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ABSTRACT

Visual text evokes an image in a person’s mind, while non-visual text fails to do
so. A method to automatically detect visual text will unlock the ability to augment
text with relevant images, as neural text-to-image generation and retrieval models
operate on the implicit assumption that the input text is visual in nature. We
curate a dataset of 3,620 English sentences and their visualness scores provided
by multiple human annotators. Additionally, we use documents that contain text
and visual assets to create a distantly supervised corpus of document text and
associated images. We also propose a fine-tuning strategy that adapts large vision-
language models like CLIP that assume a one-to-one correspondence between
text and image to the task of scoring text visualness from text input alone. Our
strategy involves modifying the model’s contrastive learning objective to map text
identified as non-visual to a common NULL image while matching visual text to
their corresponding images in the document. We evaluate the proposed approach
on its ability to (i) classify visual and non-visual text accurately, and (ii) attend
over words that are identified as visual in psycholinguistic studies. Empirical
evaluation indicates that our approach performs better than several heuristics and
baseline models for the proposed task. Furthermore, to highlight the importance of
modeling the visualness of text, we conduct qualitative analyses of text-to-image
generation systems like DALL-E. We release the curated dataset and code. 1

1 INTRODUCTION

People typically communicate knowledge and information textually, but most prefer visually rich
content. Text-to-image generation/retrieval models could augment text with appropriate associated
images, aiding the creation of appealing and easy-to-understand documents. Recent models like
DALL-E (Ramesh et al., 2021a; 2022) and Stable Diffusion (Rombach et al., 2022) work phenom-
enally well for input text that is carefully constructed to elicit images. However, they cannot handle
long text that may or may not evoke a visual image. We introduce the task of quantifying sentence
visualness—a term we use interchangeably with imageability—as a necessary first step toward con-
necting textual documents with visual assets. Consider the following two examples: “The flower-
heads of Haemanthus coccineus ..., with scarlet spathe valves on them like bright shaving brushes,
make it a striking plant” (V) and “A copyright notice is a notice of statutorily prescribed form that
informs users of the underlying claim to copyright ownership in a published work” (V̄). While V
evokes an image in the reader’s mind, V̄ will be considered non-visual by most.

Vision-language models like ViLBERT (Lu et al., 2019), CLIP (Radford et al., 2021), and
UNITER (Chen et al., 2020) have achieved remarkable performance on tasks like Visual Ques-
tion Answering (VQA) (Antol et al., 2015), cross-modal retrieval (Wang et al., 2016), and Visual
Commonsense Reasoning (VCR) (Zellers et al., 2019), but it is not clear how well these models can
distinguish visual text from non-visual text. Text-to-image generation models like Stable Diffusion,
DALL-E, and Imagen (Saharia et al., 2022) would benefit from inferring text visualness before they
can generate images to embellish textual documents. In Figure 1a, we demonstrate the need with
some examples: text identified to have low visualness leads to irrelevant generations from DALL-E,
while text identified to have high visualness leads to the generation of relevant images.

Prior approaches quantifying the visualness of text operate on a word or phrase level (Deschacht &
Moens, 2007; Jeong et al., 2012) and leverage lexicons that contain human-assigned world-level im-
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Figure 1: (a): The visual text identification task, along with a motivating downstream application.
(b): Our approach to predicting sentence visualness, with a fine-tuning strategy where visual text is
matched with its corresponding image while non-visual text is matched with a fixed NULL image.

ageability scores (Louis & Nenkova, 2013). However, such techniques are limited in their coverage
and may not translate well to handle sentence-level visualness.

We curate a corpus of 3,260 sentences in English paired with their human ratings for visualness, as
well as a noisy-but-large corpus of 48,077 automatic alignments between text and visual assets in
documents, including a NULL non-visual image. The textual part of the resulting alignment pairs
can be used as examples of visual and non-visual sentences. We propose a fine-tuning strategy for
vision-language models like CLIP that allows classification inferences over text-only inputs. Our
proposed objective also ensures that the learned embeddings remain usable for downstream tasks
like text-to-image retrieval. We compare the performance of our proposed approach against several
heuristic and model-based baselines. Our extensive evaluation suggests that our fine-tuning strategy
leads to the most accurate visual and non-visual text classifier. Finally, we conduct several analyses
to glean insights into the model’s learned attention mechanism, text-to-image retrieval abilities, and
downstream text-to-image generation capabilities.

2 RELATED WORK
There are two research themes related to our work: (i) large vision-language models and their adap-
tations to downstream multimodal tasks, and (ii) understanding and quantifying visualness of words.

Fine-tuning Vision-Language Models for Downstream Tasks: Vision-Language models aim to
process and relate information across the visual and language modalities (Baltrušaitis et al., 2018;
Yuan et al., 2021; Radford et al., 2021; Lu et al., 2019; Tan & Bansal, 2019). Large models like
CLIP (Radford et al., 2021), UNITER (Chen et al., 2020), and ALIGN (Jia et al., 2021) have
demonstrated remarkable performance on downstream tasks via transfer learning or fine-tuning.
However, such downstream tasks assume both text and image as input to determine similarity or
generate/retrieve the other modality for every instance of the corresponding modality; for instance,
visual question answering (Antol et al., 2015), caption generation (Xu et al., 2015), and cross-modal
retrieval (Wang et al., 2016). Fine-tuning large vision-language models on such downstream tasks
involves adding components to the encoders’ architecture and training additional parameters on the
task-specific dataset; the additional components could be fusion layers with cross-attention for mul-
timodal classification (Mittal et al., 2022), or a Transformer-based generation module for caption
generation (Sarto et al., 2022). Transferability and reusability of models and their learned represen-
tations to downstream tasks and other domains are also a desirable properties (Yosinski et al., 2014;
Long et al., 2015), especially in light of catastrophic forgetting (Goodfellow et al., 2013).

Our work differs from existing work in that the input is only text, requiring us to adapt large vision-
language models to not rely on both modalities during inference. We propose a fine-tuning strategy
that does not involve additional architectural components (and parameters) on top of a pre-trained
CLIP architecture and yet effectively adapts CLIP for learning text visualness. Our task can be
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considered a precursor to tasks like text-to-image retrieval and generation, where images are only
retrieved or generated for visual text. Further, we aim to preserve the reusability of text embeddings
learned for the visualness categorization task for downstream tasks like text-to-image retrieval.

Visualness of Words: The visualness of text has been studied in multiple prior works but at a
word or phrase level. Coltheart (1981) curated the MRC Psycholinguistic Database comprising
human ratings for word-level imageability. Since the lexicon only contains scores for 3769 words,
the limited coverage of these visualness ratings has been a major limitation. Louis & Nenkova
(2013) address this challenge by assuming that visual tags for images tend to co-occur with other
visual terms. They use topic modeling over image tags and consider tags co-occurring in the same
topic as visual words in the MRC lexicon to be visual. Beyond word-level visualness, some studies
have focused on phrase-level visualness. For instance, Jeong et al. ( 2012) quantify the visualness
of a concept like ‘round table’ and ‘red tomato’ by measuring the “visual purity” and entropy of
the clusters of images retrieved for that concept. In the same vein, Deschacht & Moens (2007)
quantify the visualness of an entity mention on Wikipedia by computing its synsets similarity with
a collection of 25 synsets that are manually labeled for their visualness (In WordNet (Miller, 1995),
synset is a collection of words that have a close meaning and that represent an underlying concept).

Our work focuses on learning sentence-level visualness instead of word or phrase-level visualness.
While it is possible to aggregate word-level and phrase-level visualness scores to obtain sentence-
level scores, it is unclear how accurate and generalizable these techniques are. We design multiple
baselines that use word-level visualness scores to quantify sentence-level visualness and contrast the
performance of such approaches with our proposed approach.

3 TEXT IMAGEABILITY DATASET (TIMED)
Our proposed fine-tuning approach follows multi-stage training of a large vision-language model
CLIP (Radford et al., 2021). In the first stage, we conduct large-scale self-supervised fine-tuning,
followed by fine-tuning on a relatively smaller annotated corpus in the second stage. We first discuss
the curation of a large-scale corpus that comprises automatically-assigned and distant labels and then
describe the curation of the human-labeled corpus of visual and non-visual sentences.

3.1 DATASET FOR FINE-TUNING WITH AUTOMATIC LABELS

As we will discuss in the following section, the formulation of the training objective requires positive
examples comprising visual text and paired images as well as negative examples that comprise non-
visual text. To create a corpus like this, we: (i) leverage image-text co-occurrences in documents to
develop a self-supervised approach, and (ii) use image-text similarity scores obtained using CLIP as
priors to construct a large training corpus. We start with 450,000 publicly available PDFs referenced
in the Common Crawl corpus and identify pages within those PDFs that include images.2 We use a
document object detection tool like Fitz3 to extract paragraphs and images from the document pages.

We do sentence segmentation for the identified paragraphs using NLTK Tokenizer (Bird, 2006). To
map the images in the page to sentences, we compute CLIP similarity scores between each image-
sentence pair in a given page. Based on the distribution of image-sentence similarity scores across all
the pages in our corpus, we set two thresholds, Tpos and Tneg . A sentence in a page is considered a
positive example (visual text) if its similarity with any of the images in the page is greater than Tpos.
Similarly, chosen negative examples have similarity values less than Tneg with all images within
the same page. Sentences with an image similarity value greater than Tpos are associated with the
most similar image in the same page, while the negative examples are associated with a common
NULL image. The thresholds Tpos and Tneg are chosen conservatively to only include top or bottom
k % sentences from the entire corpus, respectively. This limits the noise in our training corpus for
adapting the CLIP model for scoring text imageability. In our experiments, we set Tpos to be 0.35
to consider top 1% sentences as visual and Tneg to be 0.18 to consider bottom 5% sentences as
non-visual. Our automatically-labeled corpus comprises 15,359 visual sentences, the corresponding
images, and 32,718 non-visual sentences.

2We choose to work with PDF documents rather than webpages because (i) PDFs have natural demarcations
in the form of pages (whereas webpages often contain long-running text with complex image-text interactions),
and (ii) images within a page are likely to be related to selected text fragments within the same page.

3https://github.com/pymupdf/PyMuPDF
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Table 1: Qualitative examples of visual and non-visual text from the human-annotated subset of the
Text Imageability Dataset (based on the average of annotator ratings), and text with high ambiguity
(based on the standard deviation of annotator ratings).

Category Example text µ / σ

Visual

· now the snow has melted and the grass not only looks dreary, but it is soggy. µ = 6.88
· The operation left a six-inch zipper scar on his chest. µ = 6.55
· When the gardens open, just after dawn, the first to appear are the joggers and the silent figures performing the intricate maneuvers of tai chi. µ = 6.44
· He removed the box, placed it next to the garbage can, and put his garbage inside the can. µ = 5.88
· But, after running only the first 500 meters, he realized that the injury that seemed so insignificant would not only prevent him from winning
the race, but also from finishing it.

µ = 5.00

Non-visual

· There’s only one way to prove them wrong. µ = 1.22
· For more information or to schedule an outreach, please call (999) 123-4567 or email email@website.com. µ = 1.55
· In case of your failure to answer, judgment will be taken against you by default for the relief demanded in the complaint. µ = 1.67
· A 25% quorum of member votes in each district is needed to conduct district delegate elections in October. µ = 1.77
· Colliers International makes no guarantees, representations or warranties of any kind, expressed or implied, regarding the information includ-
ing, but not limited to, warranties of content, accuracy and reliability.

µ = 2.00

Ambiguous

· J. Roman discusses his book Ohio State Football: The Forgotten Dawn which draws on extensive archival research to tell the untold story of
the early days of football at Ohio as flagship public university.

σ = 2.34

· Remember to be sure to set your clocks back 1 hour before you go to bed on Saturday, November 3rd. σ = 2.23
· That is the most important thing in my life today: Jesus. σ = 2.20
· Children & parents will get to hear author George McClements read his book Ridin’ Dinos with Buck Bronco. σ = 2.14
· Financial Peace University is a nine-lesson class taught by financial expert Dave Ramsey through entertaining videos with an in-depth
workbook, that will teach you how to take control of your money.

σ = 2.16

3.2 HUMAN-ANNOTATED DATASET

For the human-annotated visual and non-visual examples, we start with another 200,000 PDFs dis-
tinct from those used for the automated assignment of labels. To focus on natural images rather than
infographics and academic figures, we filtered these documents to only include brochures, flyers,
and magazines. For the resulting 35,432 documents, we adopted the same policy as that for curating
the automatically-labeled dataset (selecting top 1% and bottom 5% sentences based on similarity
values). We then recruited annotators to rate the visualness of the resulting 3,620 sentences after
manually anonymizing any Personal Identifiable Information (PII) instances.

We recruited annotators on Amazon Mechanical Turk (AMT). We randomly ordered the 3,620 ex-
amples and, for each example, we asked nine annotators to provide a response on a 7-point Likert
scale for the following question: “Do you agree that the sentence below evokes an image or picture
in your mind?” A response of 1 indicated strong disagreement, while 7 indicated strong agreement.
We also inserted some attention-check examples (5%; n = 181) to ensure the annotators read the
text carefully before responding. These checks explicitly asked the annotators to mark a randomly-
chosen score on the Likert scale regardless of the actual content. We discarded the annotations from
annotators who did not correctly respond to all the attention-check examples and re-collected more
responses iteratively. Appendix A.3 provides details about the demographic filters for the recruited
annotators, compensation, and the annotation interface.

If a majority of annotations (i.e., at least 5 out of 9) were 1, 2, or 3, we considered the example to
be non-visual (n = 2108). Similarly, visual examples had a majority of 5, 6, or 7 responses
(n = 1132). We considered examples that did not have a clear majority or majority of responses of
4 (i.e., ‘Neutral’ on the Likert scale) as ambiguous and neutral, respectively. Table 1 shows
illustrative examples of visual, non-visual, and ambiguous text from our dataset.

For 27.1% of the examples only at most 1 of the 9 annotators disagreed with the labels decided based
on the process described above. Only 10.5% of the sentences were assigned a neutral or ambiguous
class. Inter-annotator agreement measured by Krippendorff’s α was 0.446. Krippendorf’s α quan-
tifies the degree of agreement beyond that by chance (i.e., observed disagreement over expected
disagreement). Since the expected disagreement is strongly influenced by the ratio of values in the
reliability matrix, the value is inherently small in our case as the annotator responses are skewed
towards labels like ‘Somewhat agree,’ ‘Disagree,’ and ’Completely disagree’ than the others. This
inter-annotator agreement value is in a similar range to what is observed for other language-related
tasks that involve assessment of text by experts on dimensions like coherence, likability, relevance,
and even grammar (Karpinska et al., 2021). For brevity, we refer to the curated dataset as TIMED,
short for Text Imageability Dataset.

4 TIP-CLIP FOR SCORING TEXT VISUALNESS
Background: The CLIP model (Radford et al., 2021) jointly trains image and text encoders to pre-
dict the correct pairing between images and textual descriptions. In a batch size of N images and
N texts (N2 possible image-text pairings), the objective function ensures that the cosine similarity
between the embeddings of correct image-text pairs is maximized while the cosine similarity be-
tween the (N2 −N) incorrect image-text pairs is minimized. The encoders are trained over a large
multimodal dataset comprising about 400 million image-text pairs.
Updated training objective: When predicting text visualness, the goal is to assign a higher score to
text that is visual (evokes a concrete image for the person reading it) and a lower score for non-visual
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text (text that does not evoke an image). In line with the original training objective, we further train
the CLIP model to match text that is identified as visual with the corresponding image. We adapt
the CLIP training to match text that is identified as non-visual with a single NULL image (see
Fig. 1b). Matching visual text with the corresponding image while non-visual text to a NULL image
not only encourages the model to distinguish between visual and non-visual text, but also allows
it to anchor non-visual text in the common NULL image that can be used during inference without
having access to a potentially paired image. Formally, the adapted training objective is given as,

L = − 1

2N

N∑
j=1

log

(
exp(⟨Iej , T e

j ⟩/τ)∑N
k=1 exp(⟨Iej , T e

k ⟩/τ)

)
− 1
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N∑
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log

(
exp(⟨Iek, T e

k ⟩/τ)∑N
j=1 exp(⟨Iej , T e

k ⟩/τ)

)

such that, Iem =

{
Ienull, if m ∈ V̄ (i.e., non-visual)
Iem, if m ∈ V (i.e., visual).

(1)

Here, N denotes the number of examples in a batch, Iem and T e
m denote the embeddings of the

m-th pair of image and text that are normalized to have unit ℓ2-norm, respectively, such that
m ∈ {1, . . . , N}. ⟨...⟩ represents the inner product, and τ is the trainable temperature parameter. V̄
and V are the set of examples in the current batch that belong to non-visual and visual categories,
respectively. Finally, Ienull denotes the embedding of the NULL image. During inference, we com-
pute the cosine similarity between the representation of a given text with the representation of the
NULL image; non-visual texts will have a high similarity with the NULL image. Conversely, the
visualness score S of any text with embedding T e can be obtained using

S = 1− ⟨IeNULL, T e⟩. (2)

For the NULL image, we create an RGB image of size (224, 224, 3) in which each pixel value is
chosen randomly (see Figure 1b). However, we experiment with different types of NULL images
and find that the choice of null image does not affect the model’s performance; see Appendix A.1.

An alternative formulation for adapting the CLIP training objective could have been to match vi-
sual text with a single image while matching non-visual text with a single NULL image. However,
this formulation of the training objective is similar to binary classification and does not enforce a
contrastive objective for the positive examples. Matching visual text with its corresponding image
instead of a common image for all visual text affords text embeddings that can be used for down-
stream tasks like text-to-image retrieval; we provide empirical evidence for worse text-to-image
retrieval performance with the alternative formulation in the Results section.

5 TRAINING DETAILS AND BASELINES

Train, test, & validation splits: Recall that our fine-tuning approach requires paired images for
visual sentences only during training time and not during inference time; the model needs only text
as input during inference. Of the 1132 visual sentences in the human-annotated set of TIMED, we
assign 515 examples that had an automatically determined corresponding image to the training set,
and the remaining were randomly assigned to the test set (n = 517) and validation set (n = 100).
The 2108 non-visual sentences were randomly split into the training (n = 980), test (n = 928), and
validation set (200). All three sets maintain positive:negative class ratio of ∼ 0.5.

For the first stage of training, we fine-tune the CLIP model (ViT/B-32) on the proposed objective
(see Eq. 1) using the 48,077 examples with automatic labels. This training is done on Tesla T4
GPUs, for 5 epochs, with a batch size of 32, and a learning rate initialized at 5×10−5 and optimized
using Adam optimizer (Kingma & Ba, 2014). Following this, for the second stage, we further fine-
tune the same model for 2 epochs using the same objective and hyper-parameters, but this time using
the train set of human-annotated TIMED.4 The hyper-parameters are selected by performing a grid
search while observing performance on the validation set of TIMED. Based on the performance
on the validation set of TIMED, we set the threshold of S (Eq. 2) to be 0.79 to categorize text as
visual or non-visual. We refer to the model trained using our fine-tuning strategy as TIP-
CLIP, short for Text Imageability Predictor CLIP, and report performance on the test set of TIMED.

4The CLIP model has a maximum context length of 77 tokens (about 50 words). Fewer than 1% of the
training examples across both stages of the training are truncated to fit this context length.
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Table 2: Evaluation on human-annotated test set of TIMED. Reported F1, Precision, and Recall
values are macro-averages across the two classes (visual and non-visual).

MODELS F1 ↑ PRECISION ↑ RECALL ↑ ACC. ↑
Random 0.531 0.531 0.531 0.577

MRC-I 0.584 0.599 0.583 0.644
VG-Objects 0.606 0.610 0.605 0.646

MRC-I + w2v 0.638 0.637 0.639 0.667

BERT 0.774 0.783 0.797 0.771

CLIP 0.694 0.695 0.701 0.712
TIP-CLIP (Ours) 0.865 0.858 0.873 0.871

5.1 BASELINES

We investigate the performance of TIP-CLIP against several heuristics and baseline models.
Random: The random baseline generates predictions via prior class probabilities in the training set.
Average MRC-I score: We consider the imageability scores of 3,769 words in the MRC lexicon
and normalize them to be ∈ [0, 1]. For each example, we take the average of the imageability scores
of the unique words; out-of-vocabulary words are assigned a score of 0. We lowercase the words in
the MRC lexicon as well as the input text. Based on this average score, we categorize an example as
either visual or non-visual by setting the decision boundary as 0.17. The threshold is chosen
to optimize the performance on the validation set of TIMED.
Concentration of Visual Genome Objects (VG-Objects): The Visual Genome dataset comprises
75,729 objects, along with annotations for their attributes and object-object relations (Krishna et al.,
2017). Based on the heuristic that a mention of a visual object in the text can trigger imageability,
we quantify the concentration of Visual Genome objects by computing the fraction of unique object
mentions in tokenized text with respect to the number of total unique words within the input text.
We set the threshold to 0.5 based on the performance on the validation set.
Expanding the MRC lexicon using word embeddings: The coverage of the MRC lexicon is poor
because it contains only 3,769 words. We expand the list of word-level human-assigned imageabil-
ity scores using semantic similarity between distributed representations of words.5 For each word w
in the word2vec (Mikolov et al., 2013) vocabulary of pre-trained representations that does not occur
in the MRC lexicon, we compute its cosine similarities with all the words in the MRC lexicon to
identify the most semantically similar word that exists in MRC, given by wMRC and its similarity
with w given as (simmax). We assign the word w an imageability score of simmax × scorewMRC ,
where scorewMRC is the normalized imageability score of w’s most similar word wMRC. Based on
the performance on the validation set, the decision boundary for average imageability score of input
text is set as 0.17. This baseline propagation approach is highly effective in quantifying word-level
imageability as the Pearson’s correlation coefficient between the assigned visualness score and the
average AMT rating of humans is 0.735(p < 0.001); see Appendix A.2 for details.
Fine-tuned BERT classifier: We fine-tune a BERT model (bert-base-uncased on Hugging-
Face (Devlin et al., 2018; Wolf et al., 2020)) for the binary classification task of visual versus
non-visual text detection. Similar to our proposed model, we adopt a two-stage fine-tuning
approach with the BERT classifier (adding a classification layer to BERT for the first input to-
ken’s ([CLS]) representation). We first fine-tune the model using the automatically labeled dataset
followed by fine-tuning on the training set of the human-curated TIMED. For the first stage, we
fine-tune the model for 7 epochs with a learning rate initialized at 5× 10−5 using a batch size of 32
while setting other hyper-parameters to default. We fine-tune the model for 3 epochs for the second
stage with the same hyperparameters (chosen based on the performance on TIMED validation set).
Pre-trained CLIP model: We use the pre-trained CLIP model (ViT/B-32) to obtain similarity
scores between the embeddings of the NULL image (used for the fine-tuning of our model) and
the input text. We then use 1 − ⟨IeNULL, T e⟩ as an estimate of the visual score of text (see Eq. 2).
Based on the performance on the TIMED validation set, we set the threshold for S to be 0.83.

6 RESULTS AND ANALYSES

Evaluation on held-out test set of TIMED: We first evaluate the baselines and our approach on the
test set of the human-annotated TIMED, computing macro-averaged F1, precision, recall scores, and
classification accuracy. Table 2 show the results for this evaluation. We observe that our proposed

5We experiment with 300-dimensional word2vec vectors trained on the Google News corpus, comprising 3
million words and phrases.
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Table 3: Correlation between MRC Imageability scores and model attention-scores for BERT, CLIP,
and TIP-CLIP. n denotes the number of overlapping words across vocabularies; *** denotes p < 10−3.

MODELS MSCOCO TIMED

BERT 0.461*** (n = 344) 0.326*** (n = 294)
CLIP 0.448*** (n = 344) 0.283*** (n = 294)
TIP-CLIP (Ours) 0.497*** (n = 344) 0.367*** (n = 294)

Table 4: Ablation studies to understand the benefits of two-stage fine-tuning. The presented results
are on the human-annotated test set of TIMED. Reported values are macro-averages of class-wise
F1, precision, and recall, and overall classification accuracy.

MODELS F1 ↑ PRECISION ↑ RECALL ↑ ACC. ↑
BERT (auto-labeled) 0.714 0.704 0.716 0.710
BERT (human-labeled) 0.753 0.766 0.789 0.756
BERT (auto + human-labeled) 0.774 0.783 0.797 0.771

CLIP 0.694 0.695 0.701 0.712
TIP-CLIP (auto-labeled) 0.751 0.763 0.791 0.748
TIP-CLIP (human-labeled) 0.810 0.807 0.815 0.820
TIP-CLIP (auto + human-labeled) 0.865 0.858 0.873 0.871

two-stage fine-tuning strategy leads to the best-performing model (TIP-CLIP). In comparison, the
pre-trained CLIP model demonstrates notably weaker performance on the task of distinguishing vi-
sual text from non-visual text. Interestingly, fine-tuned BERT performs reasonably well on the task,
considerably better than the CLIP model. Using the average imageability scores from MRC provides
better-than-random performance but is severely subpar to models like CLIP, BERT, and TIP-CLIP.
Using word2vec embeddings to expand the coverage of the MRC lexicon (i.e., MRC-I + w2v) leads
to a boost in performance. However, collectively, the lacking performance of MRC-I and MRC-I
+ w2v demonstrates that word-level imageability does not translate to sentence-level imageability
to a great extent. Notably, in terms of baselines that aggregate word-level attributes, VG-Objects
provides the best estimate of sentence-level imageability by quantifying the concentrations of visual
objects in the input sentence.

Correlation of Attention Weights with MRC Imageability Scores: Attention mechanisms could
be taken as proxies for explainability (Wiegreffe & Pinter, 2019; Chefer et al., 2021). Since the
fine-tuned BERT, pre-trained CLIP, and our TIP-CLIP are attention-based models, we compute the
correlation between average word-level attention scores (obtained from the last layer) on a given
dataset with the imageability scores assigned by humans in the MRC lexicon. We compute these
values for two datasets—the MSCOCO dataset (Vinyals et al., 2016) and the test set of TIMED.
We only consider words that occur more than once in the specific corpus. Table 3 shows that TIP-
CLIP attention scores correlate the most with MRC imageability scores, followed by the fine-tuned
BERT’s attention scores. The trends are consistent across both datasets. The relative ordering of
models in terms of the correlation of their attention scores with MRC imageability scores follows
the same order as their performance on the test set of TIMED. However, all correlation scores are in
the low range, indicating a non-trivial relationship between sentence- and word-level imageability.

The same trends hold for propagated visualness scores, albeit with slightly lower values of the
correlation scores (see Appendix A.4). We also analyze the reason behind higher correlation scores
on MSCOCO with respect to the TIMED corpus in Appendix A.4.

Effect of multi-stage training: We conduct ablations to isolate the effect of two-stage training. In
Table 4, we show that BERT and TIP-CLIP can learn to distinguish visual and non-visual
text even when fine-tuned only using the automatically labeled data. However, for both models,
the gains from fine-tuning only on smaller, human-labeled data are notably higher. Furthermore,
we find the proposed two-stage fine-tuning (i.e., training on automatically labeled data followed by
human-labeled data) to be most effective, leading to a gain of over 2 and 5 absolute F1 points over
training only on human-labeled data for BERT and TIP-CLIP models, respectively. Additionally,
for a given training strategy, our proposed fine-tuning of TIP-CLIP demonstrates better performance
than the corresponding fine-tuned BERT model as well as the standard pre-trained CLIP model.

Effect on Text-to-Image Retrieval: We aim to analyze the re-usability of learned embeddings by
the TIP-CLIP model for the text-to-image retrieval task. To this end, we consider the 515 visual
examples from the test set of TIMED and, for each visual example, we rank the 515 corresponding
images based on the cosine similarity between the image and text embeddings obtained from the
TIP-CLIP model. We compute the Mean Reciprocal Rank (MRR) and contrast it with the MRR
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NULL image

Images for 
visual text

Non-visual text

Visual text

(a) CLIP embeddings

NULL image Images for 
visual text

Non-visual text

Visual text

(b) TIP-CLIP embeddings

NULL image 1
NULL image 2

Images for 
visual text

Non-visual text

Visual text

(c) Alt. formulation embeddings

Figure 2: t-SNE visualization of embeddings learned by (a) CLIP, (b) TIP-CLIP — using contrastive
and adapted contrastive learning objective, respectively, & (c) model trained using alternative for-
mulation solely focusing on classification. The plotted data points are from the TIMED test set.

obtained using the pre-trained CLIP embeddings. As expected, CLIP achieves a near-perfect MRR
of 0.989. The proposed fine-tuning objective does not severely impact the reusability of embeddings
obtained from TIP-CLIP for retrieval, and results in an MRR of 0.937. This comparison evaluates
the retrieval capabilities of TIP-CLIP against that of the CLIP model because the correspondence
between visual text and images was established using similarities between CLIP embeddings.6

The downside of an alternate training objective: Recall that our fine-tuning strategy involves
matching visual text with its corresponding image and matching non-visual text with the
NULL image. With only the classification of visual and non-visual text in mind, an alternate
fine-tuning strategy would have been to match all the visual examples with one common image
while matching all the non-visual text with the common NULL image. The major downside of
this approach is that while it leads to an effective classifier after two-stage fine-tuning, demonstrating
a comparable F1 score of 0.842 as the TIP-CLIP model, it performs poorly on the text-to-image re-
trieval task with an MRR of 0.014. Overall, while the alternate entirely classification-based training
objective performs at par with the proposed TIP-CLIP model on the classification task, the resultant
embeddings demonstrate poor reusability for downstream tasks like text-to-image retrieval.

Properties of the new embedding space: In Figure 2 we visualize the embedding space of the
learned embeddings using t-SNE (Van der Maaten & Hinton, 2008). Alongside visual and
non-visual sentences from the test set of TIMED, we also plot the embeddings of images cor-
responding to the visual sentences, and the embedding(s) of the NULL image(s). First off, we
observe that the embeddings in Figure 2a and 2b from CLIP and TIP-CLIP are different in that the
TIP-CLIP embeddings demonstrate better distinguishability between visual and non-visual
text. In Figure 2c we observe that the alternative formulation pushes the NULL embeddings to the pe-
riphery of the image embeddings’ cluster from a near-center location in Figures 2a and 2b. The text
embeddings demonstrate notable distinguishability in Figure 2c too. We believe that the alternative
classification-only formulation causes distortion in the latent space that causes drastic modification
of text-only embeddings, making them useless for downstream text-to-image retrieval, as demon-
strated empirically earlier. However, our proposed objective in TIP-CLIP preserves reusability for
downstream tasks by maintaining semantic relevance between learned image and text embeddings.

6.1 QUALITATIVE ANALYSIS

In this section we conduct two qualitative analyses: (i) contrasting the attention mechanisms for
CLIP and TIP-CLIP, and (ii) the role of distinguishing visual and non-visual text in down-
stream text-to-image generation using systems like DALL-E (Ramesh et al., 2021b).
Attention Map Visualization: To contrast the mechanism by which CLIP and TIP-CLIP models
match input text with their corresponding image, we visualize and contrast the attention maps for
both models. We adopt the state-of-the-art approach to explain multimodal Transformers (Chefer
et al., 2021). In Figure 3 we show 4 illustrative visual sentences from the test set of TIMED along
with their corresponding images. Focusing on text, we observe that TIP-CLIP has a greater tendency
to attend to visual aspects in the text; for instance, words like ‘christmas,’ ‘islands,’ ‘lakes,’ ‘anglers’
are attended to a greater extent by TIP-CLIP than CLIP. In images, we observe small changes in
attention maps across CLIP and TIP-CLIP; for instance, while the CLIP attention is focused on the
Common Loon, TIP-CLIP also attends to the ‘lake.’ It is worth noting that the proposed fine-tuning

6While establishing the correspondence between visual text and images, we enforce the constraint that
the most similar image for a text should exist on the same page of the PDF. Therefore, it is possible that while
ranking all the images in the test set, the CLIP similarity of text may be higher for a different image, resulting
in an MRR slightly less than 1.0 (i.e., 0.989).
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Original imageInput text

CLIP: I’ll be ordering our christmas plants that are in

 6 1 / 2 pots at a price of $ 5 . 0 0 each . 
TIP-CLIP: I’ll be ordering our christmas plants that are in

 6 1 / 2 pots at a price of $ 5 . 0 0 each .

CLIP: the common loon , minnesota ‘s state bird , usually nests

on islands or on shore lines of our northern lakes
TIP-CLIP: the common loom , minnesota ‘s state bird , usually nests

on islands or on shore lines of our northern lakes .

CLIP: jim sent along the following images of these successful

anglers and one of red drum they caught .

TIP-CLIP: jim sent along the following images of these successful

anglers and one of red drum they caught .

CLIP attention TIP-CLIP attention Original imageInput text CLIP attention TIP-CLIP attention

CLIP: dog - friendly pubs are a key ingredient of the charm and 

uni que atmosphere in many places in nsw .

TIP-CLIP: dog - friendly pubs are a key ingredient of the charm and

uni que atmosphere in many places in nsw.

Figure 3: Comparing the attention maps over input text and images for CLIP and TIP-CLIP. For text,
a darker shade of green demonstrates greater attention by the model. For images, red demonstrates
the greatest attention in the heatmap. Image best viewed with zoom.

Figure 4: Examples of DALL-E generations for non-visual and visual text.

objective that TIP-CLIP follows is closely related to the original contrastive objective for training
CLIP – both encourage the matching of correct image-text pairs for visual sentences but TIP-
CLIP additionally encourages matching of non-visual text to the NULL image. The qualitative
analysis of visualization maps reinforces that the matching process for text and images undergoes
small changes to accommodate for greater attention to visual aspects in the text.
Downstream Text-to-Image Generation: In Figure 4 we show the generations obtained using
DALL-E for text that is categorized as non-visual and visual in our dataset. We observe that
for non-visual text, the images produced by DALL-E show poor relevance to the text. However,
for visual text the generated images demonstrate great relevance to the input text. Qualitatively, if
the text contains declarative information, DALL-E generates text-heavy images (last two examples
in Figure 4(a)). For visual text, we observe that visual concepts like ‘melted snow on grass,’ ‘Tai
chi,’ ‘joggers in the garden,’ and ‘running in a race, are well represented in the generated images.

Triggering image-to-text generation models like DALL-E for the text that is identified as visual
is crucial to effectively use such systems in a passive setting. For instance, while working with
long-form documents, the authors should only be recommended to add visual assets in relevant
places (i.e., for visual sentences). Triggering image generations for non-visual sentences could cause
suboptimal user experiences by recommending irrelevant images. To this end, our contributions
focus on distinguishing visual text from non-visual text as the necessary first step.

TIP-CLIP also demonstrates the best out-of-domain (Twitter) generalizability compared to the base-
lines considered here; see Appendix A.5 for more details. We also analyze the predictions of com-
petitive models on the ambiguous sentences in TIMED in Appendix A.6.

7 CONCLUSION AND FUTURE WORK

We propose the task of predicting the visualness of text and curate a human-annotated dataset of
sentence-level visualness scores. Additionally, we propose a two-stage fine-tuning objective for the
task that involves training on a distantly supervised corpus followed by a smaller human-annotated
corpus. Comparisons with several baselines demonstrate the effectiveness of our approach in dis-
tinguishing visual and non-visual text. Furthermore, analyses of attention weights for our model
indicate a greater correlation with word-level imageability scores than other attention-based base-
lines. The embeddings from our approach are transferable to downstream text-to-image retrieval.
Qualitative analysis of attention weights over textual input reinforces that our model attends to vi-
sual words to a greater extent. In closing, we show qualitative examples of how predicting text
visualness can make text-to-image generation more targeted and effective.

In future, we aim to study alternate objectives for learning text visualness while ensuring transferable
representations for more downstream tasks; our current experiments demonstrate the ineffectiveness
of the binary classification formulation on this front as it shows poor text-to-image retrieval capabili-
ties. As the aggregation of word-level visualness scores leads to poor predictability of sentence-level
visualness, future work could aim to understand the compositionality in language that precipitates
visualness at the sentence level. Additionally, we will study in detail how text visualness impacts
the quality and relevance of images generated using systems like DALL-E and Stable Diffusion.
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8 ETHICS STATEMENT AND REPRODUCIBILITY

The authors do not foresee any negative social impacts of this work. However, our model can inherit
the known biases in underlying models like CLIP and BERT (Agarwal et al., 2021; Garimella et al.,
2021). The documents from which our datasets are curated are publicly available and are mentioned
in The Common Crawl corpus (https://commoncrawl.org/). We manually anonymize in-
stances of Personal Identifiable Information in the sentences that are annotated using Amazon Me-
chanical Turk. The recruited annotators are from the United States and are paid at an hourly rate of
12 USD. We intend to release the human-annotated dataset to aid future research on the topic and
the source code for fine-tuning CLIP for the task of visual text identification.
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A APPENDIX

A.1 EFFECT OF THE NULL IMAGE

Since all the non-visual sentences in the training corpus are mapped to a common NULL image, we
aim to see the effect of the chosen NULL image on the results. Recall that the NULL image used for
our main experiments was obtained by creating an RGB image in which each pixel value is chosen
randomly. We perform the same process with a different random seed to generate another NULL
image. Additionally, we use a natural image as another alternative for the NULL image. These
images are shown in Figure 5. We then evaluate the resulting models on the human-annotated test
set of TIMED. Table 5 shows that the performance of the models is not dependent on the choice
of the NULL image. We also find no dependence between the choice of the NULL image and the
performance on downstream text-to-image retrieval.

A.2 ASSESSMENT OF WORD-LEVEL IMAGEABILITY SCORE PROPAGATION

We randomly selected 500 words from the MRC lexicon and 500 words from the word2vec vocab-
ulary that did not occur in the MRC lexicon. Each word was shown to 9 annotators using Amazon
Mechanical Turk to seek responses to the following question: “Do you agree that the word below
evokes an image or picture in your mind?” The annotators were instructed to respond on a 7-point
Likert scale, where 1 denoted strong disagreement and 7 denoted strong agreement. Please see
Appendix A.3 for details about the instructions, demographic filters, and compensation.

We average the ratings for all the annotated words and normalized them to be ∈ [0, 1]. We compute
the Pearson’s correlation coefficient between (a) the average ratings for MRC words and the normal-
ized imageability scores, and (b) the average ratings for word2vec words and the imageability scores
assigned via embedding-based propagation. The correlation between MRC imageability scores and
average annotators’ ratings is 0.870 (p < 0.001) and the correlation between scores assigned via
our propagation method and average annotators’ ratings is 0.735 (p < 0.001). This high positive
correlation coefficient between assigned imageability scores and human-perceived ratings demon-
strates the effectiveness of our adopted propagation method. We also note that the inter-annotator
agreements for the ratings for MRC words and word2vec words, as computed using Krippendorf’s
α (ordinal measure), were 0.626 and 0.584, respectively.

Overall, this assessment illustrates the validity of propagating word-level imageability scores using
embedding-based semantic similarities. More broadly, the aim of adopting this approach is to ex-

(a) Original NULL image (b) NULL image with diff. seed (c) Natural NULL image

Figure 5: Various NULL images used to study the effect of the chosen image on the text visualness
identification task and the downstream text-to-image retrieval task.

Table 5: Effect of the choice of the NULL image on categorizing the human-annotated test set of
TIMED and downstream text-to-image retrieval. Reported F1, Precision, and Recall values are
macro-averages across the two classes (visual and non-visual).

VARIANTS F1 ↑ PRECISION ↑ RECALL ↑ ACC. ↑ MRR ↑
TIP-CLIP (Original – Fig. 5a) 0.865 0.858 0.873 0.871 0.937
TIP-CLIP (w/ diff. seed – Fig. 5b) 0.867 0.854 0.875 0.872 0.934
TIP-CLIP (natural image - Fig. 5c) 0.861 0.855 0.876 0.872 0.939
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Table 6: Qualitative examples of words that are assigned scores in the high (≥ 0.7), medium (∈
(0.3, 0.7)), and low (≤ 0.3) range using the word2vec embedding-based propagation methodology.

Category Example words (assigned score)

High imageability
martini, crabmeat, teeth, oysters, mosquitos, bracelets, motorboat, diamonds,
squirrels, cigarettes, beaches, trumpets, dolphin, caramel, cattle, portobello,
libraries, chimpanzee, snorkeling, sailboat, harmonica

Medium imageability
reassure, militancy, inhumanly, catalyses, industrial, peacefulness, handwo-
ven, neurosurgery, overwashed, whooper, snails, preeminence, recluse, en-
trepreneur, character, insufficient, paladin, impersonal, deviously, recover

Low imageability
politologist, psycholinguistic, requirements, confirmatory, terseness, prefor-
mulation, offender, controversial, unhealable, monoculturalism, miserable, re-
programmability, this, participate, attractive, determinant, disestablishment

(b) Interface to evaluate word-level visualness scores assigned by the propagation method

(a) Interface to collect sentence-level visualness scores

Figure 6: Interface for our annotation tasks on Amazon Mechanical Turk. For each of the annota-
tions task, we also show the instructions provided to the annotators.

pand the coverage of MRC lexicon. Qualitatively, we observe that words like ‘gotcha’ (0.33) and
‘presbyterian’ (0.61) are assigned meaningful imageability scores, demonstrating expansion along
time and domains. As a point of difference between human ratings and assigned scores, we notice
that the propagation approach assigned a high imageability score to words like ‘qawwali’ (0.60)
while the human annotators did not, possibly due to lacking sociocultural context. In Table 6 we
show illustrative words that are assigned high (≥ 0.7), medium (∈ (0.3, 0.7)), and low (≤ 0.3)
imageability scores using our propagation method.

A.3 DETAILS ABOUT MTURK EXPERIMENTS

For all our annotation tasks, we recruited annotators using Amazon Mechanical Turk. We set the
criteria to ‘Master’ annotators with at least a 99% approval rate and were located in the United
States. To further ensure the quality of annotations, we required the annotators to have at least 5000
accepted annotations in the past. The rewards were set by assuming an hourly rate of 12 USD for
all the annotators. We show the instructions and the annotation interfaces in Figure 6.

For our human evaluations, we also inserted some “attention-check” examples during the annotation
tasks to ensure the annotators read the text carefully before responding. This was done by asking
the annotators to mark a randomly-chosen score on the Likert scale regardless of the actual content.
We discard the annotations from annotators who did not correctly respond to all the attention-check
examples and re-collect annotations for the affected samples.

A.4 FURTHER ANALYSES ON THE CORRELATION BETWEEN ATTENTION SCORES AND
WORD-LEVEL VISUALNESS SCORES

We compute the Pearson’s correlation coefficient between a model’s average attention scores over
words and the visualness score assigned using our propagation method. However, unlike Table 3,
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Table 7: Pearson’s correlation coefficient between propagated imageability scores (using word2vec)
and model attention-scores. *** denotes p < 0.001

MODELS MSCOCO TIMED

BERT 0.434*** 0.301***
CLIP 0.429*** 0.262***
TIP-CLIP (Ours) 0.465*** 0.338***

Table 8: Pearson’s correlation coefficient between word-level attention scores of various models for
the TIMED test set. *** denotes p < 0.001

MODELS BERT CLIP TIP-CLIP

BERT — – –
CLIP 0.552*** – –
TIP-CLIP (Ours) 0.631*** 0.571*** –

this time, we consider the propagated imageability scores which lead to broader coverage in terms
of vocabulary. As seen in Table 7, we observe the same trends as with MRC imageability scores,
albeit with slightly lower values of correlation scores.

To analyze the alignment between learned attention scores for various models, we compute the cor-
relation between average attention scores across different models. Pearson’s correlation coefficients
in Table 8 show that all the model attention scores have a moderate correlation with each other.

Why are correlation scores higher for MSCOCO than for TIMED?: An interesting trend across
Table 3 and 7 is that the correlation scores are consistently higher, across all the models under
consideration, for the MSCOCO dataset than the test set of TIMED. We note that, on average,
MSCOCO has a caption length of 11.4 whereas the TIMED dataset has an average sentence length of
20.6, with a greater concentration of objects from the Visual Genome objects—6.7 (58.7%) objects
per example versus 8.4 (40.7%) objects per example). For our TIP-CLIP model, these objects
acquire an average of 63.2% attention scores across all the MSCOCO examples, whereas they only
acquire 37.1% of attention scores, on average, across the examples in the TIMED test set. Overall,
these results demonstrate that the TIP-CLIP model attends over words in the MSCOCO corpus in an
object-targeted manner but the attention is relatively diffused in the TIMED corpus. Combined with
the observation that MRC imageability scores are higher for concrete objects (Paivio et al., 1968),
this explains why the correlation scores are consistently higher on MSCOCO than on TIMED.

Effect of length on the correlation between attention and MRC-I scores: We categorize the
sentences in the test set of TIMED into short (≤ 10; n = 304), medium (∈ (10, 20); n = 505),
and long (≥ 20; n = 606) sentences based on word counts. However, we did not find a notable
variation in the correlation scores between the attention weights of the TIP-CLIP model and MRC
Imageability scores. Pearson’s correlation coefficient was 0.33, 0.35, and 0.37 for short, medium,
and long sentences, respectively. We observed the same trend for the fine-tuned BERT model and
the pre-trained CLIP model.

Table 9: Out of domain evaluation on the Twitter dataset. Reported F1, Precision, and Recall values
are macro-averages across the two classes (visual and non-visual).

MODELS F1 ↑ PRECISION ↑ RECALL ↑ ACC. ↑
Random 0.503 0.503 0.503 0.505

MRC-I 0.470 0.472 0.472 0.470
VG-Objects 0.536 0.541 0.539 0.548

MRC-I + w2v 0.501 0.502 0.504 0.502
MRC-I + GloVe (Twitter) 0.516 0.518 0.520 0.519

BERT 0.612 0.634 0.624 0.618

CLIP 0.644 0.645 0.645 0.644
TIP-CLIP (Ours) 0.696 0.693 0.691 0.694
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A.5 OUT-OF-DOMAIN GENERALIZATION

A critical assessment of the robustness and generalizability of the models trained using our proposed
approach is to conduct evaluations on out-of-domain (OOD) datasets. To this end, we curate a
social media dataset by scraping Twitter. We start with the Wikipedia-based Image Text Dataset
(WIT) (Srinivasan et al., 2021) and query Twitter using the Wikipedia page title to retrieve posts in
English that are with and without images. We require that the retrieved post contains the page title
string to ensure topical similarity between posts with and without images. To remove examples with
irrelevant images, we discard posts with a CLIP-similarity lower than 0.70 between the Twitter post’s
image and the corresponding image on Wikipedia. Consequently, we obtain a dataset of Twitter posts
containing mentions of 1185 Wikipedia topics, 7844 Twitter posts with images, and 7248 Twitter
posts without images. The posts with and without images are tied by common Wikipedia topics.

We hypothesize that the text in Twitter posts that mention a certain topic and contain an image are
more visual than text in Twitter posts that mention the same topic and do not contain any images. To
test this hypothesis, we randomly sample 40 Wikipedia topics and present the associated text with
(n = 264) and without images (n = 241) to human annotators. In an AMT survey that follows
the design for curating TIMED, we find that the average annotator rating for the text from Twitter
posts without images is 2.306 (±1.369) while that for text from Twitter posts with images is 4.304
(±1.273). We observe the inter-annotator agreement of 0.413, which is similar to that observed
while curating TIMED. For 34 out of the 40 Wikipedia topics, the annotators provided a higher
imageability rating to text originally associated with an image on Twitter than text not associated
with an image. Overall, the AMT survey validates our hypothesis by demonstrating that text in
Twitter posts with images is perceived as more visual than text in Twitter posts without images,
modulo the topic is common across the posts.

We now ask the question: how well the models considered in our work categorize Twitter text
with images as visual and Twitter text without images as non-visual? We first adapt the
thresholds used to classify text using various methods by running an evaluation on a randomly
sampled validation set of 100 Twitter examples, 50 from each category. The thresholds are set as
follows: MRC-I: 0.19; VG-Objects: 0.52; MRC-I + w2v: 0.17; MRC-I + GloVe: 0.327; CLIP:
0.87; TIP-CLIP: 0.74. Using these threshold values, we categorize the rest of the Twitter dataset
(n = 14, 992) into visual and non-visual categories. The random baseline uses uniform sampling.

Table 9 shows the results for this out-of-domain evaluation. First, we note that all models undergo
a severe drop in performance on the OOD dataset, indicating that the notion of sentence-level im-
ageability is strongly tied to the domain. Our proposed TIP-CLIP model demonstrates better OOD
generalization capabilities than all the considered baselines. It is noteworthy that the fine-tuned
BERT model performs poorly on the OOD dataset than the standard pre-trained CLIP model. The
aggregation of word-level imageability scores provides a worse-than-random estimate of sentence-
level imageability on the OOD dataset.

A.6 PREDICTIONS ON AMBIGUOUS SENTENCES

Recall that while curating TIMED, we combined examples without a clear majority from the an-
notators (n = 378) and those with majority votes for the ‘Neutral’ category (n = 2) into a single
category called ambiguous. We revisit these examples to analyze how the most-competitive base-
lines and our proposed TIP-CLIP model score them on imageability. We compute the imageability
score using Equation 2 for CLIP and TIP-CLIP, while treating fine-tuned BERT’s prediction proba-
bility score as its imageability score for a given example. To appropriately compare the distribution
of imageability scores across these three models, we standardize the values by computing z-scores
(i.e., xi is transformed into zi = (xi − µ)/σ; where xi is the original value, µ and σ are mean and
standard deviation of the distribution that xi belongs to). In Figure 7, we show that while CLIP
and TIP-CLIP imageability scores are distributed normally around their respective means, BERT
imageability scores are bimodal with peaks close to one standard deviation away from their mean.
This demonstrates that if the models were to be used for scoring text imageability, as opposed to
categorizing text into visual and non-visual categories, CLIP and TIP-CLIP models will pro-

7Since we are operating with the Twitter domain, we design a version of the propagation method where
MRC Imageability scores are propagated in the GloVe-embedding space, where the GloVe embeddings are
learned on Twitter corpus (Pennington et al., 2014). We use 200-dimensional GloVe vectors trained on 2
billion Twitter posts with a vocabulary size of 1.2 million.
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vide more reasonable middle-level scores for ambiguous text, whereas scores from BERT would
either be higher or lower. We attribute this to how the underlying models are trained and how the
consequent imageability scores are computed. While the BERT model is trained solely for the clas-
sification task that emphasizes discriminative encoding and the predicted probability score is used
as imageability score, the distribution is bimodal. However, CLIP and TIP-CLIP are trained using
image-text matching (the former, entirely; the latter, to some extent), and imageability scores are
computed as the distance between the NULL image and input text.
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Figure 7: Distribution of standardized visualness scores for ambiguous examples (i.e., (v − µ)/σ,
where v is the original visualness score, µ and σ are the mean and standard deviation of the distri-
butions, respectively). We contrast the predicted visualness scores by fine-tuned BERT, pre-trained
CLIP, and our TIP-CLIP models.

17


	Introduction
	Related Work
	Text Imageability Dataset (TImeD)
	Dataset for fine-tuning with automatic labels
	Human-annotated dataset

	TIP-CLIP for Scoring Text Visualness
	Training details and Baselines
	Baselines

	Results and Analyses
	Qualitative Analysis

	Conclusion and Future Work
	Ethics Statement and Reproducibility
	Appendix
	Effect of the NULL Image
	Assessment of word-level imageability score propagation
	Details about MTurk Experiments
	Further analyses on the correlation between attention scores and word-level visualness scores
	Out-of-Domain Generalization
	Predictions on Ambiguous Sentences


