎢
⎢
⎢
⎢
⎣

sup
WL,f∈FL−1

(
n

∑
i=1

dL

∑
ι=1

ϵ(i,ι)σ(f(xi)
⊺W

(ι)
L ))

2⎤
⎥
⎥
⎥
⎥
⎦

≤
1

λ
log(2L+1 exp(λ̃

n

∑
i=1

∥xi∥
2
2))

=
(L + 1) log 2

λ
+ dL (

L

∏
l=1

B2
l )

n

∑
i=1

∥xi∥
2
2 ≤ dL (

L

∏
l=1

B2
l )(8(L + 1)e log 2 + 1)

n

∑
i=1

∥xi∥
2
2 .

Due to (23), we can obtain626

R̂+n(E) = Eϵ1∶n [sup
e∈E

1

n

n

∑
i=1

ϵie(oi,ai)] ≤

√
2c
√
n

¿
Á
ÁÀdL (

L

∏
l=1

B2
l )(8(L + 1)e log 2 + 1)(c1 + c2). (25)
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I.5.2 Bounding R−n/2(Ḡ)627

We define the dataset D̂s ∶= {(Os(1),As(2)), . . . , (Os(n−1),As(n))}. Consider E ∶= {(o,a) ↦628

ew(o,a) ∣w ∈ W} and the following two function classes629

Ē ∶= {(o,a) ↦ ēw(o,a) ∣w ∈ W}, Ḡ = {(o,a) ↦ exp(ēw(o,a)) ∣w ∈ W}.

The empirical Rademacher complexities of Ē , Ḡ on D̂s can be defined as630

R̂−n/2(Ē ; s) = Eϵ1∶n/2

⎡
⎢
⎢
⎢
⎢
⎣

2

n
sup
w

n/2

∑
i=1

ϵiēw(os(2i−1),as(2i))

⎤
⎥
⎥
⎥
⎥
⎦

,

R̂−n/2(Ḡ; s) = Eϵ1∶n/2

⎡
⎢
⎢
⎢
⎢
⎣

2

n
sup
w

n/2

∑
i=1

ϵi exp(ēw(os(2i−1),as(2i)))

⎤
⎥
⎥
⎥
⎥
⎦

.

Note that exp(t) is 1-Lipschitz when t ≤ 0. Due to Lemma 4 and ēw(o,a) = (ew(o,a) − c)/τ ,631

R̂−n/2(Ḡ; s) ≤ R̂
−

n/2(Ē ; s) =
1

τ
R̂−n/2(E ; s). (26)

Then, we can bound R̂−n/2(E ; s) in the way similar to bounding R̂+n(E) in Section I.5.1.632
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