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ABSTRACT

Real-time semantic segmentation presents the dual challenge
of designing efficient architectures that capture large receptive
fields for semantic understanding while also refining detailed
contours. Vision transformers model long-range dependen-
cies effectively but incur high computational cost. To address
these challenges, we introduce the Large Kernel Attention
(LKA) mechanism. Our proposed Bilateral Efficient Visual
Attention Network (BEVANet) expands the receptive field to
capture contextual information and extracts visual and struc-
tural features using Sparse Decomposed Large Separable Ker-
nel Attentions (SDLSKA). The Comprehensive Kernel Se-
lection (CKS) mechanism dynamically adapts the receptive
field to further enhance performance. Furthermore, the Deep
Large Kernel Pyramid Pooling Module (DLKPPM) enriches
contextual features by synergistically combining dilated con-
volutions and large kernel attention. The bilateral architecture
facilitates frequent branch communication, and the Boundary
Guided Attention Fusion (BGAF) module enhances boundary
delineation by integrating spatial and semantic features under
boundary guidance. BEVANet achieves real-time segmen-
tation at 33 FPS, yielding 79.3% mloU without pretraining
and 81.0% mlIoU on Cityscapes after ImageNet pretraining,
demonstrating state-of-the-art performance.

Index Terms— Real-time Semantic Segmentation, Large
Kernel Attention, Adaptive Feature Fusion

1. INTRODUCTION

Semantic segmentation, assigning class labels to every pixel,
is vital in computer vision. Initially reliant on hand-crafted
features, it evolved with Fully Convolutional Networks [1]
and models like UNet [2], improving performance with
encoder-decoder structures and skip connections. PSPNet [3]
enhanced results using pyramid pooling. However, computa-
tional demands of many models render them impractical for
real-time applications like autonomous driving and robotics.
Real-time semantic segmentation seeks to balance speed
and accuracy through lightweight architectures, often lever-
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Fig. 1. Performance of real-time models on the Cityscapes [4]
validation set, with our model in blue and others in green.

aging depth-wise separable convolutions. Recent models like
BiSeNet [5], STDC [6], and DDRNet [7] blend spatial and
semantic features to improve efficiency. PIDNet [8] achieves
state-of-the-art results by applying Proportional-Integral-
Derivative controller principles, incorporating three branches
to process detailed, contextual, and boundary information.
However, there are insufficient receptive fields for contours.

The Vision Transformer [9] and its variants introduced su-
perior long-range dependency modeling but are computation-
ally heavy. Efficient attention mechanisms such as SeaFormer
[10] attempt to optimize this, but challenges remain.

Recent approaches like RepLKNet [11] highlight the ad-
vantages of Large Kernel Attention (LKA), integrating con-
volution and attention mechanisms to capture global context
effectively. SLaK [12] expanded kernel sizes to 51 by re-
placing a large kernel with two long parallel kernels and a
small kernel. VAN [13] and LSKA [14] further optimized this
with dilated and strip convolution, reducing computational
demands. LSKNet [15] introduced the selective kernel con-
cept from SKNet [16]. However, these approaches still lack
multi-scale feature integration and receptive field adjustment.

We introduce the LKA mechanism into our Bilateral Ef-
ficient Visual Attention Network (BEVANet) to address chal-
lenges in real-time semantic segmentation, such as capturing
contour details, semantic context, and fusing features at dif-
ferent levels. Our design features the Efficient Visual Atten-
tion (EVA) block with Sparse Decomposed Large Separable
Kernel Attention (SDLSKA) to expand the receptive field,
capture semantic context, and refine details. We design the
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Comprehensive Kernel Selection (CKS) mechanism, which
integrates features from both small and large kernels using dy-
namic channel and spatial attention. Additionally, we propose
the Deep Large Kernel Pyramid Pooling Module (DLKPPM)
to enrich contextual features and prevent information loss typ-
ically caused by pooling and striding in traditional methods.
We also develop a bilateral architecture that facilitates contin-
uous communication between two branches and the Boundary
Guided Attention Fusion (BGAF) module that adapts seman-
tic and detail fusion with boundary information. The interac-
tions of these branches improve the representation of features
by integrating various features. As shown in Fig. 1, BEVANet
offers a robust and efficient framework that achieves state-of-
the-art real-time segmentation by effectively balancing accu-

racy and efficiency. Main contributions are listed as follows.
 Efficient Attention Mechanisms. We leverage large
kernel attention to design the EVA block, SDLSKA,
CKS, and DLKPPM modules. These components en-
large and dynamically adjust receptive fields, enhance
feature representation, capture contextual information,

and refine object details, improving spatial modeling.

* Branch Interaction. Frequent communication be-
tween high- and low-level branches through the bi-
lateral architecture and the BGAF module enhances
semantic concepts and detail contour by sharing infor-
mation and shortcut, enabling adaptive feature fusion.

* Performance. BEVANet offers a superior balance of
speed and accuracy to existing models. It achieves
real-time segmentation over 30 FPS with 81.0% mloU
on Cityscapes after ImageNet pre-training and 79.3%
without, indicating reduced dependency on large pre-
training datasets. Its variant BEVANet-S further achieves
83% mloU on CamVid, demonstrating its scalability.

2. METHODOLOGY

We propose the Efficient Visual Attention (EVA) module, uti-
lizing Sparse Decomposed Large Separable Kernel Attentions
(SDLSKA) and Comprehensive Kernel Selection (CKS) to
adaptively enlarge the receptive field. The Deep Large Kernel
Pyramid Pooling Module (DLKPPM) leverages large kernels
for contextual enrichment. Additionally, the Bilateral Archi-
tecture (BA) and Boundary Guided Attention Fusion (BGAF)
facilitate feature interaction across two branches.

2.1. Bilateral Architecture

Inspired by PIDNet [8], we propose BA, which frequently in-
tegrates semantic context into detailed features. As depicted
in Fig. 3, it features a high-level branch to capture seman-
tic concepts by reducing feature maps and a low-level branch
to extract contours and detect boundaries while maintaining
resolution. This enables continuous branch interaction to im-
prove semantic understanding and object boundary .

(a) EVA

(b) SDLSKA

Hx W

The structure of (a) EVA block and (b) SDLSKA module.

(c) CKS

(c) The structure of CKS module.

Fig. 2. Our EVA block (a) utilizes the SDLSKA (b) and CKS
(c) modules to adaptively expand the vision. The SDLSKA
module extracts large features using a 5 x 5 convolution, fol-
lowed by 1 x 11 and 11 X 1 strip convolutions with a dilation
rate of 3, achieving a receptive field of 35. These features
are fused with the CKS mechanism and refined via a point-
wise convolution. The CKS module computes weights across
channel and spatial dimensions through pooling and aggrega-
tion. In the spatial branch, a convolution operation generates
three feature channels. The channel branch refines features
using pointwise and depthwise convolution. The fusion of
spatial and channel weights, facilitated by the multiplication.

2.2. Efficient Visual Attention Block

Our EVA Block is inspired by the robust block design in VAN
[13] and LSKA [14], demonstrated in Fig. 2. It consists of two
main components: the Large Kernel Attention (LKA) and the
Convolution Feed-Forward Network (CFFN).

The LKA block captures long-range dependencies. By
utilizing SDLSKA, it expands the receptive field to a broader
context, resulting in more effective semantic capture. It also
uses the CKS mechanism to combine features from kernels of
different sizes and adjusts the vision accordingly. This syner-
gistic combination renders EVA Block an efficient module for
robust feature extraction and precise feature representation.

The CFEN block refines and integrates features to ensure
a well-balanced and informative output. In addition, it refines
features channel-wise using pointwise convolution.

2.2.1. Sparse Decompose Large Separable Kernel Attentions

The SDLSKA module is designed to expand the receptive
field to effectively capture semantic information and refine
details. The structure is depicted in Fig. 2(b). Drawing from
SLaK [12], we simplify large-kernel computation through
sparse grouping by decomposing them into a smaller convo-
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Fig. 3. The overall structure of the BEVANet. The high-level branch captures contextual information and long-range depen-
dencies, enriching the spatial branches with semantics. Meanwhile, the low-level branch preserves high-resolution details and
high-frequency features for accurate boundaries, maintaining a resolution of 1/8 of the original size to retain fine contours.

lution and two strip dilation kernels, then adaptively fusing
them using CKS module. The smaller convolution helps
focus on specific areas, while the two strip dilation kernels
refine the focus, with low computation. Additionally, inspired
by LSKA [14], we combine strip convolutions with depth-
wise, pointwise, and dilated convolutions to capture large-
kernel features efficiently. This approach reduces parameters
while leveraging 2D structural information, resulting in better
computational efficiency. It also adapts effectively to spatial
and channel dimensions to capture long-range dependencies.

2.2.2. Comprehensive Kernel Selection

Our CKS module innovatively performs joint channel-wise
and spatial-wise adjustments, crucial for the receptive field
adaptation of SDLSKA and for dynamic multi-scale feature
fusion from kernels of varying shapes. This integration sur-
passes SKNet [16] and LSKNet [15], which address these
dimensions in a decoupled manner. This approach captures
the interdependence between channels and spatial dimen-
sions, which is crucial for effective feature integration. As
shown in Fig. 2(c), the module efficiently manages complex
fusion across these dimensions. By merging features across
kernel scales and considering interdependencies, it enables a
holistic, adaptable fusion that leads to richer representations.

2.3. Deep Large Kernel Pyramid Pooling Module

DLKPPM preserves the hierarchical-residual structure and in-
tegrates kernels across various scales and depths, as illustrated
in Fig. 4, inspired by DAPPM [7]. To mitigate the loss of spa-
tial details typically induced by large strides and pooling oper-
ations in conventional pyramid modules, DLKPPM uniquely
integrates dilation convolutions and LKA mechanism with
LSKA [14], expanding the receptive field to 35. This efficient
approach refines features and enhances semantic concept cap-
ture, while preserving crucial spatial information.
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Fig. 4. The structure of DLKPPM. DLKPPM fuses multi-
scale information using hierarchical kernels of various depths
and sizes, minimizes the information loss from pooling with
LKA, and uses dilated convolutions for small kernels.
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Fig. 5. The structure of BGAF module. Semantic and de-
tail information are refined through BN, ReL.U, and convolu-
tion, while the boundary feature employs Sigmoid activation
to compute a balancing weight o for adaptive merging. The
balanced feature and shortcut are combined element-wise and
processed through a final convolution to generate the output.

2.4. Boundary Guided Adaptive Fusion

BGAF provides efficient multi-branch aggregation, balancing
contextual and spatial features with boundary information. As
shown in Fig. 5, it employs a shortcut residual connection to
preserve critical feature information, thereby avoiding degra-
dation from simple weighted summation. The module dy-
namically fuses high-level and low-level features, integrating
robust semantic understanding with precise contour details. It
further mitigates the limitations of the context branch’s spatial
precision and the detail branch’s shallow semantic represen-
tation by adaptively adjusting feature contributions based on
boundary significance. This design ensures precise detection
of complete object boundaries and fine-grained structures.
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Model Resolusion GPU FPS 1 #GFLOPs | #Params (M)| mloU (%) 1
BiSeNet(Res18) [5] 1536 x 768  GTX 1080Ti  65.5 55.3 49 74.8
BiSeNetV2-L [5] 1024 x 512 GTX 1080Ti  47.3 118.5 - 75.8
STDC1-Seg75 [6] 1536 x 768 RTX 3090 74.8 - - 74.5
STDC2-Seg75 [6] 1536 x 768 RTX 3090 58.2 - - 77.0
PP-LiteSeg-T2 [17] 1536 x 768 RTX 3090 96.0 - - 76.0
PP-LiteSeg-B2 [17] 1536 x 768 RTX 3090 68.2 - - 78.2
SFENet(DF2) [18] 2048 x 1024  RTX 3090 87.6 - 10.53 77.8
SFNet(ResNet-18) [18] 2048 x 1024 ~ RTX 3090 30.4 247.0 12.87 78.9
DDRNet-23-S [7] 2048 x 1024  RTX 3090 108.1 36.3 5.7 77.8
DDRNet-23 [7] 2048 x 1024  RTX 3090 514 143.1 20.1 79.5
PIDNet-S-Simple [8] 2048 x 1024  RTX 3090 100.8 46.3 7.6 78.8
PIDNet-S [8] 2048 x 1024  RTX 3090 93.2 47.6 7.6 78.8
PIDNet-M [8] 2048 x 1024  RTX 3090 39.8 197.4 344 80.1
BEVANet (Ours) 2048 x 1024  RTX 3090 32.8 238.2 58.6 81.0

Table 1. Overall Quantitative Comparisons on Cityscapes [4] Validation Set. The bold numbers, indicating the best
performance, emphasize the overall superiority of BEVANet. Most of the results are adopted from PIDNet [8].

Model GPU FPS1 #GFLOPs| mloU (%) 1
PP-LiteSeg-T [17] GTX 1080Ti  154.8 - 75.0
BiSeNetV2 [5] GTX 1080Ti  124.0 - 76.7
BiSeNetV2-L [5] GTX 1080Ti  33.0 - 78.5
DDRNet-23-S [7] RTX 3090 182.4 - 78.6
DDRNet-23 [7] RTX 3090 116.8 - 80.6
PIDNet-S [8] RTX 3090 153.7 15.8 80.1
PIDNet-S-Wider [8]  RTX 3090 85.6 59.1 82.0
BEVANet-S (Ours) RTX 3090 79.4 20.1 83.1

Table 2. Quantitative Comparisons on CamVid [19]. Most
of the results are adopted from PIDNet [8].

3. EXPERIMENTS

3.1. The Datasets and Implementation Details

We mainly evaluated on Cityscapes [4], a widely recognized
benchmark dataset for urban scene parsing, containing 2,975
training, 500 validation, and 1,525 testing images with a high
resolution of 2048 x 1024. It includes 19 classes for seman-
tic segmentation evaluation. We also use the CamVid [19]
dataset, consisting of 701 driving scene images at 960 x 720
resolution. It selects 11 classes of 32 annotated categories.
Our model is pretrained on ImageNet [20] using random
cropping to 224 x 224 and horizontal flipping, consistent with
prior works [5, 6]. Pretraining runs for 100 epochs with a
batch size of 256, employing SGD optimizer with a learning
rate of 0.1, weight decay of 0.0001, and momentum of 0.9.
The main training phase, which follows similar protocols
as in previous studies [5, 6, 7, 8], runs for 484 epochs with a
batch size of 12 and a learning rate of 0.008 for Cityscapes,
and 200 epochs with a batch size of 24 and a learning rate of
0.003 for CamVid [19]. It employs a poly decay learning rate
schedule (scaling from 0.5 to 2.0) and Online Hard Example
Mining (OHEM) applied for challenging sample selection.
All inference benchmarks were conducted on an NVIDIA
RTX 3090 GPU using PyTorch 2.4, CUDA 12.1, and Ubuntu
20.04, with a batch size of 1 for single-sample processing.

Model FPS{ #GFLOPs| mloU (%)

PIDNet-S [8] 93.2 47.6 76.32
PIDNet-M [8] 39.8 197.4 78.22
PIDNet-L [8] 31.1 275.8 78.25
BEVANet (Ours) 329 238.2 79.27

Table 3. Quantitative Comparisons of Model Performance
without Pretraining. Ours outperforms PIDNet [8].

3.2. Quantitative Comparisons

Comparisons with pre-training. In this setting, all mod-
els are pre-trained on ImageNet [20] to ensure a fair com-
parison. As shown in Table 1, our BEVANet achieves state-
of-the-art (SoTA) performance on Cityscapes [4] above the
real-time threshold of 30 FPS. With 81% mloU, our model
outperforms similarly scaled benchmark models by leverag-
ing optimized attention mechanisms and adaptive feature fu-
sion, thereby delivering high accuracy and effectiveness with-
out compromising speed. Furthermore, while PIDNet-M [8]
gains 1.3% mloU over PIDNet-S [8] at a cost of 53 FPS,
BEVANet improves upon PIDNet-M [8] by 0.9% mloU with
only a 7 FPS reduction. Table 2 shows small-scale BEVANet-
S also reaches SoTA on CamVid [19] with 20.1 GFLOPs, in-
dicating scalability and suitability for edge applications. No-
tably, BEVANet-S reduces by nearly 40 GFLOPs compared
to PIDNet-S-Wider [8], yet still achieves 1.1% higher mloU,
clearly demonstrating its superior efficiency and accuracy.

Comparisons without pre-training. In this setting, we
compare our model primarily against the SoOTA model PID-
Net [8]. As shown in Table 3, without pre-training on Ima-
geNet [20], BEVANet achieves 79.3% mloU, outperforming
PIDNet-M [8]. Furthermore, it surpasses PIDNet-L [8] by 1%
mloU while delivering higher FPS. These results highlight
the model’s efficiency and reduced dependency on large-scale
pre-training, suggesting its potential for real-time applications
where computational resources and labeled data are limited.
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Architecture  Block Selection Kernel ~ Branch Fusion ‘ FPS1t mloU (%)t

PIDNet [§]  Convs Bag [8] 42.64 78.22
BA (Ours) Convs Bag [8] 44.25 77.77
BA (Ours)  SLaK[12] Bag [8] 37.76 77.84
BA (Ours) LSKA[14] Bag [8] 41.16 77.93
BA (Ours) SDLSKA (Ours)  Addition Bag [8] 37.79 78.60
BA (Ours) SDLSKA (Ours) LSKNet [15] Bag [8] 37.46 78.72
BA (Ours) SDLSKA (Ours)  CKS (Ours) Bag [8] 37.29 78.86
BA (Ours) SDLSKA (Ours)  CKS (Ours) Light Bag [8] | 38.48 78.39
BA (Ours) SDLSKA (Ours)  CKS (Ours) BGAF (Ours) | 32.85 79.27

Table 4. The ablation study comparisons of our modules
without pretraining. Each color represents a different mod-
ule in the ablation study, with our module located at the bot-
tom of each colored area.

PPM FPS 1t mloU (%) 1
DAPPM [7] 32.85 80.43
PAPPM [8] 33.38 79.97
DLKAPPM (Ours)  32.47 80.96

Table 5. The ablation study comparisons of PPM.

3.3. Ablation Study

Architecture Efficiency. As shown in the first two rows of
Table 4, our architecture demonstrates increased speed with
only a marginal reduction in performance, showcasing the ef-
ficiency of its semantic concept and spatial detail branches.

Large Kernel Attention. Our EVA block integrates the SDL-
SKA and CKS modules. The SDLSKA module, which com-
bines LSKA [14] and SLaK [12], significantly outperforms its
components by improving the attention of the large kernel. As
indicated by the orange section in Table 4, this improvement
boosts mloU by 0.8% to 78.6% while effectively capturing
global context through an expanded receptive field. The pink
section in Table 4 indicates CKS achieves a 0.26% mloU gain
over LSKNet [15] with a marginal 0.5 FPS reduction, high-
lighting its efficient fusion of multi-scale kernels across vary-
ing shapes and its integration of small and strip dilation ker-
nels to balance spatial and channel information. Collectively,
the EVA block improves mloU by 1.1% with only a minor
decrease in speed, thereby preserving real-time performance.

Branch Fusion. Our BGAF module outperforms BAG [8] by
0.4% mloU, as highlighted in the purple area of Table 4. It en-
hances feature representation with shortcut paths and adaptive
merging low- and high-level features with boundary informa-
tion, emphasizing the value of balanced fusion and shortcuts.

Performance Enhancement. In the second and last rows in
Table 4, under 30 FPS requirement, these innovations boost
mloU by 1.5% to 79.3%, demonstrating its effectiveness.

Multi-scale Fusion. For the first and last rows in Table 5,
our DLKPPM improves contextual fusion, providing a richer
context and boosting mloU by 0.5% with a minimal 0.4 FPS
reduction. Its larger receptive field reduces pooling informa-
tion loss, making it well-suited for real-time applications.

PIDNet

(a) The visualization comparison for the small objects.

BEVANet (Ours)

BEVANet (Ours)

Ground Truth

Image PIDNet Ground Truth

(b) The visualization comparison for the completeness.

Fig. 6. Visualization comparisons. Red denotes people, yel-
low indicates traffic signs, and green represents vegetation.
From left to right, the columns display the image, PIDNet [8]
(baseline), BEVANet (ours), and Ground Truth, with each
row corresponding to a different instance.

3.4. Qualitative Analysis

Small Object. Our BEVANet outperforms PIDNet [8] in de-
tecting small objects, which are inherently difficult to identify.
As depicted in Fig. 6(a), it rectifies misclassifications such as
confusing traffic signs for people, and detects plants and traf-
fic signs that PIDNet [8] misses. BEVANet demonstrates the
capability to identify unlabeled objects such as vegetation, in-
dicating robust semantic understanding, accurate predictions,
and a deeper comprehension of contextual information.

Completeness. In Fig. 6(b), our BEVANet leverages a large
receptive field for thorough and accurate object detection, out-
performing PIDNet in completely capturing traffic cones and
grass. BEVANet also excels in handling larger objects and re-
liably detects sidewalks, where PIDNet [8] fails, demonstrat-
ing its superiority in capturing reliable spatial information.

4. CONCLUSION

Our BEVANet model achieves competitive performance
compared to state-of-the-art methods while reaching real-
time processing at 33 FPS. Its key features, including the
SDLSKA block for expanding receptive fields and the CKS
mechanism for dynamic adjustments, enable accurate small
object detection and refined boundaries. The bilateral archi-
tecture efficiently communicates between feature levels, and
the BGAF module further enhances feature fusion. Addition-
ally, our DLKPPM enriches feature representations. Future
research will aim to optimize fusion strategies and reduce
computational overhead to develop a lightweight large kernel
attention model to further improve BEVANet’s efficiency.
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